WO2022062306A1 - 环氧基和活泼氢摩尔量不匹配的环氧树脂组合物 - Google Patents

环氧基和活泼氢摩尔量不匹配的环氧树脂组合物 Download PDF

Info

Publication number
WO2022062306A1
WO2022062306A1 PCT/CN2021/075993 CN2021075993W WO2022062306A1 WO 2022062306 A1 WO2022062306 A1 WO 2022062306A1 CN 2021075993 W CN2021075993 W CN 2021075993W WO 2022062306 A1 WO2022062306 A1 WO 2022062306A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
epoxy
active hydrogen
ether
resin composition
Prior art date
Application number
PCT/CN2021/075993
Other languages
English (en)
French (fr)
Inventor
刘伟
Original Assignee
常州百思通复合材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州百思通复合材料有限公司 filed Critical 常州百思通复合材料有限公司
Priority to US17/790,741 priority Critical patent/US20230062899A1/en
Publication of WO2022062306A1 publication Critical patent/WO2022062306A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • C08G59/623Aminophenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/50Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing nitrogen, e.g. polyetheramines or Jeffamines(r)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the invention belongs to the technical field of polymer materials, and relates to an epoxy resin composition with mismatched molar weights of epoxy groups and active hydrogen.
  • Epoxy resins are widely used because of their excellent adhesion, corrosion resistance, heat resistance and mechanical properties, typically in coatings, adhesives and composites.
  • Curable epoxy resin systems generally consist of two components, one of which is an epoxy resin and the other a curing agent. When curing at medium and low temperature, the curing agent component is generally an amine compound.
  • the epoxy resin has a lower room temperature viscosity. Due to the high viscosity of commonly used epoxy resins, it is difficult to use directly.
  • reactive diluents are added to general-purpose epoxy resins, and then mixed with low-viscosity curing agents to reduce the mixed viscosity of epoxy resin systems.
  • the addition of reactive diluents often reduces the performance of epoxy resins, especially the heat resistance, which requires the use of some curing agents with better temperature resistance to make up.
  • the resin mixture has a long gel time at room temperature to ensure that the resin can penetrate the reinforcing fibers; at the same time, it is hoped that the epoxy resin can be quickly cured after proper heating; It is a pair of conflicting needs.
  • the curing agents with good temperature resistance mentioned above are generally alicyclic amines or aromatic amines, which have low reactivity with epoxy resins, which will reduce the later curing speed and degree of epoxy resins.
  • the epoxy resin component is selected from bisphenol A epoxy resin, and a certain amount of 1,4-butanediol is added. Diglycidyl ether, 1,6-hexanediol diglycidyl ether and other diluents to reduce the viscosity of epoxy resin components.
  • the curing agent component is polyetheramine with longer gel time, and a certain amount of isophorone diamine (IPDA) is added to make up for the heat loss caused by adding diluent.
  • IPDA isophorone diamine
  • IPDA isophorone diamine
  • US Patent 4,269,742 discloses the preparation of Mannich base compounds and their use as epoxy curing agents, which can cure epoxy resins at low temperature and quickly.
  • U.S. Patent 8,735,512 discloses the preparation and use of Mannich base compounds based on N,N'-dimethyl secondary diamine polymers. It can be seen from the above that the Mannich base is mainly used as a fast curing agent or accelerator in the epoxy resin system, which generally shortens the gel time at room temperature and promotes the curing reaction at the same time. It is used for slow-gel epoxy resins. system has not yet been reported.
  • the common Mannich base type curing agent is synthesized with diamine or polyamine, and its viscosity is usually high, which is difficult to use in vacuum infusion and RTM process to produce composite materials.
  • the problem to be solved by the present invention is to provide an epoxy resin composition with mismatched molar amounts of epoxy groups and active hydrogens, under the premise of ensuring that the resin system has lower initial mixing viscosity, certain heat resistance and mechanical properties , with a long gel time in the early stage, and fast and complete curing in the later stage.
  • An epoxy resin composition with mismatched molar amounts of epoxy groups and active hydrogen comprising epoxy resin component and curing agent component, and the mixing ratio of epoxy resin and curing agent component does not use epoxy equivalent and active hydrogen
  • the epoxy resin components include:
  • Bisphenol A type epoxy resin the content is 50-100%wt;
  • the curing agent components include:
  • Polyetheramine the content is 60-98%wt
  • the epoxy resin composition has a longer gel time at a temperature of 25°C, and the gel time of 100g of the composition in air is greater than 6 hours; at a temperature of 60°C, the gel time is shorter, and the 50g and 20g compositions have a shorter gel time.
  • the gel time in air is less than 1 hour.
  • the epoxy resin component further includes bisphenol F type epoxy resin, and the content is 0-50%wt.
  • the epoxy resin component further includes an epoxy reactive diluent in an amount of 0-50%wt.
  • the epoxy reactive diluent refers to epoxy compounds with lower viscosity, including but not limited to allyl glycidyl ether, butyl glycidyl ether, octyl glycidyl ether, isopropyl glycidyl ether , phenyl glycidyl ether, o-tolyl glycidyl ether, methacrylate glycidyl ether, benzyl glycidyl ether, p-tert-butylphenyl glycidyl ether, decyl glycidyl ether, cardanol glycidyl ether, carbon 8 -18 alkyl glycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,4-but
  • the epoxy resin component further includes glycidyl ester, glycidyl amine, alicyclic epoxy, and novolac epoxy resin, and the content is 0-10%wt.
  • the curing agent component further includes a monobasic, dibasic or polyamine compound containing primary amine, secondary amine or tertiary amine functional group, and the content is 0-10%wt.
  • the polyetheramine refers to a type of polymer whose main chain is a polyether structure and the terminal active functional group is an amine group.
  • Typical trade names include Huntsman's JEFFAMINE D-230, D-400, T403, and BASF's Baxxodur EC301, EC302, EC303, etc.
