WO2022061592A1 - 电机的控制与检测方法及装置、云台以及可移动平台 - Google Patents

电机的控制与检测方法及装置、云台以及可移动平台 Download PDF

Info

Publication number
WO2022061592A1
WO2022061592A1 PCT/CN2020/117161 CN2020117161W WO2022061592A1 WO 2022061592 A1 WO2022061592 A1 WO 2022061592A1 CN 2020117161 W CN2020117161 W CN 2020117161W WO 2022061592 A1 WO2022061592 A1 WO 2022061592A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
pan
tilt
support mechanism
state
Prior art date
Application number
PCT/CN2020/117161
Other languages
English (en)
French (fr)
Inventor
王文杰
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/117161 priority Critical patent/WO2022061592A1/zh
Priority to CN202080035669.8A priority patent/CN113853496A/zh
Publication of WO2022061592A1 publication Critical patent/WO2022061592A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/08Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a vertical axis, e.g. panoramic heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • F16M11/105Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis the horizontal axis being the roll axis, e.g. for creating a landscape-portrait rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand

Definitions

  • the present application relates to the technical field of PTZ, and more particularly to a method for controlling a motor, a method for detecting a state of a motor, a control device for a movable platform, a device for detecting a state of a motor, a computer-readable storage medium, a PTZ, and a movable platform .
  • the gimbal is also called stabilizer or stabilizer, which can be used to carry a load to control the attitude of the load.
  • stabilizer can be used to carry a load to control the attitude of the load.
  • motor heating If the motor heats up seriously, it will affect the service life of the gimbal, affect the user's experience, and even endanger the safety of the user.
  • a method for controlling a motor a method for detecting a motor state, a control device for a movable platform, a device for detecting a motor state, a computer readable storage medium, a cloud table and movable platform.
  • a control method for a motor which is applied to a movable platform, and the movable platform includes a pan/tilt for carrying a load and a support mechanism for supporting the pan/tilt, so
  • the pan/tilt includes a pan/tilt part and the motor, one of the rotor part and the stator part of the motor is connected to the pan/tilt part, and the other one of the rotor part and the stator part of the motor is connected to the support mechanism connected, the motor is used to drive the pan/tilt component and the load to rotate around a preset axis
  • the control method includes: detecting a motion state of the support mechanism; when the motion state indicates that the support mechanism moves along a When the direction is continuously rotated, the motor is controlled to stop rotating.
  • a method for detecting a state of a motor is provided, applied to a pan/tilt head, the pan/tilt head includes a pan/tilt head part and a motor connected to the pan/tilt head part, and the motor is used to drive all
  • the load supported by the pan/tilt rotates around a preset axis
  • the detection method includes: acquiring an output torque value of the motor; determining a real-time temperature value of the motor according to the output torque value; according to the real-time temperature value of the motor Determine the thermal state of the motor.
  • a control device for a movable platform includes a pan/tilt for carrying a load, a support mechanism for supporting the pan/tilt, and the pan/tilt includes The pan/tilt part and the motor, one of the rotor part and the stator part of the motor is connected with the pan/tilt part, the other one of the rotor part and the stator part of the motor is connected with the support mechanism, the motor is connected with the support mechanism.
  • the control device For driving the pan/tilt component and the load to rotate around a preset axis, the control device includes: a memory for storing executable instructions; a processor for executing the executable instructions stored in the memory, to perform the following operations: detecting the motion state of the support mechanism; and controlling the motor to stop rotating when the motion state indicates that the support mechanism rotates continuously in one direction.
  • a device for detecting a state of a motor applied to a pan/tilt head, the pan/tilt head includes a pan/tilt head part and a motor connected to the pan/tilt head part, the motor is used to drive all The load supported by the pan/tilt rotates around a preset axis, and the detection device includes: a memory for storing executable instructions; a processor for executing the executable instructions stored in the memory to perform the following operations: The output torque value of the motor is acquired; the real-time temperature value of the motor is determined according to the output torque value; the heating state of the motor is determined according to the real-time temperature value of the motor.
  • a computer-readable storage medium characterized in that it stores executable instructions that, when executed by one or more processors, can cause the One or more processors execute the above-mentioned control method or the above-mentioned detection method.
  • a movable platform comprising: a pan/tilt for carrying a load, a support mechanism for supporting the pan/tilt, and the above-mentioned control device; the pan/tilt includes a pan/tilt one of the rotor part and the stator part of the motor is connected with the pan/tilt part, and the other one of the rotor part and the stator part of the motor is connected with the supporting mechanism, and the motor is connected with the support mechanism. for driving the pan/tilt component and the load to rotate around a preset axis.
  • a pan/tilt head comprising: a pan/tilt head part, a motor connected to the pan/tilt head part, and the above-mentioned detection device; the motor is used to drive a load supported by the pan/tilt head part Rotate around a preset axis.
  • a movable platform comprising: the pan/tilt provided in the seventh aspect of the present application and a support mechanism for supporting the pan/tilt.
  • the motor is controlled to stop rotating, which can effectively avoid serious motor heating caused by the continuous rotation of the support mechanism. problem, and because the continuous rotation of the support mechanism in one direction is not the movement expected by the user, the effect of saving electricity is also achieved.
  • the present application determines the real-time temperature of the motor according to the output torque value of the motor, and can determine the heating state of the motor, thereby accurately and effectively controlling the motor and reducing the probability of serious motor heating.
  • Fig. 1 is a control principle diagram of a pan-tilt head according to an embodiment of the present application
  • FIG. 2 is a cross-sectional view of a movable platform according to a first embodiment of the present application
  • FIG. 3 is a cross-sectional view of a movable platform according to a second embodiment of the present application.
  • FIG. 4 is a cross-sectional view of a movable platform according to a third embodiment of the present application.
  • FIG. 5 is a cross-sectional view of a movable platform according to a fourth embodiment of the present application.
  • FIG. 6 is a schematic diagram of a control method of a motor according to an embodiment of the present application.
  • FIG. 7 is a cross-sectional view of a support mechanism of a movable platform according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of determining a rotational angular velocity and a rotational angle range in a method for controlling a motor according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of a method for detecting a state of a motor according to an embodiment of the present application.
  • 10 is a movable platform
  • 100 is a pan/tilt
  • 200 is a support mechanism
  • 110 is a pan/tilt component
  • 120 is a motor
  • Y is a yaw axis
  • P is a pitch axis
  • R is a roll axis.
  • first and second are only used for description purposes, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • features defined as “first” and “second” may expressly or implicitly include, but are not limited to, one or more of said features.
  • a method for controlling a motor is first provided.
  • the method for controlling a motor is applied to a movable platform.
  • the movable platform includes a pan/tilt for carrying loads and a support mechanism for supporting the pan/tilt.
  • the pan/tilt includes Gimbal parts and motors.
  • FIG. 1 is a control principle diagram of a pan/tilt head according to an embodiment of the present application.
  • the gimbal adjusts the attitude of the load, it detects the current attitude of the load through the inertial measurement element, and compares the current attitude of the load with the target attitude to obtain the control deviation, and the control system controls the control according to the control deviation.
  • the motor is used to adjust the attitude of the load and finally reduce the control deviation to ensure that the deviation between the actual attitude of the load and the target attitude is as small as possible.
  • the load is an imaging device
  • the imaging device can be stably imaged.
  • the supporting mechanism may include a hand-held mechanism, and in other embodiments, the supporting mechanism may include a moving mechanism.
  • the hand-held mechanism may include, but is not limited to, a handle
  • the moving mechanism may include, but is not limited to, a chassis of an unmanned vehicle, a body of a robot, or a body of an unmanned aerial vehicle.
  • the movable platform may include a handheld gimbal, and may also include, for example, unmanned vehicles, drones, or robots.
  • FIG. 2 is a cross-sectional view of the movable platform 10 according to the first embodiment of the present application, and the movable platform 10 is a handheld pan/tilt as an example.
  • the support mechanism 200 may include a handle.
  • the handle can be used to support the head 100, and the shape of the handle is not limited to the column shape shown in FIG. 2, that is, the handle can be not only cylindrical, prismatic, etc., but also truncated, pyramidal, etc. , spherical shape, etc., or even a combination of the above-mentioned various shapes or special-shaped shapes, etc., the specific shape of the handle is not limited in this embodiment.
  • the movable platform 10 can be directly operated by a user by hand, has a wide range of application scenarios, is convenient for the user to operate, and saves costs.
  • the handle may be provided with an operating device, and the operating device may be an operating button, a joystick or a control interface, etc., so as to control the pan/tilt 100 or the load, such as turning on, off, and rotating the motor 120 .
  • the load when the load is an imaging device, it can also be used to control the opening, closing, and shooting of the imaging device.
  • FIG. 3 is a cross-sectional view of the movable platform 10 according to the second embodiment of the present application.
  • the movable platform 10 is an example of a remote-controlled unmanned vehicle.
  • the support mechanism 200 may include the chassis of the unmanned vehicle.
  • the chassis can be used to support the gimbal 100, and the movement mode of the chassis is not limited to the mode shown in FIG. 3, that is to say, the unmanned vehicle can directly use wheels to move, and can also be moved through other mechanisms such as crawlers .
  • the number of wheels of the unmanned vehicle may be one or more, which is not limited in this embodiment.
  • FIG. 4 is a cross-sectional view of a movable platform 10 according to a third embodiment of the present application, and the movable platform 10 is a robot as an example.
  • the support mechanism 200 may include the body of the robot. It can be understood that the connection between the gimbal 100 and the body of the robot is not limited to the position shown in FIG. 4 , that is, the gimbal 100 can not only be connected to the head of the body of the robot, but also can be connected to the robot.
  • the robot arm of the fuselage, the back of the machine and other parts are connected, which is not limited in this embodiment.
  • FIG. 5 is a cross-sectional view of the movable platform 10 according to the fourth embodiment of the present application, and the movable platform 10 is an example of an unmanned aerial vehicle.
  • the support mechanism 200 may comprise the fuselage of the drone.
  • UAVs are also commonly referred to as UAVs (Unmanned Aerial Vehicles), wherein UAVs can include fixed-wing UAVs, rotary-wing UAVs, umbrella-wing UAVs, etc. .
  • the connection between the gimbal 100 and the fuselage of the UAV is not limited to the position shown in FIG. 5 , that is, the gimbal 100 can not only be connected to the bottom of the UAV, but also can be connected to the UAV.
  • the top and side parts are connected to each other, which is not limited in this embodiment.
  • the payload may be an imaging device, for example, a camera, a video camera, etc., specifically, a single-lens reflex camera, a mirrorless camera, and the like.
  • the load may be a smart terminal, such as a mobile phone, tablet, etc. with a photographing function.
  • the payload may also be other devices that need to be moved, operated or adjusted in attitude, such as a distance measuring device and a microphone.
  • the pan/tilt 100 may include one pan/tilt part 110, two pan/tilt components 110, three pan/tilt components 110 or more pan/tilt components 110, and accordingly, the pan/tilt 100 may allow the load to rotate around one, two, Three or more axes of rotation, the axes used for rotation may or may not be orthogonal to each other. In some embodiments, as shown in FIGS.
  • the gimbal component 110 can control the attitude of the payload through the motor 120 , including controlling one or more of the payload’s pitch angle, roll angle, and yaw angle A, correspondingly, the load may rotate about one or more of the pitch axis P, the roll axis R, and the yaw axis Y.
  • pan-tilt parts 110 there may be three pan-tilt parts 110 , such as a first pan-tilt part, a second pan-tilt part, and a third pan-tilt part.
  • Each pan/tilt member 110 may include a connecting arm.
  • the first pan-tilt member is connected with the support mechanism 200, and the first pan-tilt member can be rotated relative to the support mechanism 200, so that the yaw angle of the load changes, that is, when the first connecting arm rotates relative to the support mechanism 200, it can make The load rotates around the yaw axis Y.
  • the second pan-tilt part is connected to the first pan-tilt part, and the second pan-tilt part can rotate relative to the support mechanism 200 so that the roll angle of the load changes, that is, when the second pan-tilt part rotates relative to the support mechanism 200, it can Make the load rotate around the roll axis R.
  • the third pan-tilt part is connected to the second pan-tilt part, and the third pan-tilt part can rotate relative to the support mechanism 200 so that the pitch angle of the load changes, that is, when the third pan-tilt part rotates relative to the support mechanism 200, it can make The load rotates about the pitch axis P.
  • the pan-tilt part 110 may only include one pan-tilt part 110 , and the pan-tilt part 110 can be rotated relative to the support mechanism 200 to change the yaw angle of the load, that is, this When the gimbal member 110 rotates relative to the support mechanism 200, the load can be rotated around the yaw axis Y.
  • the corresponding relationship between the pan/tilt component 110 and the support mechanism 200 in FIG. 2 , FIG. 3 , FIG. 4 , and FIG. 5 is only illustrative, and does not limit the present embodiment.
  • the gimbal 100 connected to the fuselage of the drone may also have two gimbal parts 110, three gimbal parts 110 or more gimbal parts 110, and
  • the payload can be made to rotate about two or three of the pitch, roll, and yaw axes, so that the payload can also rotate about more axes, etc.
  • the gimbal 100 may also have one gimbal part 110, two gimbal parts 110, or more than three gimbal parts 110, and can make the load It can rotate about one or both of the pitch axis, roll axis and yaw axis, so that the load can also rotate about more than three axes, etc. That is to say, regardless of the type of the support mechanism 200 , the gimbal 100 may be a single-axis gimbal, a dual-axis gimbal, a three-axis gimbal, or a gimbal with other axes.
  • the motor 120 includes a rotor part and a stator part. It can be understood that the stator part and the rotor part can rotate relative to each other. Since the mechanism of the motor 120 is well known to those skilled in the art, it is not repeated here.
  • one of the rotor part and the stator part of the motor 120 is connected to the pan-tilt part 110
  • the other one of the rotor part and the stator part of the motor 120 is connected to the support mechanism 200
  • the motor 120 is used to drive the pan-tilt part 110 and the load Rotation about a predetermined axis
  • the predetermined axis may include the yaw axis Y.
  • the stator part may be connected with the pan/tilt part 110, and the rotor part may be connected with the support mechanism 200; in other embodiments, the rotor part may be connected with the pan/tilt part 110, and the stator part and The support mechanism 200 is connected.
  • FIG. 6 is a schematic diagram of a control method of a motor according to an embodiment of the present application. As shown in FIG. 6 , the control method of this embodiment includes:
  • the motion state of the support mechanism includes a stationary state and a rotating state.
  • the rotating state means that the support mechanism rotates continuously in one direction, specifically, the support mechanism always rotates clockwise or counterclockwise under the action of the motor.
  • the pan/tilt head may include one pan/tilt part, two pan/tilt components, three pan/tilt components or more pan/tilt components, and accordingly, the pan/tilt may allow the load to wrap around one, two, three or more pan/tilt parts.
  • Multiple axis rotation the axes used for rotation may or may not be orthogonal to each other. That is to say, the gimbal can be a single-axis gimbal, a dual-axis gimbal, a three-axis gimbal, or a multi-axis gimbal with other axes.
  • the pan/tilt head may include one motor, two motors, three motors, or more motors equal to the number of pan/tilt head components.
  • one motor is located between a pan/tilt part and the support mechanism, that is, one of the rotor part and the stator part of the motor is directly connected with the support mechanism, the other is directly connected with the pan/tilt part, and Other motors can be connected to two gimbal parts respectively.
  • the motor controlled to stop rotating is the motor located between the pan/tilt component and the support mechanism.
  • other motors may also stop rotating.
  • the gimbal may include a first gimbal part, a second gimbal part, and a third gimbal part.
  • the first pan-tilt part can be connected with the support mechanism, and the first pan-tilt part can rotate relative to the support mechanism, so that the yaw angle of the load changes, that is, when the first pan-tilt part rotates relative to the support mechanism, the load can be rotated Rotate around the yaw axis.
  • the second pan-tilt part is connected to the first pan-tilt part, and the second pan-tilt part can rotate relative to the support mechanism, so that the roll angle of the load changes, that is, when the second pan-tilt part rotates relative to the support mechanism, the load can be rotated Rotate around the roll axis.
  • the third pan-tilt part is connected with the second pan-tilt part, and the third pan-tilt part can rotate relative to the support mechanism, so that the pitch angle of the load changes, that is, when the third pan-tilt part rotates relative to the support mechanism, the load can be rotated around the support mechanism. Pitch axis rotation.
  • the gimbal may further include a first motor, a second motor and a third motor.
  • the first motor can be connected with the first pan-tilt part and the support mechanism, and the first motor is used to drive the load to rotate around the yaw axis
  • the second motor can be connected with the first pan-tilt part and the second pan-tilt part, and the second motor is used for For driving the load to rotate around the roll axis
  • the third motor can be connected to the second pan-tilt part and the third pan-tilt part, and the third motor is used to drive the load to rotate around the pitch axis.
  • the motor controlled to stop rotating is the first motor.
  • the second motor and the third motor may also stop rotating. It can be understood that this embodiment does not limit the correspondence between the first pan-tilt component, the second pan-tilt component, and the third pan-tilt component and the pitch axis, roll axis, and yaw axis.
  • a pan/tilt part rotates the load about the yaw axis
  • a second pan/tilt part rotates the payload about the pitch axis
  • a third pan/tilt part rotates the payload about the roll axis, and so on.
  • the parts of the gimbal can rotate relative to the support mechanism under the action of the motor, thereby realizing the attitude adjustment or stabilization of the load.
  • the motor output will cause the support mechanism to rotate relative to the pan/tilt component, and if the motor is not provided with a mechanical limit, the support mechanism will continuously rotate in one direction under the action of the motor.
  • the continuous rotation of the support mechanism will not only affect the normal use of the user, but also cause serious heating of the motor, which may lead to damage to the gimbal. Therefore, when the above phenomenon occurs, controlling the motor to stop the rotation can effectively solve the above problem.
  • This method not only ensures the user's experience, but also avoids the problem of serious heating caused by the continuous operation of the motor when the gimbal part of the gimbal is held by the user or the gimbal part is blocked by other forces or objects. The effect of saving electricity is achieved.
  • the situation that the gimbal part of the gimbal is fixed and the support mechanism is not fixed may include the phenomenon that the support mechanism is suspended, that is, when it is detected that the support mechanism is suspended, the support mechanism may rotate continuously in one direction. , the motor that drives the support mechanism to rotate can be controlled to stop rotating.
  • detecting the motion state of the support mechanism includes: acquiring the number of consecutive rotations cont_rot_cnt and the rotation angle range anglerange of the support mechanism within a predetermined period of time period_detect; and determining the motion state of the support mechanism according to the number of consecutive rotations cont_rot_cnt and the rotation angle range anglerange.
