WO2022062292A1 - 一种低导热低热膨胀镁基原料及其制备方法 - Google Patents

一种低导热低热膨胀镁基原料及其制备方法 Download PDF

Info

Publication number
WO2022062292A1
WO2022062292A1 PCT/CN2021/074614 CN2021074614W WO2022062292A1 WO 2022062292 A1 WO2022062292 A1 WO 2022062292A1 CN 2021074614 W CN2021074614 W CN 2021074614W WO 2022062292 A1 WO2022062292 A1 WO 2022062292A1
Authority
WO
WIPO (PCT)
Prior art keywords
low thermal
magnesium
fine powder
powder
based raw
Prior art date
Application number
PCT/CN2021/074614
Other languages
English (en)
French (fr)
Inventor
黄奥
霍艳竹
顾华志
邹永顺
付绿平
张美杰
Original Assignee
武汉科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉科技大学 filed Critical 武汉科技大学
Publication of WO2022062292A1 publication Critical patent/WO2022062292A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • C04B35/0435Refractories from grain sized mixtures containing refractory metal compounds other than chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/482Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives

Definitions

  • the invention belongs to the technical field of refractory materials, and in particular relates to a magnesium-based raw material with low thermal conductivity and low thermal expansion and a preparation method thereof.
  • Refractory materials are directly used in high-temperature industrial production processes in various fields of the national economy such as iron and steel, non-ferrous metals, cement, glass, ceramics, chemical industry, machinery, and electric power, and are essential basic materials to ensure the operation and technological development of the above-mentioned industries.
  • Magnesia has the advantages of high melting point, high temperature resistance, and good corrosion resistance of alkali high temperature slag. It is one of the most important raw materials in refractory materials. It is widely used in various high temperature industrial refractories. Its service performance and service life It is directly related to the normal operation of the high temperature industry and the quality of the products.
  • magnesia has high refractoriness and good corrosion resistance to alkaline high-temperature slag, the thermal conductivity of magnesia is still high, and the defects of poor resistance to high-temperature slag penetration and thermal shock resistance have greatly affected its service life. big restriction.
  • the high temperature slag penetration resistance and thermal shock resistance of magnesia are closely related to its microstructure. Therefore, the existing magnesia preparation technologies tend to prepare magnesia raw materials with large and dense grain size, that is, large crystal magnesia.
  • the thermal stress is difficult to release due to the small number of grain boundaries, and the thermal shock resistance is usually poor.
  • the object of the present invention is to provide a kind of preparation method of low thermal conductivity and low thermal expansion magnesium-based raw material with simple process and easy industrial production, and the concrete processing steps are as follows:
  • the mixed powder was mixed by a ball mill at a constant temperature of 25°C for 3 minutes, then placed in a high-temperature furnace for calcination at 250-400°C for 0.5-3 hours, and cooled to room temperature to form the magnesium-based refractory material.
  • the particle size of the fused magnesia particles is less than or equal to 1 mm, and the MgO content in the fused magnesia particles is greater than or equal to 96 wt%.
  • the particle size of the monoclinic zirconia fine powder is ⁇ 45 ⁇ m, and the ZrO 2 content in the monoclinic zirconia fine powder is ⁇ 98 wt %.
  • the particle size of the zirconium oxychloride fine powder is less than or equal to 45 ⁇ m.
  • the Ca(OH) 2 of the above-mentioned nano calcium hydroxide powder is ⁇ 98 wt %, and the particle size is ⁇ 0.1 ⁇ m.
  • the light-burned magnesium oxide fine powder has MgO ⁇ 95wt% and particle size ⁇ 45 ⁇ m.
  • Another aspect of the present invention relates to a magnesium-based refractory material obtained according to the above-mentioned preparation method of a magnesium-based refractory material.
  • the present invention has the following positive effects compared with the prior art:
  • the invention adopts the millimeter-micron-nanoparticle composite system and the mixing and ball milling processes, combined with the pyrolysis of zirconium oxychloride fine powder and nano-calcium hydroxide powder, and can introduce micro-nano zirconia and oxide around the grain boundary of magnesia. Calcium and make it evenly distributed.
  • the zirconia phase transition and the stress generated by the reaction with calcium oxide can well promote the micro-nano zirconia to closely contact the magnesia grain boundary, and its grain boundary impurities CaO in SiO 2 reacts with these active ZrO 2 preferentially to form CaZrO 3 at grain boundaries; an appropriate amount of nano-zirconia ZrO 2 particles are encapsulated in CaO with similar particle size and larger active MgO micropowder particles, which hinders its formation.