  • the low-viscosity Mannich base refers to a product that has a viscosity of less than 400 mPa.s at 25° C. and is synthesized from phenolic compounds, amine compounds, and aldehyde compounds through Mannich reaction.
  • the ratio of monohydric phenol to phenolic raw materials in the raw materials of the above Mannich reaction is more than 80%wt
  • the ratio of monohydric secondary amine to amine raw materials is more than 80%wt
  • the ratio of formaldehyde to aldehydes is more than 80%wt , in order to obtain low viscosity characteristics.
  • the viscosity value of the above-mentioned Mannich base is measured by using a Brookfield DV2TLV rotational viscometer, using a 62# rotor and rotating at 60 RPM.
  • the ratio of epoxy resin and curing agent is generally calculated according to the epoxy equivalent of epoxy resin and the active hydrogen equivalent of curing agent; The number of moles is equal or there is a slight excess of active hydrogen. Excessive epoxy groups generally reduce the thermal and mechanical properties of the epoxy resin system.
  • the epoxy equivalent of commonly used liquid bisphenol A epoxy resin is 180-190
  • the active hydrogen equivalent of Baxxodur EC301 polyetheramine of BASF company is 61.
  • the amount of EC301 that should be added is as follows Formula calculation:
  • the amount of EC301 that should be added is between 32-34.
  • the amine curing agent will be slightly excessive, and take 34 parts.
  • the addition amount of curing agent is reduced on the basis of theoretical calculation, and the epoxy group is excessive. Determined by measuring the highest Tg value of the cured product.
  • the epoxy groups are excessive, the crosslinking density of the cured product will be reduced, and thus the heat resistance and mechanical properties of the cured product will be reduced.
  • the residual epoxy groups will be further reacted, thereby increasing the crosslinking density and thus the resin. Heat resistance and mechanical properties of the system.
  • Common Mannich base epoxy curing agents are usually synthesized from phenol, formaldehyde, and diethylamine (dihexylamine, diethylenetriamine, triethylenetetramine). Due to their high functionality, the viscosity of the product is relatively high. High, containing more primary and secondary amine groups, more active hydrogen. When this type of curing agent cures epoxy, it mainly depends on the reaction between the active hydrogen on the primary and secondary amine groups and the epoxy resin, so its proportion should follow the principle of matching the epoxy equivalent and the active hydrogen equivalent.
  • the low-viscosity Mannich base used in the present invention is synthesized from phenolic compounds, amine compounds and aldehyde compounds by Mannich reaction.
  • phenolic compounds mainly use monohydric phenols such as phenol, (p-, m-, o-)cresol and p-tert-butylphenol;
  • amine compounds mainly use monohydric secondary amines such as dimethylamine and diethylamine.
  • a small amount of mono-primary or di-amine such as methylamine, ethylamine, propylamine, diethylamine, dihexylamine can be added; formaldehyde is generally used for aldehyde compounds; the viscosity of the product is low, generally lower than 400mPa.s (25°C) ;
  • the active functional groups contained in it are mainly tertiary amines and phenolic hydroxyl groups, and contain less active hydrogen.
  • Using the low-viscosity Mannich base and polyetheramine compound curing agent of the present invention does not need to follow the principle of matching the epoxy equivalent and the active hydrogen equivalent. Due to the particularity of the polymer chemical reaction, the reaction mechanism is not clear.
  • the theoretical ratio of E1 and C1, C2, C3, C4, C5 should be 100:35, 100:36, 100:37, 100:34, 100:40, respectively.
  • the ratio is 100:22; when E1 and C3 are mixed, when the Tg is the highest (103.4°C), the ratio of E1 and C3 is 100:22; when E1 and C4 are mixed, when the Tg is the highest (89.9°C), the ratio of E1 and C4 is 100: 28; When E1 and C5 are mixed, when the Tg is the highest (105.3°C), the ratio of E1 and C5 is 100:22; the optimal ratio is obviously deviated from the theoretical value calculated based on epoxy equivalent and active hydrogen equivalent, curing agent The dosage is less than the theoretical value.
  • the theoretical ratio of E2, E3, E4 and C1 should be 100:36, 100:36 and 100:36 respectively.
  • the theoretical ratio of E5, E6, E7 and C1 should be 100:35, 100:36 and 100:37 respectively.
  • H1 Mix E2 and C1 uniformly at a ratio of 100:25, and denote it as H1.
  • the molar ratio of epoxy groups and active hydrogen is equal to 1.4;
  • the initial viscosity of H1 at 25°C is 250mPa.s;
  • H2 Mix E3 and C1 uniformly at a ratio of 100:25, and denote it as H2.
  • the molar ratio of epoxy groups and active hydrogen is equal to 1.4;
  • the initial viscosity of H2 at 25°C is 250mPa.s;
  • H3 Mix E4 and C1 evenly at a ratio of 100:25, and denote it as H3.
  • the molar ratio of epoxy groups and active hydrogen is equal to 1.4;
  • the initial viscosity of H3 at 25°C is 330mPa.s;
  • H4 Mix E1 and C3 uniformly in a ratio of 100:22, and denote it as H4.
  • the molar ratio of epoxy groups and active hydrogen is equal to 1.7; the initial viscosity of H4 at 25°C is 830mPa.s.
  • the gel time of the epoxy resin composition prepared by the above example is more than 6 hours in 100g composition air at a temperature of 25°C;
  • the glue time is less than 1 hour.
  • D1 weigh 100 parts of E1 and 34 parts of Baxxodur EC301 of BASF company, mix well, and denote it as D1.
  • D1 the molar ratio of epoxy groups and active hydrogens is equal to 0.99.
  • the initial viscosity of D1 was 720 mPa.s when tested at a temperature of 25°C.
  • the epoxy resin system with mismatched molar amount of epoxy groups and active hydrogen according to the present invention has little influence on the gel time at room temperature, and the curing speed after heating is fast, which can increase the Tg of the cured product and reduce the product characteristics of viscosity.
  • the raw materials used in the low-viscosity Mannich base of the present invention are readily available and the production process is simple, it has higher economic benefits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物,包括环氧树脂组分和固化剂组分,环氧树脂和固化剂组分的混合比例采用实验测定不同比例混合固化物的Tg,以Tg最高的比例为准;按照占组分总重量的重量百分比计,所述环氧树脂组分包括:双酚A型环氧树脂,含量为50-100%wt;所述固化剂组分包括:聚醚胺,含量为60-98%wt;低粘度的曼尼希碱,含量为2-20%wt。所述环氧基和活泼氢摩尔量不匹配的环氧树脂体系,具有对凝胶时间的影响小,可提高固化物的Tg,降低产物粘度的特点。同时,由于所述低粘度曼尼希碱所用原料易得,生产工艺简单,因此具有较高的经济效益。

