WO2022060184A1 - 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지 - Google Patents

겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2022060184A1
WO2022060184A1 PCT/KR2021/012871 KR2021012871W WO2022060184A1 WO 2022060184 A1 WO2022060184 A1 WO 2022060184A1 KR 2021012871 W KR2021012871 W KR 2021012871W WO 2022060184 A1 WO2022060184 A1 WO 2022060184A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
gel polymer
composition
carbonate
group
Prior art date
Application number
PCT/KR2021/012871
Other languages
English (en)
French (fr)
Inventor
이정훈
강용희
류지훈
윤여민
이재원
정범영
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21869806.6A priority Critical patent/EP4191726A1/en
Priority to US18/012,216 priority patent/US20230261260A1/en
Priority to CN202180043480.8A priority patent/CN115917823A/zh
Publication of WO2022060184A1 publication Critical patent/WO2022060184A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composition for a gel polymer electrolyte and a lithium secondary battery comprising the same.
  • Electrochemical devices are receiving the most attention among these energy storage technologies, and among them, interest in rechargeable batteries capable of charging and discharging is emerging.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and significantly higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and lead sulfate batteries using aqueous electrolyte solutions. is in the spotlight as
  • the lithium secondary battery can be divided into a lithium ion battery using a liquid electrolyte and a lithium polymer battery using a polymer electrolyte depending on the electrolyte used.
  • Lithium ion batteries have the advantage of high capacity, but since they use a liquid electrolyte containing lithium salt, there is a risk of leakage and explosion, and the battery design is complicated to prepare for this.
  • the lithium polymer battery uses a solid polymer electrolyte or a gel polymer electrolyte containing an electrolyte as an electrolyte, safety is improved and flexibility can be obtained at the same time. Accordingly, it can be developed in various forms, such as a small or thin film type battery.
  • An object of the present invention is to provide a battery capable of suppressing ignition propagation according to cell ignition.
  • the problem to be solved by the present invention is to suppress the electrolyte decomposition reaction by stabilizing radicals that may be generated during anode collapse or battery ignition.
  • One aspect of the present invention is to provide a composition for a gel polymer electrolyte according to the following embodiments.
  • the compound represented by Formula 1 relates to a composition for a gel polymer electrolyte, characterized in that it is included in an amount of 10% by volume or more based on the total volume of the non-aqueous organic solvent and the compound represented by Formula 1:
  • X is at least one halogen atom selected from the group consisting of F, Cl, Br and I, and n is an integer of 1 to 6).
  • the compound represented by Formula 1 is fluorobenzene, chlorobenzene, bromobenzene, iodobenzene, difluorobenzene, dichlorobenzene, dibromobenzene, diiodobenzene, trifluorobenzene, trichlorobenzene, Libromobenzene, triiodobenzene, tetrafluorobenzene, tetrachlorobenzene, terabromobenzene, tetraiodobenzene, fluorochlorobenzene, fluorobromobenzene, fluoroiodobenzene, chlorobromobenzene, chloro It relates to a composition for a gel polymer electrolyte, characterized in that at least one selected from the group consisting of iodobenzene and bromoiodobenzene.
  • a third embodiment according to the first or second embodiment,
  • the compound represented by Formula 1 relates to a composition for a gel polymer electrolyte, characterized in that it is included in an amount of 15% by volume to 30% by volume based on the total volume of the non-aqueous organic solvent and the compound represented by Formula 1.
  • the compound represented by Formula 1 relates to a composition for a gel polymer electrolyte, characterized in that it is fluorobenzene, chlorobenzene, bromobenzene, or iodobenzene.
  • a fifth embodiment according to any one of the first to fourth embodiments,
  • the polymerizable compound has a polymerizable functional group selected from the group consisting of a vinyl group, an epoxy group, an allyl group and a (meth)acrylic group, characterized in that it is a compound that can be changed into a gel form by polymerization or crosslinking. It relates to a composition for a polymer electrolyte.
  • the polymerizable compound has a weight average molecular weight (Mw) of 300 g/mol to 100,000 g/mol.
  • a seventh embodiment according to any one of the first to sixth embodiments,
  • the polymerizable compound relates to a composition for a gel polymer electrolyte, characterized in that it is included in an amount of 0.01 wt% to 10 wt% based on the total weight of the composition for a gel polymer electrolyte.
  • the non-aqueous organic solvent relates to a composition for a gel polymer electrolyte, characterized in that it includes at least one solvent selected from the group consisting of carbonates, esters, and ethers.
  • the carbonate relates to a composition for a gel polymer electrolyte, characterized in that it is a mixed solvent of a linear carbonate and a cyclic carbonate.
  • the cyclic carbonate is ethylene carbonate; propylene carbonate; 1,2-butylene carbonate; 2,3-butylene carbonate; 1,2-pentylene carbonate; 2,3-pentylene carbonate; vinylene carbonate; vinylethylene carbonate; fluoroethylene carbonate; and halides thereof; It relates to a composition for a gel polymer electrolyte, comprising any one or a mixture of two or more thereof.
  • the linear carbonates are dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethylmethyl carbonate (EMC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC) and halides thereof ; It relates to a composition for a gel polymer electrolyte, comprising any one or a mixture of two or more thereof.
  • the non-aqueous organic solvent relates to a composition for a gel polymer electrolyte, characterized in that it is a mixed solvent of a cyclic carbonate and a linear ester.
