WO2022061612A1 - 复合集流体、电极极片及电化学装置 - Google Patents

复合集流体、电极极片及电化学装置 Download PDF

Info

Publication number
WO2022061612A1
WO2022061612A1 PCT/CN2020/117219 CN2020117219W WO2022061612A1 WO 2022061612 A1 WO2022061612 A1 WO 2022061612A1 CN 2020117219 W CN2020117219 W CN 2020117219W WO 2022061612 A1 WO2022061612 A1 WO 2022061612A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
current collector
composite current
film
conductive layer
Prior art date
Application number
PCT/CN2020/117219
Other languages
English (en)
French (fr)
Inventor
杨晓兵
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2020/117219 priority Critical patent/WO2022061612A1/zh
Priority to KR1020217009039A priority patent/KR102608002B1/ko
Priority to JP2021516757A priority patent/JP7414813B2/ja
Priority to CN202080005428.9A priority patent/CN112789752A/zh
Priority to EP20866942.4A priority patent/EP4207390A1/en
Priority to US17/410,116 priority patent/US20220093931A1/en
Publication of WO2022061612A1 publication Critical patent/WO2022061612A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a composite current collector, an electrode pole piece and an electrochemical device.
  • Electrochemical devices can be charged and discharged, and have been widely used in consumer products, digital products, power products, medical and security and other fields.
  • the current collector is the carrier of the active material in the electrochemical device, is an important part of the electrochemical device, and is closely related to the energy density of the electrochemical device.
  • a metal polymer film is generally obtained by metal physical vapor deposition on the surface of a low-density polymer film.
  • the current collector In order to make the current collector have better electrical conductivity, it is necessary to deposit a larger thickness metal layer on the polymer film, but the increase in the thickness of the current collector will reduce the energy density of the electrochemical device, and the current collector made in this way resists The corrosion ability of the electrolyte is poor, and the metal layer is easy to fall off during the long-term operation of the electrochemical device, causing failure.
  • one aspect of the present application is to provide a composite current collector, by forming a passivation layer on the side of the conductive layer close to the connection layer, it can avoid the electrolyte entering from the opposite side of the connection layer and the conductive layer. Contact, causing the conductive layer to be corroded and damaged by the electrolyte, which can improve the stability of the current collector.
  • An embodiment of the present application proposes a composite current collector, including a base body, a first connection layer and a first conductive layer, where the first connection layer is used to bond the first conductive layer to a first surface of the base body ; A first passivation layer is formed on the surface of the first conductive layer close to the first connection layer.
  • the composite current collector further includes a second connection layer and a second conductive layer, and the second connection layer is used for bonding the second conductive layer to the second surface of the base, so A second passivation layer is formed on the surface of the second conductive layer close to the second connection layer.
  • the thickness of the substrate is 2 ⁇ m-36 ⁇ m
  • the thickness of the first connection layer is 0.2 ⁇ m-2 ⁇ m
  • the thickness of the first conductive layer is 100 nm-5000 nm
  • the thickness of the first passivation layer is 100 nm-5000 nm.
  • the thickness is 5nm-200nm.
  • the substrate is selected from polyethylene film, polypropylene film, polyethylene terephthalate film, polyethylene terephthalate film, polyethylene terephthalate Amine film, polyimide film, polycarbonate film, polyetheretherketone film, polyoxymethylene film, polyparaphenylene sulfide film, polyparaphenylene oxide film, polyvinyl chloride film, polyamide film, polytetrafluoroethylene at least one of the films.
  • the first tie layer is selected from polyurethane, epoxy resin, polyacrylate, polyvinyl acetate, unsaturated polyester, phenolic resin, urea-formaldehyde resin, modified polyolefin resin, silicone resin, At least one of ethylene-acrylic acid copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer and polyamide.
  • the first passivation layer is selected from the group consisting of aluminum oxide layer, titanium oxide layer, zirconia layer, aluminum nitride layer, titanium nitride layer, titanium carbide layer, zirconium carbide layer, silicon dioxide layer, At least one of a silicon nitride layer, a silicon carbide layer, and an aluminum chromate layer.
  • the first conductive layer is selected from at least one of aluminum, copper, nickel, iron, titanium, silver, gold, cobalt, chromium, molybdenum, and tungsten.
  • the first surface of the base body is provided with a groove-shaped pattern, and the connection layer is also filled in the groove-shaped pattern.
  • the groove-like pattern consists of one or more hole-like structures.
  • At least one of the pore-like structures penetrates the substrate, or at least one of the pore-like structures does not penetrate the substrate.
  • an electrode pole sheet which includes a composite current collector and an active material layer.
  • the composite current collector includes a base body, a first connection layer and a first conductive layer, and the first connection layer is used for bonding the first conductive layer to the first surface of the base body; the first conductive layer is close to the A first passivation layer is formed on the surface of the first connection layer.
  • the active material layer is disposed on the surface of the first conductive layer of the composite current collector facing away from the substrate.
  • the electrode pole piece includes a composite current collector and an active material layer.
  • the composite current collector includes a base body, a first connection layer and a first conductive layer, and the first connection layer is used for bonding the first conductive layer to the first surface of the base body; the first conductive layer is close to the A first passivation layer is formed on the surface of the first connection layer.
  • the active material layer is disposed on the surface of the first conductive layer of the composite current collector facing away from the substrate