Description

[根据细则37.2由ISA制定的发明名称] 环氧基和活泼氢摩尔量不匹配的环氧树脂组合物 技术领域
本发明属于高分子材料技术领域,涉及一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物。
背景技术
环氧树脂因为其优异的粘结力、耐腐蚀性、耐热性和机械性能被广泛应用,典型的领域有涂料、粘合剂和复合材料。可以固化的环氧树脂体系一般由两组分组成,其中一组分是环氧树脂,另一组分是固化剂。中低温固化时,固化剂组分一般为胺类化合物。
采用真空灌注、RTM等工艺制备复合材料时,一般期望环氧树脂具有较低的常温粘度。由于常用的环氧树脂粘度较高,因此难以直接使用。通常是在通用的环氧树脂中添加活性稀释剂,然后和低粘度的固化剂混合,以降低环氧树脂体系的混合粘度。但是,活性稀释剂的添加,往往会降低环氧树脂的性能,特别是耐热性能,这就需要配合使用一些耐温性能较好的固化剂来弥补。
另外,采用真空灌注、RTM等工艺制备复合材料时还希望树脂混合物在常温下具有长的凝胶时间,以保证树脂能够浸透增强纤维;同时又希望适当加热后,环氧树脂能够快速固化;这是一对互相矛盾的需求。而且,上文所述耐温性能较好的固化剂,具体的一般是脂环胺或芳香胺,他们与环氧树脂的反应活性较低,会降低环氧树脂的后期固化速度和程度。
在最典型的真空灌注复合材料制品风力发电叶片的制造过程中使用的环氧树脂通用做法是:环氧树脂组分选用双酚A型环氧树脂,添加一定量的1,4-丁二醇二缩水甘油醚、1,6-己二醇二缩水甘油醚等稀释剂来降低环氧树脂组分的粘度。固化剂组分选用凝胶时间较长的聚醚胺,添加一定量的异佛尔酮二胺(IPDA)来弥补添加稀释剂造成的耐热损失。但是,使用异佛尔酮二胺(IPDA)不仅成本很高,而且会缩短树脂体系前期的凝胶时间,同时阻碍后期的固化度提升。
美国专利4269742公开了曼尼希碱化合物的制备和作为环氧固化剂的用途,可以低温、快速固化环氧树脂。美国专利6465601曼尼希碱化合物作为环氧树脂 和聚氨酯树脂体系的促进剂。美国专利8735512公开了基于N,N’-二甲基仲二胺聚合物的曼尼希碱化合物的制备和用途。由上可知,曼尼希碱在环氧树脂体系中主要作为快速固化剂或促进剂使用,一般会缩短常温下的凝胶时间,同时促进固化反应,将其用于慢凝胶的环氧树脂体系,尚未见报道。另外,常见的曼尼希碱型固化剂,以二元胺或多元胺合成,粘度通常较高,难以用于真空灌注、RTM工艺生产复合材料。
发明内容
本发明要解决的问题在于提供一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物,在保证树脂体系具有较低的初始混合粘度、一定的耐热性能和机械性能的前提下,前期具有长的凝胶时间,后期固化快速完全。
为了实现上述目的,本发明采用以下技术方案:
一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物,包括环氧树脂组分和固化剂组分,环氧树脂和固化剂组分的混合比例不使用环氧当量和活泼氢当量计算得到的理论值,而是采用实验测定不同比例混合固化物的Tg,以Tg最高的比例为准;
按照占组分总重量的重量百分比计,所述环氧树脂组分包括:
双酚A型环氧树脂,含量为50-100%wt;
按照占组分总重量的重量百分比计,所述固化剂组分包括:
聚醚胺,含量为60-98%wt;
低粘度的曼尼希碱,含量为2-20%wt。
优选地,所述环氧树脂组合物在25℃温度下凝胶时间较长,100g组合物空气中的凝胶时间大于6小时;在60℃温度下凝胶时间较短,50g和20g组合物空气中的凝胶时间小于1小时。
优选地,所述环氧树脂组分还包括双酚F型环氧树脂,含量为0-50%wt。
优选地,所述环氧树脂组分还包括环氧活性稀释剂,含量为0-50%wt。
更优选地,所述环氧活性稀释剂是指粘度较低的环氧化合物,包括但不限于烯丙基缩水甘油醚、丁基缩水甘油醚、辛基缩水甘油醚、异丙基缩水甘油醚、苯基缩水甘油醚、邻甲苯基缩水甘油醚、甲基丙烯酸缩水甘油醚、苄基缩水甘油醚、 对叔丁苯基缩水甘油醚、癸基缩水甘油醚、腰果酚缩水甘油醚、碳8-18烷基缩水甘油醚、乙二醇二缩水甘油醚、丙二醇二缩水甘油醚、聚乙二醇二缩水甘油醚、聚丙二醇二缩水甘油醚、1,4-丁二醇二缩水甘油醚、1,6-己二醇二缩水甘油醚、新戊二醇二缩水甘油醚、1,4-环己二甲醇二缩水甘油醚、环己二醇二缩水甘油醚、间(邻、对)苯二酚二缩水甘油醚、丙三醇三缩水甘油醚、三羟甲基丙烷三缩水甘油醚、叔碳酸缩水甘油酯及其组合。
优选地,所述环氧树脂组分还包括缩水甘油酯、缩水甘油胺、脂环环氧、酚醛环氧树脂,含量为0-10%wt。
优选地,所述固化剂组分还包括含有伯胺、仲胺或叔胺官能团的一元、二元或多元胺类化合物,含量为0-10%wt。
优选地,所述聚醚胺,是指的一类主链为聚醚结构,末端活性官能团为胺基的聚合物。典型商品牌号有典型商品牌号有亨斯曼公司JEFFAMINE D-230、D-400、T403,BASF公司Baxxodur EC301、EC302、EC303等。
优选地,所述低粘度的曼尼希碱是指25℃粘度小于400mPa.s,由酚类化合物、胺类化合物、醛类化合物以曼尼希反应合成的产物。
更优选地,上述曼尼希反应的原料中一元酚占酚类原料的比例大于80%wt,一元仲胺占胺类原料的比例大于80%wt,甲醛占醛类物质的比例大于80%wt,以便获得低粘度特性。
更优选地,上述曼尼希碱的粘度值,采用博勒飞DV2TLV型旋转粘度计,使用62#转子,60RPM转速测得。
本发明的有益效果如下:
使用胺类物质作为环氧树脂固化剂时,一般根据环氧树脂的环氧当量和固化剂的活泼氢当量理论计算环氧树脂和固化剂的配比;通常会使环氧基团与活泼氢的摩尔数相等或活泼氢略微过量。如果环氧基团过量,一般会降低环氧树脂体系的耐热性能和力学性能。例如,常用液体双酚A型环氧树脂的环氧当量为180-190,BASF公司的Baxxodur EC301聚醚胺活泼氢当量为61,每100份环氧树脂中,应该添加的EC301的量按下式计算:
100/180*61=34
100/190*61=32
因此,每100份环氧树脂中,应该添加的EC301的量在32-34之间。一般会使胺固化剂略过量,取34份。
本发明创造性的在使用聚醚胺和低粘度曼尼希碱混合物作为环氧树脂的固化剂时,在理论计算的基础上减少固化剂的添加量,使环氧基团过量,具体比例以实验测定固化物的Tg最高值来确定。