  • the linear ester is methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, ethyl propionate, propyl propionate ) and butyl propionate (Butyl propionate) relates to a composition for a gel polymer electrolyte comprising any one selected from the group consisting of, or a mixture of two or more thereof.
  • a fourteenth embodiment according to any one of the first to thirteenth embodiments,
  • the lithium salt includes Li + as a cation, and F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , AlO 4 - as an anion.
  • Another aspect of the present invention provides a gel polymer electrolyte according to the following embodiments.
  • a fifteenth embodiment relates to a gel polymer electrolyte formed by polymerizing the gel polymer composition according to any one of the first to fourteenth embodiments.
  • Another aspect of the present invention provides a lithium secondary battery according to the following embodiments.
  • It relates to a lithium secondary battery comprising the gel polymer electrolyte according to the fifteenth embodiment.
  • the above-mentioned compound and the crosslinking agent at the same time, it is possible to suppress volatilization of the above-mentioned compound and at the same time effectively suppress the ignition propagation.
  • 1A to 1E show 5 g of an electrolyte composition for a gel polymer or a non-aqueous electrolyte prepared in Comparative Example 1, Comparative Example 4, Comparative Example 5, Comparative Example 6, and Example 4 and ignited using a torch. The image was taken after 3 seconds.
  • substitution means that at least one hydrogen bonded to carbon is substituted with an element other than hydrogen, for example, an alkyl group having 1 to 5 carbon atoms or a fluorine element. means replaced with
  • composition for a gel polymer electrolyte there is provided a composition for a gel polymer electrolyte.
  • composition for a gel polymer electrolyte includes a lithium salt, a non-aqueous organic solvent, a polymerization initiator, a crosslinking agent, and a compound represented by the following formula (1), wherein the compound represented by the formula (1) is the non-aqueous organic solvent and the formula (1) It is included in an amount of 10% by volume or more based on the total volume of the compound to be used:
  • X is at least one halogen atom selected from the group consisting of F, Cl, Br and I, and n is an integer of 1 to 6).
  • the lithium salt is used as an electrolyte salt in a lithium secondary battery, and is used as a medium for transferring ions.
  • lithium salts include Li + as cations, and F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , AlO 4 as anions.
  • the lithium salt may be used alone or as a mixture of two or more as needed.
  • the lithium salt can be appropriately changed within the range that can be used in general, but in order to obtain an optimal effect of forming a film for preventing corrosion of the electrode surface, a concentration of 0.5M to 2.5M, specifically 0.9M to 2.0M, in the composition for a gel polymer electrolyte can be included as
  • the composition for a gel polymer electrolyte of the present invention contains 0.5 M or more of an electrolyte salt, resistance due to depletion of lithium ions during high-rate charge/discharge can be reduced. Moreover, when the concentration of the electrolyte salt in the composition for a gel polymer electrolyte of the present invention satisfies the above range, ion transport properties of high lithium cations (Li + ) due to an increase in lithium cations present in the composition for a gel polymer electrolyte (i.e., , cation transport rate (transference number) can be secured, and the effect of reducing diffusion resistance of lithium ions can be achieved, thereby implementing the effect of improving cycle capacity characteristics.
  • concentration of the electrolyte salt in the composition for a gel polymer electrolyte of the present invention satisfies the above range, ion transport properties of high lithium cations (Li + ) due to an increase in lithium cations present in the composition for a gel polymer
  • the non-aqueous organic solvent is not limited as long as it can minimize decomposition due to oxidation reaction during charging and discharging of the secondary battery and exhibit desired properties together with the additive.
  • a carbonate-based organic solvent, an ether-based organic solvent, or an ester-based organic solvent may be used alone or in combination of two or more.
  • the carbonate-based organic solvent may include at least one of a cyclic carbonate-based organic solvent and a linear carbonate-based organic solvent.
  • the cyclic carbonate-based organic solvent is ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene It may include at least one selected from the group consisting of carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and fluoroethylene carbonate (FEC), specifically ethylene carbonate and ethylene having a high dielectric constant It may include a mixed solvent of propylene carbonate having a relatively low melting point compared to carbonate.
  • FEC fluoroethylene carbonate
  • the linear carbonate-based organic solvent is a solvent having a low viscosity and a low dielectric constant, dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methyl It may include at least one selected from the group consisting of propyl carbonate and ethylpropyl carbonate, and more specifically, dimethyl carbonate.
  • the ether-based organic solvent may be any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether and ethyl propyl ether, or a mixture of two or more thereof, but limited thereto it is not going to be
  • the ester-based organic solvent may include at least one selected from the group consisting of a linear ester-based organic solvent and a cyclic ester-based organic solvent.
  • the linear ester-based organic solvent is, for example, any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate or among them.
  • a mixture of two or more types may be typically used, but is not limited thereto.
  • the cyclic ester-based organic solvent is, for example, any one or two selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone and ⁇ -caprolactone.
  • the above mixture may be used, but is not limited thereto.
  • the cyclic carbonate-based compound is a high-viscosity organic solvent and has a high dielectric constant, so it can well dissociate lithium salts in the electrolyte.
  • the dielectric constant linear carbonate-based compound and the linear ester-based compound are mixed in an appropriate ratio, a gel polymer electrolyte having high electrical conductivity can be prepared, which can be more preferably used.