  • this embodiment determines the motion state of the support mechanism according to the number of consecutive rotations cont_rot_cnt and the rotation angle range anglerange of the support mechanism within the predetermined period period_detect , in order to improve the accuracy of judgment results.
  • the predetermined period period_detect may be determined according to actual conditions or experiments, for example, the predetermined period period_detect may be determined according to the type of the support mechanism. That is, when the supporting mechanism is different, the time length of the predetermined period period_detect is also different accordingly.
  • the predetermined period period_detect when the support mechanism is different, the speed of the motor rotation can be different, then when the support mechanism is a handle, the predetermined period period_detect is a time length; when the support mechanism is the body of the robot, the predetermined period period_detect can be another time length ; When the support mechanism is the chassis of the unmanned vehicle, the predetermined period period_detect may be another time length; when the support mechanism is the fuselage of the drone, the predetermined period period_detect may be another time length.
  • the predetermined period of period_detect may also be determined according to the type of the load or the type of the gimbal, for example, the length of the predetermined period of period_detect may be determined according to the weight of the load, and the axis of the gimbal that can drive the load to rotate around the axis number to determine the time length of the predetermined period period_detect, etc.
  • the support mechanism can be rotated relative to the pan/tilt member for multiple full revolutions, eg, the support mechanism may be rotated relative to the pan/tilt member by 2 full revolutions, 3 full revolutions, 4 full revolutions, 5 full revolutions, 6 full revolutions, and 6 full revolutions. full weeks, 7 full weeks, 8 full weeks, 9 full weeks, 10 full weeks, 11 full weeks, 12 full weeks, 13 full weeks, 14 full weeks, 15 full weeks, 16 1 full week, 17 full weeks, 18 full weeks or more full weeks.
  • the support mechanism capable of rotating relative to the pan-tilt member for multiple full circles may also include the support mechanism being capable of unrestricted rotation relative to the pan-tilt member, that is, the support mechanism may rotate relative to the pan-tilt member without a limit on the number of rotations.
  • Determining the motion state of the support mechanism according to the number of consecutive rotations cont_rot_cnt and the rotation angle range anglerange may specifically include: when the number of continuous rotations cont_rot_cnt is greater than the number of rotations threshold cont_rot_cnt_thr and the rotation angle range anglerange is greater than the angle range threshold anglerange_thr, determining that the support mechanism rotates continuously in one direction .
  • the rotation number threshold cont_rot_cnt_thr may be determined according to actual conditions or experiments.
  • the rotation number threshold cont_rot_cnt_thr may be determined according to the time length of the predetermined period period_detect, that is, when the time lengths of the predetermined period period_detect are different, correspondingly, the rotation number The value of the threshold cont_rot_cnt_thr is also different. Specifically, when the time length of the predetermined period period_detect is longer, the rotation times threshold cont_rot_cnt_thr can be larger, and when the time period of the predetermined period period_detect is shorter, the rotation times threshold value cont_rot_cnt_thr can be obtained smaller.
  • the angle range threshold anglerange_thr may also be determined according to actual conditions or experiments.
  • the angle range threshold anglerange_thr may be determined according to the time length of the predetermined period period_detect and the rotational speed of the support mechanism, that is, when the time period of the predetermined period period_detect and/or When the rotation speed of the support mechanism is different, correspondingly, the value of the angle range threshold anglerange_thr is also different.
  • the angle range threshold anglerange_thr is larger; when the time period of the predetermined period period_detect is shorter and the rotation speed of the support mechanism is constant, the angle range threshold value The smaller the anglerange_thr is; when the time length of the predetermined period period_detect is constant and the rotation speed of the support mechanism is larger, the angle range threshold anglerange_thr is larger; when the time period of the predetermined period period_detect is constant and the rotation speed of the support mechanism is smaller, the angle range The smaller the threshold anglerange_thr is.
  • this method can further effectively improve the accuracy of the judgment result of whether the support mechanism rotates continuously in one direction.
  • acquiring the number of consecutive rotations cont_rot_cnt of the support mechanism within the predetermined period period_detect may include acquiring a first rotation parameter of the support mechanism to determine the number of consecutive rotations cont_rot_cnt according to the first rotation parameter.
  • the number of continuous rotations cont_rot_cnt is determined according to the first rotation parameter to be included in the predetermined period period_detect. Whenever the first rotation parameter is greater than the first threshold, the number of continuous rotations cont_rot_cnt increases once. Understandably, the initial value of the number of consecutive rotations cont_rot_cnt may be 0.
  • acquiring the number of continuous rotations cont_rot_cnt of the support mechanism within the predetermined period period_detect may include acquiring a second rotation parameter of the support mechanism to determine the number of continuous rotations cont_rot_cnt according to the second rotation parameter.
  • the second rotation parameter it is determined according to the second rotation parameter that the number of continuous rotations cont_rot_cnt is included in the predetermined period period_detect, and whenever the second rotation parameter is greater than the second threshold, the number of continuous rotations cont_rot_cnt increases once. Understandably, the initial value of the number of consecutive rotations cont_rot_cnt may be 0.
  • acquiring the number of consecutive rotations cont_rot_cnt of the support mechanism within the predetermined period period_detect may include acquiring a first rotation parameter and a second rotation parameter of the support mechanism, so as to determine the continuous rotation according to the first rotation parameter and the second rotation parameter Times cont_rot_cnt.
  • the number of continuous rotations cont_rot_cnt is determined according to the first rotation parameter and the second rotation parameter to be included in the predetermined period period_detect. Whenever the first rotation parameter is greater than the first threshold and the second rotation parameter is greater than the second threshold, the number of continuous rotations cont_rot_cnt increases once. It can be understood that the initial value of the number of consecutive rotations cont_rot_cnt may be 0.
  • the first rotation parameter may include the output torque torq of the motor, and the first threshold value includes the torque threshold value torq_thr.
  • the output torque torq can be calculated from the speed and power of the motor.
  • the value of the torque threshold torq_thr can be determined according to the actual situation or experimental situation.
  • the torque threshold torq_thr can be determined according to the type of the support mechanism, that is, when the support mechanism is not At the same time, correspondingly, the value of the torque threshold torq_thr is also different.
  • the torque threshold torq_thr when the support mechanism is different, the speed of the motor rotation can be different, then when the support mechanism is a handle, the torque threshold torq_thr is one value; when the support mechanism is the robot body, the torque threshold torq_thr can be another value ; When the support mechanism is the chassis of the unmanned vehicle, the torque threshold torq_thr can be another value; when the support mechanism is the fuselage of the UAV, the torque threshold torq_thr can be another value.
  • the torque threshold torq_thr can also be determined according to the type of the load or the type of the gimbal component, for example, the value of the torque threshold torq_thr is determined according to the weight of the load, and the load can be driven around the axis according to the weight of the load. The number of axes rotated to determine the value of the torque threshold torq_thr, etc.
  • the second rotation parameter includes the rotation angular velocity velo of the support mechanism
  • the second threshold includes the angular velocity threshold velo_thr.
  • Obtaining the second rotation parameter of the support mechanism may include obtaining the rotation angular velocity velo of the support mechanism according to the rotation angle angle of the support mechanism at two adjacent moments within a predetermined period of time period_detect. It can be understood that since the supporting mechanism is driven by the motor, the rotational angular velocity of the supporting mechanism is also the rotational angular velocity of the motor.
  • the number of rotations of the support mechanism may not match the number of full rotations of the motor. That is to say, if the above conditions are met, the number of times of rotation of the support mechanism one or more times can be recorded in a full rotation of the motor.
  • FIG. 7 is a cross-sectional view of a support mechanism of a movable platform according to an embodiment of the present application
  • FIG. 8 is a schematic diagram of determining the rotational angular velocity velo and the rotational angle angle in a control method of a motor according to an embodiment of the present application. It can be understood that Ground, the rotation angle angle can be measured by the angle sensor at the connection between the support mechanism and the motor.
  • the predetermined period period_detect may be the time between the moment indicated by t1 and the moment indicated by t4, that is, t1 is the starting moment of the predetermined period period_detect, t4 is the end time of the predetermined period period_detect.
  • t1 is the starting moment of the predetermined period period_detect
  • t4 is the end time of the predetermined period period_detect.
  • FIG. 8 at time t1, point A is located at the position indicated by A1, and at time t4, point A is located at the position indicated by A4.
  • t2 and t3 are two adjacent moments in the predetermined period period_detect. It is understandable that the duration between two adjacent moments can be selected according to the actual situation.
  • the duration between two adjacent moments can be 0.1s, 0.2s , 0.3s, 0.4s, 0.5s, 0.6s, 0.7s, 0.8s, 0.9s, 1s, 1.1s, 1.2s, etc.
  • the duration between two adjacent moments may be 1s.
  • point A is located at the position indicated by A2
  • point A is located at the position indicated by A3.
  • the rotation angle angle of point A is the angle ⁇ formed by A1, A2 and the rotation center O of the support mechanism; at time t3, the rotation angle angle of point A is formed by A1, A3 and the rotation center O of the support mechanism included angle ⁇ . Therefore, the rotation angle angle of the support mechanism at two adjacent moments in the predetermined period period_detect is ( ⁇ - ⁇ ), and correspondingly, the rotation angular velocity velo of the support mechanism is ( ⁇ - ⁇ ) and the duration between the two adjacent moments. ratio. Wherein, when the duration between two adjacent time points is 1s, the rotational angular velocity velo of the support mechanism is equal to the value of ( ⁇ - ⁇ ).
  • the value of the angular velocity threshold velo_thr can be determined according to the actual situation or experimental situation.
  • the angular velocity threshold velo_thr can be determined according to the type of the supporting mechanism, that is, when the supporting mechanism is different, the value of the angular velocity threshold velo_thr is correspondingly determined. Also different.
  • the angular velocity threshold velo_thr when the support mechanism is different, the speed of the motor rotation can be different, then when the support mechanism is a handle, the angular velocity threshold velo_thr is one value; when the support mechanism is the robot body, the angular velocity threshold velo_thr can be another value ; When the supporting mechanism is the chassis of the unmanned vehicle, the angular velocity threshold velo_thr can be another value; when the supporting mechanism is the fuselage of the drone, the angular velocity threshold velo_thr can be another value.
  • the angular velocity threshold value velo_thr may also be determined according to the type of the load or the type of the gimbal component, for example, the value of the angular velocity threshold value velo_thr is determined according to the weight of the load, and the value of the angular velocity threshold value velo_thr can be determined according to the load that can be driven by the gimbal component around the axis. The number of axes rotated to determine the value of the angular velocity threshold velo_thr, etc.
  • the values of the output torque torq and the rotational angular velocity velo may not include the symbol representing the direction, that is, the absolute value of the corresponding physical quantity.
  • acquiring the rotation angle range anglerange of the support mechanism within the predetermined period period_detect includes acquiring the maximum angle value angle_max and the minimum angle value angle_min of the support mechanism within the predetermined period period_detect, and further comprising acquiring the maximum angle value angle_max and the minimum angle value according to the maximum angle value angle_max and the minimum angle value.
  • angle_min gets the rotation angle range anglerange.
  • the maximum angle value angle_max of the support mechanism within the predetermined period period_detect is the angle value corresponding to when point A rotates to A4
  • the minimum angle value angle_min of the support mechanism within the predetermined period period_detect is the corresponding angle value when point A is at A1
  • the minimum angle value angle_min can be subtracted from the maximum angle value angle_max to obtain the rotation angle range anglerange, that is, the rotation angle range anglerange is (angle_max-angle_min).
  • the result of subtracting the minimum angle value angle_min from the maximum angle value angle_max is ⁇
  • the rotation angle range anglerange is ⁇ .
  • this method can further effectively improve the accuracy of the judgment result of whether the support mechanism rotates continuously in one direction.
  • control method further includes controlling the support mechanism and the pan/tilt component to maintain a relative position along a preset axis.
  • controlling the support mechanism and the pan-tilt component to maintain relative positions along the preset axis includes: if the attitude component of the load's attitude corresponding to the preset axis changes, controlling the motor to drive the support mechanism to rotate with the pan-tilt component, so that the support mechanism and the pan-tilt component are rotated.
  • the pan/tilt components maintain a relative position along a preset axis.
  • the motor is controlled to drive the support mechanism to rotate with the gimbal component, so that the support mechanism and the gimbal component maintain relative positions along the yaw axis .
  • the preset axis is the pitch axis
  • the motor is controlled to drive the support mechanism to follow the gimbal component to rotate, so that the support mechanism and the gimbal component maintain a relative position along the pitch axis.
  • the control motor drives the support mechanism to rotate with the gimbal component, so that the support mechanism and the gimbal component maintain the relative position along the roll axis. That is, the support mechanism can follow the pan/tilt component to rotate around a preset axis, so as to achieve a follow-up effect and maintain the relative positions between each other.
  • the relative position between the gimbal component and the support mechanism will change. Changes in position may impact the user experience by causing the support mechanism to collide with the user or other surrounding objects. Therefore, in this embodiment, the support mechanism and the pan/tilt component maintain a relative position along the preset axis, thereby improving user experience.
  • This embodiment also provides a method for detecting the state of a motor.
  • the detection method is applied to a gimbal.
  • the gimbal includes a gimbal component and a motor connected to the gimbal component.
  • the motor is used to drive a load supported by the gimbal around a preset axis. turn.
  • the pan/tilt can include one pan/tilt part, two pan/tilt components, three pan/tilt components or more pan/tilt components, correspondingly, the pan/tilt can allow the load to wrap around one, two, three or more pan/tilt parts Axis rotation, the axes used for rotation may or may not be orthogonal to each other. That is to say, the gimbal can be a single-axis gimbal, a dual-axis gimbal, a three-axis gimbal, or a multi-axis gimbal with other axes.
  • the pan/tilt head may include one motor, two motors, three motors, or more motors equal to the number of pan/tilt head components, and the detection method provided in this embodiment may be applied to at least one motor.
  • the gimbal may include a first gimbal part, a second gimbal part, and a third gimbal part.
  • the first pan-tilt part can be connected with the support mechanism, and the first pan-tilt part can rotate relative to the support mechanism, so that the yaw angle of the load changes, that is, when the first pan-tilt part rotates relative to the support mechanism, the load can be rotated Rotate around the yaw axis.
  • the second pan-tilt part is connected to the first pan-tilt part, and the second pan-tilt part can rotate relative to the support mechanism, so that the roll angle of the load changes, that is, when the second pan-tilt part rotates relative to the support mechanism, the load can be rotated Rotate around the roll axis.
  • the third pan-tilt part is connected with the second pan-tilt part, and the third pan-tilt part can rotate relative to the support mechanism, so that the pitch angle of the load changes, that is, when the third pan-tilt part rotates relative to the support mechanism, the load can be rotated around the support mechanism. Pitch axis rotation.
  • the gimbal may further include a first motor, a second motor and a third motor.
  • the first motor can be connected to the support mechanism and the first pan-tilt part, and the first motor is used to drive the load to rotate around the yaw axis
  • the second motor can be connected to the first pan-tilt part and the second pan-tilt part, and the second motor is used for For driving the load to rotate around the roll axis
  • the third motor can be connected to the second pan-tilt part and the third pan-tilt part, and the third motor is used to drive the load to rotate around the pitch axis.
  • This method for detecting the state of the motor can be applied only to the first motor, the second motor or the third motor, or can be applied to any two of the first motor, the second motor and the third motor, or can be applied to the first motor at the same time a motor, a second motor, and a third motor. It can be understood that this embodiment does not limit the correspondence between the first pan-tilt component, the second pan-tilt component, and the third pan-tilt component and the pitch axis, roll axis, and yaw axis.
  • FIG. 9 is a schematic diagram of a method for detecting a state of a motor according to an embodiment of the present application. As shown in Figure 9, the detection method includes:
  • the output torque value of the motor is related to the real-time temperature value of the motor, and the real-time temperature of the motor can be determined according to the output torque value of the motor, so as to determine the heating state of the motor, and then can accurately and effectively realize the control of the motor.
  • the control improves the accuracy of the judgment result of the heating state of the motor. In this way, the problem of serious motor heating caused by the continuous high output of the movable platform can be effectively avoided, and further problems such as damage to the movable platform and scalding of the user can be avoided, thereby protecting the motor and improving the user experience.
  • determining the real-time temperature value of the motor according to the output torque value includes obtaining a first correspondence between the output torque value and at least one temperature parameter of the motor, and determining the real-time temperature value according to the output torque value and the first correspondence.
  • the at least one temperature parameter includes the steady state temperature T_final and/or the time constant ⁇ of the motor.
  • the temperature of the motor when the motor starts to work, the temperature of the motor will rise first, and after a period of time, the temperature of the motor will no longer rise, that is, the temperature of the motor will no longer change with time. At this time, the temperature of the motor is the steady-state temperature T_final. , and the time required for the motor to reach the steady-state temperature T_final is the time constant ⁇ .
  • the first correspondence may include a positive correlation between the steady-state temperature T_final and the output torque torq, that is, the larger the output torque torq, the higher the steady-state temperature T_final of the motor.
  • the first correspondence may also include a negative correlation between the time constant ⁇ and the output torque torq, that is, the larger the output torque torq, the smaller the value of the time constant ⁇ .
  • the first correspondence may include a positive correlation between the steady-state temperature T_final and the square of the output torque torq, that is, the larger the square of the output torque torq, the higher the steady-state temperature T_final of the motor.
  • the first correspondence may also include a negative correlation between the time constant ⁇ and the square of the output torque torq, that is, the larger the square of the output torque torq, the smaller the value of the time constant ⁇ .
  • the real-time temperature T of the motor and the steady-state temperature T_final of the motor may exhibit an inertial relationship.
  • T is the real-time temperature of the motor
  • s is the time
  • is the time constant
  • T_final is the steady-state temperature of the motor.