通常情况下,如果环氧基团过量,会降低固化物的交联密度,因此会降低固化的耐热性能和力学性能。而在聚醚胺和低粘度曼尼希碱共存的体系中,由于低粘度曼尼希碱的存在,会使残留的环氧基团进一步反应,从而提高了交联密度,也就提高了树脂体系的耐热性和机械性能。
常见的曼尼希碱型环氧固化剂,通常选用苯酚、甲醛、二乙胺(二己胺、二乙烯三胺、三乙烯四胺)来合成,由于其官能度较高,产物的粘度较高,含有较多伯胺、仲胺基,活泼氢较多。此类固化剂固化环氧时,主要依赖伯胺、仲胺基上的活泼氢和环氧树脂反应,因此其配比应该遵循环氧当量与活泼氢当量匹配的原则。
本发明采用的低粘度曼尼希碱由酚类化合物、胺类化合物、醛类化合物以曼尼希反应合成。为了降低粘度,通常,酚类化合物主要使用苯酚、(对、间、邻)甲酚、对叔丁基酚等一元酚;胺类化合物主要使用二甲胺、二乙胺等一元仲胺,另外可添加少量甲胺、乙胺、丙胺、二乙胺、二己胺等一元伯胺或二元胺;醛类化合物一般使用甲醛;产物的粘度较低,一般低于400mPa.s(25℃);其中含有的活性官能团主要是叔胺和酚羟基,含有的活泼氢较少。采用本发明所述低粘度曼尼希碱和聚醚胺复配的固化剂,不需要遵循环氧当量与活泼氢当量匹配的原则。由于高分子化学反应的特殊性,其反应机理并不明确,只能推测是由于聚醚胺侧链甲基的屏蔽作用,使聚醚胺和环氧树脂的反应较慢,有部分环氧基残留;残留的环氧基在酚羟基、叔胺基的共同作用下自聚,从而提高了交联密度。同时,由于本发明所述低粘度曼尼希碱所用原料易得,生产工艺简单,因此具有较高的经济效益。
具体实施方式
下面,通过实施例进一步详细说明本发明。本发明实施例部分所述“份”, 如非特殊说明,表示质量份数。
合成例1
将1摩尔份苯酚、3.3摩尔份二甲胺投入烧瓶,通氮气保护,控制温度40-50℃,搅拌30分钟,然后加入3.3摩尔份甲醛,升高温度到70-80℃,继续反应1小时。抽真空除去水和残留的二甲胺、甲醛,后期将温度升高到120℃,控制含水率小于1%,得到产物M1。测试产物的粘度为180mPa.s(25℃)。
将1摩尔份甲酚、3.3摩尔份二甲胺投入烧瓶,通氮气保护,控制温度40-50℃,搅拌30分钟,然后加入3.3摩尔份甲醛,升高温度到70-80℃,继续反应1小时。抽真空除去水和残留的二甲胺、甲醛,后期将温度升高到120℃,控制含水率小于1%,得到产物M2。测试产物的粘度为200mPa.s(25℃)。
将1摩尔份苯酚、3摩尔份二甲胺、0.1摩尔份甲胺投入烧瓶,通氮气保护,控制温度40-50℃,搅拌30分钟,然后加入3.3摩尔份甲醛,升高温度到70-80℃,继续反应1小时。抽真空除去水和残留的二甲胺、甲醛;后期将温度升高到120℃,控制含水率小于1%,得到产物M3。测试产物的粘度为280mPa.s(25℃)。
上述粘度值,采用博勒飞DV2TLV型旋转粘度计,使用62#转子,60RPM转速测得。
实施例1
选取环氧当量为180-190的低分子量双酚A型环氧树脂,记为E1;
将95份BASF公司的Baxxodur EC301和5份M1混合均匀,记为C1;
将92份BASF公司的Baxxodur EC301和8份M1混合均匀,记为C2;
将90份BASF公司的Baxxodur EC301和10份M1混合均匀,记为C3;
将98份BASF公司的Baxxodur EC301和2份M3混合均匀,记为C4;
将60份BASF公司的Baxxodur EC301、20份氰乙基己二胺和20份M2混合均匀,记为C5;
根据环氧当量和活泼氢当量按理论计算E1和C1、C2、C3、C4、C5的理论配比应该分别为100:35、100:36、100:37、100:34、100:40。
将E1和C1、C2、C3、C4、C5分别按不同比例混合后,在60℃烘箱内固化2小时后,将烘箱温度调高到80℃,继续固化2小时,取出,使用DSC测试 固化物的Tg,得到结果如下:
表1.实施例1中E1和C1-C5分别按不同比例混合制得固化物的Tg值
序号 E1 C1 C2 C3 C4 C5 Tg(℃)
1 100 20         93.9
2 100 22         94.8
3 100 25         95.9
4 100 28         95.8
5 100 30         93.0
6 100   20       98.2
7 100   22       98.4
8 100   25       98.0
9 100   28       96.1
10 100   30       93.7
11 100     20     101.3
12 100     22     103.4
13 100     25     100.0
14 100     28     96.5
15 100     30     94.1
16 100       20   85.9
17 100       22   87.4
18 100       25   88.6
19 100       28   89.9
20 100       30   88.5
21 100         20 103.5
22 100         22 105.3
23 100         25 102.1
24 100         28 98.2
25 100         30 96.5
由此可见,在相同固化条件下,E1和C1混合,Tg最高(95.9℃)时,E1和C1的比例为100:25;E1和C2混合,Tg最高(98.4℃)时,E1和C2的比例为100:22;E1和C3混合,Tg最高(103.4℃)时,E1和C3的比例为100:22;E1和C4混合,Tg最高(89.9℃)时,E1和C4的比例为100:28;E1和C5混合,Tg最高(105.3℃)时,E1和C5的比例为100:22;其最佳配比,明显偏离于基于环氧当量和活泼氢当量计算得到的理论值,固化剂的用量比理论值 要少。
实施例2
将85份环氧当量为180-190的低分子量双酚A型环氧树脂和15份1,4-丁二醇二缩水甘油醚混合均匀,记为E2;
将85份环氧当量为180-190的低分子量双酚A型环氧树脂和15份1,6-己二醇二缩水甘油醚混合均匀,记为E3;
将85份环氧当量为180-190的低分子量双酚A型环氧树脂和15份新戊二醇二缩水甘油醚混合均匀,记为E4;
