WO2022155938A1 - 复合集流体、应用所述复合集流体的电池和电子装置 - Google Patents

复合集流体、应用所述复合集流体的电池和电子装置 Download PDF

Info

Publication number
WO2022155938A1
WO2022155938A1 PCT/CN2021/073453 CN2021073453W WO2022155938A1 WO 2022155938 A1 WO2022155938 A1 WO 2022155938A1 CN 2021073453 W CN2021073453 W CN 2021073453W WO 2022155938 A1 WO2022155938 A1 WO 2022155938A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
coating
current collector
coating layer
composite current
Prior art date
Application number
PCT/CN2021/073453
Other languages
English (en)
French (fr)
Inventor
杨晓兵
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2021/073453 priority Critical patent/WO2022155938A1/zh
Priority to CN202180003199.1A priority patent/CN113795954B/zh
Publication of WO2022155938A1 publication Critical patent/WO2022155938A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a current collector, in particular to a composite current collector, a battery using the composite current collector, and an electronic device using the battery.
  • the current collector runs through the entire processing process of the lithium ion battery and serves the entire life cycle of the lithium ion battery. It is the carrier of the battery active material and provides a channel for electron transmission. It is an important part of the lithium ion battery and is closely related to the energy density of the cell. Closely related, the energy density of the cell can be increased by reducing the thickness of the current collector. However, due to the characteristics of metal materials (such as low elongation at break), when the thickness of the current collector is reduced to a certain level, the current collector is prone to fracture, damage and other undesirable phenomena, resulting in waste of raw materials and reduced production capacity.
  • the metal-polymer film obtained by the physical vapor deposition of metal on the surface of the low-density polymer film can effectively reduce the density of the lithium-ion battery current collector and improve the weight energy density of the lithium-ion battery.
  • the adhesion between the surface metal and the polymer film of the composite current collector obtained by vapor deposition is low.
  • the present application provides a composite current collector including a polymer film layer and a metal layer disposed on at least one surface of the polymer film layer.
  • a first coating layer is arranged between the polymer film layer and the metal layer, and a second coating layer is arranged between the first coating layer and the metal layer.
  • the adhesion between the first coating and the second coating is greater than the adhesion between the second coating and the metal layer, and is greater than the adhesion between the first coating and the polymer film layer.
  • the range of the adhesive force A between the first coating and the polymer film layer is: 3.0N/15mm ⁇ A ⁇ 7.5N/15mm
  • the range between the second coating and the metal layer is:
  • the range of the adhesive force B is: 3.0N/15mm ⁇ B ⁇ 7.5N/15mm.
  • the surface tension of the first coating layer is lower than that of the polymer film layer, and the surface tension of the second coating layer is lower than that of the first coating layer.
  • the material of the first coating layer includes at least one of polyurethane, epoxy resin, isocyanate or unsaturated polyester.
  • the material of the second coating layer includes ethylene-acrylic acid copolymer, silicone resin, maleic anhydride grafted polyolefin resin, polyacrylic resin, ⁇ -cyanoacrylate or phenolic resin. at least one.
  • the thickness of the first coating layer is 0.2 ⁇ m to 2 ⁇ m.
  • the thickness of the second coating layer is 0.2 ⁇ m to 2 ⁇ m.
  • the material of the polymer film layer includes polyethylene, polypropylene, polyethylene terephthalate, polyethylene terephthalate, polyethylene terephthalate, and polyethylene terephthalate. At least one of diamine, polyimide, polycarbonate, polyetheretherketone, polyoxymethylene, polyparaphenylene sulfide, polyparaphenylene oxide, polyvinyl chloride, polyamide, or polytetrafluoroethylene.
  • the thickness of the polymer film layer is 2 ⁇ m to 36 ⁇ m.
  • the material of the metal layer includes at least one of aluminum, copper, nickel, iron, titanium, silver, gold, cobalt, chromium, molybdenum, or tungsten.
  • the thickness of the metal layer is 100 nm to 5000 nm.
  • the present application also provides a battery including a first pole piece, a second pole piece, and a separator disposed between the first pole piece and the second pole piece.
  • the first pole piece and/or the second pole piece includes the above-mentioned composite current collector and an active material layer disposed on the surface of the composite current collector.
  • the present application also provides an electronic device including the above-mentioned battery.
  • the adhesive force between the first coating layer and the second coating layer is greater than that between the second coating layer and the metal layer, and is greater than that between the first coating layer and the polymer film layer. Therefore, the adhesion between the metal layer and the polymer film layer can be effectively improved, and the metal layer can be prevented from peeling off or falling off from the polymer film layer, thereby extending the composite current collector and the battery using the above composite current collector. and the lifespan of electronic devices.
  • FIG. 1 is a schematic structural diagram of a composite current collector according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a composite current collector according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a battery according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Composite current collector 10 polymer film 11 first surface 111 second surface 113 metal layer 13 first coat 15 second coat 17 Battery 20 electronic device 30
  • an embodiment of the present application provides a composite current collector 10 .
  • the composite current collector 10 includes a polymer film layer 11 and a metal layer 13 disposed on at least one surface of the polymer film layer 11 .
  • the composite current collector 10 further includes a first coating 15 and a second coating 17, wherein the first coating 15 is provided between the polymer film layer 11 and the metal layer 13, and the second coating 17 is provided on the first coating 15 and the metal layer 13 .
  • the adhesion between the first coating layer 15 and the second coating layer 17 is greater than the adhesion force between the first coating layer 15 and the polymer film layer 11 , and at the same time is greater than that between the second coating layer 17 and the metal layer 13
  • the adhesive force can effectively improve the adhesive force between the metal layer 13 and the polymer film layer 11 , and prevent the metal layer 13 from peeling off or falling off from the polymer film layer 11 .
  • the range of the adhesive force A between the first coating layer 15 and the polymer film layer 11 is: 3.0N/15mm ⁇ A ⁇ 7.5N/15mm, which is beneficial to ensure the gap between the first coating layer 15 and the polymer film layer 11
  • the bonding strength is high, so that the first coating layer 15 is not easily peeled off from the polymer film layer 11 .
  • the range of the bonding force B between the second coating 17 and the metal layer 13 is: 3.0N/15mm ⁇ B ⁇ 7.5N/15mm, which is beneficial to ensure the bonding strength between the second coating 17 and the metal layer 13 , so that the second coating layer 17 is not easily peeled off from the metal layer 13 .
  • the material of the polymer film layer 11 may include but not limited to polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyethylene terephthalate (PEN), Polyparaphenylene terephthalamide (PPTA), polyimide (PI), polycarbonate (PC), polyether ether ketone (PEEK), polyoxymethylene (POM), polyparaphenylene sulfide (PPS) ), at least one of polyparaphenylene ether (PPO), polyvinyl chloride (PVC), polyamide (PA), or polytetrafluoroethylene (PTFE).
  • PE polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyethylene terephthalate
  • PPTA Polyparaphenylene terephthalamide
  • PI polyimide
  • PC polycarbonate
  • PEEK polyether ether ketone
  • POM polyoxymethylene
  • PPS polyparaphenylene sulfide
  • PPO poly
  • the thickness of the polymer film layer 11 may be from 2 ⁇ m to 36 ⁇ m, which is beneficial to reduce the thickness of the composite current collector 10 on the premise of ensuring ductility and mechanical strength, thereby improving the energy density of the battery.
  • the material of the metal layer 13 may include, but is not limited to, at least one of aluminum, copper, nickel, iron, titanium, silver, gold, cobalt, chromium, molybdenum or tungsten.
  • the thickness of the metal layer 13 may be 100 nm to 5000 nm, which is beneficial to reduce the thickness of the composite current collector 10 on the premise of ensuring mechanical strength and bearing capacity, and thus is beneficial to improve the energy density of the battery.
  • the metal layer 13 can be prepared by, but not limited to, physical vapor deposition, mechanical lamination, electroless plating, or gravure.
  • the physical vapor deposition method may be a magnetron sputtering method, a crucible boat evaporation coating method or an electron beam evaporation coating method.