  • the concentration of the solid content consisting of a lithium salt and a crosslinking agent is 70 wt% or less, specifically 50 wt% or less, based on the total weight of the composition for a gel polymer electrolyte , more specifically, may be included to be 10% by weight or less.
  • a composition for a gel polymer electrolyte according to an aspect of the present invention includes a compound represented by the following Chemical Formula 1:
  • X is at least one halogen atom selected from the group consisting of F, Cl, Br and I, and n is an integer of 1 to 6).
  • a compound represented by the following Chemical Formula 1 is added in order to scavenge radicals.
  • the compound represented by Chemical Formula 1 is added to the electrolyte composition for a gel polymer, the radicals generated at high temperature and the benzene radicals generated from the halogen react to scavenge the radicals.
  • the number of oxygen radicals decreases as the active material decays. Accordingly, there is an advantage that the electrolytic decomposition generated according to this can be reduced by the compound according to Chemical Formula 1 above.
  • the compound represented by Formula 1 may be halogenated benzene.
  • the compound represented by Formula 1 is fluorobenzene, chlorobenzene, bromobenzene, iodobenzene, difluorobenzene, dichlorobenzene, dibromobenzene, diiodobenzene, trifluorobenzene, trichlorobenzene, Libromobenzene, triiodobenzene, tetrafluorobenzene, tetrachlorobenzene, terabromobenzene, tetraiodobenzene, fluorochlorobenzene, fluorobromobenzene, fluoroiodobenzene, chlorobromobenzene, chloro It may be at least one selected from the group consisting of iodobenzene and bromoiodobenzene.
  • the compound represented by Formula 1 may be fluorobenzene, chlorobenzene, bromobenzene, or iodobenzene.
  • the compound represented by Formula 1 may be fluorobenzene, difluorobenzene, or trifluorobenzene.
  • the halogenated benzene has a fluoro group with high electronegativity, the radicals generated have high stability, so that the radicals can be scavenged more quickly.
  • the compound represented by Formula 1 may be included in 10% by volume or more, 15% by volume or more, or 20% by volume or more, based on the total volume of the non-aqueous organic solvent and the compound represented by Formula 1, and 40% by volume or less , 35% by volume or less, or 30% by volume or less may be included.
  • the compound represented by Formula 1 may contain 10% by volume to 30% by volume, or 10% by volume to 20% by volume, based on the total volume of the non-aqueous organic solvent and the compound represented by Formula 1 or less, or 15 vol% or more to 30 vol% or less, or 15 vol% or more to 20 vol% or less.
  • the ignition propagation inhibitory effect may be improved by suppressing the volatilization amount of the electrolyte.
  • the effect of inhibiting ignition propagation is insignificant, and when it exceeds 40% by volume, salt dissociation may occur.
  • composition for a gel polymer electrolyte includes at least one polymerizable compound selected from the group consisting of polymerizable monomers, oligomers and copolymers.
  • the compound represented by the formula (1) has a low boiling point (boiling point) and a low flash point (flash point) as it has a high volatility problem was found. Accordingly, when a small amount is added to the solvent, there is a problem of volatilization, and there is a problem of difficult handling.
  • the present inventors further included the above-mentioned polymerizable compound.
  • a polymerizable compound suppresses the volatilization characteristics of the compound represented by Formula 1, and consequently can effectively suppress ignition propagation.
  • the polymerizable compound, the polymerizable monomer, oligomer and copolymer has a polymerizable functional group selected from the group consisting of a vinyl group, an epoxy group, an allyl group, and a (meth)acrylic group in which a polymerization reaction can occur in the structure, and polymerization
  • a compound that can be changed into a gel form by crosslinking it is not particularly limited as long as it is used as a polymerizable monomer, oligomer or copolymer for preparing a conventional gel polymer electrolyte.
  • the polymerizable monomer is a non-limiting example, tetraethylene glycol diacrylate (tetraethylene glycol diacrylate), polyethylene glycol diacrylate (Poly ethylene glycol diacrylate, molecular weight 50 ⁇ 20,000), 1,4-butanediol diacrylate (1,4-butanediol diacrylate), 1,6-hexanediol diacrylate (1,6-hexandioldiacrylate), trimethylolpropane triacrylate, trimethylolpropane ethoxylate triacrylate ), trimethylolpropane propoxylate triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol tetraacrylate, pentaerythritol ethoxylate tetraacrylate ( pentaerythritol ethoxylate tetraacrylate), dipentaerythritol pentaacrylate, dipent
  • allyl 1,1,2,2-tetrafluoroethyl ether (TFE))-(2,2,2-trifluoroethyl acrylate) copolymer TFE-vinyl acetate Copolymer, TFE-(2-vinyl-1,3-dioxolane) copolymer, TFE-vinyl methacrylate copolymer, TFE-acrylonitrile copolymer, TFE-vinyl acrylate copolymer, TFE-methyl acrylic and at least one selected from the group consisting of a late copolymer, a TFE-methyl methacrylate (MMA) copolymer, and a TFE-2,2,2-trifluoro ethyl acrylate (FA) copolymer.
  • TFE allyl 1,1,2,2-tetrafluoroethyl ether
  • TFE-(2-vinyl-1,3-dioxolane) copolymer TFE-vinyl methacrylate cop
  • the polymerizable compound may be included in an amount of 0.01 wt% to 10 wt%, or 1 wt% to 8 wt%, based on the total weight of the composition for a gel polymer electrolyte.