  • the aggregation reaction with the CaO impurities in the magnesia grain boundary stabilizes the magnesia structure and also plays the role of slow release; these continuously generated appropriate intergranular CaZrO 3 phases can enhance the binding force of the magnesia particles and effectively reduce the magnesia. High thermal conductivity, thermal expansion coefficient and improved slag resistance.
  • the invention has the characteristics of simple process and easy industrial production; the prepared magnesium-based raw material with low thermal conductivity and low thermal expansion has the characteristics of low thermal conductivity, low thermal expansion coefficient, good dispersibility and strong slag penetration and erosion resistance.
  • the particle size of the fused magnesia particles is less than or equal to 1 mm, and the MgO content in the fused magnesia particles is greater than or equal to 96 wt%.
  • the particle size of the monoclinic zirconia fine powder is less than or equal to 45 ⁇ m, and the ZrO 2 in it is greater than or equal to 98wt%,
  • the particle size of the zirconium oxychloride fine powder is less than or equal to 45 ⁇ m.
  • the Ca(OH) 2 of the nano calcium hydroxide powder is greater than or equal to 98wt%, and the particle size is less than or equal to 0.1 ⁇ m.
  • the light-burned magnesium oxide fine powder has MgO ⁇ 95wt% and particle size ⁇ 45 ⁇ m.
  • the powder and 0.2wt% maleic acid were mixed uniformly with a high-speed mixer for 15 minutes at a constant temperature of 25 °C to obtain a mixed powder; then the mixed powder was mixed by a ball mill at a constant temperature of 25 °C for 3 minutes, and then It was placed in a high temperature furnace and calcined at 300° C. for 2.5 hours, and cooled to room temperature to obtain the magnesium-based raw material with low thermal conductivity and low thermal expansion of this embodiment.
  • Comparative Example 1 Comparative Example 2 Comparative Example 2 Comparative Example 2 Comparative Example 2 Fused magnesia particles 75 20 10 65 35 Monoclinic zirconia fine powder twenty one 50 60 27 45 Zirconium oxychloride fine powder 2 twenty four 30 3 18 Nano calcium hydroxide powder 0.2 4 0 4 0.1 Light Burned Magnesium Oxide Fine Powder 0.8 1 0 1 1.9 maleic acid 1 1 0 0 0 temperature(°C) 300 250 300 350 400 Roasting time (h) 3 2.5 2 2 1.5
  • the performance indexes of each embodiment of the present invention and traditional magnesium-based raw materials are compared as shown in Table 2. It can be seen from the above Tables 1 and 2 that 40-60wt% fused magnesia particles and 30-40wt% monoclinic Zirconia fine powder, 5 ⁇ 20wt% zirconium oxychloride fine powder, 0.5 ⁇ 2wt% nano calcium hydroxide powder, 0.2 ⁇ 0.5wt% light burnt magnesia fine powder and 0.1 ⁇ 0.3wt% Malayan
  • the acid is mixed with a high-speed mixer for 15 minutes at a constant temperature of 25 °C to obtain a mixed powder.
  • the thermal conductivity and thermal expansion coefficient of the final raw material are far lower than those of traditional magnesium-based raw materials.
  • the invention adopts the millimeter-micron-nanoparticle composite system and the mixed grinding and ball milling process, combined with the pyrolysis of the zirconium oxychloride fine powder and the nanometer calcium hydroxide powder, and can introduce micro-nano oxide around the magnesia grain boundary.
  • Zirconium and calcium oxide are distributed evenly.
  • the phase transformation of zirconium oxide and the stress generated by the reaction with calcium oxide can well promote the close contact of micro-nano zirconium oxide with magnesia grain boundaries.
  • the CaO in the grain boundary impurities will react preferentially to SiO 2 and these active ZrO 2 to generate CaZrO 3 at the grain boundary; an appropriate amount of nano-ZrO 2 particles are encapsulated in CaO with similar particle size and larger active MgO fine powder particles, which hinders the formation of CaZrO 3 .
  • Its aggregation reaction with CaO impurities in magnesia grain boundaries stabilizes the structure of magnesia and also plays a role in slow release; these continuously generated appropriate intergranular CaZrO 3 phases can enhance the binding force of magnesia particles and effectively reduce magnesium Thermal conductivity, thermal expansion coefficient and improved slag resistance of sand.
  • the invention has the characteristics of simple process and easy industrial production; the prepared magnesium-based raw material with low thermal conductivity and low thermal expansion has the characteristics of low thermal conductivity, low thermal expansion coefficient, good dispersibility and strong slag penetration and erosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Composite Materials (AREA)