  • determining the real-time temperature value according to the output torque value and the first corresponding relationship may include: determining the steady-state temperature value and time constant value of the motor according to the output torque value and the first corresponding relationship; determining the real-time temperature value according to the steady-state temperature value and the time constant value temperature value.
  • the first correspondence may be the relationship between different output torques torq and different steady-state temperature values and time constant values, and the first correspondence may be set in advance and stored in the corresponding memory of the gimbal, specifically It can be stored in the form of a table or as a function.
  • determining the real-time temperature value according to the steady-state temperature value and the time constant value includes: determining a second correspondence between the real-time temperature of the motor, the steady-state temperature T_final and the time constant ⁇ according to the steady-state temperature value and the time constant value ; and obtain the real-time temperature value at the current moment according to the second correspondence, the steady-state temperature value at the previous moment, the real-time temperature value at the previous moment, and the steady-state temperature value at the current moment.
  • determining the steady-state temperature value of the motor according to the output torque value and the first correspondence includes determining the steady-state temperature value at the current moment and the steady-state temperature value at the previous moment.
  • the second correspondence can be obtained by discretizing formula 1 using bilinear transformation according to the sampling frequency fs, and then transforming it into a difference equation. Specifically, the second correspondence can be shown in the following formula 2:
  • T(k) is the real-time temperature value at the current moment
  • is the time constant
  • fs is the sampling frequency
  • T_final(k-1) is the steady-state temperature at the previous moment
  • T_final(k) is the steady-state temperature at the current moment.
  • state temperature T(k-1) is the real-time temperature value at the previous moment.
  • sampling frequency can be selected according to the actual situation, which is not limited in this embodiment.
  • the size of the temperature threshold T_thr can be determined according to the actual situation. For example, it is determined according to the model of the motor, temperature rise, etc., wherein the temperature rise is a value that allows the motor to be higher than the ambient temperature.
  • the temperature threshold T_thr may be any value between 40°C and 80°C, for example, the temperature threshold T_thr may be 40°C, 41°C, 42°C, 43°C, 44°C, 45°C, 46°C, 47°C, 48°C, 49°C, 50°C, 51°C, 52°C, 53°C, 54°C, 55°C, 56°C, 57°C, 58°C, 59°C, 60°C, 61°C, 62°C, 63°C, 64°C , 65°C, 66°C, 67°C, 68°C, 69°C, 70°C, 71°C, 72°C, 73°C, 74°C, 75°C, 76
  • the detection method further includes controlling the motor to enter a sleep state when the motor is in an overheating state.
  • the gimbal includes multiple motors, and the detection method further includes controlling the multiple motors of the gimbal to enter a sleep state when one of the motors is in an overheated state. In this way, when one of the motors is overheated and the stabilization or angle adjustment performance of the gimbal is degraded, by controlling all the motors to sleep state to suspend or suspend the stabilization or angle adjustment function of the gimbal, the overall performance of the gimbal can be reduced. power consumption, and avoid the effect of gimbal stabilization or angle adjustment performance degradation.
  • the sleep state may be that the motor is not powered on, but stops output or is reduced from the normal output to the sleep output, and after the motor enters the sleep state, other modules of the movable platform can operate normally, for example, to control the movable platform.
  • the buttons of the platform can be in a normal state, and can normally receive and send information through the receiving module and the sending module.
  • the dormant state may be ended under the trigger of the user, so as to enter the normal state in which the motor can output power normally.
  • the motor after the motor enters the sleep state, after setting the time threshold, the motor can automatically restore to the normal state.
  • the size of the set time threshold may be determined according to actual requirements, for example, the set time threshold may be 1s, 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s, etc.
  • the PTZ may further include a display device, the display device can display the percentage of the motor output, that is, the ratio of the output torque torq of the motor to the maximum torque that the motor can output, and the user can adjust the percentage, that is, adjust the motor's output torque. Output torque torq.
  • This method is convenient for the user to intuitively grasp the relationship between the sleep state of the motor and the percentage, so as to adjust the percentage according to requirements, prevent the motor from entering an overheating state, and improve user experience.
  • the detection method may further include sending out prompt information for prompting the overheating state. That is, when it is determined that the heating state of the motor is an overheating state, a prompt message for prompting the overheating state is issued, so that the user can grasp the heating state of the motor in real time, and it is convenient for the user to grasp the reason why the motor enters the sleep state, so as to improve the user experience.
  • the prompt information includes at least one of visual prompt information, auditory prompt information, and tactile prompt information. That is, in some embodiments, the prompt information may only include visual prompt information, or only include auditory prompt information, or only include tactile prompt information. In other embodiments, the prompt information may include any two of visual prompt information, auditory prompt information, and tactile prompt information. In other embodiments, the prompt information may include visual prompt information, auditory prompt information and tactile prompt information at the same time.
  • the visual cue information may include images, text, or both.
  • the movable platform may include a display device, and images and/or text may be displayed through the display device.
  • the position of the display device is not limited in this embodiment.
  • the display device may be located in the support mechanism, or be spaced apart from the support mechanism and the pan/tilt component, or may be independent of the movable platform and communicated with the movable platform. .
  • the audible prompt information may include the sound produced by the vibration of the motor.
  • the frequency of the motor vibration can be selected according to the actual situation, which is not limited in this embodiment.
  • the tactile prompt information may include vibration, for example, vibration of the support mechanism, vibration of the pan/tilt component, etc., wherein the frequency of the vibration may be selected according to the actual situation, which is not limited in this embodiment.
  • the motor entering the sleep state is triggered after the prompt message is issued for a preset period of time.
  • the length of the preset duration may be determined according to actual needs, for example, the preset duration may be 1s, 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s, etc. In this way, the user has a certain time to complete the desired operation, which improves the user experience.
  • This embodiment also provides another method for detecting a state of a motor.
  • the method for detecting a state of a motor is applied to a pan/tilt head.
  • the pan/tilt head includes a pan/tilt head part and a motor for driving the pan/tilt head part to rotate around a preset axis.
  • a plurality of adjustment threshold value groups are firstly set, and each adjustment threshold value group includes a torque adjustment threshold value and a time adjustment threshold value.
  • the plurality of adjustment threshold groups may be two adjustment threshold groups, three adjustment threshold groups, four adjustment threshold groups, five adjustment threshold groups, or more adjustment threshold groups.
  • the multiple adjustment threshold value groups are three adjustment threshold value groups, the first adjustment threshold value group, the second adjustment threshold value group and the third adjustment threshold value group are included, and the first adjustment threshold value group includes the first torque adjustment threshold value torq_thr_1 and the third adjustment threshold value group.
  • a time adjustment threshold cnt_thr_1 the second adjustment threshold group includes a second torque adjustment threshold torq_thr_2 and a second time adjustment threshold cnt_thr_2, and the third adjustment threshold group includes a third torque adjustment threshold torq_thr_3 and a third time adjustment threshold cnt_thr_3.
  • the scheme of controlling the motor to enter sleep can more effectively avoid the problem of serious motor heating. Specifically, when the motor continues to output power, but the output does not reach the torque adjustment threshold that is only set for a period of time, there may also be a serious problem of motor heating. However, only one torque adjustment threshold and one time adjustment threshold are set. The problem of serious motor heating cannot be solved in this case.
  • This embodiment also provides a control device for a movable platform.
  • the movable platform includes a pan/tilt for carrying loads and a support mechanism for supporting the pan/tilt.
  • the pan/tilt includes a pan/tilt component and a motor, and the rotor part of the motor is connected to One of the stator parts is connected with the pan-tilt part, the rotor part of the motor is connected with the other one of the stator parts with the support mechanism, and the motor is used for driving the pan-tilt part and the load to rotate around a preset axis.
  • the preset axis may include a yaw axis.
  • control device may be located on the support mechanism, or may be independent of the movable platform and be communicatively connected with the movable platform.
  • the control device also includes a memory and a processor.
  • the memory is used to store executable instructions
  • the processor is used to execute the executable instructions stored in the memory to perform the following operations: detect the motion state of the support mechanism, and control the motor to stop rotating when the motion state indicates that the support mechanism rotates continuously in one direction.
  • the processor may further perform the following operations: obtain the number of consecutive rotations cont_rot_cnt and the angle range of rotation anglerange of the support mechanism within a predetermined period of period_detect, and determine the motion state of the support mechanism according to the number of times of continuous rotation cont_rot_cnt and the angle range of rotation anglerange.
  • the processor may further perform the following operations: acquiring the first rotation parameter and/or the second rotation parameter of the support mechanism, and determining the number of consecutive rotations cont_rot_cnt according to the first rotation parameter and/or the second rotation parameter.
  • the processor may further perform the following operation: within a predetermined period period_detect, whenever the first rotation parameter is greater than the first threshold and/or the second rotation parameter is greater than the second threshold, the number of consecutive rotations cont_rot_cnt is increased by one.
  • the first rotational parameter includes the output torque torq of the motor
  • the first threshold includes the torque threshold torq_thr
  • the second rotational parameter includes the rotational angular velocity velo of the support mechanism
  • the second threshold includes the angular velocity threshold velo_thr.
  • the processor may also perform the following operation: obtain the rotational angular velocity velo of the supporting mechanism according to the rotational angle angle of the supporting mechanism at two adjacent moments within the predetermined period period_detect.
  • the processor may further perform the following operations: acquire the maximum angle value angle_max and the minimum angle value angle_min of the support mechanism within the predetermined period period_detect, and obtain the rotation angle range anglerange according to the maximum angle value angle_max and the minimum angle value angle_min.
  • the support mechanism is capable of rotating multiple full revolutions relative to the head member.
  • the processor may further perform the following operations: when the number of consecutive rotations cont_rot_cnt is greater than the number of rotations threshold cont_rot_cnt_thr and the rotation angle range anglerange is greater than the angle range threshold anglerange_thr, determine that the support mechanism rotates continuously in one direction.
  • the processor may further perform the following operations: control the support mechanism and the pan/tilt component to maintain a relative position along a preset axis.
  • the processor may also perform the following operations: control the motor to drive the support mechanism to rotate with the gimbal component, so that the support mechanism and the gimbal component remain opposite along the preset axis Location.
  • the support mechanism may include a hand-held mechanism or a movement mechanism.
  • the handheld mechanism may include a handle, and the moving mechanism may include the chassis of an unmanned vehicle, the body of a robot, or the body of a drone.
  • This embodiment also provides a motor state detection device.
  • the motor state detection device is applied to a gimbal.
  • the gimbal includes a gimbal component and a motor connected to the gimbal component.
  • the motor is used to drive a load wound supported by the gimbal. Set the axis to rotate.
  • the detection device includes a memory and a processor.
  • Memory is used to store executable instructions.
  • the processor is configured to execute the executable instructions stored in the memory to perform the following operations: obtain the output torque value of the motor; determine the real-time temperature value of the motor according to the output torque value; determine the heating state of the motor according to the real-time temperature value of the motor.
  • the detection device may be located in a support mechanism for supporting the pan/tilt, or may be independent of the pan/tilt and connected to the pan/tilt in communication.
  • the processor may also perform the following operations: acquiring a first correspondence between the output torque value and at least one temperature parameter of the motor, and determining a real-time temperature value according to the output torque value and the first correspondence.
  • the at least one temperature parameter may include the steady state temperature T_final and/or the time constant ⁇ of the motor.
  • the first correspondence may include: the steady-state temperature T_final is positively correlated with the output torque torq; the time constant ⁇ is negatively correlated with the output torque torq.
  • the processor may further perform the following operations: determine the steady-state temperature value and the time constant value of the motor according to the output torque value and the first corresponding relationship; and determine the real-time temperature value according to the steady-state temperature value and the time constant value.
  • the processor may also perform the following operations: according to the steady-state temperature value and the time constant value, determine the second correspondence between the real-time temperature of the motor, the steady-state temperature T_final and the time constant ⁇ , and according to the correspondence, the steady-state temperature value at the previous moment , the real-time temperature value at the previous moment, and the steady-state temperature value at the current moment to obtain the real-time temperature value at the current moment.
  • the heating state may include an overheating state and a normal state.
  • the processor may further perform the following operations: when the real-time temperature value is greater than the threshold value, determine that the motor is in an overheated state, and when the real-time temperature value is not greater than the threshold value, determine that the motor is in a normal state.
  • the processor can also perform the following operations: when the motor is in an overheating state, control the motor to enter a sleep state.
  • the gimbal may include a plurality of motors, and the processor may further perform the following operations: when one of the motors is in an overheating state, all the motors controlling the gimbal enter a sleep state.
  • the processor may also perform the following operations: sending out prompt information for prompting the overheating state through the prompt device.
  • the entering of the motor into the sleep state may be triggered after the prompt message is issued for a preset duration.
  • the prompt information may include at least one of the following: visual prompt information, auditory prompt information, and tactile prompt information.
  • the visual cue information may include images and/or text
  • the audible cue information may include sound generated by motor vibration
  • the tactile cue information may include vibration.
  • This embodiment also provides a computer-readable storage medium, where the computer-readable storage medium stores executable instructions, and when executed by one or more processors, the executable instructions can cause one or more processors to execute any of the above A control method or any of the above detection methods.
  • the computer-readable storage medium may also be referred to as a memory, and the executable instructions may also be referred to as a program.
  • the processor may perform various appropriate actions and processes according to programs stored in read only memory (ROM) or loaded into random access memory (RAM).
  • a processor may include, for example, a general-purpose microprocessor (eg, a CPU), an instruction set processor and/or a related chipset, and/or a special-purpose microprocessor (eg, an application specific integrated circuit (ASIC)), among others.
  • the processor may also include onboard memory for caching purposes.
  • the processor may comprise a single processing unit or multiple processing units for performing different actions of the method flow according to this embodiment.
  • the processor, ROM, and RAM are connected to each other through a bus.
  • the processor performs various operations of the method flow according to the present embodiment by executing programs in the ROM and/or RAM. Note that programs may also be stored in one or more memories other than ROM and RAM.
  • the processor may also perform various operations of the method flow according to the present embodiment by executing programs stored in one or more memories.
  • the apparatus to which the computer-readable storage medium is applied may further include an input/output (I/O) interface, which is also connected to the bus.
  • the device employing the computer-readable storage medium may also include one or more of the following components connected to the I/O interface: an input portion including a keyboard, a mouse, etc.; an input portion such as a cathode ray tube (CRT), a liquid crystal display (LCD) ), etc., and an output section for speakers, etc.; a storage section including a hard disk, etc.; and a communication section including a network interface card such as a LAN card, a modem, and the like.
  • the communication section performs communication processing via a network such as the Internet.
  • Removable media such as magnetic disks, optical disks, magneto-optical disks, semiconductor memories, etc., are mounted on the drive as needed, so that the computer program read therefrom is installed into the storage section as needed.
  • the method flow according to this embodiment can be implemented as a computer software program.
  • the present embodiment includes a computer program product comprising a computer program carried on a computer-readable storage medium, the computer program containing program code for performing the method shown in the flowchart.
  • the computer program may be downloaded and installed from a network via the communication portion, and/or installed from a removable medium.
  • the above-described functions defined in the system of the present embodiment are executed.
  • computer readable storage media may include, but are not limited to, non-volatile or volatile storage media such as random access memory (RAM), static RAM, dynamic RAM, read only memory (ROM), programmable ROM , Erasable Programmable ROM, Electrically Erasable Programmable ROM, Flash Memory, Secure Digital (SD) Card, etc.
  • RAM random access memory
  • ROM read only memory
  • programmable ROM Erasable Programmable ROM
  • Flash Memory Flash Memory
  • SD Secure Digital
  • the movable platform includes: a pan/tilt for carrying loads, a support mechanism for supporting the pan/tilt, and any one of the above-mentioned control devices.
  • the pan/tilt includes a pan/tilt part and a motor, wherein one of the rotor part and the stator part of the motor is connected to the pan/tilt part, the rotor part of the motor and the other one of the stator part are connected to the support mechanism, and the motor is used to drive the pan/tilt part. and the load rotates about a preset axis.
  • the pan/tilt includes: a pan/tilt component, a motor connected to the pan/tilt component, and any of the above detection devices.
  • the motor is used to drive the load supported by the PTZ to rotate around the preset axis.
  • This embodiment also provides a movable platform including the above-mentioned pan/tilt with the detection device and a supporting mechanism for supporting the above-mentioned pan/tilt, wherein the supporting mechanism may include a hand-held mechanism or a moving mechanism, and the hand-held mechanism may include a handle, which can move Mechanisms can include the chassis of an unmanned vehicle, the body of a robot, or the body of a drone.
  • the supporting mechanism may include a hand-held mechanism or a moving mechanism
  • the hand-held mechanism may include a handle, which can move Mechanisms can include the chassis of an unmanned vehicle, the body of a robot, or the body of a drone.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种电机的控制与检测方法及装置、云台以及可移动平台。可移动平台包括用于搭载负载的云台、用于支撑云台的支撑机构,云台包括云台部件与电机,电机用于驱动云台部件以及负载绕预设轴线转动。通过检测支撑机构的运动状态,并且当运动状态指示支撑机构沿一方向连续转动时,控制电机停止转动,从而可以有效地避免由于支撑机构连续转动导致的电机发热严重的问题,且由于支撑机构沿一方向的连续转动并不是用户预期的运动,还达到了节约电力的效果。