  • the material of the first coating layer 15 may include, but is not limited to, at least one of polyurethane, epoxy resin, isocyanate or unsaturated polyester.
  • the polyurethane may include, but is not limited to, at least one of a polyisocyanate type polyurethane, a prepolymer type polyurethane, or a blocked type polyurethane.
  • the urethane bond and urea bond in the polyurethane can react with the ester group, hydroxyl group or carboxyl group in the polymer film layer 11 after corona to form a hydrogen bond, thereby further strengthening the first coating layer 15 and the polymer film layer 11. adhesion between.
  • Epoxy resins may include, but are not limited to, bisphenol A type epoxy resins, bisphenol F type epoxy resins, polyphenol type glycidyl ether epoxy resins, aliphatic glycidyl ether epoxy resins, or glycidyl amine type epoxy resins at least one of them.
  • the hydroxyl groups in the polymer film layer 11 after corona can make the epoxy group in the epoxy resin ring-open and bond, and the unreacted hydroxyl groups in the epoxy resin can be connected with the polymer film layer 11 after corona.
  • the hydroxyl groups, ester groups or carboxyl groups in the polymer film form hydrogen bonds, thereby further enhancing the adhesion between the first coating layer 15 and the polymer film layer 11 .
  • Isocyanates may include but are not limited to toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), xylylene diisocyanate (XDI) or at least one of tetramethyl m-xylylene diisocyanate (TMXDI).
  • TDI toluene diisocyanate
  • MDI diphenylmethane diisocyanate
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • XDI xylylene diisocyanate
  • TXDI tetramethyl m-xylylene diisocyanate
  • -NCO in the isocyanate can react with the hydroxyl groups in the polymer film layer 11 after corona to form a urethane bond and a
  • Unsaturated polyesters include, but are not limited to, at least one of o-phthalic unsaturated polyesters, iso-phthalic unsaturated polyesters, xylene-based unsaturated polyesters, halogenated unsaturated polyesters or vinyl unsaturated polyesters .
  • the polarity of the above-mentioned unsaturated polyester is similar to that of the polymer film layer 11, so it is beneficial to the bonding between the two.
  • the ester group in the unsaturated polyester can form a hydrogen bond with the hydroxyl group, ester group or carboxyl group in the polymer film layer 11 after corona, so as to further strengthen the gap between the first coating layer 15 and the polymer film layer 11 adhesive force.
  • the thickness of the first coating layer 15 may be 0.2 ⁇ m to 2 ⁇ m, which is beneficial to reduce the thickness of the composite current collector 10 on the premise of ensuring the bonding strength with the polymer film layer 11 and the second coating layer 17 . thickness, which is beneficial to improve the energy density of the battery.
  • the material of the second coating layer 17 may include, but is not limited to, at least one of ethylene-acrylic acid copolymer, silicone resin, maleic anhydride grafted polyolefin resin, polyacrylic resin, ⁇ -cyanoacrylate or phenolic resin.
  • the carboxyl group on the surface of the ethylene-acrylic acid copolymer and the polyacrylic resin can form an ion-like bond with the metal in the metal layer 13 , thereby improving the adhesion between the second coating layer 17 and the metal layer 13 .
  • the acid anhydride in the maleic anhydride grafted polyolefin resin is easily converted into a carboxyl group by hydrolysis or reaction with groups such as hydroxyl groups to further form an ionic bond with the metal in the metal layer 13, thereby improving the relationship between the second coating 17 and the metal layer 13. adhesion between.
  • the silicon-oxygen bond in the silicone resin can form a silicon-oxygen-metal bond (eg, silicon-oxygen-aluminum bond) with the metal in the metal layer 13 , thereby improving the adhesion between the second coating layer 17 and the metal layer 13 .
  • the cyano group in the ⁇ -cyanoacrylate is a strong electron-withdrawing group, which is easy to obtain electrons from the metal atoms in the metal layer 13 to form a strong interaction force, thereby improving the adhesion between the second coating layer 17 and the metal layer 13 . adhesion.
  • the phenolic resin has a strong polarity, and at the same time, the phenolic hydroxyl group has a certain electron-attracting ability, so that it can form a strong bonding effect with the metal layer 13 .
  • the thickness of the second coating layer 17 may be 0.2 ⁇ m to 2 ⁇ m, which is beneficial to reduce the thickness of the composite current collector 10 on the premise of ensuring the bonding strength with the metal layer 13 and the second coating layer 17 , In turn, it is beneficial to improve the energy density of the battery.
  • the surface tension of the first coating layer 15 is lower than the surface tension of the polymer film layer 11, so as to facilitate the spreading of the first coating layer 15 on the surface of the polymer film layer 11 when the first coating layer 15 is formed by coating.
  • the surface tension of the second coating layer 17 is lower than that of the first coating layer 15 , so as to facilitate the spreading of the second coating layer 17 on the surface of the first coating layer 15 when the second coating layer 17 is formed by coating.
  • the polymer film layer 11 includes a first surface 111 and a second surface 113 disposed opposite to each other.
  • the first coating 15 is provided only on the first surface 111 of the polymer film layer 11 .
  • the first coating layer 15 is respectively provided on the first surface 111 and the second surface 113 of the polymer film layer 11 .
  • a second coating layer 17 is provided on the side of each first coating layer 15 facing away from the polymer film layer 11
  • a metal layer 13 is provided on the side of each second coating layer 17 facing away from the first coating layer.
  • the above-mentioned composite current collector 10 can be used as a positive electrode current collector or a negative electrode current collector and applied to a positive electrode or a negative electrode, thereby reducing the thickness of the electrode assembly and improving the energy density of the battery, while reducing the distance between the metal layer 13 and the polymer film layer 11. risk of peeling or peeling, thus extending the life of the battery.
  • the above-mentioned composite current collector 10 is applied to the battery 20 .
  • the battery 20 includes a first pole piece (not shown in the figure), a second pole piece (not shown in the figure), and a separator (not shown in the figure) disposed between the first pole piece and the second pole piece.
  • the first pole piece and/or the second pole piece includes the above-mentioned composite current collector 10 and an active material layer disposed on the surface of the composite current collector 10 .
  • the battery 20 is further applied to an electronic device 30 (as shown in FIG. 4 ).
  • the electronic device 30 may be, but not limited to, electric toys, electric vehicles, mobile phones, wearable devices, tablets, computers, drones, energy storage devices, and the like.
  • the PET film with a thickness of 2 ⁇ m and a surface tension of 52 dyn/cm was subjected to corona treatment, and the mixed mixture of bisphenol A epoxy resin and diethylenetriamine was coated on the corona treated PET film. surface, and dried at 120 °C to form a first coating with a thickness of 0.2 ⁇ m and a surface tension of 47 dyn/cm; then the surface of the first coating was coated with an ethylene-acrylic acid copolymer solution and dried at 100 °C to form A second coating with a thickness of 0.2 ⁇ m and a surface tension of 33 dyn/cm; the PET film formed with the first coating and the second coating is placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, and the vacuum chamber is sealed The air pressure of the vacuum chamber was evacuated to 10 -3 Pa, and then the temperature of the crucible boat was adjusted to 1200°C, and aluminum plating was started on the surface of the second coating layer until the thickness of
  • the PET film with a thickness of 12 ⁇ m and a surface tension of 52 dyn/cm was subjected to corona treatment, and the mixed mixture of bisphenol A epoxy resin and diethylenetriamine was coated on the corona treated PET film. surface, and dried at 120 °C to form a first coating with a thickness of 1.0 ⁇ m and a surface tension of 47 dyn/cm; then the surface of the first coating was coated with ethylene-acrylic acid copolymer solution and dried at 100 °C to form A second coating with a thickness of 1.0 ⁇ m and a surface tension of 33 dyn/cm; the PET film formed with the first coating and the second coating is placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, and the vacuum chamber is sealed The air pressure in the vacuum chamber was evacuated to 10 -3 Pa, and then the temperature of the crucible boat was adjusted to 1200° C. and aluminum plating was started on the surface of the second coating layer until the thickness of the