将95份BASF公司的Baxxodur EC301和5份M1混合均匀,记为C1;
根据环氧当量和活泼氢当量按理论计算E2、E3、E4和C1的理论配比应该分别为100:36、100:36、100:36。
将E2、E3、E4和C1分别按不同比例混合后,在60℃烘箱内固化2小时后,将烘箱温度调高到80℃,继续固化2小时,取出,使用DSC测试固化物的Tg,得到结果如下:
表2.实施例2中E2、E3、E4和C1分别按不同比例混合制得固化物的Tg值
序号 E2 E3 E4 C1 Tg(℃)
1 100     24 86.0
2 100     25 88.1
3 100     26 87.7
4 100     27 86.0
5 100     28 84.8
6   100   24 84.2
7   100   25 85.9
8   100   26 84.7
9   100   27 83.9
10   100   28 83.0
11     100 24 85.5
12     100 25 86.5
13     100 26 85.2
14     100 27 85.1
15     100 28 84.3
由此可见,在相同固化条件下,E2和C1混合,Tg最高(88.1℃)时,E2 和C1的比例为100:25;E3和C1混合,Tg最高(85.9℃)时,E3和C1的比例为100:25;E4和C1混合,Tg最高(86.5℃)时,E4和C1的比例为100:25;在双酚A型环氧树脂中添加活性稀释剂以后,其最佳配比,依然明显偏离于基于环氧当量和活泼氢当量计算得到的理论值,固化剂的用量比理论值要少。另外,可以看出,在一定范围内,当固化剂添加量变化时,对Tg的影响较小。
实施例3
将75份环氧当量为180-190的低分子量双酚A型环氧树脂、5份环氧当量为165-175的低分子量双酚F型环氧树脂和20份1,4-二甲基环己二醇二缩水甘油醚混合均匀,记为E5;
将90份环氧当量为180-190的低分子量双酚A型环氧树脂和10份苯基缩水甘油醚混合均匀,记为E6;
将50份环氧当量为180-190的低分子量双酚A型环氧树脂和50份环氧当量为165-175的低分子量双酚F型环氧树脂混合均匀,记为E7;
将95份BASF公司的Baxxodur EC301和5份M1混合均匀,记为C1;
根据环氧当量和活泼氢当量按理论计算E5、E6、E7和C1的理论配比应该分别为100:35、100:36、100:37。
将E5、E6、E7和C1分别按不同比例混合后,在60℃烘箱内固化2小时后,将烘箱温度调高到80℃,继续固化2小时,取出,使用DSC测试固化物的Tg,得到结果如下:
表3.实施例3中E5、E6、E7和C1分别按不同比例混合制得固化物的Tg值
序号 E5 E6 E7 C1 Tg(℃)
1 100     22 86.1
2 100     24 88.2
3 100     26 87.1
4 100     28 85.4
5 100     30 84.6
6   100   22 86.0
7   100   24 88.8
8   100   26 86.8
9   100   28 84.6
10   100   30 82.7
11     100 22 84.7
12     100 24 87.1
13     100 26 89.5
14     100 28 88.0
15     100 30 86.0
由此可见,在相同固化条件下,E5和C1混合,Tg最高(88.2℃)时,E5和C1的比例为100:24;E6和C1混合,Tg最高(88.8℃)时,E6和C1的比例为100:24;E7和C1混合,Tg最高(89.5℃)时,E7和C1的比例为100:26;进一步改变环氧树脂组分的成分和比例后,其最佳配比,依然明显偏离于基于环氧当量和活泼氢当量计算得到的理论值,固化剂的用量比理论值要少。另外,可以看出,在一定范围内,当固化剂添加量变化时,对Tg的影响较小。
实施例4
选取环氧当量为180-190的低分子量双酚A型环氧树脂,记为E1;
将90份BASF公司的Baxxodur EC301和10份M1混合均匀,记为C3;
根据环氧当量和活泼氢当量按理论计算E1和C3的理论配比应该分别为100:37。
将E1和C3分别按不同比例混合后,在80℃烘箱内固化1小时后,将烘箱温度调高到120℃,继续固化1小时,取出,使用DSC测试固化物的Tg,得到结果如下:
表4.实施例4中E1和C3分别按不同比例混合制得固化物的Tg值
序号 E1 C3 Tg(℃)
1 100 17 111.4
2 100 18 111.5
3 100 19 111.3
4 100 20 112.8
5 100 21 108.8
6 100 22 106.7
7 100 23 105.6
8 100 24 104.6
9 100 25 102.1
10 100 26 100.4
由此可见,改变固化条件后,E1和C3混合,Tg最高(112.8℃)时,E1和C3的比例为100:20;改变固化条件以后,其最佳配比,依然明显偏离于基于环氧当量和活泼氢当量计算得到的理论值,固化剂的用量比理论值要少。而且,和实施例1对比可以看出,固化温度越高,最佳的配比所需的固化剂的量越少。
实施例5
将85份环氧当量为180-190的低分子量双酚A型环氧树脂和15份1,4-丁二醇二缩水甘油醚混合均匀,记为E2;
将95份BASF公司的Baxxodur EC301和5份M1混合均匀,记为C1;
将E2和C1按100:25的比例混合,分别在不同的条件下固化后,测试Tg,得到结果如下:
表5.实施例5中E2和C1在不同条件下固化制得固化物的Tg值
序号 固化条件 Tg(℃)
1 60℃2h+70℃1h 74.9
2 60℃2h+70℃2h 79.0
3 60℃2h+80℃1h 82.9
4 60℃2h+80℃2h 86.2
由此可见,相同混合比例时,E2和C1混合,固化温度越高,固化时间越长,Tg最高(86.2℃)。注:该实施例序号4与实施例2序号2为相同条件下不同批次的实验,存在一定误差,该误差在不同批次重复实验的允许范围内。
实施例6
选取环氧当量为180-190的低分子量双酚A型环氧树脂,记为E1;
将85份环氧当量为180-190的低分子量双酚A型环氧树脂和15份1,4-丁二醇二缩水甘油醚混合均匀,记为E2;