Abstract

一种低导热低热膨胀镁基原料及其制备方法,其技术方案是首先将40~60wt%的电熔镁砂颗粒、30~40wt%的单斜氧化锆细粉、5~20wt%的氧氯化锆细粉、0.5~1.5wt%的纳米氢氧化钙粉体、0.5~1.5wt%的纳米氢氧化钙粉体和0.1~0.3wt%的马来酸,在25℃恒温条件下采用高速混碾机搅拌15min混合均匀,得到混合粉体;然后将上述混合粉体经过球磨机在25℃恒温条件下混合3min,再置于高温炉中在250~400℃条件下焙烧0.5~3h,最后冷却至室温。该制备方法工艺简单、易于工业化生产,所制备的镁基耐火材料具有较低的导热系数、低热膨胀系数、分散性好和抗熔渣渗透侵蚀能力强的优点。

Description

一种低导热低热膨胀镁基原料及其制备方法 技术领域
本发明属于耐火材料技术领域,具体涉及一种低导热低热膨胀镁基原料及其制备方法。
背景技术
耐火材料直接应用于钢铁、有色、水泥、玻璃、陶瓷和化工、机械、电力等国民经济各个领域的高温工业生产过程中,是保证上述产业运行和技术发展必不可少的基础材料。镁砂具有熔点高、耐高温、抗碱性高温熔渣侵蚀性好等优点,是耐火材料中最重要的原料之一,被广泛应用于各类高温工业用耐火材料,其服役性能和使用寿命直接关系着高温工业的正常运行与产品的品质。
尽管镁砂耐火度高、抗碱性高温熔渣侵蚀性好,但镁砂的导热系数仍然偏高,而且抵御高温熔渣渗透性能和抗热震性能不佳的缺陷对其使用寿命造成了极大的限制。镁砂的抗高温熔渣渗透及抗热震性能与其显微结构有重要联系,熔渣较易通过气孔及晶界渗透进入材料内部从而产生严重的侵蚀。因此,现有镁砂制备技术多倾向于制备晶粒尺寸大且较致密的镁砂原料,即大结晶镁砂。然而,由于氧化镁热膨胀系数较大,大结晶镁砂在遭受温度剧变时,由于晶界数量少,热应力难以得到释放,抗热震性能通常不佳。此外,考虑到现有的镁砂中气孔尺寸通常较大且直接结合程度较低,微孔镁砂的开发有效降低了气孔尺寸,增加了气孔中的闭口气孔比例,能在一定程度上缓解高温熔体的渗透侵蚀,但其轻量多孔化后的隔热性和抗渣性能的平衡性仍然不够优越,有待提高。
发明内容
本发明目的是提供一种工艺简单和易于工业化生产的低导热、低热膨胀镁基原料的制备方法,具体工艺步骤如下:
将40~60wt%的电熔镁砂颗粒、30~40wt%的单斜氧化锆细粉、5~20wt%的氧氯化锆细粉、0.5~2wt%的纳米氢氧化钙粉体、0.2~0.5wt%的轻烧氧化镁细粉和0.1~0.3wt%的马来酸,在25℃恒温条件下采用高速混碾机搅拌15min混合均匀,得到混合粉体;
然后将所述混合粉体经过球磨机在25℃恒温条件下混合3min,再置于高温炉中在250~400℃条件下焙烧0.5~3h,冷却至室温形成所述镁基耐火材料。
优选地,电熔镁砂颗粒的粒径≤1mm,电熔镁砂颗粒中的MgO含量为≥96wt%。
优选地,单斜氧化锆细粉粒径≤45μm,单斜氧化锆细粉中的ZrO 2含量≥98wt%。
优选地,上述氧氯化锆细粉的粒径≤45μm。
优选地,上述纳米氢氧化钙粉体的Ca(OH) 2≥98wt%,粒径≤0.1μm。
优选地,上述轻烧氧化镁细粉的MgO≥95wt%,粒径≤45μm。