  • the PET film with a thickness of 36 ⁇ m and a surface tension of 52 dyn/cm was subjected to corona treatment, and the mixed mixture of bisphenol A epoxy resin and diethylenetriamine was coated on the corona treated PET film. surface, and dried at 120 °C to form a first coating with a thickness of 2.0 ⁇ m and a surface tension of 47 dyn/cm; then the surface of the first coating was coated with ethylene-acrylic acid copolymer solution and dried at 100 °C to form A second coating with a thickness of 2.0 ⁇ m and a surface tension of 33 dyn/cm; the PET film formed with the first coating and the second coating is placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, and the vacuum chamber is sealed The air pressure of the vacuum chamber was evacuated to 10 -3 Pa, and then the temperature of the crucible boat was adjusted to 1200 °C, and the surface of the second coating was plated with aluminum until the thickness of the aluminum layer reached
  • the PET film with a thickness of 12 ⁇ m and a surface tension of 52 dyn/cm was subjected to corona treatment, and the mixed mixture of bisphenol A epoxy resin and diethylenetriamine was coated on the corona treated PET film. surface, and dried at 120 °C to form a first coating with a thickness of 1.0 ⁇ m and a surface tension of 47 dyn/cm; then the surface of the first coating was coated with ethylene-acrylic acid copolymer solution and dried at 100 °C to form A second coating with a thickness of 1.0 ⁇ m and a surface tension of 33 dyn/cm; the PET film formed with the first coating and the second coating is placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, and the vacuum chamber is sealed The air pressure in the vacuum chamber was evacuated to 10 -3 Pa, and then the temperature of the crucible boat was adjusted to 1200° C. and aluminum plating was started on the surface of the second coating layer until the thickness of the
  • the PEN film with a thickness of 12 ⁇ m and a surface tension of 50 dyn/cm was subjected to corona treatment, and the mixed mixture of bisphenol A epoxy resin and diethylenetriamine was coated on the corona treated PEN film.
  • the PEN film formed with the first coating and the second coating is placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, and the vacuum chamber is sealed
  • the air pressure in the vacuum chamber was evacuated to 10 -3 Pa, and then the temperature of the crucible boat was adjusted to 1200° C. and aluminum plating was started on the surface of the second coating layer until the thickness of the aluminum layer reached 1.0 ⁇ m, thereby preparing a composite current collector.
  • the PEN film with a thickness of 12 ⁇ m and a surface tension of 50 dyn/cm was subjected to corona treatment, and the mixed mixture of end-capped polyurethane and glycerol was coated on the surface of the corona-treated PEN film, and the surface was heated at 100 °C.
  • the PEN film with a thickness of 12 ⁇ m and a surface tension of 50 dyn/cm was subjected to corona treatment, and the mixed mixture of end-capped polyurethane and glycerol was coated on the surface of the corona-treated PEN film, and the surface was heated at 100 °C.
  • the PET film with a thickness of 4.5 ⁇ m and a surface tension of 52 dyn/cm is subjected to corona treatment, and the mixed mixture of bisphenol A epoxy resin and diethylenetriamine is coated on the PET film after corona treatment and dried at 120 °C to form a first coating with a thickness of 0.5 ⁇ m and a surface tension of 47 dyn/cm; then the surface of the first coating was coated with ethylene-acrylic acid copolymer solution and dried at 100 °C
  • a second coating layer with a thickness of 0.5 ⁇ m and a surface tension of 33 dyn/cm was formed; the PET film formed with the first coating layer and the second coating layer was placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, and the vacuum chamber was placed in the vacuum chamber.
  • the air pressure of the vacuum chamber was sealed and evacuated to 10 -3 Pa, and then the temperature of the crucible boat was adjusted to 1600° C. and then copper plating was started on the surface of the second coating layer until the thickness of the copper layer reached 0.5 ⁇ m, thereby preparing a composite current collector.
  • the PET film with a thickness of 6.0 ⁇ m and a surface tension of 52 dyn/cm is subjected to corona treatment, and the mixed mixture of bisphenol A epoxy resin and diethylenetriamine is coated on the corona treated PET film and dried at 120 °C to form a first coating with a thickness of 0.5 ⁇ m and a surface tension of 47 dyn/cm; then the surface of the first coating was coated with ethylene-acrylic acid copolymer solution and dried at 100 °C
  • a second coating layer with a thickness of 0.5 ⁇ m and a surface tension of 33 dyn/cm was formed; the PET film formed with the first coating layer and the second coating layer was placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, and the vacuum chamber was placed in the vacuum chamber.
  • the air pressure of the vacuum chamber was sealed and evacuated to 10 -3 Pa, and then the temperature of the crucible boat was adjusted to 1600° C. and then copper plating was started on the surface of the second coating layer until the thickness of the copper layer reached 1.0 ⁇ m, thereby preparing a composite current collector.
  • the PET film with a thickness of 12 ⁇ m and a surface tension of 52 dyn/cm was subjected to corona treatment, and the mixed mixture of end-capped polyurethane and glycerol was coated on the surface of the corona-treated PET film, and the surface was heated at 100 °C.
  • the PET film with a thickness of 12 ⁇ m and a surface tension of 52 dyn/cm was subjected to corona treatment, and the ethylene-acrylic acid copolymer solution was coated on the surface of the corona-treated PET film, and dried at 100 ° C to form a thickness of 1.0 ⁇ m.
  • the surface of the first coating layer is coated with a mixture of bisphenol A epoxy resin and diethylenetriamine that has been mixed, and dried at 120 ° C to form A second coating with a thickness of 1.0 ⁇ m and a surface tension of 47 dyn/cm; the PET film formed with the first coating and the second coating is placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, and the vacuum chamber is sealed The air pressure in the vacuum chamber was evacuated to 10 -3 Pa, and then the temperature of the crucible boat was adjusted to 1200° C. and aluminum plating was started on the surface of the second coating layer until the thickness of the aluminum layer reached 1.0 ⁇ m, thereby preparing a composite current collector.
  • a PET film with a thickness of 12 ⁇ m and a surface tension of 52 dyn/cm was subjected to corona treatment, and the ⁇ -cyanoacrylate solution was coated on the surface of the corona-treated PET film, and dried at 100 °C to form a thickness of 1.0
  • a first coating layer with ⁇ m and a surface tension of 35 dyn/cm was coated with a mixture of end-capped polyurethane and glycerol, and dried at 100°C to form a thickness of 1.0 ⁇ m
  • the second coating layer with surface tension of 40dyn/cm the PET film formed with the first coating layer and the second coating layer is placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, the vacuum chamber is sealed and the vacuum chamber is The air pressure was pumped to 10 -3 Pa, and then the temperature of the crucible boat was adjusted to 1200 °C, and aluminum plating was started on the surface of the second coating layer until
  • the PET film with a thickness of 12 ⁇ m and a surface tension of 52 dyn/cm was subjected to corona treatment, and the ethylene-acrylic acid copolymer solution was coated on the surface of the corona-treated PET film, and dried at 100 ° C to form a thickness of 1.0 ⁇ m.
  • the surface of the first coating is coated with a mixture of end-capped polyurethane and glycerol that has been mixed, and dried at 100 ° C to form a thickness of 1.0 ⁇ m and
  • the second coating layer with a surface tension of 40 dyn/cm; the PET film formed with the first coating layer and the second coating layer is placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, and the vacuum chamber is sealed and the vacuum chamber is sealed.
  • the air pressure was evacuated to 10 -3 Pa, and then the temperature of the crucible boat was adjusted to 1200° C. and aluminum plating was started on the surface of the second coating layer until the thickness of the aluminum layer reached 1.0 ⁇ m, thereby preparing a composite current collector.
  • the PET film with a thickness of 12 ⁇ m and a surface tension of 52 dyn/cm was subjected to corona treatment, and the mixed mixture of bisphenol A epoxy resin and diethylenetriamine was coated on the corona treated PET film. surface, and dried at 120 °C to form a first coating with a thickness of 0.5 ⁇ m and a surface tension of 47 dyn/cm; then the surface of the first coating was coated with an oil-based polyacrylic resin solution and dried at 100 °C to form a thickness
  • the second coating layer is 0.5 ⁇ m and the surface tension is 38 dyn/cm; the PET film formed with the first coating layer and the second coating layer is placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, and the vacuum chamber is sealed and sealed.
  • the air pressure in the vacuum chamber was evacuated to 10 -3 Pa, and then the temperature of the crucible boat was adjusted to 1200° C. and aluminum plating was started on the surface of the second coating layer until the thickness of the aluminum layer reached 1.0 ⁇ m, thereby preparing a composite current collector.