  • the content of the polymerizable compound exceeds 10% by weight, gelation occurs too quickly or becomes too dense while the composition for a gel polymer electrolyte is injected into the battery, so that a gel with high resistance is obtained.
  • the content of the polymerizable compound If it is less than 0.01% by weight, there may be a problem that gelation is not performed well.
  • the weight average molecular weight (Mw) of the polymerizable compound can be controlled by the number of repeating units, about 300 g / mol to 100,000 g / mol, specifically 1,000 g / mol to 50,000 g / mol, more specifically It may be 2,000 g/mol to 10,000 g/mol.
  • Mw weight average molecular weight
  • the mechanical strength of the gel polymer electrolyte including the same can be effectively improved.
  • the weight average molecular weight of the polymerizable compound is less than 300 g/mol, appropriate mechanical strength cannot be expected, and more polymerization initiators are required to form numerous cross-links, or a difficult additional polymerization process is required to form the gel polymer. There is a disadvantage in that the electrolyte formation process is complicated. On the other hand, when the weight average molecular weight exceeds 100,000 g/mol, the physical properties of the oligomer itself become rigid, and the affinity with the electrolyte solvent is lowered to make dissolution difficult, so uniform and excellent gel polymer electrolyte formation cannot be expected.
  • the weight average molecular weight may be measured using a gel permeation chromatography (GPC) apparatus, and unless otherwise specified, the molecular weight may mean a weight average molecular weight.
  • GPC gel permeation chromatography
  • measurement is performed using Agilent's 1200 series under GPC conditions, and the column used at this time may be Agilent's PL mixed B column, and the solvent may be THF.
  • the weight average molecular weight is gel permeation chromatography (PL GPC220, Agilent Technologies), column: PL MiniMixed B x 2, solvent: THF, flow rate: 0.3 ml/min, sample concentration: 2.0 mg/ml , Injection amount: 10 ⁇ l, Column temperature: 40°C, Detector: Agilent RI detector, Standard: Polystyrene (corrected by cubic function), Data processing: It can be measured under the conditions of ChemStation.
  • composition for a gel polymer electrolyte of the present invention may include a polymerization initiator in order to perform a radical reaction required in the preparation of the gel polymer electrolyte.
  • the polymerization initiator a conventional thermal or photopolymerization initiator known in the art may be used.
  • the polymerization initiator may be decomposed by heat to form radicals, and may react with the aforementioned crosslinking agent through free radical polymerization to form a gel polymer electrolyte.
  • non-limiting examples of the polymerization initiator include benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert-butyl peroxide (di-tert- Organic peroxides such as butylperoxide, t-butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide and hydrogen peroxide Logistics or hydroperoxides and 2,2'-azobis (2-cyanobutane), 2,2'-azobis (methylbutyronitrile), 2,2'-azobis (isobutyronitrile) (AIBN) ; 2,2'-Azobis (iso-butyronitrile)) and 2,2'-azobisdimethyl-valeronitrile (AMVN; 2,2'-Azobisdimethyl-Valeronitrile) at least one azo compound selected from the group consisting of
  • the present invention is not limited thereto.
  • the polymerization initiator is decomposed by heat in the battery, non-limiting examples of 30°C to 100°C, or decomposed at room temperature (5°C to 30°C) to form radicals, and the polymerizable oligomer is acrylated by free radical polymerization It can react with the based compound to form a gel polymer electrolyte.
  • the polymerization initiator may be included in an amount of 0.01 to 5 parts by weight, specifically 0.1 to 3 parts by weight, based on 100 parts by weight of the crosslinking agent.
  • the gel polymer conversion rate can be increased to secure the gel polymer electrolyte properties, and the pre-gel reaction can be prevented, thereby improving the wetting property of the composition for the gel polymer electrolyte on the electrode.
  • composition for a gel polymer electrolyte of the present invention is decomposed in an environment of high power during manufacturing of the gel polymer electrolyte to prevent cathodic collapse, low-temperature high-rate discharge characteristics, high-temperature stability, overcharge prevention, swelling improvement effect during high-temperature storage, etc.
  • an additional additive capable of forming a more stable ion conductive film on the electrode surface may be further included, if necessary.
  • the additional additive is a representative example of a sultone-based compound, a sulfite-based compound, a sulfone-based compound, a sulfate-based compound, a halogen-substituted carbonate-based compound, a nitrile-based compound, a cyclic carbonate-based compound, a phosphate-based compound, a borate-based compound compound, and at least one first additive selected from the group consisting of lithium salt-based compounds.
  • the sultone-based compound is 1,3-propane sultone (PS), 1,4-butane sultone, ethenesultone, 1,3-propene sultone (PRS), 1,4-butene sultone, and 1-methyl-1; and at least one compound selected from the group consisting of 3-propene sultone, which may be included in an amount of 0.3 wt% to 5 wt%, specifically 1 wt% to 5 wt%, based on the total weight of the composition for a gel polymer electrolyte there is.
  • PS 1,3-propane sultone
  • PRS 1,3-propene sultone
  • 1-methyl-1 1,4-butane sultone
  • 3-propene sultone which may be included in an amount of 0.3 wt% to 5 wt%, specifically 1 wt% to 5 wt%, based on the total weight of the composition for a gel polymer electrolyte there is
  • the content of the sultone-based compound in the composition for a gel polymer electrolyte exceeds 5% by weight, an excessively thick film is formed on the electrode surface, which may cause an increase in resistance and deterioration of output. As the resistance is increased, the output characteristics may deteriorate.