  • the electrolyte can be prevented from coming into contact with the conductive layer from the side opposite to the connection layer and the conductive layer, resulting in the conductive layer being damaged. Electrolyte corrosion damage can improve the stability of the current collector.
  • FIG. 1 shows a schematic structural diagram of a composite current collector according to an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a composite current collector according to another embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of a substrate surface formed with groove-like patterns according to an embodiment of the present application
  • Base body 10 first surface 11, second surface 12, first connection layer 20, first conductive layer 30, first passivation layer 40, second connection layer 50, second conductive layer 60, second passivation layer 70 , groove pattern 80 , hole structure 81 .
  • the composite current collector 100 according to the embodiment of the present application will be described in detail below with reference to FIGS. 1-3 .
  • a composite current collector 100 includes a substrate 10 , a first connection layer 20 , a first conductive layer 30 and a first passivation layer 40 .
  • the first connection layer 20 is located between the base body 10 and the first conductive layer 30 , and the first passivation layer 40 is formed on the surface of the first conductive layer 30 close to the first connection layer 20 .
  • One surface of the first connection layer 20 is bonded to the first surface 11 of the base 10, and the other surface of the first connection layer 20 is bonded to the first passivation layer 40, so that the first connection layer 20 can
  • the layer 30 is bonded to the first surface 11 of the base body 10 .
  • the first passivation layer 40 can be closely attached to the surface of the first conductive layer 30 by chemical reaction or vapor deposition.
  • the composite current collector 100 further includes a second connection layer 50 , a second conductive layer 60 and a second passivation layer 70 .
  • the second connection layer 50 is located between the base body 10 and the second conductive layer 60 , and the second passivation layer 70 is formed on the surface of the second conductive layer 60 close to the second connection layer 50 .
  • One surface of the second connection layer 50 is bonded to the second surface 11 of the base body 10 , and the other surface of the second connection layer 50 is bonded to the second passivation layer 70 , so that the second connection layer 50 can
  • the layer 60 is bonded to the second surface 12 of the base body 10 .
  • the second passivation layer 70 can be closely attached to the surface of the second conductive layer 60 by chemical reaction or vapor deposition.
  • the first conductive layer 30 and the second conductive layer 60 may be formed by a physical vapor deposition process, and the physical vapor deposition process may be selected from magnetron sputtering, crucible boat evaporation coating method, and electron beam evaporation coating method any of the laws.
  • the first passivation layer can be formed on the surfaces of the first conductive layer 30 and the second conductive layer 60 by electron beam evaporation, DC magnetron sputtering, radio frequency magnetron sputtering, surface oxidation, chemical deposition, spraying and other processing techniques, respectively. 40 and the second passivation layer 70.
  • the first passivation layer 40 can be used to prevent the electrolyte from coming into contact with the first conductive layer 30 from the opposite side of the first connection layer 20 and the first conductive layer 30, causing the first conductive layer 30 to be corroded and damaged, and the second conductive layer 30 to be damaged by corrosion.
  • the passivation layer 70 can be used to prevent the electrolyte from coming into contact with the second conductive layer 60 from the opposite side of the second connection layer 50 and the second conductive layer 60, causing the second conductive layer 60 to be corroded and damaged, thereby improving the composite current collector. 100 stability.
  • the substrate 10 may be selected from polyethylene films, polypropylene films, polyethylene terephthalate films, polyethylene terephthalate films, polyethylene terephthalate films Phenylenediamine film, polyimide film, polycarbonate film, polyetheretherketone film, polyoxymethylene film, polyparaphenylene sulfide film, polyparaphenylene oxide film, polyvinyl chloride film, polyamide film, polytetrafluoroethylene At least one of vinyl fluoride films.
  • the thickness of the base body 10 may be 2 ⁇ m-36 ⁇ m.
  • the materials of the first connection layer 20 and the second connection layer 50 may be selected from polyurethane, epoxy resin, polyacrylate, polyvinyl acetate, unsaturated polyester, phenolic resin, urea-formaldehyde resin, modified At least one of polyolefin resin, silicone resin, ethylene-acrylic acid copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, and polyamide.
  • the thicknesses of the first connection layer 20 and the second connection layer 50 may both be 0.2 ⁇ m-2 ⁇ m.
  • the materials of the first conductive layer 30 and the second conductive layer 60 may be selected from at least one of aluminum, copper, nickel, iron, titanium, silver, gold, cobalt, chromium, molybdenum, and tungsten.
  • the thicknesses of the first conductive layer 30 and the second conductive layer 60 may both be 100 nm-5000 nm.
  • the first passivation layer 40 and the second passivation layer 70 may be selected from aluminum oxide layers, titanium oxide layers, zirconium oxide layers, aluminum nitride layers, titanium nitride layers, titanium carbide layers, and zirconium carbide layers layer, silicon dioxide layer, silicon nitride layer, silicon carbide layer, aluminum chromate layer at least one.
  • the thicknesses of the first passivation layer 40 and the second passivation layer 70 may both be 5 nm-200 nm.
  • the first passivation layer 40 can also be formed by coating the surface of the first conductive layer 30 close to the first connection layer 20 by a passivation solution
  • the second passivation layer 70 can also be coated by a passivation solution It is formed on the surface of the second conductive layer 60 close to the second connection layer 50 .
  • the passivation solution can refer to a solution that can make the metal surface passivated, and the passivation solution can form a surface state on the metal surface that can prevent the normal reaction of the metal and improve its corrosion resistance.