本发明另一方面涉及一种镁基耐火材料,其按照上述镁基耐火材料的制备方法获得。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:
本发明采用毫米-微米-纳米颗粒复合体系和混碾及球磨工艺,结合氧氯化锆细粉和纳米氢氧化钙粉体的热解,能在镁砂晶界周围引入微纳米氧化锆和氧化钙并使其均匀分布,该镁基原料在高温使用过程中,氧化锆相变及其与氧化钙反应产生的应力能很好地促进微纳米氧化锆紧密接触镁砂晶界,其晶界杂质中的CaO会优先于SiO 2与这些活性ZrO 2反应在晶界生成CaZrO 3;适量的纳米氧化锆ZrO 2颗粒被包裹具有相似粒径的CaO以及较大的活性MgO微粉粒中,阻碍了其与镁砂晶界中CaO杂质的聚集性反应,稳定了镁砂结构,也起到缓释的作用;这些持续生成的适量晶间CaZrO 3相能增 强镁砂颗粒的结合力,有效降低镁砂的导热系数、热膨胀系数以及提升抗渣性能。
可见,本发明具有工艺简单和易于工业化生产的特点;所制备的低导热低热膨胀镁基原料具有导热系数较低、热膨胀系数低、分散性好和抗熔渣渗透侵蚀能力强的特点。
具体实施方式
下面结合具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。
为避免重复,先将本具体实施方式所涉及的物料统一描述如下,实施例中不再赘述:
所述电熔镁砂颗粒的粒径≤1mm,电熔镁砂颗粒中的MgO含量为≥96wt%。
所述单斜氧化锆细粉粒径≤45μm,其中的ZrO 2≥98wt%,
所述氧氯化锆细粉的粒径≤45μm。
所述纳米氢氧化钙粉体的Ca(OH) 2≥98wt%,粒径≤0.1μm。
所述轻烧氧化镁细粉的MgO≥95wt%,粒径≤45μm。
实施例1
将40wt%的电熔镁砂颗粒、40wt%的单斜氧化锆细粉、19wt%的氧氯化锆细粉、0.5wt%的纳米氢氧化钙粉体、0.2wt%的轻烧氧化镁细粉和0.3wt%的马来酸,在25℃恒温条件下采用高速混碾机搅拌15min混合均匀,得到混合粉体;然后将所述混合粉体经过球磨机在25℃恒温条件下混合3min,再置于高温炉中在250℃条件下焙烧3h,冷却至室温,获得本实施例的低导热低热膨胀镁基原料。
实施例2
将50wt%的电熔镁砂颗粒、35wt%的单斜氧化锆细粉、13wt%的氧氯化锆细粉、1.4wt%的纳米氢氧化钙粉体、0.5wt%的轻烧氧化镁细粉和0.1wt%的马来酸,在25℃恒温条件下采用高速混碾机搅拌15min混合均匀,得到混合粉体;然后将所述混合粉体经过球磨机在25℃恒温条件下混合 3min,再置于高温炉中在400℃条件下焙烧0.5h,冷却至室温,获得本实施例的低导热低热膨胀镁基原料。
实施例3
将60wt%的电熔镁砂颗粒、33wt%的单斜氧化锆细粉、5wt%的氧氯化锆细粉、1.6wt%的纳米氢氧化钙粉体、0.2wt%的轻烧氧化镁细粉和0.2wt%的马来酸,在25℃恒温条件下采用高速混碾机搅拌15min混合均匀,得到混合粉体;然后将所述混合粉体经过球磨机在25℃恒温条件下混合3min,再置于高温炉中在300℃条件下焙烧2.5h,冷却至室温,获得本实施例的低导热低热膨胀镁基原料。
实施例4