  • the PET film with a thickness of 12 ⁇ m and a surface tension of 52 dyn/cm is subjected to corona treatment, and the mixed mixture of toluene diisocyanate and diethylenetriamine is coated on the surface of the corona treated PET film, and Drying at 120 °C to form a first coating with a thickness of 1.0 ⁇ m and a surface tension of 47 dyn/cm; then coating the surface of the first coating with phenyl silicone resin solution, and drying at 100 °C to form a thickness of 1.0 ⁇ m And the second coating layer with surface tension of 31dyn/cm; the PET film formed with the first coating layer and the second coating layer is placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, the vacuum chamber is sealed and the vacuum chamber is The air pressure was pumped to 10 -3 Pa, and then the temperature of the crucible boat was adjusted to 1200 °C, and aluminum plating was started on the surface of the second coating layer until
  • the PET film with a thickness of 12 ⁇ m and a surface tension of 52 dyn/cm was subjected to corona treatment, and the mixed mixture of hexamethylene diisocyanate and diethylene triamine was coated on the corona treated PET film.
  • first coating with a thickness of 1.0 ⁇ m and a surface tension of 47 dyn/cm; then the surface of the first coating was coated with ⁇ -cyanoacrylate solution and dried at 100 °C
  • a second coating layer with a thickness of 1.0 ⁇ m and a surface tension of 35 dyn/cm was formed; the PET film formed with the first coating layer and the second coating layer was placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, and the vacuum chamber was placed in the vacuum chamber.
  • the air pressure of the vacuum chamber was sealed and evacuated to 10 -3 Pa, and then the temperature of the crucible boat was adjusted to 1200 °C and aluminum plating was started on the surface of the second coating layer until the thickness of the aluminum layer reached 1.0 ⁇ m to prepare a composite current collector.
  • the PET film with a thickness of 12 ⁇ m and a surface tension of 52 dyn/cm was subjected to corona treatment, and the mixed mixture of bisphenol A epoxy resin and diethylenetriamine was coated on the corona treated PET film. surface, and dried at 120 °C to form a first coating with a thickness of 0.5 ⁇ m and a surface tension of 47 dyn/cm; then the surface of the first coating was coated with a thermoplastic phenolic resin solution and dried at 100 °C to form a thickness of
  • the PET film with a thickness of 12 ⁇ m and a surface tension of 52 dyn/cm was subjected to corona treatment, and the mixed mixture of bisphenol A epoxy resin and diethylenetriamine was coated on the corona treated PET film. surface, and dried at 120 °C to form a first coating with a thickness of 0.5 ⁇ m and a surface tension of 47 dyn/cm; then the surface of the first coating was coated with methyl silicone resin solution, and dried at 100 °C to form a thickness
  • the second coating layer is 0.5 ⁇ m and the surface tension is 30 dyn/cm; the PET film formed with the first coating layer and the second coating layer is placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, and the vacuum chamber is sealed and sealed.
  • the air pressure in the vacuum chamber was evacuated to 10 -3 Pa, and then the temperature of the crucible boat was adjusted to 1200° C. and aluminum plating was started on the surface of the second coating layer until the thickness of the aluminum layer reached 1.0 ⁇ m, thereby preparing a composite current collector.
  • the corona-treated PET film with a thickness of 12 ⁇ m and a surface tension of 52 dyn/cm was placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, the vacuum chamber was sealed and the air pressure of the vacuum chamber was pumped to 10 -3 Pa, Then, the temperature of the crucible boat was adjusted to 1200° C., and aluminum plating was started on the surface of the PET film until the thickness of the aluminum layer reached 1.0 ⁇ m, thereby preparing a composite current collector.
  • the corona-treated PET film with a thickness of 6 ⁇ m and a surface tension of 52 dyn/cm was placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, the vacuum chamber was sealed and the air pressure of the vacuum chamber was pumped to 10 -3 Pa, Then, the temperature of the crucible boat was adjusted to 1600° C. and then copper plating was started on the surface of the PET film until the thickness of the copper layer reached 1.0 ⁇ m, thereby preparing a composite current collector.
  • Adhesion tests were performed on the composite current collectors prepared in Examples 1-10 and Comparative Examples 1-2, and the test results are recorded in Table 1 below.
  • a ternary active material layer and a graphite active material layer were coated on the aluminum layer of the above examples and comparative examples, and the copper layer was coated with a graphite active material layer and rolled and placed in the electrolyte.
  • the metal layers aluminum layer or copper layer
  • the polymer film layer PET film or PEN film
  • the EAA hot-melt adhesive with a thickness of about 80 ⁇ m and the PET film with a thickness of 12 ⁇ m are hot-pressed by a LCP200-A2008N type hot press.
  • the hot-pressing conditions are: temperature 85 °C, pressure 0.7MPa, time 30s.
  • the hot-pressing conditions are: temperature 85 °C, Pressure 0.7MPa, time 45s.
  • Example 1-10 The corresponding materials and preparation conditions in Examples 1-10 were used to prepare the first samples composed of the polymer film layer and the first coating layer, respectively, and the first samples corresponding to Examples 1-10 were bonded
  • the force test is used to obtain the adhesion between the first coating and the polymer film layer, and the specific steps are as follows:
  • the 12 ⁇ m polymer film layer is subjected to corona treatment, and the corresponding mixture for forming the first coating layer is coated on the surface of the corona treated polymer film layer, and dried at a certain temperature
  • a first coating layer was formed with a thickness of 1 ⁇ m.
  • the EAA hot melt adhesive with a thickness of about 80 ⁇ m and the PET film with a thickness of 12 ⁇ m are hot-pressed by a LCP200-A2008N hot-pressing machine.
  • the hot-pressing conditions are: temperature 85°C, pressure 0.7MPa, time 30s.
  • Examples 1-10 The corresponding materials and preparation conditions in Examples 1-10 were used to prepare a second sample composed of a polymer film layer, a first coating layer and a second coating layer, respectively, and the second samples corresponding to Examples 1-10 were prepared accordingly. Carry out the adhesion test to obtain the adhesion between the first coating and the second coating, and the specific steps are as follows:
  • a 12 ⁇ m polymer film layer is subjected to corona treatment, the corresponding mixture for forming the first coating layer is coated on the surface of the corona treated polymer film layer, and dried to form a thickness of 1 ⁇ m Then, the surface of the first coating layer is coated with a resin solution for forming a second coating layer, and dried to form a second coating layer with a thickness of 1 ⁇ m.
  • step 5 Stick the double-sided tape on a steel plate with a length of 125 ⁇ 1mm, a width of 50 ⁇ 1mm, and a thickness of 1.5-2mm, and peel off the release paper.
  • the polymer film layer in the composite sample prepared in step 4) is Attached to the double-sided tape. Use a utility knife and a ruler to cut the test sample to a size of 80mm in length and 15mm in width to be tested.
  • Example 1-16 have significantly increased adhesion between the metal layer and the polymer film layer.
  • the separation phenomenon between the metal layer and the polymer film layer in Examples 1-16 was significantly improved or even not separated.
  • Example 1-16 shows that the adhesion between the first coating and the second coating is greater than that between the first coating and the polymer film layer and is greater than that between the second coating and the second coating.
  • the adhesion between the coating and the metal layer is beneficial to the firmness of the adhesion between the metal layer and the polymer film layer.
  • Examples 1-10 and 16 show that when the adhesive force between the first coating and the polymer film layer or the adhesive force between the second coating and the metal layer is too large, If the coating swells too much in the electrolyte, the probability of separation between the polymer film layer and the metal layer increases, which is not conducive to the firmness of the bonding between the metal layer and the polymer film layer.
  • the adhesive force between the first coating layer 15 and the second coating layer 17 is greater than the adhesive force between the second coating layer 17 and the metal layer 13 , and is greater than that of the first coating layer 15
  • the adhesive force between the metal layer 13 and the polymer film layer 11 can effectively improve the adhesion force between the metal layer 13 and the polymer film layer 11, which is beneficial to prevent the metal layer 13 from peeling off or falling off from the polymer film layer 11.
  • the service life of the composite current collector 10 and the battery 20 and the electronic device 30 using the composite current collector 10 are prolonged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