  • the electrolyte can avoid contact with the conductive layer when the electrolyte enters from the side opposite to the connection layer and the conductive layer, causing the conductive layer to be damaged. Electrolyte corrosion damage can improve the stability of the current collector.
  • the first surface 11 of the base body 10 is provided with a groove-shaped pattern 80 , and the first connection layer 20 can also be filled in the groove-shaped pattern 80 , thereby improving the adhesion between the first connection layer 20 and the base body 10 . , so that the first conductive layer 30 is not easy to fall off from the base body 10 and further improves the stability of the current collector.
  • the first surface 11 of the base body 10 may be subjected to patterning processes such as drilling, scribing, etc. to form the groove-like pattern 80.
  • the groove-shaped pattern 80 is formed on the first surface 11 by processing methods such as laser drilling, nuclear track etching, chemical etching, and photochemical etching.
  • the groove-like pattern 80 may be composed of one or more hole-like structures 81 , and the hole-like structures may be set to penetrate through the base body 10 or not penetrate the base body 10 according to actual needs.
  • the plurality of hole-like structures 81 all penetrate the base body 10 , and none of the plurality of hole-like structures 81 penetrates the base body 10 , or some of the plurality of hole-like structures 81 penetrate the base body 10 , and another part of the hole-like structures pass through the base body 10 .
  • the base body 10 is not penetrated.
  • the shape of the hole-like structure 81 can be set according to actual requirements, for example, the hole-like structure 81 shown in FIG. 3 is a circular hole.
  • the hole-like structures 81 may also be triangular holes, quadrangular holes, polygonal holes, irregular-shaped holes, and the like.
  • the second surface 12 of the base body 10 may also be provided with a groove-shaped pattern 80 , and the second connection layer 50 is filled in the groove-shaped pattern 80 , thereby improving the adhesion between the second connection layer 50 and the base body 10 . , so that the second conductive layer 60 is not easy to fall off from the base body 10 .
  • the present application also discloses an electrode pole piece, and the electrode pole piece includes the composite current collector 100 in any of the above cases.
  • the active material layer is provided on the surface of the first conductive layer 30 away from the first connection layer 20 , and the active material layer is also provided on the surface of the second conductive layer 60 away from the second connection layer 50 . If the composite current collector 100 is a cathode current collector, the active material layer is a cathode active material coating. If the composite current collector 100 is an anode current collector, the active material layer is an anode active material coating.
  • the present application also discloses an electrochemical device, the electrochemical device comprising the electrode pads in any of the above situations.
  • the electrochemical device may be a lithium ion battery, a lithium polymer battery, or the like.
  • Comparative Example 1 Comparative Example 1
  • Comparative Example 2 Comparative Example 3 stated below are all composite current collectors not provided with a passivation layer.
  • the previously treated polyethylene terephthalate film and the surface with the aluminized layer on the polyimide film are hot-pressed and compounded (the temperature of hot-pressing compounding is 85° C. and the pressure is 0.7Mpa) to obtain First comparative composite current collector.
  • the previously treated polyethylene terephthalate film and the surface with the aluminized layer on the polyimide film are hot-pressed and compounded (the temperature of hot-pressing compounding is 85° C. and the pressure is 0.7Mpa) to obtain Second comparative composite current collector.
  • the surface of the previously treated polyethylene terephthalate film and the aluminized layer on the polyimide film after passivation is hot-pressed and compounded (the temperature of hot-pressing compounding is 85°C and the pressure is 0.7Mpa. ) to obtain the first composite current collector.
  • the surface of the previously treated polyethylene terephthalate film and the aluminized layer on the polyimide film after passivation is hot-pressed and compounded (the temperature of hot-pressing compounding is 85°C and the pressure is 0.7Mpa. ) to obtain the second composite current collector.
  • the surface of the previously treated polyethylene terephthalate film and the aluminized layer on the polyimide film after passivation is hot-pressed and compounded (the temperature of hot-pressing compounding is 85°C and the pressure is 0.7Mpa. ) to obtain the third composite current collector.
  • the previously treated polyethylene terephthalate was The surfaces after passivation of the aluminized layers on the ethylene formate film and the polyimide film are subjected to hot pressing compounding (the temperature of hot pressing compounding is 85° C. and the pressure is 0.7 Mpa) to obtain a fourth compound current collector.
  • the previously treated polyethylene terephthalate was The surfaces after passivation of the aluminized layers on the ethylene formate film and the polyimide film are subjected to hot pressing compounding (the temperature of hot pressing compounding is 85° C. and the pressure is 0.7 Mpa) to obtain the fifth compound current collector.
  • the previously treated polyethylene terephthalate was The surfaces after passivation of the aluminized layers on the ethylene formate film and the polyimide film are subjected to hot pressing compounding (the temperature of hot pressing compounding is 85° C. and the pressure is 0.7 Mpa) to obtain the sixth compound current collector.
  • each composite current collector is cut into a collector with a length of 5 cm and a width of 2 cm.
  • the fluid splines were immersed in the electrolyte and packaged with aluminum-plastic film to remove external environmental interference. Finally, they were placed in a constant temperature drying oven at 85°C for 72 hours and then taken out to observe the appearance of each composite current collector. As shown in Table 1 below, the observation results of the composite current collectors of Examples 1 to 6 compared with Comparative Examples 1 to 3 are compiled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