将52wt%的电熔镁砂颗粒、40wt%的单斜氧化锆细粉、5.2wt%的氧氯化锆细粉、2wt%的纳米氢氧化钙粉体、0.5wt%的轻烧氧化镁细粉和0.3wt%的马来酸,在25℃恒温条件下采用高速混碾机搅拌15min混合均匀,得到混合粉体;然后将所述混合粉体经过球磨机在25℃恒温条件下混合3min,再置于高温炉中在350℃条件下焙烧2.5h,冷却至室温,获得本实施例的低导热低热膨胀镁基原料。
实施例5
将45wt%的电熔镁砂颗粒、37wt%的单斜氧化锆细粉、16wt%的氧氯化锆细粉、1.5wt%的纳米氢氧化钙粉体、0.3wt%的轻烧氧化镁细粉和0.2wt%的马来酸,在25℃恒温条件下采用高速混碾机搅拌15min混合均匀,得到混合粉体;然后将所述混合粉体经过球磨机在25℃恒温条件下混合3min,再置于高温炉中在400℃条件下焙烧1.5h,冷却至室温,获得本实施例的低导热低热膨胀镁基原料。
对比例1-5
对比例1-5中,电熔镁砂颗粒、单斜氧化锆细粉、氧氯化锆细粉、纳米氢氧化钙粉体、轻烧氧化镁细粉与马来酸按照表1的重量配比和工艺条件进行。
表1对比例1-5原料配比
  对比例1 对比例2 对比例2 对比例2 对比例2
电熔镁砂颗粒 75 20 10 65 35
单斜氧化锆细粉 21 50 60 27 45
氧氯化锆细粉 2 24 30 3 18
纳米氢氧化钙粉体 0.2 4 0 4 0.1
轻烧氧化镁细粉 0.8 1 0 1 1.9
马来酸 1 1 0 0 0
温度(℃) 300 250 300 350 400
焙烧时间(h) 3 2.5 2 2 1.5
表2本发明实施例与对比例1-5原料性能指标对比
Figure PCTCN2021074614-appb-000001
Figure PCTCN2021074614-appb-000002
本发明的各实施例与传统镁基原料性能指标对比如表2所示,由上述表1和表2可以看出,采用40~60wt%的电熔镁砂颗粒、30~40wt%的单斜氧化锆细粉、5~20wt%的氧氯化锆细粉、0.5~2wt%的纳米氢氧化钙粉体、0.2~0.5wt%的轻烧氧化镁细粉和0.1~0.3wt%的马来酸的在25℃恒温条件下采用高速混碾机搅拌15min混合均匀,得到混合粉体,最后获得的原料的导热系数和热膨胀系数均远远低于传统镁基原料。其原因在于本发明采用毫米-微米-纳米颗粒复合体系和混碾及球磨工艺,结合氧氯化锆细粉和纳米氢氧化钙粉体的热解,能在镁砂晶界周围引入微纳米氧化锆和氧化钙并使其均匀分布,该镁基原料在高温使用过程中,氧化锆相变及其与氧化钙反应产生的应力能很好地促进微纳米氧化锆紧密接触镁砂晶界,其晶界杂质中的CaO会优先于SiO 2与这些活性ZrO 2反应在晶界生成CaZrO 3;适量的纳米ZrO 2颗粒被包裹具有相似粒径的CaO以及较大的活性MgO微粉粒中,阻碍了其与镁砂晶界中CaO杂质的聚集性反应,稳定了镁砂结构,也起到缓释的作用;这些持续生成的适量晶间CaZrO 3相能增强镁砂颗粒的结合力,有效降低镁砂的导热系数、热膨胀系数以及提升抗渣性能。
因此,本发明具有工艺简单和易于工业化生产的特点;所制备的低导热低热膨胀镁基原料具有导热系数较低、热膨胀系数低、分散性好和抗熔渣渗透侵蚀能力强的特点。
虽然,上文中已经用一般性说明、具体实施方式,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (7)