Description

电机的控制与检测方法及装置、云台以及可移动平台 技术领域
本申请涉及云台技术领域,更具体地涉及一种电机的控制方法、电机状态的检测方法、可移动平台的控制装置、电机状态的检测装置、计算机可读存储介质、云台以及可移动平台。
背景技术
云台通常也被称为稳定器或增稳器,可以用来搭载负载,以实现对负载的姿态的控制。然而,在云台的使用过程中,可能存在电机发热的问题,若电机发热较为严重,将会影响云台的使用寿命,且影响用户的使用体验,甚至危及用户安全。
发明内容
鉴于上述问题,提出了一种克服上述问题或者至少部分地解决上述问题的电机的控制方法、电机状态的检测方法、可移动平台的控制装置、电机状态的检测装置、计算机可读存储介质、云台以及可移动平台。
根据本申请的第一个方面,提供了一种电机的控制方法,应用于可移动平台,所述可移动平台包括用于搭载负载的云台、用于支撑所述云台的支撑机构,所述云台包括云台部件与所述电机,所述电机的转子部分与定子部分中的一个与所述云台部件连接,所述电机的转子部分与定子部分中的另一个与所述支撑机构连接,所述电机用于驱动所述云台部件以及所述负载绕预设轴线转动,所述控制方法包括:检测所述支撑机构的运动状态;当所述运动状态指示所述支撑机构沿一方向连续转动时,控制所述电机停止转动。
根据本申请的第二个方面,提供了一种电机状态的检测方法,应 用于云台,所述云台包括云台部件以及与所述云台部件连接的电机,所述电机用于驱动所述云台支撑的负载绕预设轴线转动,所述检测方法包括:获取所述电机的输出力矩值;根据所述输出力矩值确定所述电机的实时温度值;根据所述电机的实时温度值确定所述电机的发热状态。
根据本申请的第三个方面,提供了一种可移动平台的控制装置,所述可移动平台包括用于搭载负载的云台、用于支撑所述云台的支撑机构,所述云台包括云台部件与电机,所述电机的转子部分与定子部分中的一个与所述云台部件连接,所述电机的转子部分与定子部分中的另一个与所述支撑机构连接,所述电机用于驱动所述云台部件以及所述负载绕预设轴线转动,所述控制装置包括:存储器,用于存储可执行指令;处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:检测所述支撑机构的运动状态;当所述运动状态指示所述支撑机构沿一方向连续转动时,控制所述电机停止转动。
根据本申请的第四个方面,提供了一种电机状态的检测装置,应用于云台,所述云台包括云台部件以及与所述云台部件连接的电机,所述电机用于驱动所述云台支撑的负载绕预设轴线转动,所述检测装置包括:存储器,用于存储可执行指令;处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:获取所述电机的输出力矩值;根据所述输出力矩值确定所述电机的实时温度值;根据所述电机的实时温度值确定所述电机的发热状态。
根据本申请的第五个方面,提供了一种计算机可读存储介质,其特征在于,其存储有可执行指令,所述可执行指令在由一个或多个处理器执行时,可以使所述一个或多个处理器执行上述的控制方法或上述的检测方法。
根据本申请的第六个方面,提供了一种可移动平台,包括:用于搭载负载的云台、用于支撑所述云台的支撑机构以及上述的控制装置;所述云台包括云台部件与所述电机,所述电机的转子部分与定子部分中的一个与所述云台部件连接,所述电机的转子部分与定子部分 中的另一个与所述支撑机构连接,所述电机用于驱动所述云台部件以及所述负载绕预设轴线转动。
根据本申请的第七个方面,提供了一种云台,包括:云台部件、与所述云台部件连接的电机以及上述的检测装置;所述电机用于驱动所述云台支撑的负载绕预设轴线转动。
根据本申请的第八个方面,提供了一种可移动平台,包括:本申请第七个方面提供的云台以及用于支撑所述云台的支撑机构。
本申请通过检测云台的支撑机构的运动状态,并在支撑机构的运动状态指示支撑机构沿一方向连续转动时,控制电机停止转动,可以有效地避免由于支撑机构连续转动导致的电机发热严重的问题,且由于支撑机构沿一方向的连续转动并不是用户预期的运动,还达到了节约电力的效果。
另外,本申请根据电机的输出力矩值来确定电机的实时温度,可以确定电机的发热状态,从而能够准确、有效地实现对电机的控制,降低电机发热严重的发生概率。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。本申请内容中提供的仅仅是一个实施例,而不是本申请本身,本申请内容的效果仅仅是实施例的效果,而不是本申请所有的、全部的技术效果。
附图说明
通过下文中参照附图对本申请所作的描述,本申请的其它目的和优点将显而易见,并可帮助对本申请有全面的理解。其中:
图1是根据本申请的一个实施例的云台的控制原理图;
图2是根据本申请的第一个实施例的可移动平台的剖视图;
图3是根据本申请的第二个实施例的可移动平台的剖视图;
图4是根据本申请的第三个实施例的可移动平台的剖视图;
图5是根据本申请的第四个实施例的可移动平台的剖视图;
图6是根据本申请的一个实施例的电机的控制方法的示意图;
图7是根据本申请的一个实施例的可移动平台的支撑机构的剖视图;
图8是根据本申请的一个实施例的电机的控制方法中确定转动角速度以及转动角度范围的原理图;
图9是根据本申请的一个实施例的电机状态的检测方法的示意图。
应该注意的是,附图并未按比例绘制,并且出于说明目的,在整个附图中类似结构或功能的元素通常用类似的附图标记来表示。还应该注意的是,附图只是为了便于描述优选实施例,而不是本申请本身。附图没有示出所描述的实施例的每个方面,并且不限制本申请的范围。
图中,10为可移动平台,100为云台,200为支撑机构,110为云台部件,120为电机,Y为偏航轴,P为俯仰轴,R为横滚轴。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括但不限于一个或者更多个所述特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请。为了简化本申请的公开,下文中对特定例子的部件和方法进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。
本实施例,首先提供了一种电机的控制方法,这种电机的控制方法应用于可移动平台,可移动平台包括用于搭载负载的云台、用于支撑云台的支撑机构,云台包括云台部件与电机。
图1是根据本申请的一个实施例的云台的控制原理图。如图1所示,云台在调整负载的姿态时,是通过惯性测量元件检测负载的当前姿态,并将负载的当前姿态并和目标姿态做比较,求出控制偏差,控制系统根据控制偏差控制电机,以调整负载的姿态,最终减小控制偏差,保证负载的实际姿态和目标姿态偏差尽量小。其中,当负载为成像装置时,可以使得成像装置稳定成像。
其中,在一些实施例中,支撑机构可以包括手持机构,在另一些实施例中,支撑机构可以包括移动机构。具体地,手持机构可以包括但不限于手柄,移动机构可以包括但不限于无人车的底盘、机器人的机身或无人机的机身。也即,可移动平台可以包括手持云台,也可以包括诸如无人车、无人机或机器人。
图2是根据本申请的第一个实施例的可移动平台10的剖视图,该可移动平台10以手持云台为例。如图2所示,支撑机构200可以包括手柄。可以理解地,手柄可以用于支撑云台100,且手柄的形状并不限于图2所示的柱状,也就是说,手柄不仅可以为圆柱状、棱柱状等,还可以为圆台状、棱锥状、球状等,甚至是上述各种形状的组合或异形形状等,本实施例对手柄的具体形状并不加以限定。这种可移动平台10可以直接被用户手持操作,应用场景广泛,便于用户操作,且节省成本。
可以理解地,手柄上可以设置有操作装置,操作装置可以为操作按键、操作杆或操控界面等,以便于控制云台100或负载,例如操控电机120的开启、关闭、转动等。其中,当负载为成像装置时,还可以用来操控成像装置的开启、关闭以及拍摄等。
图3是根据本申请的第二个实施例的可移动平台10的剖视图,该可移动平台10以可遥控的无人车为例。如图3所示,支撑机构200可以包括无人车的底盘。可以理解地,底盘可以用于支撑云台100,且底盘的移动方式并不限于图3所示的方式,也就是说,无人车可以 直接利用轮子进行移动,也可以通过履带等其他机构移动。其中,当无人车直接利用轮子进行移动时,无人车的轮子的数量可以为一个或多个,本实施例对此并不加以限定。
图4是根据本申请的第三个实施例的可移动平台10的剖视图,该可移动平台10以机器人为例。如图4所示,支撑机构200可以包括机器人的机身。可以理解地,云台100与机器人的机身的连接处并不限于图4所示的位置,也就是说,云台100不仅可以与机器人的机身的机器头部连接,也可以与器人的机身的机器手臂、机器背部等其他部位连接,本实施例对此并不加以限定。
图5是根据本申请的第四个实施例的可移动平台10的剖视图,该可移动平台10以无人机为例。如图5所示,支撑机构200可以包括无人机的机身。可以理解地,无人机通常也被称为UAV(Unmanned Aerial Vehicle,无人飞行器),其中,无人机可以包括固定翼无人机、旋翼无人机、伞翼无人机等各种类型。可以理解地,云台100与无人机的机身的连接处并不限于图5所示的位置,也就是说,云台100不仅可以与无人机的底部连接,也可以与无人机的顶部、侧部等位置连接,本实施例对此并不加以限制。
在一些实施例中,负载可以为成像装置,例如可以为照相机、摄像机等,具体地,可以为单反相机、微单相机等。在另一些实施例中,负载可以为智能终端,例如具有拍摄功能的手机、平板等。在其他实施例中,负载还可以为其他需要被移动、操作或调整姿态的装置,例如,测距装置、麦克风。
其中,云台100可以包括一个云台部件110、两个云台部件110、三个云台部件110或更多个云台部件110,相应地,云台100可以允许负载绕一个、两个、三个或更多个轴旋转,用于旋转的轴可以彼此正交,也可以不是正交。在一些实施例中,如图2、图3以及图4所示,云台部件110通过电机120可以控制负载的姿态,包括控制负载的俯仰角、横滚角以及偏航角中的一个或多个,相应地,负载可以绕俯仰轴P、横滚轴R以及偏航轴Y中的一个或多个旋转。
在一些实施例中,如图2、图3以及图4所示,云台部件110可 以为3个,如第一云台部件、第二云台部件以及第三云台部件,可以理解地,每个云台部件110可以包括连接臂。其中,第一云台部件与支撑机构200连接,并且第一云台部件可以相对支撑机构200转动,以使得负载的偏航角发生变化,即第一连接臂相对支撑机构200转动时,可以使得负载绕偏航轴Y旋转。第二云台部件与第一云台部件连接,并且第二云台部件可以相对支撑机构200转动,以使得负载的横滚角发生变化,即第二云台部件相对支撑机构200转动时,可以使得负载绕横滚轴R旋转。第三云台部件与第二云台部件连接,并且第三云台部件可以相对支撑机构200转动,以使得负载的俯仰角发生变化,即第三云台部件相对支撑机构200转动时,可以使得负载绕俯仰轴P旋转。
在另一些实施例中,如图5所示,云台部件110可以仅包括一个云台部件110,这个云台部件110可以相对支撑机构200转动,以使得负载的偏航角发生变化,即这个云台部件110相对支撑机构200转动时,可以使得负载绕偏航轴Y旋转。
可以理解地,图2、图3、图4、图5中云台部件110与支撑机构200的对应关系仅为示例性说明,并不对本实施例形成限制。例如,支撑机构200为无人机机身时,与无人机机身连接的云台100也可以有两个云台部件110、三个云台部件110或更多个云台部件110,并且可以使得负载可以绕俯仰轴、横滚轴以及偏航轴中的两个或三个旋转,从而使得负载也可以绕更多的轴旋转等。支撑机构200为手柄、机器人的机身或无人车的底盘时,云台100也可以有一个云台部件110、两个云台部件110或三个以上的云台部件110,并且可以使得负载可以绕俯仰轴、横滚轴以及偏航轴中的一个或两个旋转,从而使得负载也可以绕三个以上的轴旋转等。也就是说,不论支撑机构200是什么类型,云台100都既可以为单轴云台、双轴云台、三轴云台或其他轴数的云台。
其中,电机120包括转子部分以及定子部分,可以理解地,定子部分和转子部分可以相对转动,由于电机120本身的机构是本领域技术人员所习知的,在此不做赘述。
具体的,电机120的转子部分与定子部分中的一个与云台部件110连接,电机120的转子部分与定子部分中的另一个与支撑机构200连接,电机120用于驱动云台部件110以及负载绕预设轴线转动,例如,预设轴线可以包括偏航轴线Y。也就是说,在一些实施例中,可以是定子部分和云台部件110连接,转子部分和支撑机构200连接,在另一些实施例中,可以是转子部分和云台部件110连接,定子部分和支撑机构200连接。
图6是根据本申请的一个实施例的电机的控制方法的示意图,如图6所示,本实施例的控制方法包括:
S602,检测支撑机构的运动状态。
S604,当运动状态指示支撑机构沿一方向连续转动时,控制电机停止转动。
可以理解地,支撑机构的运动状态包括静止状态和转动状态。其中,转动状态是指支撑机构沿一方向连续转动,具体为支撑机构在电机的作用下一直沿顺时针方向或一直沿逆时针方向转动。
可以理解地,云台可以包括一个云台部件、两个云台部件、三个云台部件或更多个云台部件,相应地,云台可以允许负载绕一个、两个、三个或更多个轴旋转,用于旋转的轴可以彼此正交,也可以不是正交。也就是说,云台可以为单轴云台、双轴云台、三轴云台或其他轴数的多轴云台。相应地,云台可以包括与云台部件的数量相等的一个电机、两个电机、三个电机或更多个电机。其中,所有电机中有一个电机位于一个云台部件与支撑机构之间,也即,该电机的转子部分与定子部分中的一个与支撑机构直接连接,另一个与该云台部件直接连接,而其他的电机可以分别连接两个云台部件。其中,当运动状态指示支撑机构沿一方向连续转动时,被控制为停止转动的电机为位于该云台部件与支撑机构之间的电机。当位于该云台部件与支撑机构之间的电机停止转动时,其他的电机可以也停止转动。
以可以使负载绕俯仰轴、横滚轴以及偏航轴旋转的三轴云台为例,云台可以包括第一云台部件、第二云台部件以及第三云台部件。其中,第一云台部件可以与支撑机构连接,并且第一云台部件可以相 对支撑机构转动,以使得负载的偏航角发生变化,即第一云台部件相对支撑机构转动时,可以使得负载绕偏航轴旋转。第二云台部件与第一云台部件连接,并且第二云台部件可以相对支撑机构转动,以使得负载的横滚角发生变化,即第二云台部件相对支撑机构转动时,可以使得负载绕横滚轴旋转。第三云台部件与第二云台部件连接,并且第三云台部件可以相对支撑机构转动,以使得负载的俯仰角发生变化,即第三云台部件相对支撑机构转动时,可以使得负载绕俯仰轴旋转。相应地,云台还可以包括第一电机、第二电机以及第三电机。其中,第一电机可以连接第一云台部件与支撑机构,第一电机用于驱动负载绕偏航轴旋转;第二电机可以连接第一云台部件以及第二云台部件,第二电机用于驱动负载绕横滚轴旋转;第三电机可以连接第二云台部件以及第三云台部件,第三电机用于驱动负载绕俯仰轴旋转。其中,当运动状态指示支撑机构沿一方向连续转动时,被控制为停止转动的电机为第一电机。当第一电机停止转动时,第二电机以及第三电机可以也停止转动。可以理解地,本实施例对第一云台部件、第二云台部件以及第三云台部件与俯仰轴、横滚轴以及偏航轴的对应关系并不加以限制,例如,也可以为第一云台部件使得负载绕偏航轴旋转,第二云台部件使得负载绕俯仰轴旋转,第三云台部件使得负载绕横滚轴旋转等。
具体的,在云台的控制过程中,当支撑机构固定时,云台部件在电机的作用下,可以相对支撑机构转动,从而实现负载的姿态调整或增稳。如此,在用户把持云台的云台部件或者云台部件被其他力量或物体阻碍运动时,若控制电机出力无法抵抗固定云台部件的力而减小负载的目标姿态和当前姿态之间的偏差,则电机出力将会使得支撑机构相对于云台部件转动,且在电机未设置机械限位的情况下,支撑机构将在电机的作用下连续沿一方向转动。然而,支撑机构的连续转动不仅会影响用户的正常使用,还会造成电机发热严重的问题,进而可能导致云台的损坏。因此,在发生上述现象时,控制电机停止转动,可以有效地解决上述问题。这种方式在用户把持的位置为云台的云台部件或者云台部件被其他力量或物体阻碍运动时,不仅能保证用户的 使用体验,也避免了电机由于持续运行导致发热严重的问题,还达到了节约电力的效果。
其中,可以理解,云台的云台部件被固定而支撑机构未被固定的情况,可以包括支撑机构悬空的现象,即在检测到支撑机构悬空时,支撑机构可能沿一方向连续转动,此时,可以控制带动支撑机构转动的电机停止转动。
在一些实施例中,检测支撑机构的运动状态包括:获取支撑机构在预定时段period_detect内的连续转动次数cont_rot_cnt和转动角度范围anglerange;根据连续转动次数cont_rot_cnt和转动角度范围anglerange确定支撑机构的运动状态。