一种复合集流体(100)、电极极片及电化学装置,该复合集流体(100)包括基体(10)、第一连接层(20)和第一导电层(30),所述第一连接层(20)用于将所述第一导电层(30)粘接至所述基体(10)的第一表面(11),所述第一导电层(30)靠近所述第一连接层(20)的表面形成有第一钝化层(40)。该复合集流体(100),通过在第一导电层(30)靠近第一连接层(20)的一侧形成第一钝化层(40),可避免电解液从第一连接层(20)与第一导电层(30)相对的一面进入时与第一导电层(30)相接触,导致第一导电层(30)被电解液腐蚀破坏,可提高集流体的稳定性。

Description

复合集流体、电极极片及电化学装置 技术领域
本申请涉及一种复合集流体、电极极片及电化学装置。
背景技术
电化学装置能够进行充放电,已广泛应用于消费类产品、数码类产品、动力产品、医疗及安防等领域。集流体是电化学装置中的活性材料的载体,是电化学装置中重要组成部分,与电化学装置的能量密度密切相关。现有制造集流体的过程中,一般是先在低密度的聚合物薄膜表面通过金属物理气相沉积得到金属聚合物薄膜。为了使得集流体具备较优异的导电性能,需对聚合物薄膜进行较大厚度金属层的沉积,但是集流体厚度的增加会降低电化学装置的能量密度,且该种方式制作得到的集流体抵抗电解液的侵蚀能力较差,金属层容易在电化学装置长期运行过程中脱落引发失效。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个方面在于提出一种复合集流体,通过在导电层靠近连接层的一侧形成钝化层,可避免电解液从连接层与导电层相对的一面进入时与导电层相接触,导致导电层被电解液腐蚀破坏,可提高集流体的稳定性。
本申请实施例提出了一种复合集流体,包括基体、第一连接层和第一导电层,所述第一连接层用于将所述第一导电层粘接至所述基体的第一表面;所述第一导电层靠近所述第一连接层的表面形成有第一钝化层。
在一些实施例中,所述复合集流体还包括第二连接层和第二导电层,所述第二连接层用于将所述第二导电层粘接至所述基体的第二表面,所述第二导电 层靠近所述第二连接层的表面形成有第二钝化层。
在一些实施例中,所述基体的厚度为2μm-36μm,所述第一连接层的厚度为0.2μm-2μm,所述第一导电层厚度为100nm-5000nm,所述第一钝化层的厚度为5nm-200nm。
在一些实施例中,所述基体选自聚乙烯薄膜、聚丙烯薄膜、聚对苯二甲酸乙二醇酯薄膜、聚对萘二甲酸乙二醇酯薄膜、聚对苯二甲酰对苯二胺薄膜、聚酰亚胺薄膜、聚碳酸酯薄膜、聚醚醚酮薄膜、聚甲醛薄膜、聚对苯硫醚薄膜、聚对苯醚薄膜、聚氯乙烯薄膜、聚酰胺薄膜、聚四氟乙烯薄膜中的至少一种。
在一些实施例中,所述第一连接层选自聚氨酯、环氧树脂、聚丙烯酸酯、聚醋酸乙烯酯、不饱和聚酯、酚醛树脂、脲醛树脂、改性聚烯烃树脂、有机硅树脂、乙烯-丙烯酸共聚物、乙烯-醋酸乙烯共聚物、乙烯-乙烯醇共聚物、聚酰胺中的至少一种。
在一些实施例中,所述第一钝化层选自氧化铝层、氧化钛层、氧化锆层、氮化铝层、氮化钛层、碳化钛层、碳化锆层、二氧化硅层、氮化硅层、碳化硅层、铝铬酸盐层中的至少一种。
在一些实施例中,所述第一导电层选自铝、铜、镍、铁、钛、银、金、钴、铬、钼、钨中的至少一种。
在一些实施例中,所述基体的第一表面设置有槽状图案,所述连接层还填充于所述槽状图案。
在一些实施例中,所述槽状图案由一个或多个孔状结构组成。
在一些实施例中,至少一个所述孔状结构贯穿所述基体,或者至少一个所述孔状结构不贯穿所述基体。
本申请的另外一方面在于提出了一种电极极片,包括复合集流体及活性材料层。复合集流体包括基体、第一连接层和第一导电层,所述第一连接层用于将所述第一导电层粘接至所述基体的第一表面;所述第一导电层靠近所述第一连接层的表面形成有第一钝化层。活性材料层设置于所述复合集流体的第一导电层背离所述基体的表面。
本申请的另外一方面在于提出了一种电化学装置,包括电极极片。该电极极片包括复合集流体及活性材料层。复合集流体包括基体、第一连接层和第一导电层,所述第一连接层用于将所述第一导电层粘接至所述基体的第一表面;所述第一导电层靠近所述第一连接层的表面形成有第一钝化层。活性材料层设置于所述复合集流体的第一导电层背离所述基体的表面
根据本申请实施例的复合集流体,通过在导电层靠近连接层的一侧形成钝化层,可避免电解液从连接层与导电层相对的一面进入时与导电层相接触,导致导电层被电解液腐蚀破坏,可提高集流体的稳定性。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请一实施例的复合集流体的结构示意图;
图2示出了根据本申请另一实施例的复合集流体的结构示意图;
图3示出了根据本申请一实施例的基体表面形成有槽状图案的结构示意图;
主要元件符号说明:
基体10,第一表面11,第二表面12,第一连接层20,第一导电层30,第一钝化层40,第二连接层50,第二导电层60,第二钝化层70,槽状图案80,孔状结构81。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考图1-图3具体描述根据本申请实施例的复合集流体100。
如图1所示,根据本申请实施例的复合集流体100,包括基体10、第一连接层20、第一导电层30及第一钝化层40。第一连接层20位于基体10与第一导电层30之间,第一导电层30靠近第一连接层20的表面形成有该第一钝化层40。第一连接层20的一表面与基体10的第一表面11粘接,第一连接层20的另一表面与第一钝化层40粘接,进而使得第一连接层20可以将第一导电层30粘接至基体10的第一表面11。
比如,第一钝化层40可以通过化学反应或气相沉积的方式紧密贴合在第一导电层30表面。
如图2所示,复合集流体100还包括第二连接层50、第二导电层60及第二钝化层70。第二连接层50位于基体10与第二导电层60之间,第二导电层60靠近第二连接层50的表面形成有该第二钝化层70。第二连接层50的一表面与基体10的第二表面11粘接,第二连接层50的另一表面与第二钝化层70粘接,进而使得第二连接层50可以将第二导电层60粘接至基体10的第二表面12。