  1. 一种低导热低热膨胀镁基原料的制备方法,其特征在于:
    将40~60wt%的电熔镁砂颗粒、30~40wt%的单斜氧化锆细粉、5~20wt%的氧氯化锆细粉、0.5~2wt%的纳米氢氧化钙粉体、0.2~0.5wt%的轻烧氧化镁细粉和0.1~0.3wt%的马来酸,在25℃恒温条件下采用高速混碾机搅拌15min混合均匀,得到混合粉体;
    然后将所述混合粉体经过球磨机在25℃恒温条件下混合3min,再置于高温炉中在250~400℃条件下焙烧0.5~3h,冷却至室温形成所述低导热低热膨胀镁基原料。
  2. 根据权利要求1所述的低导热低热膨胀镁基原料的制备方法,其特征在于所述电熔镁砂颗粒的粒径≤1mm,所述电熔镁砂颗粒中的MgO含量为≥96wt%。
  3. 根据权利要求1所述的低导热低热膨胀镁基原料的制备方法,其特征在于所述单斜氧化锆细粉粒径≤45μm,所述单斜氧化锆细粉中的ZrO 2含量≥98wt%。
  4. 根据权利要求1所述的低导热低热膨胀镁基原料的制备方法,其特征在于所述氧氯化锆细粉的粒径≤45μm。
  5. 根据权利要求1所述的低导热低热膨胀镁基原料的制备方法,其特征在于所述纳米氢氧化钙粉体的Ca(OH) 2≥98wt%,粒径≤0.1μm。
  6. 根据权利要求1所述的低导热低热膨胀镁基原料的制备方法,其特征在于所述轻烧氧化镁细粉的MgO≥95wt%,粒径≤45μm。
  7. 一种根据权利要求1-6项中任一项所述的低导热低热膨胀镁基原料的制备方法制得的镁基原料。
PCT/CN2021/074614 2020-09-22 2021-02-01 一种低导热低热膨胀镁基原料及其制备方法 WO2022062292A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011001247.7A CN112094125B (zh) 2020-09-22 2020-09-22 一种低导热低热膨胀镁基原料及其制备方法
CN202011001247.7 2020-09-22