  • sulfite-based compound examples include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethyl ethylene sulfite, 4,5-diethyl ethylene sulfite, propylene sulfite, and 4,5-dimethyl propylene.
  • At least one selected from the group consisting of sulfite, 4,5-diethyl propylene sulfite, 4,6-dimethyl propylene sulfite, 4,6-diethyl propylene sulfite, and 1,3-butylene glycol sulfite and a compound may be included in an amount of 3 wt% or less based on the total weight of the composition for a gel polymer electrolyte.
  • the sulfone-based compound may include at least one compound selected from the group consisting of divinyl sulfone, dimethyl sulfone, diethyl sulfone, methylethyl sulfone, and methylvinyl sulfone, and 3 based on the total weight of the composition for a gel polymer electrolyte. It may be included in weight % or less.
  • the sulfate-based compound may include ethylene sulfate (Ethylene Sulfate; Esa), trimethylenesulfate (TMS), or methyl trimethylene sulfate (MTMS), based on the total weight of the composition for a gel polymer electrolyte It may be included in an amount of 3% by weight or less.
  • Esa ethylene sulfate
  • TMS trimethylenesulfate
  • MTMS methyl trimethylene sulfate
  • the halogen-substituted carbonate-based compound may include fluoroethylene carbonate (FEC)), and may be included in an amount of 5 wt% or less based on the total weight of the composition for a gel polymer electrolyte.
  • FEC fluoroethylene carbonate
  • the content of the halogen-substituted carbonate-based compound in the composition for a gel polymer electrolyte exceeds 5 wt%, cell swelling performance may deteriorate.
  • the nitrile-based compound is succinonitrile, adiponitrile (Adn), acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, From the group consisting of 2-fluorobenzonitrile, 4-fluorobenzonitrile, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile at least one compound selected.
  • the cyclic carbonate-based compound may include vinylene carbonate (VC) or vinylethylene carbonate, and may be included in an amount of 3 wt% or less based on the total weight of the composition for a gel polymer electrolyte.
  • VC vinylene carbonate
  • vinylethylene carbonate When the content of the cyclic carbonate-based compound in the composition for a gel polymer electrolyte exceeds 3% by weight, cell swelling inhibition performance may be deteriorated.
  • the phosphate-based compound is lithium difluoro (bisoxalato) phosphate, lithium difluorophosphate, tetramethyl trimethyl silyl phosphate, trimethyl silyl phosphite, tris (2,2,2-trifluoroethyl) phosphate and tris (trifluoroethyl) one or more compounds selected from the group consisting of phosphite may be included, and may be included in an amount of 3 wt% or less based on the total weight of the composition for a gel polymer electrolyte.
  • the borate-based compound may include lithium oxalyldifluoroborate, and may be included in an amount of 3 wt% or less based on the total weight of the composition for a gel polymer electrolyte.
  • the lithium salt-based compound is a compound different from the lithium salt included in the composition for the gel polymer electrolyte, and is composed of LiPO 2 F 2 , LiODFB, LiBOB (lithium bisoxalatoborate (LiB(C 2 O 4 ) 2 ) and LiBF 4 ). and one or more compounds selected from the group, and may be included in an amount of 3 wt% or less based on the total weight of the composition for a gel polymer electrolyte.
  • Two or more of the additional additives may be mixed and included in an amount of 20 wt% or less, specifically 0.1 wt% to 10 wt%, based on the total weight of the composition for a gel polymer electrolyte.
  • the content of the additional additive is less than 0.01% by weight, the effect of improving the low-temperature output and high-temperature storage characteristics and high-temperature lifespan characteristics of the battery is insignificant, and when the content of the additional additives exceeds 20% by weight, the battery is charged and discharged There is a possibility that a side reaction in the composition for a gel polymer electrolyte may occur excessively.
  • the composition for a gel polymer electrolyte at room temperature may not be sufficiently decomposed at a high temperature, and may exist as unreacted or precipitated in the composition for a gel polymer electrolyte at room temperature. Accordingly, a side reaction in which the lifespan or resistance characteristic of the secondary battery is deteriorated may occur.
  • the gelation method for preparing the gel polymer electrolyte of the present invention is not particularly limited, and may be performed according to a conventional method known in the art.
  • a composition for a gel polymer electrolyte comprising a lithium salt, a non-aqueous organic solvent, a crosslinking agent, and the compound represented by Formula 1 is prepared, and then the composition is injected into a battery and a polymerization reaction is performed to conduct a polymerization reaction to form a gel polymer comprising a polymer matrix.
  • Electrolytes can be prepared. Alternatively, it may be prepared by carrying out the polymerization reaction to form a polymer matrix, and then further impregnating the non-aqueous electrolyte solution containing an electrolyte salt and an organic solvent.
  • the polymerization reaction may be carried out through conventional thermal, e-beam and gamma-ray processes. If the polymerization reaction is thermal polymerization, it takes about 1 hour to 8 hours, and the temperature may be performed within the range of 50 to 100°C.
  • the polymerization reaction for preparing the gel polymer electrolyte can be carried out even in the presence of general air or oxygen by including the compound represented by Formula 1 as an oxygen scavenger in the gel polymer electrolyte composition. That is, the compound according to Chemical Formula 1 reduces the influence of oxygen during the polymerization reaction and improves the reactivity of the cross-linking agents, so that the extent of reaction can be increased to such a degree that a large amount of unreacted monomer is hardly present. .