比如,第二钝化层70可以通过化学反应或气相沉积的方式紧密贴合在第二导电层60表面。
在一些实施例中,第一导电层30与第二导电层60可以采用物理气相沉积工艺制成,该物理气相沉积工艺可以选自磁控溅射法、坩埚舟蒸发镀膜法、电子束蒸发镀膜法中的任意一种。第一导电层30与第二导电层60可以通过电子束蒸发、直流磁控溅射、射频磁控溅射、表面氧化、化学沉积、喷涂等加工工艺来在其表面分别形成第一钝化层40与第二钝化层70。所述第一钝化层40可用于避免电解液从第一连接层20与第一导电层30相对的一面进入时与第一导电层30接触,导致第一导电层30被腐蚀破坏,第二钝化层70可用于避免电解液从第二连接层50与第二导电层60相对的一面进入时与第二导电层60接触,导致第二导电层60被腐蚀破坏,进而可提高复合集流体100的稳定性。
在一些实施例中,所述基体10可以选自聚乙烯薄膜、聚丙烯薄膜、聚 对苯二甲酸乙二醇酯薄膜、聚对萘二甲酸乙二醇酯薄膜、聚对苯二甲酰对苯二胺薄膜、聚酰亚胺薄膜、聚碳酸酯薄膜、聚醚醚酮薄膜、聚甲醛薄膜、聚对苯硫醚薄膜、聚对苯醚薄膜、聚氯乙烯薄膜、聚酰胺薄膜、聚四氟乙烯薄膜中的至少一种。所述基体10的厚度可以为2μm-36μm。
在一些实施例中,第一连接层20与第二连接层50的材质可以选自聚氨酯、环氧树脂、聚丙烯酸酯、聚醋酸乙烯酯、不饱和聚酯、酚醛树脂、脲醛树脂、改性聚烯烃树脂、有机硅树脂、乙烯-丙烯酸共聚物、乙烯-醋酸乙烯共聚物、乙烯-乙烯醇共聚物、聚酰胺中的至少一种。第一连接层20与第二连接层50的厚度均可以为0.2μm-2μm。
在一些实施例中,第一导电层30与第二导电层60的材质可以选自铝、铜、镍、铁、钛、银、金、钴、铬、钼、钨中的至少一种。第一导电层30与第二导电层60的厚度均可以为100nm-5000nm。
在一些实施例中,第一钝化层40与第二钝化层70可以选自氧化铝层、氧化钛层、氧化锆层、氮化铝层、氮化钛层、碳化钛层、碳化锆层、二氧化硅层、氮化硅层、碳化硅层、铝铬酸盐层中的至少一种。第一钝化层40与第二钝化层70的厚度均可以为5nm-200nm。在其他实施例中,第一钝化层40还可以由钝化液涂覆于第一导电层30靠近第一连接层20的表面形成,第二钝化层70还可以由钝化液涂覆于第二导电层60靠近第二连接层50的表面形成。钝化液可以是指能使金属表面呈钝态的溶液,钝化液可以在金属表面形成能阻止金属正常反应的表面状态,提高其抗蚀性。
本申请实施例的复合集流体100,通过在导电层靠近连接层的一侧形成钝化层,可避免电解液从连接层与导电层相对的一面进入时与导电层相接触,导致导电层被电解液腐蚀破坏,可提高集流体的稳定性。
如图3所示,基体10的第一表面11设置有槽状图案80,第一连接层20还可填充于该槽状图案80,进而可以提高第一连接层20与基体10的粘接力,使得第一导电层30不易从基体10脱落,进一步提高集流体的稳定性。
在一些实施例中,可以对基体10的第一表面11进行造孔、刻画等图案 化处理来形成槽状图案80。比如通过激光打孔、核径迹蚀刻、化学刻蚀、光化学刻蚀等处理方式来在第一表面11上形成槽状图案80。
在一些实施例中,槽状图案80可以由一个或多个孔状结构81组成,该些孔状结构可以根据实际需要设定为贯穿基体10或不贯穿基体10。比如,该多个孔状结构81均贯穿基体10,该多个孔状结构81均不贯穿基体10,或者该多个孔状结构81中的部分孔状结构贯穿基体10,另一部分孔状结构不贯穿基体10。
在一些实施例中,孔状结构81的形状可以根据实际需求进行设定,比如如图3所示的孔状结构81为圆形孔。孔状结构81还可以是三角形孔、四边形孔、多边形孔、不规则形状孔等。
在一些实施例中,基体10的第二表面12也可以设置有槽状图案80,第二连接层50填充于该槽状图案80,进而可以提高第二连接层50与基体10的粘接力,使得第二导电层60不易从基体10脱落。
此外,本申请还公开了一种电极极片,该电极极片包括上述任一种情况的复合集流体100。
在一些实施例中,第一导电层30远离第一连接层20的表面设置有活性材料层,第二导电层60远离第二连接层50的表面亦设置有该活性材料层。若复合集流体100为阴极集流体,则该活性材料层为阴极活性材料涂层。若复合集流体100为阳极集流体,则该活性材料层为阳极活性材料涂层。
此外,本申请还公开了一种电化学装置,该电化学装置包括上述任一种情况的电极极片。电化学装置可以是锂离子电池、锂聚合物电池等等。
以下陈述的对比例1、对比例2及对比例3均为未设置有钝化层的复合集流体。
对比例1
将50μm厚度的聚酰亚胺薄膜置于坩埚舟式真空蒸发镀铝机真空室,将真空室密封并将真空镀铝机气压抽至10 -3Pa,待坩埚舟温度调节至1200-1500℃,开始镀铝,待铝度达到200nm后,停止镀铝。将12μm厚度 的聚对苯二甲酸乙二醇酯薄膜进行电晕处理,并在其表面涂覆双酚A型环氧树脂和胺类固化剂的混合物,在涂覆物的开放时间之内,将此前处理过的聚对苯二甲酸乙二醇酯薄膜与聚酰亚胺薄膜上的具有镀铝层的表面进行热压复合(热压复合的温度为85℃、压力为0.7Mpa),得到第一对比复合集流体。
对比例2
将50μm厚度的聚酰亚胺薄膜置于坩埚舟式真空蒸发镀铝机真空室,将真空室密封并将真空镀铝机气压抽至10 -3Pa,待坩埚舟温度调节至1200-1500℃,开始镀铝,待铝厚度达到500nm后,停止镀铝。将12μm厚度的聚对苯二甲酸乙二醇酯薄膜进行电晕处理,并在其表面涂覆双酚A型环氧树脂和胺类固化剂的混合物,在涂覆物的开放时间之内,将此前处理过的聚对苯二甲酸乙二醇酯薄膜与聚酰亚胺薄膜上的具有镀铝层的表面进行热压复合(热压复合的温度为85℃、压力为0.7Mpa),得到第二对比复合集流体。
对比例3