一种复合集流体,包括聚合物膜层和设置在聚合物膜层至少一个表面上的金属层。聚合物膜层与金属层之间设置有第一涂层,第一涂层和金属层之间设置有第二涂层。第一涂层与第二涂层之间的粘结力大于第二涂层与金属层之间的粘结力,且大于第一涂层与聚合物膜层之间的粘结力,从而有效地提高金属层与聚合物膜层之间的粘结力。本申请还提供一种应用上述复合集流体的电池以及一种应用上述电池的电子装置。

Description

复合集流体、应用所述复合集流体的电池和电子装置 技术领域
本申请涉及一种集流体,尤其涉及一种复合集流体、一种应用所述复合集流体的电池以及一种应用所述电池的电子装置。
背景技术
集流体贯穿了锂离子电池全部的加工过程以及服务于锂离子电池的整个生命周期,是电池活性材料的载体并为电子传输提供通道,是锂离子电池中重要组成部分,与电芯的能量密度密切相关,可以通过降低集流体厚度的方式提高电芯的能量密度。然而由于金属材料的特性(如断裂延伸率低),当集流体厚度降低至一定水平后,集流体易发生断裂,破损等不良现象,造成原材料浪费、产能降低等问题。
在低密度的聚合物薄膜表面通过金属的物理气相沉积得到的金属聚合物薄膜可以有效降低锂离子电池集流体的密度,提升锂离子电池的重量能量密度。然而通过气相沉积获得的复合集流体的表层金属与聚合物薄膜之间的附着力低。
发明内容
鉴于上述情况,有必要提供一种解决上述技术问题的复合集流体。
本申请提供了一种复合集流体,包括聚合物膜层和设置在聚合物膜层至少一个表面上的金属层。聚合物膜层与金属层之间设置有第一涂层,第一涂层和金属层之间设置有第二涂层。第一涂层与第二涂层之间的粘结力大于第二涂层与金属层之间的粘结力,且大于第一涂层与聚合物膜层之间的粘结力。
作为本申请的一种实施方式,第一涂层与聚合物膜层之间的粘结力A的 范围为:3.0N/15mm≤A≤7.5N/15mm,第二涂层与金属层之间的粘结力B的范围为:3.0N/15mm≤B≤7.5N/15mm。
作为本申请的一种实施方式,第一涂层的表面张力小于聚合物膜层的表面张力,第二涂层的表面张力小于第一涂层的表面张力。
作为本申请的一种实施方式,第一涂层的材质包括聚氨酯、环氧树脂、异氰酸酯或不饱和聚酯中的至少一种。
作为本申请的一种实施方式,第二涂层的材质包括乙烯-丙烯酸共聚物、有机硅树脂、马来酸酐接枝聚烯烃树脂、聚丙烯酸树脂、α-氰基丙烯酸酯或酚醛树脂中的至少一种。
作为本申请的一种实施方式,第一涂层的厚度为0.2μm至2μm。
作为本申请的一种实施方式,第二涂层的厚度为0.2μm至2μm。
作为本申请的一种实施方式,聚合物膜层的材质包括聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚对萘二甲酸乙二醇酯、聚对苯二甲酰对苯二胺、聚酰亚胺、聚碳酸酯、聚醚醚酮、聚甲醛、聚对苯硫醚、聚对苯醚、聚氯乙烯、聚酰胺或聚四氟乙烯中的至少一种。
作为本申请的一种实施方式,聚合物膜层的厚度为2μm至36μm。
作为本申请的一种实施方式,金属层的材质包括铝、铜、镍、铁、钛、银、金、钴、铬、钼或钨中的至少一种。
作为本申请的一种实施方式,金属层的厚度为100nm至5000nm。
本申请还提供一种电池,包括第一极片、第二极片以及设置于第一极片和第二极片之间的隔离膜。第一极片和/或第二极片包括上述复合集流体和设置于复合集流体表面的活性物质层。
本申请还提供一种电子装置,其包括上述电池。
本申请中的复合集流体,第一涂层与第二涂层之间的粘结力大于第二涂层与金属层之间的粘结力,且大于第一涂层与聚合物膜层之间的粘结力,从而能够有效地提高金属层与聚合物膜层之间的粘结力,避免金属层从聚合物 膜层剥离或脱落,从而延长复合集流体以及应用上述复合集流体的电池以及电子装置的使用寿命。
附图说明
图1为本申请一实施方式的复合集流体的结构示意图。
图2为本申请一实施方式的复合集流体的结构示意图。
图3为本申请一实施方式的电池的结构示意图。
图4为本申请一实施方式的电子装置的结构示意图。
主要元件符号说明
复合集流体 10
聚合物膜层 11
第一表面 111
第二表面 113
金属层 13
第一涂层 15
第二涂层 17
电池 20
电子装置 30
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了 描述具体的实施例的目的,不是旨在于限制本申请。
下面对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例/实施方式及实施例/实施方式中的特征可以相互组合。
请参阅图1和图2,本申请实施方式提供一种复合集流体10。复合集流体10包括聚合物膜层11和设置于聚合物膜层11至少一个表面上的金属层13。复合集流体10还包括第一涂层15和第二涂层17,其中,第一涂层15设置于聚合物膜层11与金属层13之间,第二涂层17设置于第一涂层15与金属层13之间。
第一涂层15与第二涂层17之间的粘结力大于第一涂层15与聚合物膜层11之间的粘结力,且同时大于第二涂层17与金属层13之间的粘结力,能有效地提高金属层13与聚合物膜层11之间的粘结力,避免金属层13从聚合物膜层11剥离或脱落。
第一涂层15与聚合物膜层11之间的粘结力A的范围为:3.0N/15mm≤A≤7.5N/15mm,有利于保证第一涂层15与聚合物膜层11之间的粘结强度,使得第一涂层15不易从聚合物膜层11上脱落。第二涂层17与金属层13之间的粘结力B的范围为:3.0N/15mm≤B≤7.5N/15mm,有利于保证第二涂层17与金属层13之间的粘结强度,使得第二涂层17不易从金属层13上脱落。
聚合物膜层11的材质可包括但不仅限于聚乙烯(PE)、聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对萘二甲酸乙二醇酯(PEN)、聚对苯二甲酰对苯二胺(PPTA)、聚酰亚胺(PI)、聚碳酸酯(PC)、聚醚醚酮(PEEK)、聚甲醛(POM)、聚对苯硫醚(PPS)、聚对苯醚(PPO)、聚氯乙烯(PVC)、聚酰胺(PA)或聚四氟乙烯(PTFE)中的至少一种。
在一些实施方式中,聚合物膜层11的厚度可为2μm至36μm,有利于在保证延展性和机械强度的前提下减小复合集流体10的厚度,进而有利于提升电池的能量密度。
金属层13的材质可包括但不仅限于铝、铜、镍、铁、钛、银、金、钴、铬、钼或钨中的至少一种。
在一些实施方式中,金属层13的厚度可为为100nm至5000nm,有利于在保证机械强度和承载能力的前提下减小复合集流体10的厚度,进而有利于提升电池的能量密度。
金属层13可通过但不仅限于物理气相沉积、机械压合、化学镀或凹版法制得。其中,物理气相沉积方法可为磁控溅射法、坩埚舟蒸发镀膜法或电子束蒸发镀膜法。
第一涂层15的材质可包括但不仅限于聚氨酯、环氧树脂、异氰酸酯或不饱和聚酯中的至少一种。
聚氨酯可包括但不仅限于多异氰酸酯型聚氨酯、预聚体类聚氨酯或封端型聚氨酯中的至少一种。其中,聚氨酯中氨酯键以及脲键可与电晕后的聚合物膜层11中的酯基、羟基或羧基发生反应形成氢键,从而进一步地增强第一涂层15与聚合物膜层11之间的粘结力。
环氧树脂可包括但不仅限于双酚A型环氧树脂、双酚F型环氧树脂、多酚型缩水甘油醚环氧树脂、脂肪族缩水甘油醚环氧树脂或缩水甘油胺型环氧树脂中的至少一种。其中,电晕后的聚合物膜层11中的羟基可使环氧树脂中的环氧基开环并键合,环氧树脂中未反应掉的羟基可与电晕后的聚合物膜层11中的羟基、酯基或羧基形成氢键,从而进一步地增强第一涂层15与聚合物膜层11之间的粘结力。
异氰酸酯可包括但不仅限于甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、六亚甲基二异氰酸酯(HDI)、异氟尔酮二异氰酸酯(IPDI)、苯二亚甲基二异氰酸酯(XDI)或四甲基间苯二亚甲基二异氰酸酯(TMXDI)中的至少一种。其中,异氰酸酯中的-NCO可与电晕后的聚合物膜层11中的羟基发生反应形成氨酯键及脲键,从而进一步地增强第一涂层15与聚合物膜层11之间的粘结力。
不饱和聚酯包括但不仅限于邻苯型不饱和聚酯、间苯型不饱和聚酯、二甲苯型不饱和聚酯、卤代不饱和聚酯或乙烯基不饱和聚酯中的至少一种。其中,上述不饱和聚酯的极性与聚合物膜层11的极性相似,因此有利于两者之间的粘结。同时,不饱和聚酯中的酯基可与电晕后的聚合物膜层11中的羟基、酯基或羧基形成氢键,从而进一步地增强第一涂层15与聚合物膜层11之间的粘结力。
在一些实施方式中,第一涂层15的厚度可为0.2μm至2μm,有利于在保证与聚合物膜层11以及第二涂层17的粘结强度的前提下减小复合集流体10的厚度,进而有利于提升电池的能量密度。
第二涂层17的材质可包括但不仅限于乙烯-丙烯酸共聚物、有机硅树脂、马来酸酐接枝聚烯烃树脂、聚丙烯酸树脂、α-氰基丙烯酸酯或酚醛树脂中的至少一种。其中,乙烯-丙烯酸共聚物和聚丙烯酸树脂中表面的羧基可与金属层13中的金属之间形成类离子键,从而提高第二涂层17与金属层13之间的粘结力。马来酸酐接枝聚烯烃树脂中酸酐易通过水解或与羟基等基团反应转化为羧基以进一步地与金属层13中的金属之间形成离子键,从而提高第二涂层17与金属层13之间的粘结力。有机硅树脂中的硅氧键可与金属层13中的金属形成硅-氧-金属键(例如硅-氧-铝键),从而提高第二涂层17与金属层13之间的粘结力。α-氰基丙烯酸酯中氰基为强吸电子基团,易于从金属层13中的金属原子中获得电子形成较强的相互作用力,从而提高第二涂层17与金属层13之间的粘结力。酚醛树脂的极性较强,同时酚羟基具有一定的吸电子能力,进而可与金属层13形成较强的粘结作用。
在一些实施方式中,第二涂层17的厚度可为0.2μm至2μm,有利于在保证与金属层13以及第二涂层17的粘结强度的前提下减小复合集流体10的厚度,进而有利于提升电池的能量密度。