  • the oxygen scavenger contains a flame-retardant functional group, the flame-retardant strengthening effect of the gel polymer electrolyte may be additionally imparted.
  • a lithium secondary battery including the above-described gel polymer electrolyte, wherein the lithium secondary battery includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and between the positive electrode and the negative electrode It may include the separator disclosed in and the above-described gel polymer electrolyte.
  • the lithium secondary battery of the present invention may be manufactured according to a conventional method known in the art.
  • it can be prepared by putting a porous separator between the positive electrode and the negative electrode and adding an electrolyte in which lithium salt is dissolved.
  • the positive electrode, the negative electrode, and the separator constituting the electrode assembly those commonly used in the manufacture of lithium secondary batteries may be used.
  • the positive electrode may be manufactured by forming a positive electrode mixture layer on a positive electrode current collector.
  • the positive electrode mixture layer may be formed by coating a positive electrode slurry including a positive electrode active material, a binder, a conductive material and a solvent on a positive electrode current collector, followed by drying and rolling.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , nickel, titanium, silver, etc. may be used.
  • the positive active material is a compound capable of reversible intercalation and deintercalation of lithium, and specifically, may include a lithium composite metal oxide including lithium and one or more metals such as cobalt, manganese, nickel or aluminum.
  • the lithium composite metal oxide is a lithium-manganese-based oxide (eg, LiMnO 2 , LiMn 2 O 4 , etc.), a lithium-cobalt-based oxide (eg, LiCoO 2 etc.), lithium-nickel-based oxide (eg, LiNiO 2 , etc.), lithium-nickel-manganese oxide (eg, LiNi 1-Y Mn Y O 2 (here, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 ( Here, 0 ⁇ Z ⁇ 2, etc.), lithium-nickel-cobalt-based oxide (eg, LiNi 1-Y 1Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), etc.), lithium-manganese-
  • the lithium composite metal oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (for example, Li(Ni 1/3 Mn 1/3 Co 1 ) /3 )O 2 , Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 , and Li(Ni 0.8 Mn 0.1 Co 0.1 ) )O 2 , etc.), or lithium nickel cobalt aluminum oxide (eg, Li(Ni 0.8 Co 0.15 Al 0.05 )O 2 , etc.).
  • lithium nickel manganese cobalt oxide for example, Li(Ni 1/3 Mn 1/3 Co 1 ) /3 )O 2 , Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , Li(Ni 0.7 Mn
  • the positive active material may be included in an amount of 80% to 99% by weight based on the total weight of the solid content in the positive electrode slurry.
  • the binder is a component that assists in bonding between the active material and the conductive material and bonding to the current collector, and is typically added in an amount of 1 to 30% by weight based on the total weight of the solid content in the positive electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro roethylene, polyethylene, polypropylene, ethylene-propylene-diene ter monomer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluororubber, various copolymers, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene ter monomer
  • EPDM ethylene-propylene-diene ter monomer
  • the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of the solid content in the positive electrode slurry.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • carbon black acetylene black (or Denka black), Ketjen black, channel black, furnace black, lamp black, or carbon powder such as thermal black
  • Graphite powder such as natural graphite, artificial graphite, or graphite with a highly developed crystal structure
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount having a desirable viscosity when the positive active material and optionally a binder and a conductive material are included. For example, it may be included so that the solids concentration in the slurry including the positive electrode active material, and optionally the binder and the conductive material is 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode may be manufactured by forming a negative electrode mixture layer on the negative electrode current collector.
  • the negative electrode mixture layer may be formed by coating a negative electrode slurry including a negative electrode active material, a binder, a conductive material and a solvent on a negative electrode current collector, drying and rolling.
  • the negative electrode current collector generally has a thickness of 3 to 500 ⁇ m.
  • a negative current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel.
  • a surface treated with carbon, nickel, titanium, silver, etc., an aluminum-cadmium alloy, etc. may be used on the surface.
  • the bonding strength of the negative electrode active material may be strengthened by forming fine irregularities on the surface, and may be used in various forms such as a film, sheet, foil, net, porous body, foam, non-woven body, and the like.
  • the negative active material is lithium metal, a carbon material capable of reversibly intercalating/deintercalating lithium ions, a metal or an alloy of these metals and lithium, a metal composite oxide, and lithium doping and de-doping. It may include at least one selected from the group consisting of materials, and transition metal oxides.
  • any carbon-based negative active material generally used in lithium ion secondary batteries may be used without particular limitation, and representative examples thereof include crystalline carbon, Amorphous carbon or these may be used together.
  • the crystalline carbon include graphite such as amorphous, plate-like, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (low-temperature calcined carbon). or hard carbon, mesophase pitch carbide, and calcined coke.
  • metal composite oxide examples include PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), and Sn x Me 1-x Me′ y O z (Me: Mn, Fe , Pb, Ge; Me': Al, B, P, Si, elements of Groups 1, 2, and 3 of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) One selected from the group may be used.
  • Examples of materials capable of doping and dedoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si-Y alloy (wherein Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, An element selected from the group consisting of rare earth elements and combinations thereof, but not Si), Sn, SnO 2 , Sn-Y (wherein Y is an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, a transition metal, a rare earth) It is an element selected from the group consisting of elements and combinations thereof, and is not Sn), and at least one of these and SiO 2 may be mixed and used.