将50μm厚度的聚酰亚胺薄膜置于坩埚舟式真空蒸发镀铝机真空室,将真空室密封并将真空镀铝机气压抽至10 -3Pa,待坩埚舟温度调节至1200-1500℃,开始镀铝,待铝厚度达到500nm后,停止镀铝。将厚度为12μm的聚对苯二甲酸乙二醇酯薄膜进行电晕处理,并在其表面涂覆单组份聚氨酯胶粘剂,在涂覆物的开放时间之内,将此前处理过的聚对苯二甲酸乙二醇酯薄膜与聚酰亚胺薄膜上的具有镀铝层的表面进行热压复合(热压复合的温度为85℃、压力为0.7Mpa),得到第三对比复合集流体。
以下陈述的具体实施例1~6为采用本发明实施例中的包含有钝化层的复合集流体。
实施例1
将50μm厚度的聚酰亚胺薄膜置于坩埚舟式真空蒸发镀铝机真空室,将真空室密封并将真空镀铝机气压抽至10 -3Pa,待坩埚舟温度调节至 1200-1500℃,开始镀铝,待铝厚度达到200nm后,停止镀铝,随后对铝层表面溅射一层厚度为5nm的Al 2O 3钝化层待用。将12μm厚度的聚对苯二甲酸乙二醇酯薄膜进行电晕处理,并在其表面涂覆双酚A型环氧树脂和胺类固化剂的混合物,在涂覆物的开放时间之内,将此前处理过的聚对苯二甲酸乙二醇酯薄膜与聚酰亚胺薄膜上的镀铝层经过钝化后的表面进行热压复合(热压复合的温度为85℃、压力为0.7Mpa),得到第一复合集流体。
实施例2
将50μm厚度的聚酰亚胺薄膜置于坩埚舟式真空蒸发镀铝机真空室,将真空室密封并将真空镀铝机气压抽至10 -3Pa,待坩埚舟温度调节至1200-1500℃,开始镀铝,待铝厚度达到500nm后,停止镀铝,随后对铝层表面溅射一层厚度为10nm的Al 2O 3钝化层待用。将12μm厚度的聚对苯二甲酸乙二醇酯薄膜进行电晕处理,并在其表面涂覆双酚A型环氧树脂和胺类固化剂的混合物,在涂覆物的开放时间之内,将此前处理过的聚对苯二甲酸乙二醇酯薄膜与聚酰亚胺薄膜上的镀铝层经过钝化后的表面进行热压复合(热压复合的温度为85℃、压力为0.7Mpa),得到第二复合集流体。
实施例3
将50μm厚度的聚酰亚胺薄膜置于坩埚舟式真空蒸发镀铝机真空室,将真空室密封并将真空镀铝机气压抽至10 -3Pa,待坩埚舟温度调节至1200-1500℃,开始镀铝,待铝厚度达到500nm后,停止镀铝,随后对铝层表面溅射一层厚度为20nm的Al 2O 3钝化层待用。将12μm厚度的聚对苯二甲酸乙二醇酯薄膜进行电晕处理,并在其表面涂覆双酚A型环氧树脂和胺类固化剂的混合物,在涂覆物的开放时间之内,将此前处理过的聚对苯二甲酸乙二醇酯薄膜与聚酰亚胺薄膜上的镀铝层经过钝化后的表面进行热压复合(热压复合的温度为85℃、压力为0.7Mpa),得到第三复合集流体。
实施例4
将50μm厚度的聚酰亚胺薄膜置于坩埚舟式真空蒸发镀铝机真空室,将真空室密封并将真空镀铝机气压抽至10 -3Pa,待坩埚舟温度调节至 1200-1500℃,开始镀铝,待铝厚度达到500nm后,停止镀铝,随后对铝层表面溅射一层厚度为20nm的Al 2O 3钝化层待用。将12μm厚度的聚对苯二甲酸乙二醇酯薄膜进行电晕处理,并在其表面涂覆单组份聚氨酯胶粘剂,在涂覆物的开放时间之内,将此前处理过的聚对苯二甲酸乙二醇酯薄膜与聚酰亚胺薄膜上的镀铝层经过钝化后的表面进行热压复合(热压复合的温度为85℃、压力为0.7Mpa),得到第四复合集流体。
实施例5
将50μm厚度的聚酰亚胺薄膜置于坩埚舟式真空蒸发镀铝机真空室,将真空室密封并将真空镀铝机气压抽至10 -3Pa,待坩埚舟温度调节至1200-1500℃,开始镀铝,待铝厚度达到500nm后,停止镀铝,随后对铝层表面溅射一层厚度为20nm的TiO 2钝化层待用。将12μm厚度的聚对苯二甲酸乙二醇酯薄膜进行电晕处理,并在其表面涂覆单组份聚氨酯胶粘剂,在涂覆物的开放时间之内,将此前处理过的聚对苯二甲酸乙二醇酯薄膜与聚酰亚胺薄膜上的镀铝层经过钝化后的表面进行热压复合(热压复合的温度为85℃、压力为0.7Mpa),得到第五复合集流体。
实施例6
将50μm厚度的聚酰亚胺薄膜置于坩埚舟式真空蒸发镀铝机真空室,将真空室密封并将真空镀铝机气压抽至10 -3Pa,待坩埚舟温度调节至1200-1500℃,开始镀铝,待铝厚度达到500nm后,停止镀铝,随后涂覆含Cr 3+的涂覆液形成约200nm厚的铝铬酸盐钝化层待用。将12μm厚度的聚对苯二甲酸乙二醇酯薄膜进行电晕处理,并在其表面涂覆单组份聚氨酯胶粘剂,在涂覆物的开放时间之内,将此前处理过的聚对苯二甲酸乙二醇酯薄膜与聚酰亚胺薄膜上的镀铝层经过钝化后的表面进行热压复合(热压复合的温度为85℃、压力为0.7Mpa),得到第六复合集流体。
在一些实施例中,对实施例1~6与对比例1~3得到的复合集流体进行浸泡实验,实施过程可以为:将每一复合集流体裁切成长度为5cm、宽度为2cm的集流体样条浸泡于电解液中,并用铝塑膜封装起来以去除外界环境干 扰,最终将其置于85℃的恒温干燥箱中保持72小时后取出观察每一复合集流体的外观情况。如下表1所示,汇整了实施例1~6与对比例1~3相比较的复合集流体的观察结果。
表1
实施例 样本名称 电解液浸泡结果
1 第一复合集流体 无铝层脱落
2 第二复合集流体 无铝层脱落
3 第三复合集流体 无铝层脱落
4 第四复合集流体 无铝层脱落
5 第五复合集流体 无铝层脱落
6 第六复合集流体 无铝层脱落
对比例 样本名称 电解液浸泡结果
1 第一对比复合集流体 铝层橘皮
2 第二对比复合集流体 铝层橘皮
3 第三对比复合集流体 铝层片状脱落
由上表1可知,实施例1~6的复合集流体的电解液耐受性显著优于对比例1~3,表明了在导电层内表面设置钝化层可避免电解液从连接层与导电层相对的表面进入时与导电层发生接触,引起导电层被电解液腐蚀破坏,从而提高复合集流体的稳定性。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,“多个”的含义是两个或两个以上。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实 施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型。