将85份环氧当量为180-190的低分子量双酚A型环氧树脂和15份1,6-己二醇二缩水甘油醚混合均匀,记为E3;
将85份环氧当量为180-190的低分子量双酚A型环氧树脂和15份新戊二醇二缩水甘油醚混合均匀,记为E4;
将95份BASF公司的Baxxodur EC301和5份M1混合均匀,记为C1;
将90份BASF公司的Baxxodur EC301和10份M1混合均匀,记为C3;
将E2、C1按100:25比例混合均匀,记为H1,在H1中,环氧基团和活泼氢的摩尔比等于1.4;测试25℃温度下H1的初始粘度为250mPa.s;
将E3、C1按100:25比例混合均匀,记为H2,在H2中,环氧基团和活泼氢的摩尔比等于1.4;测试25℃温度下H2初始粘度为250mPa.s;
将E4、C1按100:25比例混合均匀,记为H3,在H3中,环氧基团和活泼氢的摩尔比等于1.4;测试25℃温度下H3的初始粘度为330mPa.s;
将E1、C3按100:22比例混合均匀,记为H4,在H4中,环氧基团和活泼氢的摩尔比等于1.7;测试25℃温度下H4的初始粘度为830mPa.s。
称取100g H1、H2、H3、H4,测试25℃温度下的凝胶时间,得到结果如下:
表6.实施例6中100g的H1、H2、H3、H4在25℃温度下的凝胶时间
序号 样品 重量(g) 温度(℃) 凝胶时间(h)
1 H1 100 25 >8
2 H2 100 25 >8
3 H3 100 25 >8
4 H4 100 25 7.5
称取不同重量H1测试其50℃、60℃温度下的凝胶时间,得到结果如下:
表7.实施例6中不同重量的H1在不同温度下的凝胶时间
序号 样品 重量(g) 温度(℃) 凝胶时间(h)
1 H1 50 50 1.13
2 H1 50 60 0.70
3 H1 20 50 2.33
4 H1 20 60 0.9
由此可见,通过以上实施例制得的环氧树脂组合物在25℃温度下,100g组合物空气中的凝胶时间大于6小时;在60℃温度下,50g和20g组合物空气中的凝胶时间都小于1小时。
对比例1
选取环氧当量为180-190的低分子量双酚A型环氧树脂,记为E1;
称取E1 100份、BASF公司的Baxxodur EC301 34份,混合均匀,记为D1。在D1中,环氧基团和活泼氢的摩尔比等于0.99。测试25℃温度下D1的初始粘度为720mPa.s。
取100g混合物D1,测试25℃的凝胶时间>8h。
取50g D1在60℃烘箱内固化2小时后,将烘箱温度调高到80℃,继续固化2小时,取出,使用DSC测试固化物的Tg为83.9℃。
对比例2
选取环氧当量为180-190的低分子量双酚A型环氧树脂,记为E1;
称取E1 100份、BASF公司的Baxxodur EC301 34份、M1 2份,混合均匀,记为D2。在D2中,环氧基团和活泼氢的摩尔比等于0.99。
取100g混合物D2,测试25℃的凝胶时间为7h。
取50g D2在60℃烘箱内固化2小时后,将烘箱温度调高到80℃,继续固化2小时,取出,使用DSC测试固化物的Tg为83.4℃。
对比例3
将85份环氧当量为180-190的低分子量双酚A型环氧树脂和15份1,4-丁二醇二缩水甘油醚混合均匀,记为E2;
称取E2 100份、BASF公司的Baxxodur EC301 35份、M1 2份,混合均匀,记为D3。在D3中,环氧基团和活泼氢的摩尔比等于0.99。
取100g混合物D3,测试25℃的凝胶时间为7h。
取50g D3在60℃烘箱内固化2小时后,将烘箱温度调高到80℃,继续固化2小时,取出,使用DSC测试固化物的Tg为71.6℃。
对比例4
将85份环氧当量为180-190的低分子量双酚A型环氧树脂和15份1,4-丁二醇二缩水甘油醚混合均匀,记为E2;
称取E2 100份、BASF公司的Baxxodur EC301 26份、异佛尔酮二胺7份,混合均匀,记为D4。在D4中,环氧基团和活泼氢的摩尔比等于0.99。
取100g混合物D4,测试25℃的凝胶时间为8h。
取50g D4在60℃烘箱内固化2小时后,将烘箱温度调高到80℃,继续固化2小时,取出,使用DSC测试固化物的Tg为74.1℃。
对比例5
将85份环氧当量为180-190的低分子量双酚A型环氧树脂和15份1,4-丁二醇二缩水甘油醚混合均匀,记为E2;
称取E2 100份、BASF公司的Baxxodur EC301 35份,混合均匀,记为D5。在D5中,环氧基团和活泼氢的摩尔比等于0.99。
取100g混合物D5,测试25℃的凝胶时间大于8h。
取50g D4在60℃烘箱内固化2小时后,将烘箱温度调高到80℃,继续固化2小时,取出,使用DSC测试固化物的Tg为66.5℃。
对比例1-5的结果见表8。
表8.对比例1-5中D1-D5在25℃的凝胶时间及固化物Tg值
序号 样品 重量(g) 温度(℃) 凝胶时间(h) Tg(℃)
1 D1 100 25 >8 83.9
2 D2 100 25 7 83.4
3 D3 100 25 7 71.6
4 D4 100 25 8 74.1
5 D5 100 25 >8 66.5
由以上对比例和实施例可以看出,在双酚A型环氧树脂中添加活性稀释剂降低体系粘度时,会使Tg显著降低(对比例D5相对于D1)。使用异佛尔酮二胺等耐温性较好的胺替代部分聚醚胺(对比例D4),相对未添加异佛尔酮二胺(对比例D5),会缩短凝胶时间;可提高体系固化物的Tg,但是提升并不明显。
在环氧树脂+聚醚胺固化剂环氧树脂体系中添加低粘度曼尼希碱,如果配比按环氧当量和活泼氢当量匹配(对比例2-3,D2、D3样品),曼尼希碱会催化聚醚胺和环氧树脂的反应,使凝胶时间缩短;而当配比不按环氧当量和活泼氢当量匹配时(实施例6,H1、H2、H3、H4样品),对凝胶时间的影响较小。
同时,在环氧树脂+聚醚胺固化剂环氧树脂体系中添加低粘度曼尼希碱,如果配比按环氧当量和活泼氢当量匹配,其固化物的Tg变化不大(对比例1-2,D1、D2样品);而当配比不按环氧当量和活泼氢当量匹配时,其固化物的Tg会显著提高(对比例1,D1样品和实施例1对比,对比例5,D5样品和实施例2对比)。
综合来看,本发明所述环氧基和活泼氢摩尔量不匹配的环氧树脂体系,具有 对常温下凝胶时间的影响小,加热后固化速度快,可提高固化物的Tg,降低产物粘度的特点。同时,由于本发明所述低粘度曼尼希碱所用原料易得,生产工艺简单,因此具有较高的经济效益。