发明人发现,电机驱动支撑机构转动时的情况,与用户主动转动支撑机构时的情况相比,支撑机构在预定时段period_detect内的连续转动次数cont_rot_cnt和转动角度范围anglerange有较大区别。因此,为了避免用户主动转动支撑机构对支撑机构的运动状态的确定的误判,本实施例还根据支撑机构在预定时段period_detect内的连续转动次数cont_rot_cnt和转动角度范围anglerange来确定支撑机构的运动状态,以提高判断结果的准确性。
其中,预定时段period_detect可以根据实际情况或者实验来进行确定,例如,预定时段period_detect可以根据支撑机构的类型来确定。也就是说,当支撑机构不同时,相应地,预定时段period_detect的时间长度也不同。例如,支撑机构不同时,电机转动的快慢可以不一样,那么当支撑机构为手柄时,预定时段period_detect为一个时间长度;当支撑机构为机器人的机身时,预定时段period_detect可以为另一个时间长度;当支撑机构为无人车的底盘时,预定时段period_detect可以为又一个时间长度;当支撑机构为无人机的机身时,预定时段period_detect可以为再一个时间长度。在其他实施例中,预定时段period_detect还可以根据负载的类型或云台等的类型来确定,例如,根据负载的重量来确定预定时段period_detect的时间长度,根据云台可带动负载绕轴转动的轴数来确定预定时段period_detect的时间长度等。
在一些实施例中,支撑机构能够相对云台部件转动多个整周,例如,支撑机构能够相对云台部件转动2个整周、3个整周、4个整周、5个整周、6个整周、7个整周、8个整周、9个整周、10个整周、11个整周、12个整周、13个整周、14个整周、15个整周、16个整周、17个整周、18个整周或更多个整周。可以理解地,支撑机构能够相对云台部件转动多个整周还可以包括支撑机构能够相对云台部件无限制地转动,即支撑机构相对云台部件转动时可以不具有转动周数的限制。
根据连续转动次数cont_rot_cnt和转动角度范围anglerange确定支撑机构的运动状态具体可以包括:当连续转动次数cont_rot_cnt大于转动次数阈值cont_rot_cnt_thr且转动角度范围anglerange大于角度范围阈值anglerange_thr时,确定支撑机构沿一方向连续转动。
其中,转动次数阈值cont_rot_cnt_thr可以根据实际情况或实验确定,例如,转动次数阈值cont_rot_cnt_thr可以根据预定时段period_detect的时间长度来确定,也就是说,当预定时段period_detect的时间长度不同时,相应地,转动次数阈值cont_rot_cnt_thr的取值也不同。具体地,当预定时段period_detect的时间长度越长,则转动次数阈值cont_rot_cnt_thr可以取得越大,当预定时段period_detect的时间长度越短,则转动次数阈值cont_rot_cnt_thr可以取得越小。
角度范围阈值anglerange_thr也可以根据实际情况或实验确定,例如,角度范围阈值anglerange_thr可以根据预定时段period_detect的时间长度和支撑机构的转动速度来确定,也就是说,当预定时段period_detect的时间长度和/或支撑机构的转动速度不同时,相应地,角度范围阈值anglerange_thr的取值也不同。例如,当预定时段period_detect的时间长度越长、支撑机构的转动速度一定时,则角度范围阈值anglerange_thr越大;当预定时段period_detect的时间长度越短、支撑机构的转动速度一定时,则角度范围阈值anglerange_thr越小;当预定时段period_detect的时 间长度一定、支撑机构的转动速度越大时,则角度范围阈值anglerange_thr越大;当预定时段period_detect的时间长度一定、支撑机构的转动速度越小时,则角度范围阈值anglerange_thr越小。
由于用户主动转动支撑机构的情况相比于电机带动支撑机构转动的情况,难以在预定时段period_detect内取得较大的连续转动次数cont_rot_cnt和转动角度范围anglerange。因此,这种方式可以进一步有效地提高支撑机构是否沿一方向连续转动的判断结果的准确性。
在一些实施例中,获取支撑机构在预定时段period_detect内的连续转动次数cont_rot_cnt可以包括获取支撑机构的第一转动参数,以根据第一转动参数确定连续转动次数cont_rot_cnt。
根据第一转动参数确定连续转动次数cont_rot_cnt包括在预定时段period_detect内,每当第一转动参数大于第一阈值,则连续转动次数cont_rot_cnt增加一次。可以理解地,连续转动次数cont_rot_cnt的起始值可以为0。
在另一些实施例中,获取支撑机构在预定时段period_detect内的连续转动次数cont_rot_cnt可以包括获取支撑机构的第二转动参数,以根据第二转动参数确定连续转动次数cont_rot_cnt。
根据第二转动参数确定连续转动次数cont_rot_cnt包括在预定时段period_detect内,每当第二转动参数大于第二阈值,则连续转动次数cont_rot_cnt增加一次。可以理解地,连续转动次数cont_rot_cnt的起始值可以为0。
在又一些实施例中,获取支撑机构在预定时段period_detect内的连续转动次数cont_rot_cnt可以包括获取支撑机构的第一转动参数和第二转动参数,以根据第一转动参数和第二转动参数确定连续转动次数cont_rot_cnt。
根据第一转动参数和第二转动参数确定连续转动次数cont_rot_cnt包括在预定时段period_detect内,每当第一转动参数大于第一阈值和第二转动参数大于第二阈值,则连续转动次数cont_rot_cnt增加一次。可以理解地,连续转动次数cont_rot_cnt 的起始值可以为0。
其中,第一转动参数可以包括电机的输出力矩torq,则第一阈值包括力矩阈值torq_thr。
输出力矩torq可以通过电机的转速和功率计算得到,力矩阈值torq_thr的取值可以根据实际情况或实验情况确定,例如,力矩阈值torq_thr可以根据支撑机构的类型来确定,也就是说,当支撑机构不同时,相应地,力矩阈值torq_thr的取值也不同。例如,支撑机构不同时,电机转动的快慢可以不一样,那么当支撑机构为手柄时,力矩阈值torq_thr为一个取值;当支撑机构为机器人的机身时,力矩阈值torq_thr可以为另一个取值;当支撑机构为无人车的底盘时,力矩阈值torq_thr可以为又一个取值;当支撑机构为无人机的机身时,力矩阈值torq_thr可以为再一个取值。在其他实施例中,力矩阈值torq_thr还可以根据负载的类型或云台部件等的类型来确定,例如,根据负载的重量来确定力矩阈值torq_thr的取值,根据云台部件的可带动负载绕轴转动的轴数来确定力矩阈值torq_thr的取值等。
其中,第二转动参数包括支撑机构的转动角速度velo,则第二阈值包括角速度阈值velo_thr。获取支撑机构的第二转动参数可以包括根据支撑机构在预定时段period_detect内相邻两个时刻的转动角度angle,得到支撑机构的转动角速度velo。可以理解,由于支撑机构是由电机带动,则支撑机构的转动角速度也即电机的转动角速度。
由上述可知,支撑机构的转动次数可以不与电机转动的整周次数相匹配。也即,在电机转动的一整周内,若满足上述条件,可以记录到支撑机构有1次或1次以上的转动次数。
图7是根据本申请的一个实施例的可移动平台的支撑机构的剖视图,图8是根据本申请的一个实施例的电机的控制方法中确定转动角速度velo以及转动角度angle的原理图,可以理解地,转动角度angle可以通过支撑机构与电机连接处的角度传感器测量得到。
如图7所示,支撑机构上有一点A,在一些实施例中,预定时段 period_detect可以为t1表示的时刻与t4表示的时刻之间的时间,即t1为该预定时段period_detect的起始时刻,t4为该预定时段period_detect的结束时刻,如图8所示,t1时刻,A点位于A1表示的位置处,t4时刻,A点位于A4表示的位置。t2、t3为预定时段period_detect内相邻的两个时刻,可以理解地,相邻两个时刻间的时长可以根据实际情况选择,例如,相邻两个时刻间的时长可以为0.1s、0.2s、0.3s、0.4s、0.5s、0.6s、0.7s、0.8s、0.9s、1s、1.1s、1.2s等,优选地,为了便于计算,相邻两个时刻间的时长可以为1s。如图8所示,t2时刻,A点位于A2表示的位置处,t3时刻,A点位于A3表示的位置处。其中,t2时刻,A点的转动角度angle为A1、A2以及支撑机构的旋转中心O形成的夹角α;t3时刻,A点的转动角度angle为A1、A3以及支撑机构的旋转中心O形成的夹角β。因此,支撑机构在预定时段period_detect内相邻两个时刻的转动角度angle为(β-α),相应地,支撑机构的转动角速度velo为(β-α)与相邻两个时刻间的时长的比值。其中,当相邻两个时刻间的时长为1s时,支撑机构的转动角速度velo与(β-α)的数值相等。
其中,角速度阈值velo_thr的取值可以根据实际情况或实验情况确定,例如,角速度阈值velo_thr可以根据支撑机构的类型来确定,也就是说,当支撑机构不同时,相应地,角速度阈值velo_thr的取值也不同。例如,支撑机构不同时,电机转动的快慢可以不一样,那么当支撑机构为手柄时,角速度阈值velo_thr为一个取值;当支撑机构为机器人的机身时,角速度阈值velo_thr可以为另一个取值;当支撑机构为无人车的底盘时,角速度阈值velo_thr可以为又一个取值;当支撑机构为无人机的机身时,角速度阈值velo_thr可以为再一个取值。在其他实施例中,角速度阈值velo_thr还可以根据负载的类型或云台部件等的类型来确定,例如,根据负载的重量来确定角速度阈值velo_thr的取值,根据云台部件的可带动负载绕轴转动的轴数来确定角速度阈值velo_thr的取值等。
并且,可以理解地,输出力矩torq以及转动角速度velo的取值可以不包括表示方向的符号,即为对应的物理量的绝对值。
在一些实施例中,获取支撑机构在预定时段period_detect内的转动角度范围anglerange包括获取支撑机构在预定时段period_detect内的最大角度值angle_max和最小角度值angle_min,还包括根据最大角度值angle_max和最小角度值angle_min得到转动角度范围anglerange。
如图8所示,支撑机构在预定时段period_detect内的最大角度值angle_max为A点转动到A4时对应的角度值,支撑机构在预定时段period_detect内的最小角度值angle_min为A点在A1时对应的角度值,可以用最大角度值angle_max减去最小角度值angle_min,从而得到转动角度范围anglerange,即转动角度范围anglerange为(angle_max-angle_min)。如图8所示,此时,最大角度值angle_max减去最小角度值angle_min的结果为γ,则转动角度范围anglerange为γ。
由于用户主动转动支撑机构的情况相比于电机带动支撑机构转动的情况,电机难以在预定时段period_detect内取得较大的转动角速度velo和输出力矩torq。因此,这种方式可以进一步有效地提高支撑机构是否沿一方向连续转动的判断结果的准确性。
在一些实施例中,在运动状态指示支撑机构沿一方向连续转动,控制电机停止转动后,控制方法还包括控制支撑机构与云台部件沿预设轴线保持相对位置。
具体地,控制支撑机构与云台部件沿预设轴线保持相对位置包括:若负载的姿态中对应预设轴线的姿态分量发生变化,则控制电机带动支撑机构跟随云台部件转动,使支撑机构与云台部件沿预设轴线保持相对位置。
例如,当预设轴线为偏航轴线时,若负载的姿态中的偏航姿态发生变化,则控制电机带动支撑机构跟随云台部件转动,使支撑机构与云台部件沿偏航轴线保持相对位置。当预设轴线为俯仰轴线时,若负载的姿态中的俯仰姿态发生变化,则控制电机带动支撑机构跟随云台部件转动,使支撑机构与云台部件沿俯仰轴线保持相对位置。当预设轴线为横滚轴线时,若负载的姿态中的横滚姿态发生变化,则控制电 机带动支撑机构跟随云台部件转动,使支撑机构与云台部件沿横滚轴线保持相对位置。也即,使得支撑机构可以跟随云台部件绕预设轴线转动,以达到随动的效果而保持彼此之间的相对位置。
可以理解地,电机停止转动后,当用户握持云台部件并使负载的姿态中对应预设轴线的姿态分量发生变化时,云台部件与支撑机构间会产生相对位置的变化,这种相对位置的变化可能会使支撑机构与用户或周围其他物体碰撞,从而影响用户体验。因此,本实施例使支撑机构与云台部件沿预设轴线保持相对位置,从而提升用户体验。
本实施例还提供了一种电机状态的检测方法,该检测方法应用于云台,云台包括云台部件以及与云台部件连接的电机,电机用于驱动云台支撑的负载绕预设轴线转动。
其中,云台可以包括一个云台部件、两个云台部件、三个云台部件或更多个云台部件,相应地,云台可以允许负载绕一个、两个、三个或更多个轴旋转,用于旋转的轴可以彼此正交,也可以不是正交。也就是说,云台可以为单轴云台、双轴云台、三轴云台或其他轴数的多轴云台。相应地,云台可以包括与云台部件的数量相等的一个电机、两个电机、三个电机或更多个电机,本实施例提供的检测方法可以应用于至少一个电机。
以可以使负载绕俯仰轴、横滚轴以及偏航轴旋转的三轴云台为例,云台可以包括第一云台部件、第二云台部件以及第三云台部件。其中,第一云台部件可以与支撑机构连接,并且第一云台部件可以相对支撑机构转动,以使得负载的偏航角发生变化,即第一云台部件相对支撑机构转动时,可以使得负载绕偏航轴旋转。第二云台部件与第一云台部件连接,并且第二云台部件可以相对支撑机构转动,以使得负载的横滚角发生变化,即第二云台部件相对支撑机构转动时,可以使得负载绕横滚轴旋转。第三云台部件与第二云台部件连接,并且第三云台部件可以相对支撑机构转动,以使得负载的俯仰角发生变化,即第三云台部件相对支撑机构转动时,可以使得负载绕俯仰轴旋转。相应地,云台还可以包括第一电机、第二电机以及第三电机。其中,第一电机可以连接支撑机构以及第一云台部件,第一电机用于驱动负 载绕偏航轴旋转;第二电机可以连接第一云台部件以及第二云台部件,第二电机用于驱动负载绕横滚轴旋转;第三电机可以连接第二云台部件以及第三云台部件,第三电机用于驱动负载绕俯仰轴旋转。这种电机状态的检测方法可以仅应用于第一电机、第二电机或第三电机,或者可以应用于第一电机、第二电机以及第三电机中任意两个,又或者同时应用于第一电机、第二电机以及第三电机。可以理解地,本实施例对第一云台部件、第二云台部件以及第三云台部件与俯仰轴、横滚轴以及偏航轴的对应关系并不加以限制,例如,也可以为第一云台部件使得负载绕偏航轴旋转,第二云台部件使得负载绕俯仰轴旋转,第三云台部件使得负载绕横滚轴旋转等。图9是根据本申请的一个实施例的电机状态的检测方法的示意图。如图9所示,检测方法包括:
S902,获取电机的输出力矩值。
S904,根据输出力矩值确定电机的实时温度值。
S906,根据电机的实时温度值确定电机的发热状态。
发明人发现,电机的输出力矩值与电机的实时温度值是相关的,可以根据电机的输出力矩值来确定电机的实时温度,从而确定电机的发热状态,进而可以准确、有效地实现对电机的控制,提高了电机的发热状态的判断结果的准确性。如此,可以有效避免可移动平台持续较大出力导致电机发热严重的问题,进而可以避免可移动平台损坏以及用户被烫伤等问题,从而保护电机,提升用户体验。
在一些实施例中,根据输出力矩值确定电机的实时温度值包括获取输出力矩值与电机的至少一个温度参数的第一对应关系,还包括根据输出力矩值和第一对应关系确定实时温度值。其中,至少一个温度参数包括电机的稳态温度T_final和/或时间常数τ。
可以理解地,在电机开始工作时,电机的温度会先上升,在一段时间后,电机的温度不再上升,即电机的温度不再随时间变化,此时,电机的温度即稳态温度T_final,而电机达到稳态温度T_final所需的时间即时间常数τ。
具体地,第一对应关系可以包括稳态温度T_final与输出力矩 torq正相关,即输出力矩torq越大,电机的稳态温度T_final越高。第一对应关系还可以包括时间常数τ与输出力矩torq负相关,即输出力矩torq越大,时间常数τ的值越小。