Claims (12)

  1. 一种复合集流体,其特征在于,包括基体、第一连接层和第一导电层,
    所述第一连接层用于将所述第一导电层粘接至所述基体的第一表面;
    所述第一导电层靠近所述第一连接层的表面形成有第一钝化层。
  2. 如权利要求1所述的复合集流体,其特征在于,所述复合集流体还包括第二连接层和第二导电层,所述第二连接层用于将所述第二导电层粘接至所述基体的第二表面,所述第二导电层靠近所述第二连接层的表面形成有第二钝化层。
  3. 如权利要求1所述的复合集流体,其特征在于,所述基体的厚度为2μm-36μm,所述第一连接层的厚度为0.2μm-2μm,所述第一导电层厚度为100nm-5000nm,所述钝化层的厚度为5nm-200nm。
  4. 如权利要求1所述的复合集流体,其特征在于,所述基体选自聚乙烯薄膜、聚丙烯薄膜、聚对苯二甲酸乙二醇酯薄膜、聚对萘二甲酸乙二醇酯薄膜、聚对苯二甲酰对苯二胺薄膜、聚酰亚胺薄膜、聚碳酸酯薄膜、聚醚醚酮薄膜、聚甲醛薄膜、聚对苯硫醚薄膜、聚对苯醚薄膜、聚氯乙烯薄膜、聚酰胺薄膜、聚四氟乙烯薄膜中的至少一种。
  5. 如权利要求1所述的复合集流体,其特征在于,所述第一连接层选自聚氨酯、环氧树脂、聚丙烯酸酯、聚醋酸乙烯酯、不饱和聚酯、酚醛树脂、脲醛树脂、改性聚烯烃树脂、有机硅树脂、乙烯-丙烯酸共聚物、乙烯-醋酸乙烯共聚物、乙烯-乙烯醇共聚物、聚酰胺中的至少一种。
  6. 如权利要求1所述的复合集流体,其特征在于,所述第一钝化层选自氧化铝层、氧化钛层、氧化锆层、氮化铝层、氮化钛层、碳化钛层、碳化锆层、二氧化硅层、氮化硅层、碳化硅层、铝铬酸盐层中的至少一种。
  7. 如权利要求1所述的复合集流体,其特征在于,所述第一导电层选自铝、铜、镍、铁、钛、银、金、钴、铬、钼、钨中的至少一种。
  8. 如权利要求1所述的复合集流体,其特征在于,所述基体的第一表面设 置有槽状图案,所述连接层还填充于所述槽状图案。
  9. 如权利要求8所述的复合集流体,其特征在于,所述槽状图案由一个或多个孔状结构组成。
  10. 如权利要求9所述的复合集流体,其特征在于,至少一个所述孔状结构贯穿所述基体,或者至少一个所述孔状结构不贯穿所述基体。
  11. 一种电极极片,其特征在于,包括:
    权利要求1-10中任一项所述的复合集流体;及
    活性材料层,设置于所述复合集流体的第一导电层背离所述基体的表面。
  12. 一种电化学装置,其特征在于,包括权利要求11所述的电极极片。
PCT/CN2020/117219 2020-09-23 2020-09-23 复合集流体、电极极片及电化学装置 WO2022061612A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2020/117219 WO2022061612A1 (zh) 2020-09-23 2020-09-23 复合集流体、电极极片及电化学装置
KR1020217009039A KR102608002B1 (ko) 2020-09-23 2020-09-23 복합 집전체, 전극 시트 및 전기 화학적 장치
JP2021516757A JP7414813B2 (ja) 2020-09-23 2020-09-23 複合集電体、電極シート及び電気化学デバイス
CN202080005428.9A CN112789752A (zh) 2020-09-23 2020-09-23 复合集流体、电极极片及电化学装置
EP20866942.4A EP4207390A1 (en) 2020-09-23 2020-09-23 Composite current collector, electrode plate, and electrochemical device
US17/410,116 US20220093931A1 (en) 2020-09-23 2021-08-24 Composite current collector, electrode plate and electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117219 WO2022061612A1 (zh) 2020-09-23 2020-09-23 复合集流体、电极极片及电化学装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/410,116 Continuation US20220093931A1 (en) 2020-09-23 2021-08-24 Composite current collector, electrode plate and electrochemical device

Publications (1)

Publication Number Publication Date
WO2022061612A1 true WO2022061612A1 (zh) 2022-03-31

Family

ID=75441183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117219 WO2022061612A1 (zh) 2020-09-23 2020-09-23 复合集流体、电极极片及电化学装置

Country Status (6)

Country Link
US (1) US20220093931A1 (zh)
EP (1) EP4207390A1 (zh)
JP (1) JP7414813B2 (zh)
KR (1) KR102608002B1 (zh)
CN (1) CN112789752A (zh)
WO (1) WO2022061612A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745525A (zh) * 2021-06-16 2021-12-03 浙江柔震科技有限公司 一种柔性复合塑料薄膜及其制备与测试方法
CN113690448A (zh) * 2021-08-12 2021-11-23 江苏卓高新材料科技有限公司 锂电池用的集流体的制备方法及复合集流体
CN116072885A (zh) * 2023-04-03 2023-05-05 成都科成精化高分子材料有限公司 一种复合集流体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107221676A (zh) * 2017-06-30 2017-09-29 江苏道赢科技有限公司 一种复合集流体及应用该集流体的锂离子二次电池
CN206849946U (zh) * 2017-04-14 2018-01-05 安徽金美新材料科技有限公司 一种塑料无纺布集流体
CN109873165A (zh) * 2017-12-05 2019-06-11 宁德时代新能源科技股份有限公司 一种集流体,其极片和电池
CN110247056A (zh) * 2018-03-30 2019-09-17 宁德时代新能源科技股份有限公司 一种集流体,其极片和电化学装置
CN110943227A (zh) * 2019-05-31 2020-03-31 宁德时代新能源科技股份有限公司 复合集流体、电极极片及电化学装置
CN211088397U (zh) * 2020-01-03 2020-07-24 深圳市海鸿新能源技术有限公司 一种二次电池及其极片