Claims (9)

  1. 一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物,包括环氧树脂组分和固化剂组分,环氧树脂和固化剂组分的混合比例不使用环氧当量和活泼氢当量计算得到的理论值,而是采用实验测定不同比例混合固化物的Tg,以Tg最高的比例为准;
    按照占组分总重量的重量百分比计,所述环氧树脂组分包括:
    双酚A型环氧树脂,含量为50-100%wt;
    按照占组分总重量的重量百分比计,所述固化剂组分包括:
    聚醚胺,含量为60-98%wt;
    低粘度的曼尼希碱,含量为2-20%wt。
  2. 根据权利要求1所述的一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物,其特征在于,所述环氧树脂组分还包括双酚F型环氧树脂,含量为0-50%wt。
  3. 根据权利要求1或2所述的一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物,其特征在于,所述环氧树脂组分还包括环氧活性稀释剂,含量为0-50%wt。
  4. 根据权利要求3所述的一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物,其特征在于,所述环氧活性稀释剂是指粘度较低的环氧化合物,包括但不限于烯丙基缩水甘油醚、丁基缩水甘油醚、辛基缩水甘油醚、异丙基缩水甘油醚、苯基缩水甘油醚、邻甲苯基缩水甘油醚、甲基丙烯酸缩水甘油醚、苄基缩水甘油醚、对叔丁苯基缩水甘油醚、癸基缩水甘油醚、腰果酚缩水甘油醚、碳8-18烷基缩水甘油醚、乙二醇二缩水甘油醚、丙二醇二缩水甘油醚、聚乙二醇二缩水甘油醚、聚丙二醇二缩水甘油醚、1,4-丁二醇二缩水甘油醚、1,6-己二醇二缩水甘油醚、新戊二醇二缩水甘油醚、1,4-环己二甲醇二缩水甘油醚、环己二醇二缩水甘油醚、间(邻、对)苯二酚二缩水甘油醚、丙三醇三缩水甘油醚、三羟甲基丙烷三缩水甘油醚、叔碳酸缩水甘油酯及其组合。
  5. 根据权利要求1或2或3所述的一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物,其特征在于,所述环氧树脂组分还包括缩水甘油酯、缩水甘油胺、脂环环氧、酚醛环氧树脂,含量为0-10%wt。
  6. 根据权利要求1或2或3或5所述的一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物,其特征在于,所述固化剂组分还包括含有伯胺、仲胺或叔胺官能团的一元、二元或多元胺类化合物,含量为0-10%wt。
  7. 根据权利要求1所述的一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物,其特征在于,所述低粘度的曼尼希碱是指25℃粘度小于400mPa.s,由酚类化合物、胺类化合物、醛类化合物以曼尼希反应合成的产物。
  8. 根据权利要求7所述的一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物,其特征在于,所述曼尼希反应的原料中一元酚占酚类原料的比例大于80%wt,一元仲胺占胺类原料的比例大于80%wt,甲醛占醛类物质的比例大于80%wt,以便获得低粘度特性。
  9. 根据权利要求7所述的一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物,其特征在于,所述低粘度的曼尼希碱的粘度值,采用博勒飞DV2TLV型旋转粘度计,使用62#转子,60RPM转速测得。
PCT/CN2021/075993 2020-09-28 2021-02-08 环氧基和活泼氢摩尔量不匹配的环氧树脂组合物 WO2022062306A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/790,741 US20230062899A1 (en) 2020-09-28 2021-02-08 Epoxy resin composition with epoxy groups and active hydrogens having different molar equivalents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011039094.5A CN112194778B (zh) 2020-09-28 2020-09-28 一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物
CN202011039094.5 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022062306A1 true WO2022062306A1 (zh) 2022-03-31