优选的,第一涂层15的表面张力小于聚合物膜层11的表面张力,从而在涂覆形成第一涂层15时有利于第一涂层15在聚合物膜层11的表面铺展 开。第二涂层17的表面张力小于第一涂层15的表面张力,从而在涂覆形成第二涂层17时有利于第二涂层17在第一涂层15的表面铺展开。
聚合物膜层11包括相背设置的第一表面111和第二表面113。在一些实施方式中,如图1所示,第一涂层15仅设置于聚合物膜层11的第一表面111。在另一些实施方式中,如图2所示,聚合物膜层11的第一表面111和第二表面113上分别设置第一涂层15。每一第一涂层15背离聚合物膜层11的一侧设置第二涂层17,每一第二涂层17背离第一涂层的一侧设置金属层13。
上述复合集流体10可作为正极集流体或者负极集流体应用于正极极片或者负极极片中,从而在降低电极组件的厚度提升电池的能量密度的同时,降低金属层13从聚合物膜层11脱落或剥离的风险,从而延长电池的使用寿命。
请参阅图3,将上述复合集流体10应用于电池20中。电池20包括第一极片(图未示)、第二极片(图未示)和设置于第一极片和第二极片之间的隔离膜(图未示)。第一极片和/或第二极片包括上述复合集流体10以及设置于复合集流体10表面的活性物质层。电池20进一步地应用于电子装置30(如图4)中,电子装置30可为但不仅限于电动玩具、电动车辆、手机、可穿戴设备、平板、电脑、无人机、储能装置等。
下面通过对比例和实施例对本申请进行具体说明。可以理解的,本申请中各参数不仅限于对比例及实施例中记载的内容,具体可根据实际需要进行选择。
实施例1
将厚度为2μm且表面张力为52dyn/cm的PET膜进行电晕处理,将已混合好的双酚A环氧树脂和二亚乙基三胺的混合物涂覆于电晕处理后的PET膜的表面,并在120℃下干燥形成厚度为0.2μm且表面张力为47dyn/cm的第一涂层;随后在第一涂层的表面涂覆乙烯-丙烯酸共聚物溶液,并在100℃下干燥形成厚度为0.2μm且表面张力为33dyn/cm的第二涂层;将形成有第 一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到0.1μm,从而制得复合集流体。
实施例2
将厚度为12μm且表面张力为52dyn/cm的PET膜进行电晕处理,将已混合好的双酚A环氧树脂和二亚乙基三胺的混合物涂覆于电晕处理后的PET膜的表面,并在120℃下干燥形成厚度为1.0μm且表面张力为47dyn/cm的第一涂层;随后在第一涂层的表面涂覆乙烯-丙烯酸共聚物溶液,并在100℃下干燥形成厚度为1.0μm且表面张力为33dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到1.0μm,从而制得复合集流体。
实施例3
将厚度为36μm且表面张力为52dyn/cm的PET膜进行电晕处理,将已混合好的双酚A环氧树脂和二亚乙基三胺的混合物涂覆于电晕处理后的PET膜的表面,并在120℃下干燥形成厚度为2.0μm且表面张力为47dyn/cm的第一涂层;随后在第一涂层的表面涂覆乙烯-丙烯酸共聚物溶液,并在100℃下干燥形成厚度为2.0μm且表面张力为33dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到5.0μm,从而制得复合集流体。
实施例4
将厚度为12μm且表面张力为52dyn/cm的PET膜进行电晕处理,将已混合好的双酚A环氧树脂和二亚乙基三胺的混合物涂覆于电晕处理后的 PET膜的表面,并在120℃下干燥形成厚度为1.0μm且表面张力为47dyn/cm的第一涂层;随后在第一涂层的表面涂覆乙烯-丙烯酸共聚物溶液,并在100℃下干燥形成厚度为1.0μm且表面张力为33dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到1.0μm,从而制得复合集流体。
实施例5
将厚度为12μm且表面张力为50dyn/cm的PEN膜进行电晕处理,将已混合好的双酚A环氧树脂和二亚乙基三胺的混合物涂覆于电晕处理后的PEN膜的表面,并在120℃下干燥形成厚度为1.0μm且表面张力为47dyn/cm的第一涂层;随后在第一涂层的表面涂覆乙烯-丙烯酸共聚物溶液,并在100℃下干燥形成厚度为1.0μm且表面张力为33dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PEN膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到1.0μm,从而制得复合集流体。
实施例6
将厚度为12μm且表面张力为50dyn/cm的PEN膜进行电晕处理,将已混合好的封端型聚氨酯和丙三醇的混合物涂覆于电晕处理后的PEN膜的表面,并在100℃下干燥形成厚度为1.0μm且表面张力为40dyn/cm的第一涂层;随后在第一涂层的表面涂覆马来酸酐接枝聚烯烃树脂溶液,并在90℃下干燥形成厚度为1.0μm且表面张力为35dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PEN膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到1.0μm,从而制得复合集流体。
实施例7
将厚度为12μm且表面张力为50dyn/cm的PEN膜进行电晕处理,将已混合好的封端型聚氨酯和丙三醇的混合物涂覆于电晕处理后的PEN膜的表面,并在100℃下干燥形成厚度为1.0μm且表面张力为40dyn/cm的第一涂层;随后在第一涂层的表面涂覆马来酸酐接枝聚烯烃树脂溶液,并在90℃下干燥形成厚度为1.0μm且表面张力为35dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PEN膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到0.5μm,从而制得复合集流体。
实施例8
将厚度为4.5μm且表面张力为52dyn/cm的PET膜进行电晕处理,将已混合好的双酚A环氧树脂和二亚乙基三胺的混合物涂覆于电晕处理后的PET膜的表面,并在120℃下干燥形成厚度为0.5μm且表面张力为47dyn/cm的第一涂层;随后在第一涂层的表面涂覆乙烯-丙烯酸共聚物溶液,并在100℃下干燥形成厚度为0.5μm且表面张力为33dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1600℃后开始在第二涂层的表面镀铜直至铜层的厚度达到0.5μm,从而制得复合集流体。
实施例9
将厚度为6.0μm且表面张力为52dyn/cm的PET膜进行电晕处理,将已混合好的双酚A环氧树脂和二亚乙基三胺的混合物涂覆于电晕处理后的PET膜的表面,并在120℃下干燥形成厚度为0.5μm且表面张力为47dyn/cm的第一涂层;随后在第一涂层的表面涂覆乙烯-丙烯酸共聚物溶液,并在100℃下干燥形成厚度为0.5μm且表面张力为33dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将 真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1600℃后开始在第二涂层的表面镀铜直至铜层的厚度达到1.0μm,从而制得复合集流体。
实施例10
将厚度为12μm且表面张力为52dyn/cm的PET膜进行电晕处理,将已混合好的封端型聚氨酯和丙三醇的混合物涂覆于电晕处理后的PET膜的表面,并在100℃下干燥形成厚度为1.0μm且表面张力为40dyn/cm的第一涂层;随后在第一涂层的表面涂覆马来酸酐接枝聚烯烃树脂溶液,并在90℃下干燥形成厚度为1.0μm且表面张力为35dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1600℃后开始在第二涂层的表面镀铜直至铜层的厚度达到2.0μm,从而制得复合集流体。
实施例11
将厚度为12μm且表面张力为52dyn/cm的PET膜进行电晕处理,将乙烯-丙烯酸共聚物溶液涂覆于电晕处理后的PET膜的表面,并在100℃下干燥形成厚度为1.0μm且表面张力为33dyn/cm的第一涂层;随后在第一涂层的表面涂覆已混合好的双酚A环氧树脂和二亚乙基三胺的混合物,并在120℃下干燥形成厚度为1.0μm且表面张力为47dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到1.0μm,从而制得复合集流体。
实施例12
将厚度为12μm且表面张力为52dyn/cm的PET膜进行电晕处理,将α-氰基丙烯酸酯溶液涂覆于电晕处理后的PET膜的表面,并在100℃下干燥形成厚度为1.0μm且表面张力为35dyn/cm的第一涂层;随后在第一涂层的 表面涂覆已混合好的封端型聚氨酯和丙三醇的混合物,并在100℃下干燥形成厚度为1.0μm且表面张力为40dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到1.0μm,从而制得复合集流体。
实施例13
将厚度为12μm且表面张力为52dyn/cm的PET膜进行电晕处理,将乙烯-丙烯酸共聚物溶液涂覆于电晕处理后的PET膜的表面,并在100℃下干燥形成厚度为1.0μm且表面张力为33dyn/cm的第一涂层;随后在第一涂层的表面涂覆已混合好的封端型聚氨酯和丙三醇的混合物,并在100℃下干燥形成厚度为1.0μm且表面张力为40dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到1.0μm,从而制得复合集流体。
实施例14