更具体地,第一对应关系可以包括稳态温度T_final与输出力矩torq的平方正相关,即输出力矩torq的平方越大,电机的稳态温度T_final越高。第一对应关系还可以包括时间常数τ与输出力矩torq的平方负相关,即输出力矩torq的平方越大,时间常数τ的值越小。
其中,电机的实时温度T与电机的稳态温度T_final可以呈现惯性关系。例如:
Figure PCTCN2020117161-appb-000001
公式1中,T是电机的实时温度,s为时间,τ为时间常数,T_final为电机的稳态温度。
其中,根据输出力矩值和第一对应关系确定实时温度值可以包括:根据输出力矩值和第一对应关系确定电机的稳态温度值和时间常数值;根据稳态温度值和时间常数值确定实时温度值。在一些实施例中,第一对应关系可以为不同的输出力矩torq与不同的稳态温度值、时间常数值的关系,该第一对应关系可以提前设置并保存在云台的相应存储器中,具体可以以表格的形式或函数的形式进行存储。
在一些实施例中,根据稳态温度值和时间常数值确定实时温度值包括:根据稳态温度值和时间常数值,确定电机的实时温度与稳态温度T_final和时间常数τ的第二对应关系;并根据第二对应关系、前一时刻的稳态温度值、前一时刻的实时温度值、当前时刻的稳态温度值得到当前时刻的实时温度值。
可以理解地,根据输出力矩值和第一对应关系确定电机的稳态温度值包括确定当前时刻的稳态温度值以及前一时刻的稳态温度值。其中,第二对应关系可以将公式1按照采样频率fs,使用双线性变换离散化,再化为差分方程得到,具体地,第二对应关系可以如下公式 2所示:
Figure PCTCN2020117161-appb-000002
公式2中,T(k)为当前时刻的实时温度值,τ为时间常数,fs为采样频率,T_final(k-1)为前一时刻的稳态温度,T_final(k)为当前时刻的稳态温度,T(k-1)为前一时刻的实时温度值。
可以理解地,采样频率可以根据实际情况进行选择,本实施例对此并不加以限制。
其中,发热状态可以包括过热状态以及正常状态。则根据电机的实时温度值确定电机的发热状态可以包括当实时温度值大于温度阈值T_thr时,确定电机处于过热状态,还可以包括当实时温度值不大于温度阈值T_thr时,确定电机处于正常状态。
温度阈值T_thr的大小可以根据实际情况确定。例如,根据电机的型号、温升等确定,其中,温升为允许电机高出周围环境温度的数值。该温度阈值T_thr可以为40℃到80℃之间的任一值,例如,该温度阈值T_thr可以为40℃、41℃、42℃、43℃、44℃、45℃、46℃、47℃、48℃、49℃、50℃、51℃、52℃、53℃、54℃、55℃、56℃、57℃、58℃、59℃、60℃、61℃、62℃、63℃、64℃、65℃、66℃、67℃、68℃、69℃、70℃、71℃、72℃、73℃、74℃、75℃、76℃、77℃、78℃、79℃、80℃等。
在一些实施例中,检测方法还包括当电机处于过热状态时,控制电机进入休眠状态。在另一些实施例中,云台包括多个电机,检测方法还包括当其中一个电机处于过热状态时,控制云台的多个电机均进入休眠状态。如此,在其中一个电机过热而导致云台的增稳或角度调节性能降低时,通过将所有电机控制为休眠状态,以中止或暂停云台的增稳或角度调节功能,可以降低云台的整体功耗,并避免云台的增稳或角度调节性能降低的影响。
其中,休眠状态可以是电机不断电,但是停止出力或者由正常出 力大小减小为休眠出力大小,并且在电机进入休眠状态后,可移动平台的其他模块可以正常运转,例如,用于操控可移动平台的按键可以处于正常状态,并可以通过接收模块以及发送模块正常接收以及发送信息等。在一些实施例中,在电机进入休眠状态后,可以在用户的触发下结束休眠状态,以进入可以正常出力的普通状态。在另一些实施例中,在电机进入休眠状态后,在设定时间阈值后,可以自行恢复普通状态。其中,设定时间阈值的大小可以根据实际需求确定,例如,设定时间阈值可以为1s、2s、3s、4s、5s、6s、7s、8s、9s、10s等。
在一些实施例中,云台还可以包括显示装置,显示装置可以显示电机出力的百分比,即电机的输出力矩torq与电机可以输出的最大力矩的比值,并且用户可以调节该百分比,即调节电机的输出力矩torq。这种方式便于用户直观地掌握电机的休眠状态与该百分比之间的关系,从而便于根据需求来调整该百分比,防止电机进入过热状态,提升了用户体验。
检测方法还可以包括发出用于提示过热状态的提示信息。即在确定电机的发热状态为过热状态时,发出用于提示过热状态的提示信息,以便于用户实时掌握电机的发热状态,并便于用户掌握电机进入休眠状态的原因,以提升用户体验。
其中,提示信息包括视觉提示信息、听觉提示信息以及触觉提示信息中至少一种。也就是说,在一些实施例中,提示信息可以仅包括视觉提示信息,或仅包括听觉提示信息,又或者仅包括触觉提示信息。在另一些实施例中,提示信息可以包括视觉提示信息、听觉提示信息以及触觉提示信息中任意两种。在其他实施例中,提示信息可以同时包括视觉提示信息、听觉提示信息以及触觉提示信息。
视觉提示信息可以包括图像,也可以包括文字,还可以同时包括图像和文字。具体地,可移动平台可以包括显示装置,则可以通过显示装置显示图像和/或文字。其中,本实施例对显示装置的位置并不加以限制,例如,显示装置可以位于支撑机构,又或者与支撑机构以及云台部件间隔设置,也可以独立于可移动平台并与可移动平台通信连接。
听觉提示信息可以包括电机振动产生的声音。其中,电机振动的频率可以根据实际情况选择,本实施例对此并不加以限制。
触觉提示信息可以包括震动,例如,支撑机构的震动、云台部件的震动等,其中,该震动的频率可以根据实际情况选择,本实施例对此并不加以限制。
在一些实施例中,电机进入休眠状态是在提示信息发出预设时长后触发的。预设时长的长短可以根据实际需求确定,例如,预设时长可以为1s、2s、3s、4s、5s、6s、7s、8s、9s、10s等。这种方式可以使得用户具有一定的时间完成想要进行的操作,提升了用户体验。
本实施例还提供了另外一种电机状态的检测方法,该另外一种电机状态的检测方法应用于云台,云台包括云台部件以及用于驱动云台部件绕预设轴线转动的电机。
在该另外一种电机状态的检测方法中,先设置多个调节阈值组,每个调节阈值组包括一个力矩调节阈值以及一个时间调节阈值。多个调节阈值组可以为两个调节阈值组、三个调节阈值组、四个调节阈值组、五个调节阈值组或更多个调节阈值组。例如,当多个调节阈值组为三个调节阈值组时,则包括第一调节阈值组、第二调节阈值组以及第三调节阈值组,第一调节阈值组包括第一力矩调节阈值torq_thr_1和第一时间调节阈值cnt_thr_1,第二调节阈值组包括第二力矩调节阈值torq_thr_2和第二时间调节阈值cnt_thr_2,第三调节阈值组包括第三力矩调节阈值torq_thr_3和第三时间调节阈值cnt_thr_3。在电机的运行过程中,当检测到电机的当前输出力矩torq持续大于任一力矩调节阈值的时间累计达到对应的时间调节阈值时,则控制电机进入休眠,这种方式同样可以避免电机发热严重的问题。
相比于仅设置一个力矩调节阈值以及一个时间调节阈值,且在检测到电机的当前输出力矩torq持续大于该力矩调节阈值的时间累计达到该时间调节阈值时,则控制电机进入休眠的方案,该设置多组调节阈值组的电机状态的检测方法能更加有效地避免电机发热严重的问题。具体的,在电机持续出力,但是出力未达到该仅设置一个的力矩调节阈值的情况下一段时间后,也同样可能存在电机发热严重的问 题,然而,仅设置一个力矩调节阈值以及一个时间调节阈值无法在这种情况下解决电机发热严重的问题。而该另外一种电机状态的检测方法中,由于设置了多个调节阈值组,且当检测到电机的当前输出力矩torq持续大于任一力矩调节阈值的时间累计达到对应的时间调节阈值时,就控制电机进入休眠,可以在电机持续出力较大,也即,在未达到其中一个力矩调节阈值,而达到另外一个力矩调节阈值的情况下,可以控制电机进入休眠状态,从而避免电机发热严重的问题。
本实施例还提供了一种可移动平台的控制装置,可移动平台包括用于搭载负载的云台、用于支撑云台的支撑机构,云台包括云台部件与电机,电机的转子部分与定子部分中的一个与云台部件连接,电机的转子部分与定子部分中的另一个与支撑机构连接,电机用于驱动云台部件以及负载绕预设轴线转动。其中,预设轴线可以包括偏航轴线。
可以理解地,控制装置可以位于支撑机构,也可以独立于可移动平台并与可移动平台通信连接。
控制装置还包括存储器以及处理器。存储器用于存储可执行指令,处理器用于执行存储器中存储的可执行指令,以执行如下操作:检测支撑机构的运动状态,当运动状态指示支撑机构沿一方向连续转动时,控制电机停止转动。
处理器还可以执行如下操作:获取支撑机构在预定时段period_detect内的连续转动次数cont_rot_cnt和转动角度范围anglerange,根据连续转动次数cont_rot_cnt和转动角度范围anglerange确定支撑机构的运动状态。
处理器还可以执行如下操作:获取支撑机构的第一转动参数和/或第二转动参数,根据第一转动参数和/第二转动参数确定连续转动次数cont_rot_cnt。
处理器还可以执行如下操作:在预定时段period_detect内,每当第一转动参数大于第一阈值和/或第二转动参数大于第二阈值,则连续转动次数cont_rot_cnt增加一次。
在一些实施例中,第一转动参数包括电机的输出力矩torq,第一阈值包括力矩阈值torq_thr,第二转动参数包括支撑机构的转动 角速度velo,第二阈值包括角速度阈值velo_thr。
处理器还可以执行如下操作:根据支撑机构在预定时段period_detect内相邻两个时刻的转动角度angle,得到支撑机构的转动角速度velo。
处理器还可以执行如下操作:获取支撑机构在预定时段period_detect内的最大角度值angle_max和最小角度值angle_min,根据最大角度值angle_max和最小角度值angle_min得到转动角度范围anglerange。
在一些实施例中,支撑机构能够相对云台部件转动多个整周。处理器还可以执行如下操作:当连续转动次数cont_rot_cnt大于转动次数阈值cont_rot_cnt_thr且转动角度范围anglerange大于角度范围阈值anglerange_thr时,确定支撑机构沿一方向连续转动。
在运动状态指示支撑机构沿一方向连续转动,控制电机停止转动后,处理器还可以执行如下操作:控制支撑机构与云台部件沿预设轴线保持相对位置。
其中,若负载的姿态中对应预设轴线的姿态分量发生变化,则处理器还可以执行如下操作:控制电机带动支撑机构跟随云台部件转动,使支撑机构与云台部件沿预设轴线保持相对位置。
支撑机构可以包括手持机构或移动机构。手持机构可以包括手柄,移动机构可以包括无人车的底盘、机器人的机身或无人机的机身。
本实施例还提供了一种电机状态的检测装置,电机状态的检测装置应用于云台,云台包括云台部件以及与云台部件连接的电机,电机用于驱动云台支撑的负载绕预设轴线转动。
检测装置包括存储器以及处理器。存储器用于存储可执行指令。处理器用于执行存储器中存储的可执行指令,以执行如下操作:获取电机的输出力矩值;根据输出力矩值确定电机的实时温度值;根据电机的实时温度值确定电机的发热状态。
可以理解地,检测装置可以位于用于支撑云台的支撑机构,也可以独立于云台并与云台通信连接。
处理器还可以执行如下操作:获取输出力矩值与电机的至少一个 温度参数的第一对应关系,根据输出力矩值和第一对应关系确定实时温度值。
其中,至少一个温度参数可以包括电机的稳态温度T_final和/或时间常数τ。
第一对应关系可以包括:稳态温度T_final与输出力矩torq正相关;时间常数τ与输出力矩torq负相关。
处理器还可以执行如下操作:根据输出力矩值和第一对应关系确定电机的稳态温度值和时间常数值;根据稳态温度值和时间常数值确定实时温度值。
处理器还可以执行如下操作:根据稳态温度值和时间常数值,确定电机的实时温度与稳态温度T_final和时间常数τ的第二对应关系,根据对应关系、前一时刻的稳态温度值、前一时刻的实时温度值、当前时刻的稳态温度值得到当前时刻的实时温度值。
其中,发热状态可以包括过热状态以及正常状态。处理器还可以执行如下操作:当实时温度值大于阈值时,确定电机处于过热状态,当实时温度值不大于阈值时,确定电机处于正常状态。
处理器还可以执行如下操作:当电机处于过热状态时,控制电机进入休眠状态。
云台可以包括多个电机,处理器还可以执行如下操作:当其中一个电机处于过热状态时,控制云台的多个电机均进入休眠状态。
处理器还可以执行如下操作:通过提示装置发出用于提示过热状态的提示信息。其中,电机进入休眠状态可以是在提示信息发出预设时长后触发的。
提示信息可以包括以下至少一种:视觉提示信息、听觉提示信息、触觉提示信息。视觉提示信息可以包括图像和/或文字,听觉提示信息可以包括电机振动产生的声音,触觉提示信息可以包括震动。
本实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有可执行指令,可执行指令在由一个或多个处理器执行时,可以使一个或多个处理器执行上述任一控制方法或上述任一检测方法。
其中计算机可读存储介质也可以被称为存储器,可执行指令又可 以被称为程序。处理器可以根据存储在只读存储器(ROM)中的程序或者加载到随机访问存储器(RAM)中的程序而执行各种适当的动作和处理。处理器例如可以包括通用微处理器(例如CPU)、指令集处理器和/或相关芯片组和/或专用微处理器(例如,专用集成电路(ASIC)),等等。处理器还可以包括用于缓存用途的板载存储器。处理器可以包括用于执行根据本实施例的方法流程的不同动作的单一处理单元或者是多个处理单元。
处理器、ROM以及RAM通过总线彼此相连。处理器通过执行ROM和/或RAM中的程序来执行根据本实施例的方法流程的各种操作。需要注意,程序也可以存储在除ROM和RAM以外的一个或多个存储器中。处理器也可以通过执行存储在一个或多个存储器中的程序来执行根据本实施例的方法流程的各种操作。
根据本实施例,应用计算机可读存储介质的装置还可以包括输入/输出(I/O)接口,输入/输出(I/O)接口也连接至总线。应用计算机可读存储介质的装置还可以包括连接至I/O接口的以下部件中的一项或多项:包括键盘、鼠标等的输入部分;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分;包括硬盘等的存储部分;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分。通信部分经由诸如因特网的网络执行通信处理。驱动器也根据需要连接至I/O接口。可拆卸介质,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器上,以便于从其上读出的计算机程序根据需要被安装入存储部分。
根据本实施例的方法流程可以被实现为计算机软件程序。例如,本实施例包括一种计算机程序产品,其包括承载在计算机可读存储介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分从网络上被下载和安装,和/或从可拆卸介质被安装。在该计算机程序被处理器执行时,执行本实施例的系统中限定的上述功能。
可以理解地,计算机可读存储介质可以包括但不限于非易失性或易失性存储介质,例如随机存取存储器(RAM)、静态RAM、动态RAM、 只读存储器(ROM)、可编程ROM、可擦除可编程ROM、电可擦除可编程ROM、闪存、安全数字(SD)卡等。
本实施例还提供了一种可移动平台。可移动平台包括:用于搭载负载的云台、用于支撑云台的支撑机构以及上述任一控制装置。云台包括云台部件与电机,其中,电机的转子部分与定子部分中的一个与云台部件连接,电机的转子部分与定子部分中的另一个与支撑机构连接,电机用于驱动云台部件以及负载绕预设轴线转动。该控制装置的相关内容可参考前述实施例,此处不再赘述。
本实施例还提供了一种云台。云台包括:云台部件、与云台部件连接的电机以及上述任一检测装置。其中,电机用于驱动云台支撑的负载绕预设轴线转动。
本实施例还提供了一种包括上述具有检测装置的云台和用于支撑上述云台的支撑机构的可移动平台,其中,支撑机构可以包括手持机构或移动机构,手持机构可以包括手柄,移动机构可以包括无人车的底盘、机器人的机身或无人机的机身。该检测装置的相关内容可参考前述实施例,此处不再赘述。
对于本申请的实施例,还需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (60)