  • the element Y includes Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, It may be selected from the group consisting of Te, Po, and combinations thereof.
  • transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, and lithium vanadium oxide.
  • the negative active material may be included in an amount of 80% to 99% by weight based on the total weight of the solids in the negative electrode slurry.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and is typically added in an amount of 1 to 30% by weight based on the total weight of the solid content in the negative electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro and roethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluororubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 to 20 wt% based on the total weight of the solid content in the negative electrode slurry.
  • the conductive material may be the same as or different from the conductive material used in manufacturing the anode, for example, carbon black, acetylene black (or Denka black), Ketjen black, channel black, furnace black, lamp black, or thermal black.
  • carbon powder such as; Graphite powder, such as natural graphite, artificial graphite, or graphite with a highly developed crystal structure; conductive fibers such as carbon fibers and metal fibers; metal powders such as carbon fluoride, aluminum, and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • Graphite powder such as natural graphite, artificial graphite, or graphite with a highly developed crystal structure
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the solvent may include water or an organic solvent such as NMP, alcohol, and the like, and may be used in an amount to have a desirable viscosity when the negative electrode active material and, optionally, a binder and a conductive material are included.
  • a binder and a conductive material may be included so that the solid content concentration in the slurry including the negative active material, and optionally the binder and the conductive material is 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
  • the separator serves to block the internal short circuit of both electrodes and impregnate the electrolyte.
  • a separator composition is prepared by mixing a polymer resin, a filler, and a solvent, and then the separator composition is directly coated on the electrode and dried.
  • a separator film may be formed, or the separator composition may be cast and dried on a support, and then formed by laminating a separator film peeled off from the support on an electrode.
  • the separator is a porous polymer film commonly used, for example, a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer.
  • the polymer film may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used, but is not limited thereto.
  • the pore diameter of the porous separator is generally 0.01 to 50 ⁇ m, and the porosity may be 5 to 95%.
  • the thickness of the porous separator may be generally in the range of 5 to 300 ⁇ m.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a prismatic shape, a pouch type, or a coin type using a can.
  • LiPF 6 in a mixture of a non-aqueous organic solvent having a composition of ethylene carbonate (EC), ethyl propionate (EP), fluorobenzene (FB) 30 : 60 : 10 (volume ratio) and the compound represented by Formula 1 was dissolved to 1.0 M to prepare 96.96 g of a non-aqueous electrolyte.
  • 3 g of trimethylolpropane triacrylate (weight average molecular weight: 3,000) as a polymerizable compound in the non-aqueous electrolyte and dimethyl 2,2'-azobis(2-methylpropionate) as a polymerization initiator (CAS No. 2589-57- 3) was added to prepare a composition for a gel polymer electrolyte by adding 0.04 g.
  • a positive electrode active material slurry solid content: 50%.
  • the positive electrode active material slurry was applied to an aluminum (Al) thin film as a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then a positive electrode was manufactured by performing a roll press.
  • the negative electrode active material slurry was applied to a 10 ⁇ m-thick copper (Cu) thin film as a negative electrode current collector, dried to prepare a negative electrode, and then roll press was performed to prepare a negative electrode.
  • An electrode assembly was prepared by sequentially stacking the positive electrode, the negative electrode, and a separator consisting of three layers of polypropylene/polyethylene/polypropylene (PP/PE/PP).
  • An electrode assembly was prepared using the positive electrode, the negative electrode, and a separator consisting of three layers of polypropylene/polyethylene/polypropylene (PP/PE/PP), and this was housed in a battery case and the prepared composition for gel polymer electrolyte was injected. .
  • PP/PE/PP polypropylene/polyethylene/polypropylene
  • Example 1 The same method as in Example 1, except that the volume ratio of ethylene carbonate (EC), ethyl propionate (EP), and fluorobenzene (FB) was controlled to 30:50:20 during the preparation of the composition for a gel polymer electrolyte
  • EC ethylene carbonate
  • EP ethyl propionate
  • FB fluorobenzene
  • Comparative Example 1 does not include halogen benzene, a crosslinking agent, and a polymerization initiator when preparing the electrolyte composition. That is, a conventional non-aqueous electrolyte, not a composition for a gel polymer electrolyte, was prepared.
  • a non-aqueous electrolyte was prepared as follows.
  • EC ethylene carbonate
  • EP ethyl propionate
  • a positive electrode active material slurry solid content: 50%.
  • the positive electrode active material slurry was applied to an aluminum (Al) thin film as a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then a positive electrode was manufactured by performing a roll press.
  • the negative electrode active material slurry was applied to a 10 ⁇ m-thick copper (Cu) thin film as a negative electrode current collector, dried to prepare a negative electrode, and then roll press was performed to prepare a negative electrode.
  • An electrode assembly was prepared by sequentially stacking the positive electrode, the negative electrode, and a separator consisting of three layers of polypropylene/polyethylene/polypropylene (PP/PE/PP).
  • An electrode assembly is prepared using the positive electrode, the negative electrode, and a separator composed of three layers of polypropylene/polyethylene/polypropylene (PP/PE/PP), stored in a battery case, and injected with the prepared non-aqueous electrolyte to form a lithium secondary battery (Full cell) was prepared.
  • PP/PE/PP polypropylene/polyethylene/polypropylene
  • Comparative Example 2 a crosslinking agent and a polymerization initiator were not added when preparing the composition for electrolyte when compared to Example 1. That is, a conventional non-aqueous electrolyte, not a composition for a gel polymer electrolyte, was prepared.