将厚度为12μm且表面张力为52dyn/cm的PET膜进行电晕处理,将已混合好的双酚A环氧树脂和二亚乙基三胺的混合物涂覆于电晕处理后的PET膜的表面,并在120℃下干燥形成厚度为0.5μm且表面张力为47dyn/cm的第一涂层;随后在第一涂层的表面涂覆油性聚丙烯酸树脂溶液,并在100℃下干燥形成厚度为0.5μm且表面张力为38dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到1.0μm,从而制得复合集流体。
实施例15
将厚度为12μm且表面张力为52dyn/cm的PET膜进行电晕处理,将已混合好的甲苯二异氰酸酯和二亚乙基三胺的混合物涂覆于电晕处理后的 PET膜的表面,并在120℃下干燥形成厚度为1.0μm且表面张力为47dyn/cm的第一涂层;随后在第一涂层的表面涂覆苯基硅树脂溶液,并在100℃下干燥形成厚度为1.0μm且表面张力为31dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到1.0μm,从而制得复合集流体。
实施例16
将厚度为12μm且表面张力为52dyn/cm的PET膜进行电晕处理,将已混合好的六亚甲基二异氰酸酯和二亚乙基三胺的混合物涂覆于电晕处理后的PET膜的表面,并在120℃下干燥形成厚度为1.0μm且表面张力为47dyn/cm的第一涂层;随后在第一涂层的表面涂覆α-氰基丙烯酸酯溶液,并在100℃下干燥形成厚度为1.0μm且表面张力为35dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到1.0μm,从而制得复合集流体。
对比例1
将厚度为12μm且表面张力为52dyn/cm的PET膜进行电晕处理,将已混合好的双酚A环氧树脂和二亚乙基三胺的混合物涂覆于电晕处理后的PET膜的表面,并在120℃下干燥形成厚度为0.5μm且表面张力为47dyn/cm的第一涂层;随后在第一涂层的表面涂覆热塑性酚醛树脂溶液,并在100℃下干燥形成厚度为0.5μm且表面张力为40dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到1.0μm,从而制得复合集流体。
对比例2
将厚度为12μm且表面张力为52dyn/cm的PET膜进行电晕处理,将已混合好的双酚A环氧树脂和二亚乙基三胺的混合物涂覆于电晕处理后的PET膜的表面,并在120℃下干燥形成厚度为0.5μm且表面张力为47dyn/cm的第一涂层;随后在第一涂层的表面涂覆甲基硅树脂溶液,并在100℃下干燥形成厚度为0.5μm且表面张力为30dyn/cm的第二涂层;将形成有第一涂层和第二涂层的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在第二涂层的表面镀铝直至铝层的厚度达到1.0μm,从而制得复合集流体。
对比例3
将电晕处理后的厚度为12μm且表面张力为52dyn/cm的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1200℃后开始在PET膜的表面镀铝直至铝层的厚度达到1.0μm,从而制得复合集流体。
对比例4
将电晕处理后的厚度为6μm且表面张力为52dyn/cm的PET膜置于坩埚舟式真空蒸发镀铝机的真空室,将真空室密封并将真空室的气压抽至10 -3Pa,而后将坩埚舟温度调节至1600℃后开始在PET膜的表面镀铜直至铜层的厚度达到1.0μm,从而制得复合集流体。
对实施例1-10以及对比例1-2所制得的复合集流体进行粘结力测试,测试结果记录于下表1中。在上述实施例和对比例的铝层上涂覆三元活性材料层且铜层上涂覆石墨活性材料层并分别辊压且置于电解液中,观察实施例和对比例中金属层(铝层或铜层)与聚合物膜层(PET膜或PEN膜)之间的分离现象,其中,每个实施例或对比例测试15个样品,观察结果记录于下表1中。
金属层与第二涂层之间的粘结力测试的具体方法如下:
1、将厚度约80μm的EAA热熔胶与12μm的PET薄膜经LCP200-A2008N 型热压机热压,热压条件为:温度85℃,压力0.7MPa,时间30s。
2、将集流体裁切为2cm×10cm规格的样条,并使用无水乙醇润湿的无尘纸擦拭干净。
3、将经过热压复合的EAA表层的离型纸剥掉,并将粘接面与裁切好的集流体正对放置,且使用热压机热压,热压条件为:温度85℃,压力0.7MPa,时间45s。
4、将双面胶贴在长度为125±1mm、宽度为50±1mm、厚度为1.5-2mm的钢板上并剥掉离型纸,将步骤3制备好的复合样品中的集流体侧贴在双面胶上。使用美工刀及直尺将测试样裁切成长为80mm、宽为15mm规格的待测样。
5、开启INSTRON 3365型电子万能试验机,选择180°剥离测试项准备测试:将样品自由端对折180°,并从实验板上剥开粘合面约25mm,把样品自由端和实验板分别夹在上、下夹持器上且传感器恰好不受力,夹持时剥离面与拉力机力线保持一致。
6、按控制面板上试验键开始测试,测试行程完成后,拉力试验机上夹头将回位,在上夹头回位到位时,将试验板从下夹头上取出。每次测试至少取三个数据,以均值表示样品的粘结力。
采用实施例1-10中的相应的材料及制备条件分别对应制备由聚合物膜层和第一涂层构成的第一样品,并对实施例1-10对应的第一样品进行粘结力测试以获取第一涂层与聚合物膜层之间的粘结力,其具体步骤如下:
①第一样品制备:将12μm的聚合物膜层进行电晕处理,将相应的形成第一涂层的混合物涂覆于电晕处理后的聚合物膜层的表面,并在一定温度下干燥形成厚度为1μm的第一涂层。
②将厚度约80μm的EAA热熔胶与12μm的PET薄膜经LCP200-A2008N型热压机热压,热压条件为:温度85℃,压力0.7MPa,时间30s。
③将上述第一样品裁切为2cm×10cm规格的样条,并使用无水乙醇润湿的无尘纸擦拭干净。
④将经过热压复合的EAA表层的离型纸剥掉,并将粘接面与裁切好的第一样品正对放置,且使用热压机热压,热压条件为:温度85℃,压力0.7MPa,时间45s,制得复合样品,其中,所述粘接面粘接第一涂层。
⑤将双面胶贴在长度为125±1mm、宽度为50±1mm、厚度为1.5-2mm的钢板上并剥掉离型纸,将步骤④制备好的复合样品中的聚合物膜层侧贴在双面胶上。使用美工刀及直尺将测试样裁切成长为80mm、宽为15mm规格的待测样。
⑥开启INSTRON 3365型电子万能试验机,选择180°剥离测试项准备测试:将待测样自由端对折180°,并从实验板上剥开粘合面约25mm,把待测样自由端和实验板分别夹在上、下夹持器上且传感器恰好不受力,夹持时剥离面与拉力机力线保持一致。
⑦按控制面板上试验键开始测试,测试行程完成后,拉力试验机上夹头将回位,在上夹头回位到位时,将试验板从下夹头上取出。每次测试至少取三个数据,以均值表示样品的粘结力。
采用实施例1-10中的相应的材料及制备条件分别对应制备由聚合物膜层、第一涂层和第二涂层构成的第二样品,并对实施例1-10对应的第二样品进行粘结力测试以获取第一涂层与第二涂层之间的粘结力,其具体步骤如下:
1)第二样品制备:将12μm的聚合物膜层进行电晕处理,将相应的形成第一涂层的混合物涂覆于电晕处理后的聚合物膜层的表面,并干燥形成厚度为1μm的第一涂层;随后在第一涂层的表面涂覆形成第二涂层的树脂溶液,并干燥形成厚度为1μm的第二涂层。
2)将厚度约80μm的EAA热熔胶与12μm的PET薄膜经 LCP200-A2008N型热压机热压,热压条件为:温度85℃,压力0.7MPa,时间30s。
3)将上述第二样品裁切为2cm×10cm规格的样条,并使用无水乙醇润湿的无尘纸擦拭干净。
4)将经过热压复合的EAA表层的离型纸剥掉,并将粘接面与裁切好的第二样品正对放置,且使用热压机热压,热压条件为:温度85℃,压力0.7MPa,时间45s,制得复合样品,其中,所述粘接面粘接第一涂层。
5)将双面胶贴在长度为125±1mm、宽度为50±1mm、厚度为1.5-2mm的钢板上并剥掉离型纸,将步骤4)制备好的复合样品中的聚合物膜层侧贴在双面胶上。使用美工刀及直尺将测试样裁切成长为80mm、宽为15mm规格的待测样。
6)开启INSTRON 3365型电子万能试验机,选择180°剥离测试项准备测试:将待测样自由端对折180°,并从实验板上剥开粘合面约25mm,把待测样自由端和实验板分别夹在上、下夹持器上且传感器恰好不受力,夹持时剥离面与拉力机力线保持一致。
7)按控制面板上试验键开始测试,测试行程完成后,拉力试验机上夹头将回位,在上夹头回位到位时,将试验板从下夹头上取出。每次测试至少取三个数据,以均值表示样品的粘结力。
表1
Figure PCTCN2021073453-appb-000001
Figure PCTCN2021073453-appb-000002
由上述表1中的数据可知,实施例1-16相较于对比例3-4,金属层与聚合物膜层之间的粘结力明显增大。当复合集流体浸泡于电解液中时,实施例1-16相较于对比例3-4,金属层与聚合物膜层之间的分离现象明显改善甚至不分离。实施例1-16相较于对比例1-2可知,第一涂层与第二涂层之间的粘结力大于第一涂层与聚合物膜层之间的粘结力且大于第二涂层与金属层之间的粘结力时,有利于金属层与聚合物膜层之间粘结的牢固性。实施例1-10以及16相较于实施例14-15可知,第一涂层与聚合物膜层之间的粘结力或者第二涂层与金属层之间的粘结力过大时,涂层在电解液中溶胀过大,是的聚合物膜层与金属层之间的分离概率增加,不利于金属层与聚合物膜层之间粘结的牢固性。
本申请中的复合集流体10,第一涂层15与第二涂层17之间的粘结力大 于第二涂层17与金属层13之间的粘结力,且大于第一涂层15与聚合物膜层11之间的粘结力,从而能够有效地提高金属层13与聚合物膜层11之间的粘结力,有利于避免金属层13从聚合物膜层11剥离或脱落,从而延长复合集流体10以及应用上述复合集流体10的电池20以及电子装置30的使用寿命。
另外,对于本领域的普通技术人员来说,可以根据本申请的技术构思做出其它各种相应的改变与变形,而所有这些改变与变形都应属于本申请的保护范围。