  1. 一种电机的控制方法,应用于可移动平台,所述可移动平台包括用于搭载负载的云台、用于支撑所述云台的支撑机构,所述云台包括云台部件与所述电机,所述电机的转子部分与定子部分中的一个与所述云台部件连接,所述电机的转子部分与定子部分中的另一个与所述支撑机构连接,所述电机用于驱动所述云台部件以及所述负载绕预设轴线转动,其特征在于,所述控制方法包括:
    检测所述支撑机构的运动状态;
    当所述运动状态指示所述支撑机构沿一方向连续转动时,控制所述电机停止转动。
  2. 如权利要求1所述的控制方法,其特征在于,所述检测所述支撑机构的运动状态,包括:
    获取所述支撑机构在预定时段内的连续转动次数和转动角度范围;
    根据所述连续转动次数和所述转动角度范围确定所述支撑机构的运动状态。
  3. 如权利要求2所述的控制方法,其特征在于,所述获取所述支撑机构在预定时段内的连续转动次数,包括:
    获取所述支撑机构的第一转动参数和/或第二转动参数;
    根据所述第一转动参数和/或所述第二转动参数确定所述连续转动次数。
  4. 如权利要求3所述的控制方法,其特征在于,所述根据所述第一转动参数和/或所述第二转动参数确定所述连续转动次数,包括:
    在所述预定时段内,每当所述第一转动参数大于第一阈值和/或所述第二转动参数大于第二阈值,则所述连续转动次数增加一次。
  5. 如权利要求4所述的控制方法,其特征在于,所述第一转动参数包括所述电机的输出力矩,所述第一阈值包括力矩阈值;
    所述第二转动参数包括所述支撑机构的转动角速度,所述第二阈值包括角速度阈值。
  6. 如权利求5所述的控制方法,其特征在于,所述获取所述支撑机构的第二转动参数,包括:
    根据所述支撑机构在所述预定时段内相邻两个时刻的转动角度,得到所述支撑机构的转动角速度。
  7. 如权利要求2所述的控制方法,其特征在于,所述获取所述支撑机构在预定时段内的转动角度范围,包括:
    获取所述支撑机构在所述预定时段内的最大角度值和最小角度值;
    根据所述最大角度值和所述最小角度值得到所述转动角度范围。
  8. 如权利要求2所述的控制方法,其特征在于,所述支撑机构能够相对所述云台部件转动多个整周;
    所述根据所述连续转动次数和所述转动角度范围确定所述支撑机构的运动状态,包括:
    当所述连续转动次数大于转动次数阈值且所述转动角度范围大于角度范围阈值时,确定所述支撑机构沿一方向连续转动。
  9. 如权利要求1所述的控制方法,其特征在于,在所述运动状态指示所述支撑机构沿一方向连续转动,控制所述电机停止转动后,所述控制方法还包括:
    控制所述支撑机构与所述云台部件沿所述预设轴线保持相对位置。
  10. 如权利要求9所述的控制方法,其特征在于,所述控制所述支撑机构与所述云台部件沿所述预设轴线保持相对位置,包括:
    若所述负载的姿态中对应所述预设轴线的姿态分量发生变化,则控制所述电机带动所述支撑机构跟随所述云台部件转动,使所述支撑机构与所述云台部件沿所述预设轴线保持相对位置。
  11. 如权利要求1所述的控制方法,其特征在于,所述预设轴线包括偏航轴线。
  12. 如权利要求1所述的控制方法,其特征在于,所述支撑机构包括手持机构或移动机构。
  13. 如权利要求12所述的控制方法,其特征在于,所述手持机构包括手柄;
    所述移动机构包括无人车的底盘、机器人的机身或无人机的机身。
  14. 一种电机状态的检测方法,应用于云台,所述云台包括云台部件以及与所述云台部件连接的电机,所述电机用于驱动所述云台支撑的负载绕预设轴线转动,其特征在于,所述检测方法包括:
    获取所述电机的输出力矩值;
    根据所述输出力矩值确定所述电机的实时温度值;
    根据所述电机的实时温度值确定所述电机的发热状态。
  15. 如权利要求14所述的检测方法,其特征在于,所述根据所述输出力矩值确定所述电机的实时温度值,包括:
    获取所述输出力矩值与所述电机的至少一个温度参数的第一对应关系;
    根据所述输出力矩值和所述第一对应关系确定所述实时温度值。
  16. 如权利要求15所述的检测方法,其特征在于,所述至少一个温度参数包括:所述电机的稳态温度和/或时间常数。
  17. 如权利要求16所述的检测方法,其特征在于,所述第一对应关系包括:
    所述稳态温度与所述输出力矩正相关;
    所述时间常数与所述输出力矩负相关。
  18. 如权利要求16所述的检测方法,其特征在于,所述根据所述输出力矩值和所述第一对应关系确定所述实时温度值,包括:
    根据所述输出力矩值和所述第一对应关系确定所述电机的稳态温度值和时间常数值;
    根据所述稳态温度值和所述时间常数值确定所述实时温度值。
  19. 如权利要求18所述的检测方法,其特征在于,所述根据所述稳态温度值和所述时间常数值确定所述实时温度值,包括:
    根据所述稳态温度值和所述时间常数值,确定所述电机的实时温度与所述稳态温度和所述时间常数的第二对应关系;
    根据所述第二对应关系、前一时刻的稳态温度值、前一时刻的实时温度值、当前时刻的稳态温度值得到当前时刻的实时温度值。
  20. 如权利要求14所述的检测方法,其特征在于,所述发热状态包括:过热状态、正常状态。
  21. 如权利要求20所述的检测方法,其特征在于,所述根据所述电机的实时温度值确定所述电机的发热状态,包括:
    当所述实时温度值大于温度阈值时,确定所述电机处于所述过热状态;
    当所述实时温度值不大于所述温度阈值时,确定所述电机处于所述正常状态。
  22. 如权利要求21所述的检测方法,其特征在于,所述检测方法还包括:
    当所述电机处于所述过热状态时,控制所述电机进入休眠状态。
  23. 如权利要求21所述的检测方法,其特征在于,所述云台包括多个所述电机,所述检测方法还包括:
    当其中一个所述电机处于所述过热状态时,控制所述云台的多个所述电机均进入休眠状态。
  24. 如权利要求22或23所述的检测方法,其特征在于,所述检测方法还包括:
    发出用于提示所述过热状态的提示信息。
  25. 如权利要求24所述的检测方法,其特征在于,所述电机进入所述休眠状态是在所述提示信息发出预设时长后触发的。
  26. 如权利要求24所述的检测方法,其特征在于,所述提示信息包括以下至少一种:视觉提示信息、听觉提示信息、触觉提示信息。
  27. 如权利要求26所述的检测方法,其特征在于,所述视觉提示信息包括:图像和/或文字;
    所述听觉提示信息包括:所述电机振动产生的声音;
    所述触觉提示信息包括:震动。
  28. 一种可移动平台的控制装置,所述可移动平台包括用于搭载负载的云台、用于支撑所述云台的支撑机构,所述云台包括云台部件与电机,所述电机的转子部分与定子部分中的一个与所述云台部件连接,所述电机的转子部分与定子部分中的另一个与所述支撑机构连 接,所述电机用于驱动所述云台部件以及所述负载绕预设轴线转动,其特征在于,所述控制装置包括:
    存储器,用于存储可执行指令;
    处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:
    检测所述支撑机构的运动状态;
    当所述运动状态指示所述支撑机构沿一方向连续转动时,控制所述电机停止转动。
  29. 如权利要求28所述的控制装置,其特征在于,所述处理器还执行如下操作:
    获取所述支撑机构在预定时段内的连续转动次数和转动角度范围;
    根据所述连续转动次数和所述转动角度范围确定所述支撑机构的运动状态。
  30. 如权利要求29所述的控制装置,其特征在于,所述处理器还执行如下操作:
    获取所述支撑机构的第一转动参数和/或第二转动参数;
    根据所述第一转动参数和/或所述第二转动参数确定所述连续转动次数。
  31. 如权利要求30所述的控制装置,其特征在于,所述处理器还执行如下操作:
    在所述预定时段内,每当所述第一转动参数大于第一阈值和/或所述第二转动参数大于第二阈值,则所述连续转动次数增加一次。
  32. 如权利要求31所述的控制装置,其特征在于,所述第一转动参数包括所述电机的输出力矩,所述第一阈值包括力矩阈值;
    所述第二转动参数包括所述支撑机构的转动角速度,所述第二阈值包括角速度阈值。
  33. 如权利求32所述的控制装置,其特征在于,所述处理器还执行如下操作:
    根据所述支撑机构在所述预定时段内相邻两个时刻的转动角度,得到所述支撑机构的转动角速度。
  34. 如权利要求29所述的控制装置,其特征在于,所述处理器还执行如下操作:
    获取所述支撑机构在所述预定时段内的最大角度值和最小角度值;
    根据所述最大角度值和所述最小角度值得到所述转动角度范围。
  35. 如权利要求29所述的控制装置,其特征在于,所述支撑机构能够相对所述云台部件转动多个整周;所述处理器还执行如下操作:
    当所述连续转动次数大于转动次数阈值且所述转动角度范围大于角度范围阈值时,确定所述支撑机构沿一方向连续转动。
  36. 如权利要求28所述的控制装置,其特征在于,在所述运动状态指示所述支撑机构沿一方向连续转动,控制所述电机停止转动后,所述处理器还执行如下操作:
    控制所述支撑机构与所述云台部件沿所述预设轴线保持相对位置。
  37. 如权利要求36所述的控制装置,其特征在于,若所述负载的姿态中对应所述预设轴线的姿态分量发生变化,则所述处理器还执行如下操作:
    控制所述电机带动所述支撑机构跟随所述云台部件转动,使所述支撑机构与所述云台部件沿所述预设轴线保持相对位置。
  38. 如权利要求28所述的控制装置,其特征在于,所述预设轴线包括偏航轴线。
  39. 如权利要求28所述的控制装置,其特征在于,所述支撑机构包括手持机构或移动机构。
  40. 如权利要求39所述的控制装置,其特征在于,
    所述手持机构包括手柄;
    所述移动机构包括无人车的底盘、机器人的机身或无人机的机身。
  41. 一种电机状态的检测装置,应用于云台,所述云台包括云台部件以及与所述云台部件连接的电机,所述电机用于驱动所述云台支撑的负载绕预设轴线转动,其特征在于,所述检测装置包括:
    存储器,用于存储可执行指令;
    处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:
    获取所述电机的输出力矩值;
    根据所述输出力矩值确定所述电机的实时温度值;
    根据所述电机的实时温度值确定所述电机的发热状态。
  42. 如权利要求41所述的检测装置,其特征在于,所述处理器还执行如下操作:
    获取所述输出力矩值与所述电机的至少一个温度参数的第一对应关系;
    根据所述输出力矩值和所述第一对应关系确定所述实时温度值。
  43. 如权利要求42所述的检测装置,其特征在于,所述至少一个温度参数包括:所述电机的稳态温度和/或时间常数。
  44. 如权利要求43所述的检测装置,其特征在于,所述第一对应关系包括:
    所述稳态温度与所述输出力矩正相关;
    所述时间常数与所述输出力矩负相关。
  45. 如权利要求43所述的检测装置,其特征在于,所述处理器还执行如下操作:
    根据所述输出力矩值和所述第一对应关系确定所述电机的稳态温度值和时间常数值;
    根据所述稳态温度值和所述时间常数值确定所述实时温度值。
  46. 如权利要求45所述的检测装置,其特征在于,所述处理器还执行如下操作:
    根据所述稳态温度值和所述时间常数值,确定所述电机的实时温度与所述稳态温度和所述时间常数的第二对应关系;
    根据所述对应关系、前一时刻的稳态温度值、前一时刻的实时温度值、当前时刻的稳态温度值得到当前时刻的实时温度值。
  47. 如权利要求41所述的检测装置,其特征在于,所述发热状态包括:过热状态、正常状态。
  48. 如权利要求47所述的检测装置,其特征在于,所述处理器还执行如下操作:
    当所述实时温度值大于温度阈值时,确定所述电机处于所述过热状态;
    当所述实时温度值不大于所述温度阈值时,确定所述电机处于所述正常状态。
  49. 如权利要求48所述的检测装置,其特征在于,所述处理器还执行如下操作:
    当所述电机处于所述过热状态时,控制所述电机进入休眠状态。
  50. 如权利要求49所述的检测装置,其特征在于,所述云台包括多个所述电机,所述处理器还执行如下操作:
    当其中一个所述电机处于所述过热状态时,控制所述云台的多个所述电机均进入休眠状态。
  51. 如权利要求49或50所述的检测装置,其特征在于,所述处理器还执行如下操作:
    通过提示装置发出用于提示所述过热状态的提示信息。
  52. 如权利要求51所述的检测装置,其特征在于,所述电机进入所述休眠状态是在所述提示信息发出预设时长后触发的。
  53. 如权利要求51所述的检测装置,其特征在于,所述提示信息包括以下至少一种:视觉提示信息、听觉提示信息、触觉提示信息。
  54. 如权利要求53所述的检测装置,其特征在于,所述视觉提示信息包括:图像和/或文字;
    所述听觉提示信息包括:所述电机振动产生的声音;
    所述触觉提示信息包括:震动。
  55. 一种计算机可读存储介质,其特征在于,其存储有可执行指令,所述可执行指令在由一个或多个处理器执行时,可以使所述一个或多个处理器执行如权利要求1至13中任一项权利要求所述的控制方法或如权利要求14至27中任一项权利要求所述的检测方法。
  56. 一种可移动平台,其特征在于,包括:用于搭载负载的云台、用于支撑所述云台的支撑机构以及如权利要求28至40中任一项所述的控制装置;
    所述云台包括云台部件与所述电机,所述电机的转子部分与定子部分中的一个与所述云台部件连接,所述电机的转子部分与定子部分中的另一个与所述支撑机构连接,所述电机用于驱动所述云台部件以及所述负载绕预设轴线转动。
  57. 一种云台,其特征在于,包括:云台部件、与所述云台部件连接的电机以及如权利要求41至54中任一项所述的检测装置;
    所述电机用于驱动所述云台支撑的负载绕预设轴线转动。
  58. 一种可移动平台,其特征在于,包括:如权利要求57所述的云台以及用于支撑所述云台的支撑机构。
  59. 如权利要求58所述的可移动平台,其特征在于,所述支撑机构包括手持机构或移动机构。
  60. 如权利要求59所述的可移动平台,其特征在于,所述手持机构包括手柄;
    所述移动机构包括无人车的底盘、机器人的机身或无人机的机身。
PCT/CN2020/117161 2020-09-23 2020-09-23 电机的控制与检测方法及装置、云台以及可移动平台 WO2022061592A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/117161 WO2022061592A1 (zh) 2020-09-23 2020-09-23 电机的控制与检测方法及装置、云台以及可移动平台
CN202080035669.8A CN113853496A (zh) 2020-09-23 2020-09-23 电机的控制与检测方法及装置、云台以及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117161 WO2022061592A1 (zh) 2020-09-23 2020-09-23 电机的控制与检测方法及装置、云台以及可移动平台