Publications (1)

Publication Number Publication Date
WO2022062292A1 true WO2022062292A1 (zh) 2022-03-31

Family

ID=73754854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074614 WO2022062292A1 (zh) 2020-09-22 2021-02-01 一种低导热低热膨胀镁基原料及其制备方法

Country Status (3)

Country Link
US (1) US11643364B2 (zh)
CN (1) CN112094125B (zh)
WO (1) WO2022062292A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11717989B2 (en) 2019-11-15 2023-08-08 Arizona Board Of Regents On Behalf Of Arizona State University Treated plastic granules
CN112094125B (zh) * 2020-09-22 2023-02-28 武汉科技大学 一种低导热低热膨胀镁基原料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761856A (ja) * 1993-06-30 1995-03-07 Kurosaki Refract Co Ltd セメント及び石灰焼成キルン内張り用塩基性耐火物
JP2000128622A (ja) * 1998-10-20 2000-05-09 Kurosaki Refract Co Ltd マグネシア質耐火物
CN1715246A (zh) * 2004-06-30 2006-01-04 宝山钢铁股份有限公司 一种rh真空炉衬用无铬耐火材料
CN104140278A (zh) * 2014-07-28 2014-11-12 瑞泰科技股份有限公司 一种借助原位反应制备的炉外精炼用镁钙锆砖及生产方法
CN111116174A (zh) * 2019-12-24 2020-05-08 辽宁科技大学 一种高热震高致密烧结镁砂的制备方法
CN111410443A (zh) * 2020-04-30 2020-07-14 海城市军刚中档镁砂有限公司 一种MgO-CaO-ZrO2砂的制备方法
CN112094125A (zh) * 2020-09-22 2020-12-18 武汉科技大学 一种低导热低热膨胀镁基原料及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT345716B (de) * 1974-11-29 1978-10-10 Veitscher Magnesitwerke Ag Feuerfeste trockenstampfmasse zum auskleiden von induktionstiegeloefen
US4212679A (en) * 1978-09-12 1980-07-15 Dresser Industries, Inc. Method of making magnesite grain
JPS63162566A (ja) * 1986-12-24 1988-07-06 美濃窯業株式会社 塩基性耐火組成物
JPH0532454A (ja) * 1991-07-26 1993-02-09 Ube Ind Ltd 立方晶ジルコニア粒子分散型マグネシア焼結体及びその製造方法
JPH06107413A (ja) * 1992-09-28 1994-04-19 Shin Nippon Kagaku Kogyo Co Ltd 高純度マグネシアクリンカーの製造方法
JPH11278918A (ja) * 1998-03-30 1999-10-12 Nippon Steel Corp 塩基性耐火物原料ならびに塩基性耐火物およびその製造方法ならびにそれを使用した金属精錬窯炉および焼成炉
JP3366938B2 (ja) * 1999-10-27 2003-01-14 独立行政法人産業技術総合研究所 ジルコン酸カルシウム/マグネシア系複合多孔体およびその製造方法
CN100366580C (zh) * 2006-04-14 2008-02-06 西安建筑科技大学 水泥窑高温带用MgO-CaO-ZrO2砖及其制造方法
CN103496990B (zh) * 2013-09-13 2015-03-11 天津大学 高温抗热震性镁铝尖晶石-氧化锆复相材料及其制备方法
CN107434404B (zh) * 2017-08-28 2020-02-14 辽宁中镁高温材料有限公司 一种锆复合高性能电熔镁钙锆砖及其制造方法
CN108821750B (zh) * 2018-07-10 2021-01-01 武汉科技大学 一种具有微-纳米复合孔结构的烧结镁砂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761856A (ja) * 1993-06-30 1995-03-07 Kurosaki Refract Co Ltd セメント及び石灰焼成キルン内張り用塩基性耐火物
JP2000128622A (ja) * 1998-10-20 2000-05-09 Kurosaki Refract Co Ltd マグネシア質耐火物
CN1715246A (zh) * 2004-06-30 2006-01-04 宝山钢铁股份有限公司 一种rh真空炉衬用无铬耐火材料
CN104140278A (zh) * 2014-07-28 2014-11-12 瑞泰科技股份有限公司 一种借助原位反应制备的炉外精炼用镁钙锆砖及生产方法
CN111116174A (zh) * 2019-12-24 2020-05-08 辽宁科技大学 一种高热震高致密烧结镁砂的制备方法
CN111410443A (zh) * 2020-04-30 2020-07-14 海城市军刚中档镁砂有限公司 一种MgO-CaO-ZrO2砂的制备方法
CN112094125A (zh) * 2020-09-22 2020-12-18 武汉科技大学 一种低导热低热膨胀镁基原料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG HONGLIAN, YAN ZHEN-HUA, CUI QING-YANG: "Influence of Introduction Ways of ZrO2 on the Character of MgO-CaO-ZrO2 Refractories", JOURNAL OF XI'AN UNIVERSITY OF ARCHITECTURE & TECHNOLOGY (NATURAL SCIENCE EDITION), vol. 42, no. 4, 31 August 2010 (2010-08-31), pages 599 - 603, XP055914125, ISSN: 1006-7930, DOI: 10.15986/j.1006-7930.2010.04.005 *
ZOU YONGSHUN, HUAZHI GU, AO HUANG, LVPING FU, GUANGQIANG LI: "Fabrication and properties of in situ intergranular CaZrO3 modified microporous magnesia aggregates", CERAMICS INTERNATIONAL, ELSEVIER, AMSTERDAM., NL, vol. 46, 6 April 2020 (2020-04-06), NL , pages 16956 - 16965, XP055914126, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2020.03.279 *