Claims (13)

  1. 一种复合集流体,包括聚合物膜层和设置在所述聚合物膜层至少一个表面上的金属层,其特征在于,
    所述聚合物膜层与所述金属层之间设置有第一涂层,所述第一涂层和所述金属层之间设置有第二涂层,所述第一涂层与所述第二涂层之间的粘结力大于所述第二涂层与所述金属层之间的粘结力,且大于所述第一涂层与所述聚合物膜层之间的粘结力。
  2. 如权利要求1所述的复合集流体,其特征在于,所述第一涂层与所述聚合物膜层之间的粘结力A的范围为:3.0N/15mm≤A≤7.5N/15mm,所述第二涂层与所述金属层之间的粘结力B的范围为:3.0N/15mm≤B≤7.5N/15mm。
  3. 如权利要求1所述的复合集流体,其特征在于,所述第一涂层的表面张力小于所述聚合物膜层的表面张力,所述第二涂层的表面张力小于所述第一涂层的表面张力。
  4. 如权利要求1所述的复合集流体,其特征在于,所述第一涂层的材质包括聚氨酯、环氧树脂、异氰酸酯或不饱和聚酯中的至少一种。
  5. 如权利要求1所述的复合集流体,其特征在于,所述第二涂层的材质包括乙烯-丙烯酸共聚物、有机硅树脂、马来酸酐接枝聚烯烃树脂、聚丙烯酸树脂、α-氰基丙烯酸酯或酚醛树脂中的至少一种。
  6. 如权利要求1所述的复合集流体,其特征在于,所述第一涂层的厚度为0.2μm至2μm。
  7. 如权利要求1所述的复合集流体,其特征在于,所述第二涂层的厚度为0.2μm至2μm。
  8. 如权利要求1所述的复合集流体,其特征在于,所述聚合物膜层的材质包括聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚对萘二甲酸乙二醇酯、聚对苯二甲酰对苯二胺、聚酰亚胺、聚碳酸酯、聚醚醚酮、聚甲醛、聚对苯硫醚、聚对苯醚、聚氯乙烯、聚酰胺或聚四氟乙烯中的至少一种。
  9. 如权利要求1所述的复合集流体,其特征在于,所述聚合物膜层的厚度为2μm至36μm。
  10. 如权利要求1所述的复合集流体,其特征在于,所述金属层的材质 包括铝、铜、镍、铁、钛、银、金、钴、铬、钼或钨中的至少一种。
  11. 如权利要求1所述的复合集流体,其特征在于,所述金属层的厚度为100nm至5000nm。
  12. 一种电池,包括第一极片、第二极片以及设置于所述第一极片和所述第二极片之间的隔离膜,其特征在于,所述第一极片包括如权利要求1至11中任意一项所述的复合集流体和设置于所述复合集流体表面的活性物质层。
  13. 一种电子装置,其特征在于,包括如权利要求12所述的电池。
PCT/CN2021/073453 2021-01-23 2021-01-23 复合集流体、应用所述复合集流体的电池和电子装置 WO2022155938A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/073453 WO2022155938A1 (zh) 2021-01-23 2021-01-23 复合集流体、应用所述复合集流体的电池和电子装置
CN202180003199.1A CN113795954B (zh) 2021-01-23 2021-01-23 复合集流体、应用所述复合集流体的电池和电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073453 WO2022155938A1 (zh) 2021-01-23 2021-01-23 复合集流体、应用所述复合集流体的电池和电子装置

Publications (1)

Publication Number Publication Date
WO2022155938A1 true WO2022155938A1 (zh) 2022-07-28

Family

ID=78877409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073453 WO2022155938A1 (zh) 2021-01-23 2021-01-23 复合集流体、应用所述复合集流体的电池和电子装置

Country Status (2)

Country Link
CN (1) CN113795954B (zh)
WO (1) WO2022155938A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116487601A (zh) * 2023-05-12 2023-07-25 深圳中兴新材技术股份有限公司 纳米金属涂层及应用、复合集流体基膜和复合集流体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479146B (zh) * 2022-02-17 2023-06-27 江阴纳力新材料科技有限公司 聚多酚改性的聚合物膜及其制备方法、金属化聚合物膜
WO2024050696A1 (zh) * 2022-09-06 2024-03-14 扬州纳力新材料科技有限公司 复合膜的制造方法、复合膜及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105703010A (zh) * 2014-11-28 2016-06-22 宁德时代新能源科技股份有限公司 电极片及电化学储能装置
CN107369810A (zh) * 2017-04-14 2017-11-21 深圳鑫智美科技有限公司 一种负极集流体、其制备方法及其应用
JP2018181796A (ja) * 2017-04-21 2018-11-15 トヨタ自動車株式会社 集電積層体
WO2020263014A1 (ko) * 2019-06-28 2020-12-30 주식회사 아모그린텍 박막 포일 및 박막 포일 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669335B1 (ko) * 2005-08-19 2007-01-16 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2019023683A1 (en) * 2017-07-28 2019-01-31 American Lithium Energy Corporation ANTI-CORROSION COATING FOR BATTERY CURRENT COLLECTOR
CN111900413B (zh) * 2020-08-11 2021-09-28 珠海冠宇电池股份有限公司 一种集流体及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105703010A (zh) * 2014-11-28 2016-06-22 宁德时代新能源科技股份有限公司 电极片及电化学储能装置
CN107369810A (zh) * 2017-04-14 2017-11-21 深圳鑫智美科技有限公司 一种负极集流体、其制备方法及其应用
JP2018181796A (ja) * 2017-04-21 2018-11-15 トヨタ自動車株式会社 集電積層体
WO2020263014A1 (ko) * 2019-06-28 2020-12-30 주식회사 아모그린텍 박막 포일 및 박막 포일 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116487601A (zh) * 2023-05-12 2023-07-25 深圳中兴新材技术股份有限公司 纳米金属涂层及应用、复合集流体基膜和复合集流体

Also Published As

Publication number Publication date
CN113795954A (zh) 2021-12-14
CN113795954B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2022155938A1 (zh) 复合集流体、应用所述复合集流体的电池和电子装置
US11233243B2 (en) Release system for electrochemical cells
US11811045B2 (en) Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
KR20180116096A (ko) 부극 집전체, 그의 제조방법 및 그의 응용
WO2021195855A1 (zh) 复合集流体、电极极片、电化学装置及电子装置
CN103173148A (zh) 电池用压敏粘合带、使用所述压敏粘合带的电池和电池的制造方法
WO2023216346A1 (zh) 低溶胀的复合集流体及其制备方法
WO2022141069A1 (zh) 复合集流体及其制备方法以及电化学装置
EP3778818A1 (en) Polyolefin-based adhesive composition
CN110669452B (zh) 一种带基材双面胶带及其应用
CN115149000A (zh) 铝复合集流体及其制备方法和应用
JPH104034A (ja) 集電用導電性フィルム及び製造方法
JP2012064336A (ja) 金属リチウム薄膜を有する多層フィルム
KR102391823B1 (ko) 이차전지용 파우치 필름
KR102030603B1 (ko) 파우치형 리튬이차전지용 접착제 및 이를 이용한 파우치형 리튬이차 전지
JP2004111069A (ja) リチウムイオン電池用外装材
KR102391814B1 (ko) 이차전지용 파우치 필름
CN216749962U (zh) 金属锂负极和二次电池
KR102391815B1 (ko) 이차전지용 파우치 필름
WO2024131980A1 (zh) 复合集流体及其制备方法和其在锂离子电池中的应用
JP2014031438A (ja) 粘着シート及び電気・電子機器類
CN117116598A (zh) 具有磁性的复合薄膜和使用该复合薄膜制备导电极片的制备方法
CN116646530A (zh) 一种复合集流体及其制备方法
WO2024050696A1 (zh) 复合膜的制造方法、复合膜及其应用
CN117638087A (zh) 集流体、集流体的制备方法及电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920336

Country of ref document: EP

Kind code of ref document: A1