Family

ID=74007622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075993 WO2022062306A1 (zh) 2020-09-28 2021-02-08 环氧基和活泼氢摩尔量不匹配的环氧树脂组合物

Country Status (3)

Country Link
US (1) US20230062899A1 (zh)
CN (1) CN112194778B (zh)
WO (1) WO2022062306A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194778B (zh) * 2020-09-28 2023-05-26 百思通新材料科技(武汉)有限公司 一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120817A (en) * 1991-02-27 1992-06-09 Texaco Chemical Company Epoxy resin compositions
CN102123983A (zh) * 2008-07-22 2011-07-13 巴斯夫欧洲公司 使用胺与胍衍生物的混合物制备模制品的方法
CN106380785A (zh) * 2016-08-29 2017-02-08 道生天合材料科技(上海)有限公司 一种风电叶片用真空灌注环氧树脂系统
CN111087761A (zh) * 2019-12-31 2020-05-01 华东理工大学华昌聚合物有限公司 一种环氧树脂及其制备方法
CN112194778A (zh) * 2020-09-28 2021-01-08 常州百思通复合材料有限公司 一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102702686B (zh) * 2012-06-19 2015-04-15 广州聚合电子材料有限公司 一种可应用于生产兆瓦级风力叶片的环氧树脂体系及其制备方法
CN102827351A (zh) * 2012-09-13 2012-12-19 湖南神力实业有限公司 一种环氧树脂固化剂及其合成方法
CN103184025B (zh) * 2013-03-29 2014-07-16 交通运输部公路科学研究所 混凝土裂缝用灌缝胶及其应用
CN107141720A (zh) * 2017-06-01 2017-09-08 常州市宏发纵横新材料科技股份有限公司 采用拉挤成型的板材及其使用的拉挤用环氧树脂组合物
CN107083025B (zh) * 2017-06-09 2019-05-14 北京化工大学 一种碳纤维汽车件用快速成型耐高温树脂体系的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120817A (en) * 1991-02-27 1992-06-09 Texaco Chemical Company Epoxy resin compositions
CN102123983A (zh) * 2008-07-22 2011-07-13 巴斯夫欧洲公司 使用胺与胍衍生物的混合物制备模制品的方法
CN106380785A (zh) * 2016-08-29 2017-02-08 道生天合材料科技(上海)有限公司 一种风电叶片用真空灌注环氧树脂系统
CN111087761A (zh) * 2019-12-31 2020-05-01 华东理工大学华昌聚合物有限公司 一种环氧树脂及其制备方法
CN112194778A (zh) * 2020-09-28 2021-01-08 常州百思通复合材料有限公司 一种环氧基和活泼氢摩尔量不匹配的环氧树脂组合物

Also Published As

Publication number Publication date
CN112194778B (zh) 2023-05-26
US20230062899A1 (en) 2023-03-02
CN112194778A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
US8143331B2 (en) Alkylated polyalkyleneamines and uses thereof
CA2729895C (en) Blends comprising epoxy resins and mixtures of amines with guanidine derivatives
JP6401165B2 (ja) 樹脂組成物及び樹脂を含有する複合構造体
US8202580B2 (en) Catalyst for curing epoxides
KR101239296B1 (ko) 저온 경화성 에폭시 조성물
US8247517B2 (en) Catalyst for curing epoxides
WO2014165423A1 (en) One component epoxy curing agents comprising hydroxyalkylamino cycloalkanes
JP2004514770A (ja) ヒドロキシル基含有ポリエーテルアミン付加物
TWI454500B (zh) 使用胺類與胍衍生物之混合物製備模製品之方法
US2965609A (en) Process for curing polyepoxides and resulting products
WO2022062306A1 (zh) 环氧基和活泼氢摩尔量不匹配的环氧树脂组合物
WO1995018168A1 (en) Kinetically controlled in-situ generation of catalytic species for the curing of epoxy/amine compositions
US3329737A (en) Curable composition containing a polyepoxide and an allylic polyphenolic novolac, free of methylol groups
EP1268603B1 (en) Mannich bases and further compounds based on alkyldipropylenetriamines as hardeners for epoxy resins
US3600362A (en) Epoxy resin cured with liquid resinous amine curing agents
CN112094394A (zh) 一种阻燃环氧树脂固化剂的制备方法
JP3584419B2 (ja) エポキシ樹脂を硬化させるための触媒としての1−イミダゾリルメチル−2−ナフトール
US9376528B2 (en) Latent catalyst for curable compositions
US3244731A (en) Glycidyl ethers
US3509229A (en) Epoxide resins cured with aliphatic polyamines in admixture with aryl sulfonamide-aldehyde resins
JP3429090B2 (ja) 熱硬化性樹脂組成物及びその硬化物
US3697462A (en) Liquid curing agent for epoxy resins comprising a mixture of an imidazole and an aniline-formaldehyde condensate
JP2020528101A (ja) エポキシ樹脂系内の反応性希釈剤としてのn,n’−ジアルキルメチルシクロヘキサンジアミン
JP7160219B1 (ja) 熱硬化性エポキシ樹脂組成物とその成形品、繊維強化複合材料、繊維強化複合材料用成形材料、および繊維強化複合材料の製造方法
JP2017106021A (ja) アミノ官能性ポリマーの縮合生成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21870696

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21870696

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21870696

Country of ref document: EP

Kind code of ref document: A1