Also Published As

Publication number Publication date
CN112094125B (zh) 2023-02-28
CN112094125A (zh) 2020-12-18
US20220089497A1 (en) 2022-03-24
US11643364B2 (en) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2022062293A1 (zh) 一种高性能节能型镁基原料及其制备方法
CN111620679B (zh) 一种以熔融二氧化硅为硅源制备高纯莫来石材料的方法
WO2021179844A1 (zh) 一种钛铝合金熔炼用耐火材料及其制备方法
WO2022062292A1 (zh) 一种低导热低热膨胀镁基原料及其制备方法
US11680020B2 (en) Titanium-containing calcium hexaaluminate material and preparation method thereof
CN109369181B (zh) 一种体积稳定的高纯氧化锆耐火制品
JP2017095333A (ja) 高温特性及び耐食性に優れたアルミナ焼結体
WO2022237717A1 (zh) 一种高纯度致密六铝酸钙系耐火材料及其制备方法
CN105837229B (zh) 一种镁铝尖晶石砖的制备方法
CN113061045B (zh) 一种水泥窑烧成带用镁铁锌铝复合尖晶石耐火砖及其制备方法
CN112028642B (zh) 氧化锆耐火材料及其制备方法
CN112430104A (zh) 一种用于制备陶瓷的复合添加剂及其制备方法和应用
CN113636852B (zh) 球壳-海绵结构六铝酸钙-镁铝尖晶石复相材料的制备方法
CN106810283B (zh) 一种莫来石-铬轻质浇注料
CN108025985B (zh) 不定形耐火物
CN113213956A (zh) 综合性能优良、价格适中的镁铝尖晶石砖及其制备方法
CN113045295A (zh) 一种高强度陶瓷型材及其制备方法
WO2014208620A1 (ja) 酸化スズ質不定形耐火物用紛体組成物、酸化スズ質不定形耐火物の製造方法、ガラス溶解炉および廃棄物溶融炉
CN111393175B (zh) 一种钛铝合金熔炼用耐火浇注料及其制备方法
CN113511907B (zh) 一种钛铝合金熔炼用熵稳定耐火材料及其制备方法
CN107337439A (zh) 一种含多晶氧化铝纤维的镁质干式料
Li et al. Enhancing sintered magnesia: Role of ZnO in densification, thermal conductivity, and corrosion resistance
Liang et al. Effect of TiO2 addition on zirconia-mullite composites fabricated by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk
CN113979758A (zh) 一种水泥窑用尖晶石质耐火材料
CN115650723A (zh) 一种氧化锆陶瓷棒的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21870682

Country of ref document: EP

Kind code of ref document: A1