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102711A (ja) * 1997-09-25 1999-04-13 Denso Corp リチウムイオン二次電池
JP3534031B2 (ja) * 2000-02-02 2004-06-07 トヨタ自動車株式会社 電池・キャパシタ用電極の製造方法
JP5309909B2 (ja) * 2008-11-11 2013-10-09 マツダ株式会社 二次電池の電極
JP5359562B2 (ja) * 2009-05-28 2013-12-04 日産自動車株式会社 双極型電池用集電体
RU2544484C2 (ru) * 2009-11-20 2015-03-20 Ниссан Мотор Ко., Лтд. Токосъемник для двухполюсной аккумуляторной батареи
JP5417458B2 (ja) 2010-01-25 2014-02-12 Jx日鉱日石金属株式会社 二次電池負極集電体用銅箔
WO2013172007A1 (ja) 2012-05-16 2013-11-21 株式会社豊田自動織機 非水電解質二次電池正極用集電体、その製造方法、非水電解質二次電池用正極及び非水電解質二次電池
JP2014235912A (ja) 2013-06-03 2014-12-15 住友電気工業株式会社 ナトリウム溶融塩電池およびその製造方法
KR20160070119A (ko) 2013-10-15 2016-06-17 넥세온 엘티디 전기화학 셀용 보강 집전 기판 조립체
CN105186006B (zh) * 2014-06-17 2017-08-11 北京好风光储能技术有限公司 一种复合多孔集流体及其制备方法与应用
KR20160036998A (ko) * 2014-09-26 2016-04-05 주식회사 뉴파워 프라즈마 이차전지 및 그 제조 방법
JP6917907B2 (ja) 2016-02-12 2021-08-11 株式会社エンビジョンAescジャパン リチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極の製造方法及び評価方法、及びリチウムイオン二次電池の製造方法
JP6848645B2 (ja) 2017-04-21 2021-03-24 トヨタ自動車株式会社 集電積層体
CN207353383U (zh) * 2017-11-10 2018-05-11 宁德时代新能源科技股份有限公司 集流体、电极极片及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206849946U (zh) * 2017-04-14 2018-01-05 安徽金美新材料科技有限公司 一种塑料无纺布集流体
CN107221676A (zh) * 2017-06-30 2017-09-29 江苏道赢科技有限公司 一种复合集流体及应用该集流体的锂离子二次电池
CN109873165A (zh) * 2017-12-05 2019-06-11 宁德时代新能源科技股份有限公司 一种集流体,其极片和电池
CN110247056A (zh) * 2018-03-30 2019-09-17 宁德时代新能源科技股份有限公司 一种集流体,其极片和电化学装置
CN110943227A (zh) * 2019-05-31 2020-03-31 宁德时代新能源科技股份有限公司 复合集流体、电极极片及电化学装置
CN211088397U (zh) * 2020-01-03 2020-07-24 深圳市海鸿新能源技术有限公司 一种二次电池及其极片

Also Published As

Publication number Publication date
KR20210041625A (ko) 2021-04-15
JP2022553462A (ja) 2022-12-23
KR102608002B1 (ko) 2023-12-01
US20220093931A1 (en) 2022-03-24
CN112789752A (zh) 2021-05-11
JP7414813B2 (ja) 2024-01-16
EP4207390A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
WO2022061612A1 (zh) 复合集流体、电极极片及电化学装置
WO2022061611A1 (zh) 复合集流体、电极极片及电化学装置
TWI424447B (zh) 利用奈米碳管之導電性材料及其製造方法、以及利用該材料之電雙層電容器
CN110828775A (zh) 一种集流体电极结构、二次电池及其制备方法
US20200280086A1 (en) Separator for fuel cell or current collecting member for fuel cell, and solid polymer electrolyte fuel cell
JP2003511832A (ja) 黒鉛防護膜をもつ耐蝕被覆燃料電池バイポーラープレート並びにその製造
JP2005529466A (ja) ステンレス鋼製二極式プレートプレートのためのAu超低積載
TW201237991A (en) High efficiency electrostatic chuck assembly for semiconductor wafer processing
TWI610490B (zh) 固體高分子形燃料電池之分隔件用金屬板
WO2022155938A1 (zh) 复合集流体、应用所述复合集流体的电池和电子装置
US11133512B2 (en) Bipolar plate
US6889410B2 (en) Rapid coating process and its application to lead-acid batteries
KR20160108807A (ko) 무크롬 표면처리된 이차전지용 탭 리드 및 그 제조방법
US20100239854A1 (en) Metallic material coated with carbon film
JP2012064336A (ja) 金属リチウム薄膜を有する多層フィルム
CN115029663A (zh) 金属极板复合涂层、金属极板及其制备方法和燃料电池
KR101450260B1 (ko) 폴리페닐렌설파이드와 구리의 접합체 및 이의 접합 방법
JP6229771B2 (ja) 燃料電池用セパレータ又は燃料電池用集電部材
JP2004111069A (ja) リチウムイオン電池用外装材
US11225728B2 (en) Film forming device and method for forming metal film using the same
CN219246721U (zh) 一种复合集流体、电池电极、电池以及用电设备
CN210306041U (zh) 一种精密制造用多层三元硼化物复合涂层刀具
US4189531A (en) Na/S reactant container with protective resin coating
JPH0773861A (ja) 電 池
KR20220141598A (ko) 이차전지 파우치용 다층 필름 및 이의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021516757

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020866942

Country of ref document: EP

Effective date: 20210331

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE