WO2018152827A1 - 无人机的远程控制方法、设备和系统 - Google Patents

无人机的远程控制方法、设备和系统 Download PDF

Info

Publication number
WO2018152827A1
WO2018152827A1 PCT/CN2017/074982 CN2017074982W WO2018152827A1 WO 2018152827 A1 WO2018152827 A1 WO 2018152827A1 CN 2017074982 W CN2017074982 W CN 2017074982W WO 2018152827 A1 WO2018152827 A1 WO 2018152827A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
control
mouse
controlling
speed
Prior art date
Application number
PCT/CN2017/074982
Other languages
English (en)
French (fr)
Inventor
熊川樘
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/074982 priority Critical patent/WO2018152827A1/zh
Priority to CN201780005249.3A priority patent/CN108885463A/zh
Publication of WO2018152827A1 publication Critical patent/WO2018152827A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0016Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device

Definitions

  • the embodiment of the invention relates to the technical field of drones, and in particular to a remote control method, device and system for a drone.
  • the drone's control mode has become more diverse. From the beginning, the remote control was used to control the drone, and the drone was gradually controlled by a touch panel such as a mobile phone or a tablet.
  • a touch panel such as a mobile phone or a tablet.
  • UAV applications such as multi-machine cooperation, remote monitoring, etc.
  • the computer-controlled drone is still mainly controlled by the remote controller, and the use of the remote controller is incorrect, which makes the operation of the drone inefficient.
  • Embodiments of the present invention provide a remote control method, device, and system for a drone, which are used to improve the efficiency and accuracy of manipulating the drone, and simplify the operation process of the user.
  • an embodiment of the present invention provides a remote control method for a drone, including:
  • the input device comprising at least one of the following: a mouse, a keyboard, a touch pad;
  • the drone is manipulated according to the control command.
  • control instruction is used to control a flight direction of the drone
  • the controlling the drone according to the control instruction comprises:
  • the drone is controlled to fly in the flight direction.
  • the flight direction includes: ascending, descending, advancing, retreating, shifting to the left, shifting to the right, rotating clockwise, and rotating counterclockwise.
  • the first operation comprises an operation on the keyboard.
  • the operation on the keyboard comprises: an operation on at least one of a W key, an S key, an A key, a D key, and four direction keys in the keyboard.
  • the method further includes:
  • Controlling the drone to fly in accordance with the flight direction including:
  • the drone is controlled to fly in the flight direction according to the amount of the lever.
  • the lever amount is used to control the speed of the drone, and the speed includes a rising speed, a falling speed, a forward speed, a reverse speed, a left shift speed, a right shift speed, a clockwise rotation speed, and a reverse Hour hand rotation speed.
  • the second operation is an operation on the mouse.
  • the operation of the mouse comprises: pressing a wheel of the mouse, sliding forward or sliding the wheel backward; or sliding on a left button or a right button of the mouse.
  • control instruction is used to control a posture of the gimbal of the drone, and the posture includes one or more of a pitch angle, a roll angle, and a yaw angle.
  • the first operation is an operation on the mouse or the touch panel.
  • the operation of the mouse comprises: sliding the roller forward or backward sliding the mouse;
  • the operation of the touch panel includes: sliding forward or backward on the touch panel.
  • control instruction is used to control an imaging device of the drone
  • the controlling the drone according to the control instruction comprises:
  • the photographing mode of the imaging device is controlled according to the control instruction, and the photographing mode includes at least photographing or photographing.
  • control instruction is used to control an imaging device of the drone
  • the controlling the drone according to the control instruction comprises:
  • a focal length of the imaging device is controlled according to the control command.
  • the first operation is: pressing a left button or a right button of the mouse, wherein pressing the left button or the right button is greater than the first preset time.
  • control instruction is used to control an imaging device of the drone to start or stop shooting Photo; or,
  • the control command is used to control the imaging device to start or stop imaging.
  • the first operation is: an operation of a left key and a right click of the mouse, wherein a difference between the click time of the left key and the right key is less than a second preset time.
  • an embodiment of the present invention provides a remote control device for a drone.
  • the device includes: an input device, configured to detect a first operation, the input device includes at least one of the following: a mouse, a keyboard, a touch pad;
  • a processor configured to determine a control instruction for controlling the drone according to the first operation; and to control the drone according to the control instruction.
  • control instruction is used to control a flight direction of the drone
  • the processor is specifically configured to: control the drone to fly in the flight direction.
  • the flight direction includes: ascending, descending, advancing, retreating, shifting to the left, shifting to the right, rotating clockwise, and rotating counterclockwise.
  • the first operation comprises an operation on the keyboard.
  • the operation on the keyboard comprises: an operation on at least one of a W key, an S key, an A key, a D key, and four direction keys in the keyboard.
  • the input device is further configured to detect a second operation on the input device; the second operation is used to determine a lever amount;
  • the processor is specifically configured to: control the drone to fly according to the flight direction according to the amount of the control rod.
  • the lever amount is used to control the speed of the drone, and the speed includes a rising speed, a falling speed, a forward speed, a reverse speed, a left shift speed, a right shift speed, a clockwise rotation speed, and a reverse Hour hand rotation speed.
  • the second operation is an operation on the mouse.
  • the operation of the mouse comprises: pressing a wheel of the mouse, sliding forward or sliding the wheel backward; or sliding on a left button or a right button of the mouse.
  • control instruction is used to control a posture of the gimbal of the drone, and the posture includes one or more of a pitch angle, a roll angle, and a yaw angle.
  • the first operation is an operation on the mouse or the touch panel.
  • the operation of the mouse comprises: sliding forward or sliding the roll of the mouse backward wheel;
  • the operation of the touch panel includes: sliding forward or backward on the touch panel.
  • control instruction is used to control an imaging device of the drone
  • the processor is specifically configured to: control a shooting mode of the imaging device according to the control instruction, where the shooting mode includes at least photographing or capturing.
  • control instruction is used to control an imaging device of the drone
  • the processor is specifically configured to: control a focal length of the imaging device according to the control instruction.
  • the first operation is: pressing a left button or a right button of the mouse, wherein pressing the left button or the right button is greater than the first preset time.
  • control instruction is used to control an imaging device of the drone to start or stop taking a photo
  • the control command is used to control the imaging device to start or stop imaging.
  • the first operation is: an operation of a left key and a right click of the mouse, wherein a difference between the click time of the left key and the right key is less than a second preset time.
  • an embodiment of the present invention provides a remote control system for a drone, including: a drone and a remote control device of the drone provided by the second aspect of the present invention.
  • the remote control method, device and system of the drone provided by the embodiment of the invention directly control the drone according to the control command determined by the first operation by detecting the first operation of the input device. It avoids the situation that the remote controller is still used when remotely controlling the drone, overcomes the defect that the user is not skilled in manipulating the remote controller and cannot effectively control the drone, and the operation of the input device can improve the efficiency of manipulating the drone. And accuracy, simplifying the user's operation process.
  • FIG. 1 is a schematic architectural diagram of an unmanned flight system 100 in accordance with an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a key for controlling a flight direction of a drone in a keyboard according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an interface for controlling a flight direction of a drone according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a remote control device 300 of a drone according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural diagram of a remote control system 500 for a drone according to an embodiment of the present invention.
  • Embodiments of the present invention provide remote control methods, devices, and systems for drones.
  • the following description of the invention uses a drone as an example. It will be apparent to those skilled in the art that other types of aircraft may be used without limitation, and embodiments of the present invention may be applied to various types of aircraft.
  • the drone can be a small or large drone.
  • the drone may be a rotorcraft, for example, a multi-rotor drone powered by air by a plurality of pushing devices, embodiments of the invention are not limited thereto, drones It can also be other types of drones.
  • FIG. 1 is a schematic architectural diagram of an unmanned flight system 100 in accordance with an embodiment of the present invention. This embodiment is described by taking a rotorless drone as an example.
  • the unmanned flight system 100 can include a drone 110, a pan/tilt head 120, a display device 130, and a steering device 140.
  • the drone 110 may include a power system 150, a flight control system 160, and a rack.
  • the drone 110 can be in wireless communication with the manipulation device 140 and the display device 130.
  • the rack can include a fuselage and a tripod (also known as a landing gear).
  • the fuselage may include a center frame and one or more arms coupled to the center frame, the one or more arms extending radially from the center frame.
  • the tripod is coupled to the fuselage for supporting when the drone 110 is landing.
  • Power system 150 may include one or more electronic governors (referred to as ESCs) 151, one or more propellers 153, and one or more electric machines 152 corresponding to one or more propellers 153, wherein motor 152 is coupled Between electronic governor 151 and propeller 153, motor 152 and screw The propeller 153 is disposed on the corresponding arm; the electronic governor 151 is configured to receive the driving signal generated by the flight control system 160, and provide a driving current to the motor 152 according to the driving signal to control the rotation speed of the motor 152.
  • Motor 152 is used to drive the propeller to rotate to power the flight of drone 110, which enables drone 110 to achieve one or more degrees of freedom of motion.
  • the drone 110 can be rotated about one or more axes of rotation.
  • the above-described rotating shaft may include a roll axis, a yaw axis, and a pitch axis.
  • the motor 152 can be a DC motor or an AC motor.
  • the motor 152 may be a brushless motor or a brush motor.
  • Flight control system 160 may include flight controller 161 and sensing system 162.
  • the sensing system 162 is used to measure the attitude information of the drone, that is, the position information and state information of the drone 110 in space, for example, three-dimensional position, three-dimensional angle, three-dimensional speed, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system 162 may include, for example, at least one of a gyroscope, an ultrasonic sensor, an electronic compass, an Inertial Measurement Unit (IMU), a vision sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system can be a global positioning system (English: Global Positioning System, referred to as: GPS) or.
  • the flight controller 161 is used to control the flight of the drone 110, for example, the flight of the drone 110 can be controlled based on the attitude information measured by the sensing system 162. It should be understood that the flight controller 161 may control the drone 110 in accordance with pre-programmed program instructions, or may control the drone 110 in response to one or more control commands from the steering device 140.
  • the pan/tilt 120 can include a motor 122.
  • the pan/tilt is used to carry the photographing device 123.
  • the flight controller 161 can control the motion of the platform 120 via the motor 122.
  • the platform 120 may further include a controller for controlling the motion of the platform 120 by controlling the motor 122.
  • the platform 120 can be independent of the drone 110 or a portion of the drone 110.
  • the motor 122 can be a DC motor or an AC motor.
  • the motor 122 may be a brushless motor or a brush motor.
  • the gimbal can be located at the top of the drone or at the bottom of the drone.
  • the photographing device 123 may be, for example, a device for capturing an image such as a camera or a video camera, and the photographing device 123 may communicate with the flight controller and perform photographing under the control of the flight controller.
  • the display device 130 is located at the ground end of the unmanned flight system 100, can communicate with the drone 110 wirelessly, and can be used to display attitude information of the drone 110. In addition, an image taken by the photographing device can also be displayed on the display device 130. It should be understood that the display device 130 can It is a stand-alone device and can also be placed in the handling device 140.
  • the handling device 140 is located at the ground end of the unmanned flight system 100 and can communicate with the drone 110 wirelessly for remote manipulation of the drone 110.
  • the method in this embodiment may include:
  • the UAV can be remotely controlled by the input device, and the input device can be an input device of the electronic device, such as a desktop computer or a notebook computer, which is not limited in this embodiment.
  • the user can open the browser through a desktop or laptop computer, enter a URL, and remotely control the drone through a web page.
  • it can be used to remotely control the drone through a client on a desktop or laptop.
  • the display interface of the electronic device can display, for example, the control parameters of the drone.
  • the user When the user wants to control the drone, the user operates the input device, and the embodiment detects the first operation of the user through the input device.
  • the user can control various functions of the drone, such as flight direction, flight speed, head of the drone, imaging device of the drone, etc.; for different functions, the control mode of the drone, no one
  • the functions implemented by the machine can be different.
  • the user can perform different operations of the drone by performing a first operation on the input device, wherein the first operation may include multiple forms of operations, and different operation forms may correspond to different functions.
  • the embodiment After detecting the first operation on the input device, the embodiment determines a corresponding control command for controlling the drone according to the detected first operation, and then controls the drone according to the control command.
  • the remote control method of the drone controls the drone directly according to the control command determined by the first operation by detecting the first operation on the input device. It avoids the situation that the remote controller is still used when remotely controlling the drone, overcomes the defect that the user is not skilled in manipulating the remote controller and cannot effectively control the drone, and the operation of the input device can improve the efficiency of manipulating the drone. And accuracy.
  • the control instruction is used to control a flight direction of the drone; and the remote control is performed according to the control instruction.
  • Manipulating includes: controlling the drone to fly in the flight direction.
  • the first operation may be an operation for controlling a flight direction of the drone, and correspondingly, the control command (for controlling the flight direction of the drone) determined by the first operation according to the embodiment controls the drone Flight in the direction of flight in accordance with the first operation.
  • the flight direction includes: ascending, descending, advancing, retreating, shifting to the left, shifting to the right, rotating clockwise, and rotating counterclockwise. It should be noted that the flight direction is not limited to the above.
  • the first operation comprises an operation on the keyboard.
  • the flight direction of the drone is controlled by detecting the operation of the keyboard by the user, wherein the keyboard may be pre-configured with a button for controlling the flight direction of the drone.
  • the operation on the keyboard comprises: an operation on at least one of a W key, an S key, an A key, a D key, and four direction keys in the keyboard. It should be noted that the embodiment is not limited to the W key, the S key, the A key, the D key, and may also include other keys.
  • 3 is a schematic diagram of a key for controlling a flight direction of a drone in a keyboard provided by an embodiment of the present invention, wherein (a) shows four letter keys, and (b) shows a direction key, as shown in FIG.
  • the W key is used to control the drone to rise
  • the S key is used to control the drone to descend
  • the A key is used to control the drone to rotate counterclockwise
  • the D key is used to control the drone to rotate clockwise.
  • the up arrow direction key is used to control the drone forward
  • the down arrow direction key is used to control the drone back
  • the left arrow direction key is used to control the drone left shift
  • the right arrow direction key is used to control the drone right shift.
  • FIG. 4 is a schematic diagram of an interface for controlling the flight direction of the drone according to an embodiment of the present invention.
  • the change of the flight direction of the drone can be displayed through the interface.
  • User (a) of FIG. 4 indicates that the user controls the flight direction by operating the letter keys in (a) of FIG. 3, wherein the flight direction shown in (a) of FIG. 4 is: counterclockwise rotation down, corresponding first The operation is to operate the A key and the S key in (a) of Fig. 3.
  • (b) in Fig. 4 indicates that the user controls the flight direction by operating the direction key in (b) of Fig. 3, wherein the flight direction shown in (b) of Fig. 4 is: advancement.
  • the method of this embodiment may further include: detecting a second operation on the input device; and determining a lever amount according to the second operation; and correspondingly, controlling the drone according to the flight direction Flying includes: controlling the drone to fly in the flight direction according to the amount of the joystick.
  • the user when the user controls the flight direction of the drone by the first operation of the input device, the user can also control the amount of the control rod of the drone in the flight direction by operating the input device to ensure that the drone is controlled.
  • the direction of the flight can also control the amount of the lever of the drone.
  • the second operation of the user When the second operation of the user is detected by the input device, the second operation generates a corresponding amount of the control lever.
  • the amount of the control rod corresponding to the second operation is determined according to the second operation, and then according to the The amount of the lever is controlled to control the flight of the drone in accordance with the above flight direction.
  • the lever amount is used to control the speed of the drone, and the speed includes a rising speed, a falling speed, a forward speed, a reverse speed, a left shift speed, a right shift speed, a clockwise rotation speed, and a reverse Hour hand rotation speed.
  • controlling the speed of the drone indicates that the flight speed of the drone in the flight direction can be controlled, and the flight distance of the drone in the flight direction can also be controlled.
  • the second operation is an operation on a mouse.
  • the flight speed of the drone is controlled by the operation of the mouse.
  • the flight direction of the drone is controlled by operating the keyboard
  • the flight speed of the drone is controlled by operating the mouse
  • the flight of the drone is operated by two different input devices, thereby facilitating the operation of the user and improving the operation.
  • the accuracy with which the user operates the drone is provided.
  • the operation of the mouse comprises: pressing a wheel of the mouse, sliding forward or sliding the wheel backward; or sliding on a left button or a right button of the mouse.
  • the user when the mouse has a scroll wheel, the user can press the scroll wheel of the mouse, then slide the roller forward or slide the roller backward.
  • the moment when the user presses the mouse wheel is equivalent to starting the control of the amount of the control rod of the drone, and then the user can slide the roller forward or slide the roller backwards according to the roller, and accordingly, the scroll wheel generates the rolling distance.
  • the amount of the control rod increases as the rolling distance of the roller increases.
  • the distance of the sliding roller is equal to the first preset distance, the amount of the control rod reaches a maximum value, and the amount of the sliding roller control rod is no longer increased. .
  • the amount of the control rod decreases as the rolling distance of the roller decreases.
  • the amount of the control rod reaches a minimum value, and the amount of the sliding roller control rod is no longer reduced. .
  • the user releases the wheel it is equivalent to turning off the amount of the lever of the drone. After that, no matter how you slide the wheel, control The amount of the rod does not change.
  • sliding the roller forward may indicate increasing the amount of the lever
  • sliding the roller backward may indicate reducing the amount of the lever
  • the amount of the control rod may be acquired according to one or more of a rolling distance of the roller, a direction of scrolling, a speed of scrolling, and an acceleration of scrolling.
  • the user when the mouse does not include the wheel, the user can slide on the left button of the mouse or slide on the right button. Among them, the user slides on the left button of the mouse or slides on the right button, which will produce a sliding distance. At this time, the amount of the control rod increases as the sliding distance increases.
  • the amount of the control rod reaches a maximum value, and at this time, the amount of the sliding control lever does not increase any more.
  • the amount of the control lever decreases as the sliding distance decreases.
  • the amount of the control rod when the sliding distance is equal to the second predetermined distance, the amount of the control rod reaches a minimum value, and at this time, the amount of the sliding roller control lever is no longer reduced.
  • sliding on the left button may indicate increasing the amount of the lever
  • sliding on the right button may indicate reducing the amount of the lever
  • the amount of the control rod may be acquired according to one or more of a sliding distance, a sliding direction, a sliding speed, and a sliding acceleration.
  • the control command is used to control the attitude of the gimbal of the drone, and the posture includes a pitch angle, a roll angle, and One or more of the yaw angles.
  • the first operation may be used to control the posture of the gimbal of the drone.
  • the posture of the gimbal is adjusted as control.
  • the posture indicated by the instruction for example, adjusting one or more of the pitch head including the pitch angle, the roll angle, and the yaw angle. Therefore, the present embodiment changes the orientation of the gimbal by remotely operating the input device to control the attitude of the gimbal of the drone, and thus the shooting angle of the imaging device carried on the gimbal can be changed.
  • the first operation is an operation on the mouse or the touch panel.
  • the user's operation on the touch panel can also be detected to control the posture of the gimbal of the drone.
  • the pan/tilt in this embodiment is, for example, the pan/tilt head 120 shown in FIG. 1.
  • the operation of the mouse comprises: sliding the mouse forward or backward sliding the wheel of the mouse.
  • the roller that slides the mouse forward indicates that the pitch angle is increased, and as the sliding distance increases, the pitch angle continues to increase until the sliding distance is equal to the fifth pre- When the distance is set, the pitch angle reaches the maximum value and continues to slide, and the pitch angle does not increase any more.
  • the wheel that slides the mouse backwards means that the pitch angle is reduced, and as the sliding distance increases, the pitch angle continues to decrease until the sliding distance is equal to the sixth preset distance, the pitch angle reaches the minimum value, and the sliding angle continues to slide, and the pitch angle is no longer reduced. .
  • the operation of the touch panel includes: sliding forward or backward on the touch panel.
  • sliding forward on the touch panel means increasing the elevation angle, and as the sliding distance increases, continuing to increase the elevation angle until the sliding distance is equal to the seventh preset distance.
  • the pitch angle reaches the maximum value, the sliding continues and the pitch angle no longer increases.
  • Sliding backward on the touchpad indicates that the pitch angle is reduced until the sliding distance is equal to the eighth preset distance, the pitch angle reaches a minimum value, and the sliding continues, and the pitch angle is no longer reduced.
  • the control instruction is used to control an imaging device of the drone; and the remote control is performed according to the control instruction.
  • Manipulating includes: controlling a shooting mode of the imaging device according to the control instruction, the shooting mode including at least photographing or capturing.
  • the first operation may be used to control an imaging device of the drone. Specifically, the first operation may trigger a control instruction for controlling a shooting mode of the imaging device of the drone, and the embodiment may be determined according to the first operation.
  • the control command (for controlling the imaging module of the imaging device) controls whether the imaging mode of the imaging device of the drone is photographing or capturing, that is, the imaging device can be controlled to switch between the imaging mode and the imaging mode.
  • the photographing module of the imaging device when the photographing mode of the imaging device is the imaging mode, when the first operation is detected, the photographing module of the imaging device is switched to the photographing mode.
  • the photographing module of the image forming apparatus is a photographing module, when the first operation is detected, the photographing module of the image forming apparatus is switched to an image capturing mode.
  • the first operation is: operation on a mouse.
  • the operation of the mouse can be: click or double-click the left button of the mouse.
  • the present embodiment is not limited to the left button of the mouse, and may be a right button.
  • the embodiment does not limit the number of taps, and may be three or more.
  • the control instruction is used to control an imaging device of the drone; and the remote control is performed according to the control instruction.
  • Manipulating includes: controlling a focal length of the imaging device according to the control instruction.
  • the first operation may be used to control the imaging device of the drone. Specifically, the first operation may trigger a control instruction for controlling the focal length of the imaging device of the drone, and the control that may be determined according to the first operation in this embodiment.
  • An instruction (for controlling the focal length of the imaging device) controls the focal length of the imaging device.
  • the first operation is: operation on a mouse.
  • the operation on the mouse may be: pressing the left button or the right button of the mouse, wherein the pressing time of the left button or the right button is greater than the first preset time.
  • a control command for controlling the focal length of the imaging device is triggered, and the embodiment controls the focal length of the imaging device according to the control instruction.
  • the present embodiment controls the wide-angle zoom of the imaging device.
  • the present embodiment controls the far-angle zoom of the imaging device.
  • the control instruction is used to control the imaging device of the drone to start or stop photographing; or the control command is used to control the The imaging device of the drone starts or stops imaging.
  • the first operation may be used to control the imaging device of the drone. Specifically, the first operation may trigger a control instruction for controlling the imaging device of the drone to start or stop photographing, or the first operation may be triggered for The imaging device starts or stops the control command of the imaging.
  • the photographing mode when the image forming apparatus is taking a photograph, when the first operation is detected, the image forming apparatus is controlled to stop photographing, and when the image forming apparatus stops photographing, when the first operation is detected, the image forming apparatus is controlled. Start taking pictures.
  • the imaging mode when the imaging device is capturing, when the first operation is detected, the imaging device is controlled to stop capturing.
  • the imaging device stops capturing when the first operation is detected, the imaging device is controlled to start capturing. .
  • the first operation is: an operation of a left key and a right click of the mouse, wherein a difference between the click time of the left key and the right key is less than a second preset time.
  • the embodiment controls the imaging device to start or stop photographing, or to control the imaging device to start or stop imaging.
  • the above embodiment can control the imaging device of the drone by operating the input device to quickly and accurately control the photographing effect.
  • the drone can be directly controlled according to the control instruction determined by the user on the first operation of the input device, thereby overcoming the defect that the remote control is required to control the drone, and simplifying the user's control.
  • the operation process of the machine improves the efficiency of controlling the drone.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores program instructions, and the program execution may include a part of a remote control method of the drone as shown in FIG. 2 and its corresponding embodiments. Or all steps.
  • FIG. 5 is a schematic structural diagram of a remote control device 300 of a drone according to a first embodiment of the present invention. As shown in FIG. 5, the device in this embodiment includes an input device 301 and a processor 302.
  • the processor 302 may be a central processing unit (CPU), and the processor may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (ASIC). ), a Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the input device 301 is configured to detect a first operation, and the input device 301 includes at least one of the following: a mouse, a keyboard, and a touch pad.
  • the processor 302 is configured to determine, according to the first operation, a control instruction for controlling the drone; and control the drone according to the control instruction.
  • control instruction is used to control a flight direction of the drone
  • the processor 302 is specifically configured to: control the drone to fly in the flight direction.
  • the flight direction includes: ascending, descending, advancing, retreating, shifting to the left, shifting to the right, rotating clockwise, and rotating counterclockwise.
  • the first operation comprises an operation on the keyboard.
  • the operation on the keyboard comprises: an operation on at least one of a W key, an S key, an A key, a D key, and four direction keys in the keyboard.
  • the input device 301 is further configured to detect a second operation; and the second operation is used to determine a lever amount.
  • the processor 302 is specifically configured to: control the drone to fly according to the flight direction according to the amount of the control rod.
  • the lever amount is used to control the speed of the drone, and the speed includes a rising speed, a falling speed, a forward speed, a reverse speed, a left shift speed, a right shift speed, a clockwise rotation speed, and a reverse Hour hand rotation speed.
  • the second operation is an operation on the mouse.
  • the operation of the mouse comprises: pressing a wheel of the mouse, sliding forward or sliding the wheel backward; or sliding on a left button or a right button of the mouse.
  • control instruction is used to control a posture of the pan/tilt of the drone, and the posture package Includes one or more of a pitch angle, a roll angle, and a yaw angle.
  • the first operation is an operation on the mouse or the touch panel.
  • the operation of the mouse comprises: sliding the mouse forward or backward sliding the wheel of the mouse.
  • the operation of the touch panel includes: sliding forward or backward on the touch panel.
  • control instruction is used to control an imaging device of the drone
  • the processor 302 is specifically configured to: control a shooting mode of the imaging device according to the control instruction, where the shooting mode includes at least photographing or capturing.
  • control instruction is used to control an imaging device of the drone
  • the processor 302 is specifically configured to: control a focal length of the imaging device according to the control instruction.
  • the first operation is: pressing a left button or a right button of the mouse, wherein pressing the left button or the right button is greater than the first preset time.
  • control instruction is used to control an imaging device of the drone to start or stop photographing; or the control command is used to control the imaging device to start or stop capturing.
  • the first operation is: an operation of a left key and a right click of the mouse, wherein a difference between the click time of the left key and the right key is less than a second preset time.
  • the apparatus of this embodiment may further include a memory 303.
  • the input device 301, the processor 302, and the memory 303 are connected by a bus.
  • Memory 303 can include read only memory and random access memory and provides instructions and data to processor 302.
  • a portion of the memory 303 may also include a non-volatile random access memory.
  • the memory 303 is used to store code for executing a remote control method of the drone, and the processor 302 is configured to call the code stored in the memory 303 to execute the above scheme.
  • the device in this embodiment may be used to implement the technical solutions of the foregoing method embodiments of the present invention, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a remote control system 500 for a drone according to an embodiment of the present invention.
  • the system of the embodiment includes a remote control device 300 and a drone 400 of the drone.
  • the remote control device 300 of the UAV can adopt the structure of the device embodiment shown in FIG. 5, and correspondingly, the technical solution of the foregoing method embodiments of the present invention can be executed, and the implementation principle and the technical effect are similar. Let me repeat.
  • the remote control device 300 of the drone can transmit the control command to the drone 400 (such as the flight controller of the drone 400) to operate the drone 400. control.
  • the control instruction is shown in FIG. 5, and details are not described herein again.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: read-only memory (English: Read-Only Memory, ROM for short), random access memory (English: Random Access Memory, RAM), disk or A variety of media such as optical discs that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)
  • Selective Calling Equipment (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种无人机的远程控制方法、设备和系统,此方法包括:检测对输入设备的第一操作,输入设备包括以下至少一种:鼠标、键盘、触摸板(S201);根据第一操作确定用于控制无人机的控制指令(S202);根据控制指令,对无人机进行操控(S203)。通过检测对输入设备的第一操作,直接根据第一操作确定的控制指令对无人机进行操控,避免了在远程控制无人机时仍使用遥控器的情况,克服了用户不熟练操控遥控器而无法有效地操控无人机的缺陷,通过对输入设备的操作,可以提高操控无人机的效率和准确性。

Description

无人机的远程控制方法、设备和系统 技术领域
本发明实施例涉及无人机技术领域,尤其涉及一种无人机的远程控制方法、设备和系统。
背景技术
随着无人机应用的越来越广泛,无人机的操控模式也变得越来越多样。从一开始利用遥控器手柄对无人机进行控制,慢慢也演化出了利用手机,平板等触摸面板对无人机进行控制。然而,随着无人机应用范围的扩大(例如如多机合作,远程监控等)以及4G、5G等网络环境的逐步覆盖,也可以在电脑的网页端远程控制无人机。例如通过网络对无人机的进行远程操控时,用户可以直接打开电脑,操控无人机。但是目前而言,基于电脑控制无人机仍主要通过遥控器来进行控制,由于遥控器的使用不正确而会使得操控无人机的效率低下。
发明内容
本发明实施例提供一种无人机的远程控制方法、设备和系统,用于提高操控无人机的效率和准确性,简化用户的操作过程。
第一方面,本发明实施例提供一种无人机的远程控制方法,包括:
检测对输入设备的第一操作,所述输入设备包括以下至少一种:鼠标、键盘、触摸板;
根据所述第一操作确定用于控制无人机的控制指令;
根据所述控制指令,对所述无人机进行操控。
可选地,所述控制指令用于控制所述无人机的飞行方向;
所述根据所述控制指令,对所述无人机进行操控,包括:
控制所述无人机按照所述飞行方向飞行。
可选地,所述飞行方向包括:上升、下降、前进、后退、左移、右移、顺时针旋转、逆时针旋转。
可选地,所述第一操作包括对所述键盘的操作。
可选地,所述对所述键盘的操作包括:对所述键盘中W键、S键、A键、D键、四个方向键中的至少一个键的操作。
可选地,所述方法还包括:
检测对所述输入设备的第二操作;
根据所述第二操作确定控制杆量;
控制所述无人机按照所述飞行方向飞行,包括:
根据所述控制杆量,控制所述无人机按照所述飞行方向飞行。
可选地,所述控制杆量用于控制所述无人机的速度,所述速度包括上升速度、下降速度、前进速度、后退速度、左移速度、右移速度、顺时针旋转速度、逆时针旋转速度。
可选地,所述第二操作为对所述鼠标的操作。
可选地,所述对鼠标的操作,包括:按压所述鼠标的滚轮、向前滑动或者向后滑动所述滚轮;或者,在所述鼠标的左键或者右键上滑动。
可选地,所述控制指令用于控制所述无人机的云台的姿态,所述姿态包括俯仰角、横滚角、偏航角中的一个或多个。
可选地,所述第一操作为对所述鼠标或所述触摸板的操作。
可选地,所述对鼠标的操作包括:向前滑动或者向后滑动所述鼠标的滚轮;
对所述触摸板的操作,包括:在所述触摸板上向前滑动或者向后滑动。
可选地,所述控制指令用于控制所述无人机的成像装置;
所述根据所述控制指令,对所述无人机进行操控,包括:
根据所述控制指令,控制所述成像装置的拍摄模式,所述拍摄模式至少包括拍照或摄像。
可选地,所述控制指令用于控制所述无人机的成像装置;
所述根据所述控制指令,对所述无人机进行操控,包括:
根据所述控制指令,控制所述成像装置的焦距。
可选地,所述第一操作为:对鼠标的左键或者右键按压,其中,对所述左键或所述右键按压时间大于第一预设时间。
可选地,所述控制指令用于控制所述无人机的成像装置开始或者停止拍 照;或者,
所述控制指令用于控制所述成像装置开始或者停止摄像。
可选地,所述第一操作为:对鼠标的左键和右键点击的操作,其中,对所述左键与所述右键的点击时间之差小于第二预设时间。
第二方面,本发明实施例提供一种无人机的远程控制设备,
包括:输入设备,用于检测第一操作,所述输入设备包括以下至少一种:鼠标、键盘、触摸板;
处理器,用于根据所述第一操作确定用于控制无人机的控制指令;以及根据所述控制指令,对所述无人机进行操控。
可选地,所述控制指令用于控制所述无人机的飞行方向;
所述处理器,具体用于:控制所述无人机按照所述飞行方向飞行。
可选地,所述飞行方向包括:上升、下降、前进、后退、左移、右移、顺时针旋转、逆时针旋转。
可选地,所述第一操作包括对所述键盘的操作。
可选地,所述对所述键盘的操作包括:对所述键盘中W键、S键、A键、D键、四个方向键中的至少一个键的操作。
可选地,所述输入设备,还用于检测对所述输入设备的第二操作;所述第二操作用于确定控制杆量;
所述处理器,具体用于:根据所述控制杆量,控制所述无人机按照所述飞行方向飞行。
可选地,所述控制杆量用于控制所述无人机的速度,所述速度包括上升速度、下降速度、前进速度、后退速度、左移速度、右移速度、顺时针旋转速度、逆时针旋转速度。
可选地,所述第二操作为对所述鼠标的操作。
可选地,所述对鼠标的操作,包括:按压所述鼠标的滚轮、向前滑动或者向后滑动所述滚轮;或者,在所述鼠标的左键或者右键上滑动。
可选地,所述控制指令用于控制所述无人机的云台的姿态,所述姿态包括俯仰角、横滚角、偏航角中的一个或多个。
可选地,所述第一操作为对所述鼠标或所述触摸板的操作。
可选地,所述对鼠标的操作包括:向前滑动或者向后滑动所述鼠标的滚 轮;
对所述触摸板的操作,包括:在所述触摸板上向前滑动或者向后滑动。
可选地,所述控制指令用于控制所述无人机的成像装置;
所述处理器,具体用于:根据所述控制指令,控制所述成像装置的拍摄模式,所述拍摄模式至少包括拍照或摄像。
可选地,所述控制指令用于控制所述无人机的成像装置;
所述处理器,具体用于:根据所述控制指令,控制所述成像装置的焦距。
可选地,所述第一操作为:对鼠标的左键或者右键按压,其中,对所述左键或所述右键按压时间大于第一预设时间。
可选地,所述控制指令用于控制所述无人机的成像装置开始或者停止拍照;或者,
所述控制指令用于控制所述成像装置开始或者停止摄像。
可选地,所述第一操作为:对鼠标的左键和右键点击的操作,其中,对所述左键与所述右键的点击时间之差小于第二预设时间。
第三方面,本发明实施例提供一种无人机的远程控制系统,包括:无人机和本发明第二方面提供的无人机的远程控制设备。
本发明实施例提供的无人机的远程控制方法、设备和系统,通过检测对输入设备的第一操作,直接根据第一操作确定的控制指令对无人机进行操控。避免了在远程控制无人机时仍使用遥控器的情况,克服了用户不熟练操控遥控器而无法有效地操控无人机的缺陷,通过对输入设备的操作,可以提高操控无人机的效率和准确性,简化用户的操作过程。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明的实施例的无人飞行系统100的示意性架构图;
图2为本发明实施例一提供的无人机的远程控制方法;
图3为本发明实施例提供的键盘中用于控制无人机飞行方向的键的示意 图;
图4为本发明实施例提供的控制无人机的飞行方向的一种界面示意图;
图5为本发明实施例一提供的无人机的远程控制设备300的结构示意图;
图6为本发明实施例提供的一种无人机的远程控制系统500的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施例提供了无人机的远程控制方法、设备和系统。以下对本发明的描述使用无人机作为示例。对于本领域技术人员将会显而易见的是,可以不受限制地使用其他类型的飞行器,本发明的实施例可以应用于各种类型的飞行器。例如,无人机可以是小型或大型的无人机。在某些实施例中,无人机可以是旋翼无人机(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼无人机,本发明的实施例并不限于此,无人机也可以是其它类型的无人机。
图1是根据本发明的实施例的无人飞行系统100的示意性架构图。本实施例以旋翼无人机为例进行说明。
无人飞行系统100可以包括无人机110、云台120、显示设备130和操纵设备140。其中,无人机110可以包括动力系统150、飞行控制系统160和机架。无人机110可以与操纵设备140和显示设备130进行无线通信。
机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在无人机110着陆时起支撑作用。
动力系统150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中电机152连接在电子调速器151与螺旋桨153之间,电机152和螺 旋桨153设置在对应的机臂上;电子调速器151用于接收飞行控制系统160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为无人机110的飞行提供动力,该动力使得无人机110能够实现一个或多个自由度的运动。在某些实施例中,无人机110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以有刷电机。
飞行控制系统160可以包括飞行控制器161和传感系统162。传感系统162用于测量无人机的姿态信息,即无人机110在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统162例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(英文:Inertial Measurement Unit,简称:IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(英文:Global Positioning System,简称:GPS)或者。飞行控制器161用于控制无人机110的飞行,例如,可以根据传感系统162测量的姿态信息控制无人机110的飞行。应理解,飞行控制器161可以按照预先编好的程序指令对无人机110进行控制,也可以通过响应来自操纵设备140的一个或多个控制指令对无人机110进行控制。
云台120可以包括电机122。云台用于携带拍摄装置123。飞行控制器161可以通过电机122控制云台120的运动。可选地,作为另一实施例,云台120还可以包括控制器,用于通过控制电机122来控制云台120的运动。应理解,云台120可以独立于无人机110,也可以为无人机110的一部分。应理解,电机122可以是直流电机,也可以交流电机。另外,电机122可以是无刷电机,也可以有刷电机。还应理解,云台可以位于无人机的顶部,也可以位于无人机的底部。
拍摄装置123例如可以是照相机或摄像机等用于捕获图像的设备,拍摄装置123可以与飞行控制器通信,并在飞行控制器的控制下进行拍摄。
显示设备130位于无人飞行系统100的地面端,可以通过无线方式与无人机110进行通信,并且可以用于显示无人机110的姿态信息。另外,还可以在显示设备130上显示拍摄装置拍摄的图像。应理解,显示设备130可以 是独立的设备,也可以设置在操纵设备140中。
操纵设备140位于无人飞行系统100的地面端,可以通过无线方式与无人机110进行通信,用于对无人机110进行远程操纵。
应理解,上述对于无人飞行系统各组成部分的命名仅是出于标识的目的,并不应理解为对本发明的实施例的限制。
图2为本发明实施例一提供的无人机的远程控制方法,如图2所示,本实施例的方法可以包括:
S201、检测对输入设备的第一操作,所述输入设备包括以下至少一种:鼠标、键盘、触摸板。
S202、根据所述第一操作确定用于控制无人机的控制指令。
S203、根据所述控制指令,对所述无人机进行操控。
本实施例中,可以通过输入设备对无人机进行远程控制,该输入设备可以是电子设备的输入设备,该电子设备例如为:台式电脑或者笔记本电脑,本实施例对此不做限定。可选地,用户可以通过台式电脑或者笔记本电脑,打开浏览器,输入一个URL,通过一个网页对无人机进行远程控制。可选地,用于可以通过台式电脑或者笔记本电脑上的客户端对无人机进行远程控制。其中,电子设备的显示界面例如可以显示无人机的控制参数。
当用户想要控制无人机时,用户对输入设备进行操作,本实施例通过输入设备检测到用户的第一操作。
其中,用户可以控制无人机的多种功能,例如飞行方向、飞行速度、无人机的云台、无人机的成像装置等等;针对不同的功能,无人机的控制方式、无人机实现的功能可以不一样。用户可以通过对输入设备进行第一操作,以操作无人机的不同功能,其中,第一操作可以包含多种形式的操作,不同的操作形式可以对应不同的功能。在检测到对输入设备的第一操作之后,本实施例会根据检测到的第一操作来确定对应的用于控制无人机的控制指令,然后根据该控制指令,操控无人机。
本实施例提供的无人机的远程控制方法,通过检测对输入设备的第一操作,直接根据第一操作确定的控制指令对无人机进行操控。避免了在远程控制无人机时仍使用遥控器的情况,克服了用户不熟练操控遥控器而无法有效地操控无人机的缺陷,通过对输入设备的操作,可以提高操控无人机的效率 和准确性。
在本发明实施例二中,本实施例在上述实施例的基础上,所述控制指令用于控制所述无人机的飞行方向;所述根据所述控制指令,对所述无人机进行操控,包括:控制所述无人机按照所述飞行方向飞行。其中,第一操作可以为用于控制无人机的飞行方向的操作,相应地,本实施例根据该第一操作确定的控制指令(用于控制无人机的飞行方向),控制无人机按照第一操作操作的飞行方向飞行。
可选地,所述飞行方向包括:上升、下降、前进、后退、左移、右移、顺时针旋转、逆时针旋转。需要说明的是,飞行方向不限上述所述。
可选地,所述第一操作包括对所述键盘的操作。本实施例中,通过检测用户对键盘的操作来控制无人机的飞行方向,其中,键盘中可以预设有用于控制无人机的飞行方向的键。
可选地,所述对所述键盘的操作包括:对所述键盘中W键、S键、A键、D键、四个方向键中的至少一个键的操作。需要说明的是,本实施例并不局限于W键、S键、A键、D键,也可以包括其它的键。
下面本实施例以W键、S键、A键、D键、四个方向键进行举例说明,本实施例不限于下面举例。其中,图3为本发明实施例提供的键盘中用于控制无人机飞行方向的键的示意图,其中,(a)示出了四个字母键,(b)示出了方向键,如图3所示,W键用于控制无人机上升,S键用于控制无人机下降,A键用于控制无人机逆时针旋转,D键用于控制无人机顺时针旋转。上箭头方向键用于控制无人机前进,下箭头方向键用于控制无人机后退,左箭头方向键用于控制无人机左移,右箭头方向键用于控制无人机右移。
需要说明的是,以对W键的操作为例,一种方式为:至少一次按压该W键,一种方式为:持续按压该W键,但本实施例并不限地此。
其中,图4为本发明实施例提供的控制无人机的飞行方向的一种界面示意图,如图4所示,通过用户对键盘的操作,无人机的飞行方向的变化可以通过界面显示给用户,图4的(a)表示用户通过操作图3的(a)中的字母键控制飞行方向,其中,图4的(a)示出的飞行方向为:逆时针旋转下降,对应的第一操作为操作了图3的(a)中的A键和S键。图4中的(b)表示用户通过操作图3的(b)中的方向键控制飞行方向,其中,图4的(b)示出的飞行方向为:前进。
可选地,本实施例的方法还可以包括:检测对所述输入设备的第二操作;以及根据所述第二操作确定控制杆量;相应地,控制所述无人机按照所述飞行方向飞行,包括:根据所述控制杆量,控制所述无人机按照所述飞行方向飞行。
其中,用户通过对输入设备的第一操作来控制无人机的飞行方向时,用户还可以通过对输入设备的操作来控制无人机在该飞行方向的控制杆量,保证在控制无人机的飞行方向的同时还可以控制无人机的控制杆量。当通过输入设备检测到用户对其进行的第二操作时,该第二操作会产生相应的控制杆量,本实施例会根据第二操作确定与该第二操作对应的控制杆量,然后根据该控制杆量,来对该无人机按照上述飞行方向的飞行进行控制。
可选地,所述控制杆量用于控制所述无人机的速度,所述速度包括上升速度、下降速度、前进速度、后退速度、左移速度、右移速度、顺时针旋转速度、逆时针旋转速度。其中,控制无人机的速度表示可以控制该无人机在上述飞行方向上的飞行速度,也可以控制该无人机在该飞行方向上的飞行距离。
可选地,所述第二操作为对鼠标的操作。通过对鼠标的操作来控制无人机的飞行速度。本实施例中,通过操作键盘来控制无人机的飞行方向,通过操作鼠标来控制无人机的飞行速度,通过两个不同的输入设备操作无人机的飞行,方便用户的操作,提高了用户操作无人机飞行的精确性。
可选地,所述对鼠标的操作,包括:按压所述鼠标的滚轮、向前滑动或者向后滑动所述滚轮;或者,在所述鼠标的左键或者右键上滑动。
其中,当鼠标具有滚轮时,用户可以按压鼠标的滚轮,再向前滑动该滚轮或者向后滑动该滚轮。其中,用户按下鼠标的滚轮的瞬间,相当于启动控制无人机的控制杆量,然后用户可以在按着滚轮的情况下向前滑动滚轮或者向后滑动滚轮,相应地,滚轮产生滚动距离。此时控制杆量随着滚轮滚动距离的增大而增加,可选地,当滑动滚轮的距离等于第一预设距离时控制杆量达到最大值,此时继续滑动滚轮控制杆量不再增加。反之,控制杆量随着滚轮滚动距离的减小而减少,可选地,当滑动滚轮的距离等于第二预设距离时控制杆量达到最小值,此时继续滑动滚轮控制杆量不再减少。可选地,当用户松开滚轮时,相当于关闭无人机的控制杆量。之后无论如何滑动滚轮,控 制杆量都不会发生变化。
可选地,向前滑动滚轮可以表示增加控制杆量,向后滑动滚轮可以表示减少控制杆量,本实施例不限于此。
可选地,上述控制杆量可以依据该滚轮的滚动距离、滚动的方向、滚动的速度、滚动的加速度中的一个或多个获取。
其中,当鼠标不包括滚轮时,用户可以在鼠标的左键上滑动或者在右键上滑动。其中,用户在鼠标的左键上滑动或者在右键上滑动,会产生滑动距离。此时控制杆量随着滑动距离的增大而增加,可选地,当滑动距离等于第三预设距离时控制杆量达到最大值,此时继续滑动控制杆量不再增加。反之,控制杆量随着滑动距离的减小而减少,可选地,当滑动距离等于第二预设距离时控制杆量达到最小值,此时继续滑动滚轮控制杆量不再减少。
可选地,在左键上滑动可以表示增加控制杆量,在右键上滑动可以表示减少控制杆量,本实施例不限于此。
可选地,上述控制杆量可以依据滑动距离、滑动的方向、滑动的速度、滑动的加速度中的一个或多个获取。
在本发明实施例三中,本实施例在本发明实施例一的基础上,上述的控制指令用于控制所述无人机的云台的姿态,所述姿态包括俯仰角、横滚角、偏航角中的一个或多个。其中,第一操作可以用于控制无人机的云台的姿态,相应地,本实施例根据该第一操作确定的控制指令(用于控制云台的姿态),调整云台的姿态为控制指令指示的姿态,例如:调整云台的包括俯仰角、横滚角、偏航角中的一个或多个。因此,本实施例通过远程操作输入设备以控制无人机的云台的姿态来改变云台的朝向,进而可以改变承载在云台上的成像装置的拍摄角度。
可选地,所述第一操作为对所述鼠标或所述触摸板的操作。本实施例中,通过检测用户对鼠标的操作来控制无人机的云台的姿态,也可以检测用户对触摸板的操作来控制无人机的云台的姿态。其中,本实施例的云台例如是图1中所示的云台120。
可选地,所述对鼠标的操作包括:向前滑动或者向后滑动所述鼠标的滚轮。例如:以云台的姿态包括俯仰角为例,向前滑动鼠标的滚轮表示增大俯仰角,随着滑动距离的增大,而继续增大俯仰角,直至滑动距离等于第五预 设距离时,俯仰角达到最大值,继续滑动,俯仰角不再增加。向后滑动鼠标的滚轮表示减少俯仰角,随着滑动距离的增大,而继续减少俯仰角,直至滑动距离等于第六预设距离时,俯仰角达到最小值,继续滑动,俯仰角不再减少。
可选地,对所述触摸板的操作,包括:在所述触摸板上向前滑动或者向后滑动。例如:以云台的姿态包括俯仰角为例,在触摸板上向前滑动表示增大俯仰角,随着滑动距离的增大,而继续增大俯仰角,直至滑动距离等于第七预设距离时,俯仰角达到最大值,继续滑动,俯仰角不再增加。在触摸板上向后滑动表示减少俯仰角,直至滑动距离等于第八预设距离时,俯仰角达到最小值,继续滑动,俯仰角不再减少。
在本发明实施例四中,本实施例在实施例一的基础上,所述控制指令用于控制所述无人机的成像装置;所述根据所述控制指令,对所述无人机进行操控,包括:根据所述控制指令,控制所述成像装置的拍摄模式,所述拍摄模式至少包括拍照或摄像。其中,第一操作可以用于控制无人机的成像装置,具体地,第一操作可以触发用于控制无人机的成像装置的拍摄模式的控制指令,本实施例可以根据第一操作确定的控制指令(用于控制成像装置的拍摄模块),控制无人机的成像装置的拍摄模式为拍照还是摄像,即可以控制成像装置在拍照模式下与摄像模式下切换。例如:当成像装置的拍摄模式为摄像模式,在检测到上述第一操作时,切换该成像装置的拍摄模块为拍照模式。当成像装置的拍摄模块为拍照模块,在检测到上述第一操作时,切换该成像装置的拍摄模块为摄像模式。
可选地,第一操作为:对鼠标的操作。其中,对鼠标的操作可以为:单击或者双击鼠标的左键。需要说明的是,本实施例不限定为鼠标的左键,也可以为右键,同样,本实施例也不限定敲击的次数,也可以是三次及以上。
在本发明实施例五中,本实施例在实施例一的基础上,所述控制指令用于控制所述无人机的成像装置;所述根据所述控制指令,对所述无人机进行操控,包括:根据所述控制指令,控制所述成像装置的焦距。其中,第一操作可以用于控制无人机的成像装置,具体地,第一操作可以触发用于控制无人机的成像装置的焦距的控制指令,本实施例可以根据第一操作确定的控制指令(用于控制成像装置的焦距),控制成像装置的焦距。
可选地,第一操作为:对鼠标的操作。其中,对鼠标的操作可以为:对鼠标的左键或者右键按压,其中,对所述左键或所述右键按压时间大于第一预设时间。其中,用户按压鼠标的左键或鼠标的右键的时间大于第一预设时间后,触发了用于控制成像装置的焦距的控制指令,本实施例根据该控制指令控制成像装置的焦距。例如:用户按压鼠标的左键的时间大于第一预设时间后,据此,本实施例控制成像装置的广角变焦。用户按压鼠标的右键的时间大于第一预设时间后,据此,本实施例控制成像装置的远角变焦。
在本发明实施例六中,本实施例在实施例一的基础上,所述控制指令用于控制所述无人机的成像装置开始或者停止拍照;或者,所述控制指令用于控制所述无人机的成像装置开始或者停止摄像。其中,第一操作可以用于控制无人机的成像装置,具体地,第一操作可以触发用于控制无人机的成像装置开始或者停止拍照的控制指令,或者,第一操作可以触发用于成像装置开始或者停止摄像的控制指令。例如:成像装置在拍照模式下,当成像装置正在拍照时,在检测到上述第一操作时,控制成像装置停止拍照,当成像装置停止拍照时,在检测到上述第一操作时,控制成像装置开始拍照。成像装置在摄像模式下,当成像装置正在摄像时,在检测到上述第一操作时,控制成像装置停止摄像,当成像装置停止摄像时,在检测到上述第一操作时,控制成像装置开始摄像。
可选地,所述第一操作为:对鼠标的左键和右键点击的操作,其中,对所述左键与所述右键的点击时间之差小于第二预设时间。例如:用户差不多同时按压鼠标的左键和右键时,据此,本实施例控制成像装置开始或者停止拍照,或者得,控制成像装置开始或者停止摄像。
因此,上述实施例可以通过操作输入设备来控制无人机的成像装置,以快速且准确地控制拍摄效果。
目前,本发明实施例中可以直接根据用户对输入设备的第一操作确定的控制指令来操控无人机,克服了目前需要通过操作遥控器来控制无人机的缺陷,简化了用户操控无人机的操作过程,提高了控制无人机的效率。
本发明实施例中还提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,所述程序执行时可包括如图2及其对应实施例中的无人机的远程控制方法的部分或全部步骤。
图5为本发明实施例一提供的无人机的远程控制设备300的结构示意图,如图5所示,本实施例的设备包括:输入设备301和处理器302。
上述处理器302可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
输入设备301,用于检测第一操作,所述输入设备301包括以下至少一种:鼠标、键盘、触摸板。
处理器302,用于根据所述第一操作确定用于控制无人机的控制指令;以及根据所述控制指令,对所述无人机进行操控。
可选地,所述控制指令用于控制所述无人机的飞行方向;
所述处理器302,具体用于:控制所述无人机按照所述飞行方向飞行。
可选地,所述飞行方向包括:上升、下降、前进、后退、左移、右移、顺时针旋转、逆时针旋转。
可选地,所述第一操作包括对所述键盘的操作。
可选地,所述对所述键盘的操作包括:对所述键盘中W键、S键、A键、D键、四个方向键中的至少一个键的操作。
可选地,所述输入设备301,还用于检测第二操作;所述第二操作用于确定控制杆量。
所述处理器302,具体用于:根据所述控制杆量,控制所述无人机按照所述飞行方向飞行。
可选地,所述控制杆量用于控制所述无人机的速度,所述速度包括上升速度、下降速度、前进速度、后退速度、左移速度、右移速度、顺时针旋转速度、逆时针旋转速度。
可选地,所述第二操作为对所述鼠标的操作。
可选地,所述对鼠标的操作,包括:按压所述鼠标的滚轮、向前滑动或者向后滑动所述滚轮;或者,在所述鼠标的左键或者右键上滑动。
可选地,所述控制指令用于控制所述无人机的云台的姿态,所述姿态包 括俯仰角、横滚角、偏航角中的一个或多个。
可选地,所述第一操作为对所述鼠标或所述触摸板的操作。
可选地,所述对鼠标的操作包括:向前滑动或者向后滑动所述鼠标的滚轮。对所述触摸板的操作,包括:在所述触摸板上向前滑动或者向后滑动。
可选地,所述控制指令用于控制所述无人机的成像装置;
所述处理器302,具体用于:根据所述控制指令,控制所述成像装置的拍摄模式,所述拍摄模式至少包括拍照或摄像。
可选地,所述控制指令用于控制所述无人机的成像装置;
所述处理器302,具体用于:根据所述控制指令,控制所述成像装置的焦距。
可选地,所述第一操作为:对鼠标的左键或者右键按压,其中,对所述左键或所述右键按压时间大于第一预设时间。
可选地,所述控制指令用于控制所述无人机的成像装置开始或者停止拍照;或者,所述控制指令用于控制所述成像装置开始或者停止摄像。
可选地,所述第一操作为:对鼠标的左键和右键点击的操作,其中,对所述左键与所述右键的点击时间之差小于第二预设时间。
可选地,本实施例的装置还可以包括存储器303。输入设备301、处理器302和存储器303通过总线连接。存储器303可以包括只读存储器和随机存取存储器,并向处理器302提供指令和数据。存储器303的一部分还可以包括非易失性随机存取存储器。存储器303用于存储执行无人机的远程控制方法的代码,处理器302用于调用存储器303存储的代码执行上述方案。
本实施例的设备,可以用于执行本发明上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图6为本发明实施例提供的一种无人机的远程控制系统500的结构示意图,如图6所示,本实施例的系统包括:无人机的远程控制设备300和无人机400。其中,无人机的远程控制设备300可以采用图5所示设备实施例的结构,其对应地,可以执行本发明上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
在一些实施例中,无人机的远程控制设备300可以将所述控制指令发送给无人机400(如所述无人机400的飞行控制器),以对无人机400进行操 控。所述控制指令的实例详见图5,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(英文:Read-Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (35)

  1. 一种无人机的远程控制方法,其特征在于,包括:
    检测对输入设备的第一操作,所述输入设备包括以下至少一种:鼠标、键盘、触摸板;
    根据所述第一操作确定用于控制无人机的控制指令;
    根据所述控制指令,对所述无人机进行操控。
  2. 根据权利要求1所述的方法,其特征在于,所述控制指令用于控制所述无人机的飞行方向;
    所述根据所述控制指令,对所述无人机进行操控,包括:
    控制所述无人机按照所述飞行方向飞行。
  3. 根据权利要求2所述的方法,其特征在于,所述飞行方向包括:上升、下降、前进、后退、左移、右移、顺时针旋转、逆时针旋转。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一操作包括对所述键盘的操作。
  5. 根据权利要求4所述的方法,其特征在于,所述对所述键盘的操作包括:对所述键盘中W键、S键、A键、D键、四个方向键中的至少一个键的操作。
  6. 根据权利要求2所述的方法,其特征在于,还包括:
    检测对所述输入设备的第二操作;
    根据所述第二操作确定控制杆量;
    所述控制所述无人机按照所述飞行方向飞行,包括:
    根据所述控制杆量,控制所述无人机按照所述飞行方向飞行。
  7. 根据权利要求6所述的方法,其特征在于,所述控制杆量用于控制所述无人机的速度,所述速度包括上升速度、下降速度、前进速度、后退速度、左移速度、右移速度、顺时针旋转速度、逆时针旋转速度。
  8. 根据权利要求7所述的方法,其特征在于,所述第二操作为对所述鼠标的操作。
  9. 根据权利要求8所述的方法,其特征在于,所述对鼠标的操作,包括:按压所述鼠标的滚轮、向前滑动或者向后滑动所述滚轮;或者,在所述鼠标的左键或者右键上滑动。
  10. 根据权利要求1所述的方法,其特征在于,所述控制指令用于控制所述无人机的云台的姿态,所述姿态包括俯仰角、横滚角、偏航角中的一个或多个。
  11. 根据权利要求10所述的方法,其特征在于,所述第一操作为对所述鼠标或所述触摸板的操作。
  12. 根据权利要求11所述的方法,其特征在于,所述对所述鼠标的操作包括:向前滑动或者向后滑动所述鼠标的滚轮;
    对所述触摸板的操作,包括:在所述触摸板上向前滑动或者向后滑动。
  13. 根据权利要求1所述的方法,其特征在于,所述控制指令用于控制所述无人机的成像装置;
    所述根据所述控制指令,对所述无人机进行操控,包括:
    根据所述控制指令,控制所述成像装置的拍摄模式,所述拍摄模式至少包括拍照或摄像。
  14. 根据权利要求1所述的方法,其特征在于,所述控制指令用于控制所述无人机的成像装置;
    所述根据所述控制指令,对所述无人机进行操控,包括:
    根据所述控制指令,控制所述成像装置的焦距。
  15. 根据权利要求14所述的方法,其特征在于,所述第一操作为:对鼠标的左键或者右键按压,其中,对所述左键或所述右键按压时间大于第一预设时间。
  16. 根据权利要求1所述的方法,其特征在于,所述控制指令用于控制所述无人机的成像装置开始或者停止拍照;或者,
    所述控制指令用于控制所述成像装置开始或者停止摄像。
  17. 根据权利要求16所述的方法,其特征在于,所述第一操作为:对所述鼠标的左键和右键点击的操作,其中,对所述左键与所述右键的点击时间之差小于第二预设时间。
  18. 一种无人机的远程控制设备,其特征在于,包括:
    输入设备,用于检测第一操作,所述输入设备包括以下至少一种:鼠标、键盘、触摸板;
    处理器,用于根据所述第一操作确定用于控制无人机的控制指令;以及 根据所述控制指令,对所述无人机进行操控。
  19. 根据权利要求18所述的设备,其特征在于,所述控制指令用于控制所述无人机的飞行方向;
    所述处理器,具体用于:控制所述无人机按照所述飞行方向飞行。
  20. 根据权利要求19所述的设备,其特征在于,所述飞行方向包括:上升、下降、前进、后退、左移、右移、顺时针旋转、逆时针旋转。
  21. 根据权利要求19或20所述的设备,其特征在于,所述第一操作包括对所述键盘的操作。
  22. 根据权利要求21所述的设备,其特征在于,所述对所述键盘的操作包括:对所述键盘中W键、S键、A键、D键、四个方向键中的至少一个键的操作。
  23. 根据权利要求19所述的设备,其特征在于,
    所述输入设备,还用于检测对所述输入设备的第二操作;所述第二操作用于确定控制杆量;
    所述处理器,具体用于:根据所述控制杆量,控制所述无人机按照所述飞行方向飞行。
  24. 根据权利要求23所述的设备,其特征在于,所述控制杆量用于控制所述无人机的速度,所述速度包括上升速度、下降速度、前进速度、后退速度、左移速度、右移速度、顺时针旋转速度、逆时针旋转速度。
  25. 根据权利要求24所述的设备,其特征在于,所述第二操作为对所述鼠标的操作。
  26. 根据权利要求25所述的设备,其特征在于,所述对鼠标的操作,包括:按压所述鼠标的滚轮、向前滑动或者向后滑动所述滚轮;或者,在所述鼠标的左键或者右键上滑动。
  27. 根据权利要求18所述的设备,其特征在于,所述控制指令用于控制所述无人机的云台的姿态,所述姿态包括俯仰角、横滚角、偏航角中的一个或多个。
  28. 根据权利要求27所述的设备,其特征在于,所述第一操作为对所述鼠标或所述触摸板的操作。
  29. 根据权利要求28所述的设备,其特征在于,所述对所述鼠标的操作 包括:向前滑动或者向后滑动所述鼠标的滚轮;
    对所述触摸板的操作,包括:在所述触摸板上向前滑动或者向后滑动。
  30. 根据权利要求18所述的设备,其特征在于,所述控制指令用于控制所述无人机的成像装置;
    所述处理器,具体用于:根据所述控制指令,控制所述成像装置的拍摄模式,所述拍摄模式至少包括拍照或摄像。
  31. 根据权利要求18所述的设备,其特征在于,所述控制指令用于控制所述无人机的成像装置;
    所述处理器,具体用于:根据所述控制指令,控制所述成像装置的焦距。
  32. 根据权利要求31所述的设备,其特征在于,所述第一操作为:对鼠标的左键或者右键按压,其中,对所述左键或所述右键按压时间大于第一预设时间。
  33. 根据权利要求18所述的设备,其特征在于,所述控制指令用于控制所述无人机的成像装置开始或者停止拍照;或者,
    所述控制指令用于控制所述成像装置开始或者停止摄像。
  34. 根据权利要求33所述的设备,其特征在于,所述第一操作为:对所述鼠标的左键和右键点击的操作,其中,对所述左键与所述右键的点击时间之差小于第二预设时间。
  35. 一种无人机的远程控制系统,其特征在于,包括:
    无人机;
    如权利要求18-34任一项所述的无人机的远程控制设备。
PCT/CN2017/074982 2017-02-27 2017-02-27 无人机的远程控制方法、设备和系统 WO2018152827A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/074982 WO2018152827A1 (zh) 2017-02-27 2017-02-27 无人机的远程控制方法、设备和系统
CN201780005249.3A CN108885463A (zh) 2017-02-27 2017-02-27 无人机的远程控制方法、设备和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/074982 WO2018152827A1 (zh) 2017-02-27 2017-02-27 无人机的远程控制方法、设备和系统