Publications (1)

Publication Number Publication Date
WO2022061592A1 true WO2022061592A1 (zh) 2022-03-31

Family

ID=78973095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117161 WO2022061592A1 (zh) 2020-09-23 2020-09-23 电机的控制与检测方法及装置、云台以及可移动平台

Country Status (2)

Country Link
CN (1) CN113853496A (zh)
WO (1) WO2022061592A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103100564A (zh) * 2011-11-10 2013-05-15 上海优控科技有限公司 一种新型的轧制过程自适应控制方法
US20180113462A1 (en) * 2016-10-22 2018-04-26 Gopro, Inc. Position-based soft stop for a 3-axis gimbal
CN210050550U (zh) * 2019-05-27 2020-02-11 深圳市大疆创新科技有限公司 手持云台
CN110832756A (zh) * 2018-09-19 2020-02-21 深圳市大疆创新科技有限公司 三相电机及其温度检测方法、装置、云台、可移动平台

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108645B1 (ja) * 2016-01-31 2017-04-05 貴司 徳田 モーターモジュールシステム
CN106796420B (zh) * 2016-05-31 2019-05-07 深圳市大疆灵眸科技有限公司 图像稳定装置控制方法和图像稳定装置
CN110313129A (zh) * 2018-05-29 2019-10-08 深圳市大疆创新科技有限公司 云台和电机控制方法、装置
WO2021016886A1 (zh) * 2019-07-30 2021-02-04 深圳市大疆创新科技有限公司 云台控制方法、云台及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103100564A (zh) * 2011-11-10 2013-05-15 上海优控科技有限公司 一种新型的轧制过程自适应控制方法
US20180113462A1 (en) * 2016-10-22 2018-04-26 Gopro, Inc. Position-based soft stop for a 3-axis gimbal
CN110832756A (zh) * 2018-09-19 2020-02-21 深圳市大疆创新科技有限公司 三相电机及其温度检测方法、装置、云台、可移动平台
CN210050550U (zh) * 2019-05-27 2020-02-11 深圳市大疆创新科技有限公司 手持云台

Also Published As

Publication number Publication date
CN113853496A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
US10890830B2 (en) Gimbal control method, gimbal control apparatus, and gimbal
CN107000839B (zh) 无人机的控制方法、装置、设备和无人机的控制系统
US11899447B2 (en) Adaptive rate gain controller
US20200213518A1 (en) Method for controlling gimbal, gimbal controller, and gimbal
US11156905B2 (en) Control method for gimbal, controller, and gimbal
WO2018191963A1 (zh) 遥控器、云台及云台控制方法、装置、系统
WO2020042064A1 (zh) 云台的控制方法与装置、云台系统和无人机
US11272105B2 (en) Image stabilization control method, photographing device and mobile platform
WO2020019260A1 (zh) 磁传感器校准方法、控制终端以及可移动平台
CN111977006B (zh) 一种关节角的初始化方法、装置及飞行器
CN110770671A (zh) 云台及其控制方法、可移动平台
WO2018191971A1 (zh) 一种云台的控制方法以及云台
CN116257090A (zh) 云台控制方法、装置、存储介质及云台
WO2018152827A1 (zh) 无人机的远程控制方法、设备和系统
US20240118596A1 (en) Gimbal control method and device
WO2020000423A1 (zh) 云台的控制方法、云台、飞行器和计算机可读存储介质
WO2022061592A1 (zh) 电机的控制与检测方法及装置、云台以及可移动平台
WO2022134036A1 (zh) 可移动平台及其控制方法、装置
WO2022061915A1 (zh) 电机及其控制方法、计算机可读存储介质以及机械装置
WO2018187918A1 (zh) 控制方法、飞行器控制系统和旋翼飞行器
CN110856457A (zh) 移动平台及其控制方法
WO2022016322A1 (zh) 云台及其性能的评估方法及装置、可移动平台
CN112543896A (zh) 云台及其控制方法
JP2021037818A (ja) 制御装置および制御方法
CN110352394A (zh) 云台的控制方法、云台、移动平台和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954446

Country of ref document: EP

Kind code of ref document: A1