Publications (1)

Publication Number Publication Date
WO2018152827A1 true WO2018152827A1 (zh) 2018-08-30

Family

ID=63253101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074982 WO2018152827A1 (zh) 2017-02-27 2017-02-27 无人机的远程控制方法、设备和系统

Country Status (2)

Country Link
CN (1) CN108885463A (zh)
WO (1) WO2018152827A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112068589A (zh) * 2020-08-13 2020-12-11 南京航空航天大学 一种无人机操控系统及方法
CN114253284A (zh) * 2021-12-22 2022-03-29 湖北襄开电力设备有限公司 无人机自动控制方法、装置、设备及存储介质
WO2023025203A1 (zh) * 2021-08-25 2023-03-02 深圳市道通智能航空技术股份有限公司 云台相机的变焦控制方法、装置及终端

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759945A (zh) * 2021-08-25 2021-12-07 深圳市道通智能航空技术股份有限公司 远程控制方法、装置及第一、第二控制端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176475A (zh) * 2013-02-27 2013-06-26 广东工业大学 一种无人机地面站
CN103744429A (zh) * 2013-02-07 2014-04-23 山东英特力光通信开发有限公司 一种小型无人直升机飞行控制系统
US20150317924A1 (en) * 2014-05-02 2015-11-05 John Chowhan Park Unmanned Aerial System for Creating Aerial Message
CN105549497A (zh) * 2016-02-26 2016-05-04 暨南大学 支持pc控制的多旋翼无人飞行器控制系统
CN106406350A (zh) * 2016-10-28 2017-02-15 易瓦特科技股份公司 一种控制无人机的方法和系统
RU2015135556A (ru) * 2015-08-21 2017-02-22 Алексей Евгеньевич Несмеев Игровой контроллер

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102602535A (zh) * 2012-04-05 2012-07-25 唐粮 一种双引擎旋翼无人机系统
CN202976376U (zh) * 2012-11-22 2013-06-05 华南农业大学 基于无人机的林火动态监测与应急指挥系统
CN103426282A (zh) * 2013-07-31 2013-12-04 深圳市大疆创新科技有限公司 遥控方法及终端
CN104749995A (zh) * 2015-02-05 2015-07-01 中电科(德阳广汉)特种飞机系统工程有限公司 人机交互平台及其应用的无人机地面控制站
CN106375669B (zh) * 2016-09-30 2019-08-06 天津远度科技有限公司 一种稳像方法、装置和无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744429A (zh) * 2013-02-07 2014-04-23 山东英特力光通信开发有限公司 一种小型无人直升机飞行控制系统
CN103176475A (zh) * 2013-02-27 2013-06-26 广东工业大学 一种无人机地面站
US20150317924A1 (en) * 2014-05-02 2015-11-05 John Chowhan Park Unmanned Aerial System for Creating Aerial Message
RU2015135556A (ru) * 2015-08-21 2017-02-22 Алексей Евгеньевич Несмеев Игровой контроллер
CN105549497A (zh) * 2016-02-26 2016-05-04 暨南大学 支持pc控制的多旋翼无人飞行器控制系统
CN106406350A (zh) * 2016-10-28 2017-02-15 易瓦特科技股份公司 一种控制无人机的方法和系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112068589A (zh) * 2020-08-13 2020-12-11 南京航空航天大学 一种无人机操控系统及方法
WO2023025203A1 (zh) * 2021-08-25 2023-03-02 深圳市道通智能航空技术股份有限公司 云台相机的变焦控制方法、装置及终端
CN114253284A (zh) * 2021-12-22 2022-03-29 湖北襄开电力设备有限公司 无人机自动控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN108885463A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2018098784A1 (zh) 无人机的控制方法、装置、设备和无人机的控制系统
US11914370B2 (en) System and method for providing easy-to-use release and auto-positioning for drone applications
WO2018152827A1 (zh) 无人机的远程控制方法、设备和系统
CN108279694B (zh) 电子设备及其控制方法
US20240118594A1 (en) Gimbal control method, device, and gimbal
CN111596649B (zh) 用于空中系统的单手远程控制设备
US20200326709A1 (en) Method and device for controlling reset of gimbal, gimbal, and unmanned aerial vehicle
WO2018040006A1 (zh) 控制方法、装置和系统、飞行器、载体及操纵装置
JP7024155B2 (ja) ジンバル制御方法、ジンバル、及びコンピュータプログラム
CN110446885A (zh) 非正交云台的控制方法及其云台和存储装置
WO2021168819A1 (zh) 无人机的返航控制方法和设备
US20200249703A1 (en) Unmanned aerial vehicle control method, device and system
WO2020107292A1 (zh) 云台的控制方法、云台、移动平台和计算机可读存储介质
WO2018191969A1 (zh) 云台的控制方法及装置
WO2021212501A1 (zh) 轨迹生成方法、遥控终端、可移动平台、系统及计算机可读存储介质
WO2021168821A1 (zh) 可移动平台的控制方法和设备
CN112219146B (zh) 控制装置、摄像装置、控制方法以及程序
WO2023143460A1 (zh) 控制飞行组件的方法和装置、终端和可读存储介质
WO2020042186A1 (zh) 可移动平台的控制方法、可移动平台、终端设备和系统
JP2019114036A (ja) 情報処理装置、飛行制御指示方法、プログラム、及び記録媒体
WO2021146908A1 (zh) 云台及其控制方法
KR101956694B1 (ko) 드론 컨트롤러 및 그 제어 방법
WO2022061592A1 (zh) 电机的控制与检测方法及装置、云台以及可移动平台
WO2022070851A1 (ja) 方法、システムおよびプログラム
WO2020262222A1 (ja) 飛行体の制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897413

Country of ref document: EP

Kind code of ref document: A1