  • a non-aqueous electrolyte was prepared as follows.
  • LiPF 6 in a mixture of a non-aqueous organic solvent having a composition of ethylene carbonate (EC), ethyl propionate (EP), fluorobenzene (FB) 30 : 60 : 10 (volume ratio) and the compound represented by Formula 1 was dissolved to 1.0 M to prepare 96.96 g of a non-aqueous electrolyte.
  • EC ethylene carbonate
  • EP ethyl propionate
  • FB fluorobenzene
  • a lithium secondary battery was prepared in the same manner as in Comparative Example 1, except that the prepared non-aqueous electrolyte was used. The results are shown in Table 1.
  • Comparative Example 3 a crosslinking agent and a polymerization initiator were not added when preparing the composition for an electrolyte when compared to Example 2. That is, a conventional non-aqueous electrolyte, not a composition for a gel polymer electrolyte, was prepared.
  • a non-aqueous electrolyte was prepared as follows.
  • LiPF 6 in a mixture of a non-aqueous organic solvent having a composition of ethylene carbonate (EC), ethyl propionate (EP), fluorobenzene (FB) 30: 50: 20 (volume ratio) and the compound represented by Formula 1 was dissolved to 1.0 M to prepare 96.96 g of a non-aqueous electrolyte.
  • EC ethylene carbonate
  • EP ethyl propionate
  • FB fluorobenzene
  • a lithium secondary battery was prepared in the same manner as in Comparative Example 1, except that the prepared non-aqueous electrolyte was used. The results are shown in Table 1.
  • Comparative Example 4 is a case in which halogen benzene is not added when preparing the composition for a gel polymer electrolyte, as compared with Example 1.
  • composition for a gel polymer electrolyte was prepared as follows.
  • EC ethylene carbonate
  • EP ethyl propionate
  • 3 g of trimethylolpropane triacrylate as a polymerizable compound and 0.04 g of dimethyl 2,2'-azobis(2-methylpropionate) (CAS No. 2589-57-3) as a polymerization initiator were added.
  • a composition for a gel polymer electrolyte was prepared.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared composition for a gel polymer electrolyte was used. The results are shown in Table 1.
  • Comparative Example 5 is a case in which halogen benzene is not added when preparing the composition for a gel polymer electrolyte, as compared with Example 3.
  • composition for a gel polymer electrolyte was prepared as follows.
  • EC ethylene carbonate
  • EP ethyl propionate
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared composition for a gel polymer electrolyte was used. The results are shown in Table 1.
  • Comparative Example 6 is a case in which the volume ratio of the non-aqueous organic solvent is adjusted when preparing the composition for a gel polymer electrolyte, compared with Example 1.
  • composition for a gel polymer electrolyte was prepared as follows.
  • EC ethylene carbonate
  • EP ethyl propionate
  • FB fluorobenzene
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared composition for a gel polymer electrolyte was used. The results are shown in Table 1.
  • Electrolyte volatilization amount (%) ((weight of initial composition - weight of composition after 1 hour)/weight of initial composition ) X 100.
  • FIG. 4 when halogenated benzene and a crosslinking agent are added as in Example 4, a spark is generated after penetration of the nail (FIG. 4(a)), but it can be confirmed that the flame does not occur after penetration of the nail and is burned. There is (Fig. 4(b) to Fig. 4(d)).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬염, 비수계 유기 용매, 중합 개시제 및 가교제를 포함하는 겔 폴리머 전해질용 조성물과, 상기 겔 폴리머 전해질용 조성물을 중합한 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지에 관한 것이다. 본 발명의 일 실시예에 따르면, 가교제를 사용하여 비수계 유기 용매의 휘발을 억제하고, 셀 발화시 발화 프로파게이션(propagation)을 억제할 수 있다.

Description

겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
본 발명은 겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차전지에 관한 것이다.
본 출원은 2020년 9월 18일자로 출원된 한국 특허출원 번호 제10-2020-00120923호에 대한 우선권 주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 특히, 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 에너지 저장 기술 분야 중에서 가장 주목 받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지에 대한 관심이 대두되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다.
이러한 리튬 이차전지는 전용되는 전해질에 따라 액체 전해질을 사용하는 리튬 이온전지와 폴리머 전해질을 사용하는 리튬 폴리머 전지로 나눌 수 있다.
리튬 이온전지는 고용량이라는 장점이 있으나 리튬염을 함유한 액체 전해질을 사용하기 때문에 누액 및 폭발의 위험성이 있고, 이를 대비하고자 전지 설계가 복잡해지는 단점이 있다.
반면에, 리튬 폴리머 전지는 전해질로 고체 폴리머 전해질이나 전해액이 함유된 겔 폴리머 전해질을 사용하기 때문에 안전성이 향상되며 동시에 유연성을 가질 수 있다. 이에 따라, 소형 또는 박막형 전지 등 다양한 형태로 개발할 수 있다.
최근 전지의 안전성 이슈가 커지면서 이러한 리튬 폴리머 전지에서도 보다 강도 높은 안전성이 요구되고 있다. 특히, 전지가 발화하여 인접 전지에 추가적인 데미지를 주어 모듈 또는 팩 내에서 연속 발화가 일어나는 경우 큰 화제로 일어날 수 있기 때문에 셀 발화에 따른 발화 프로파게이션(propagation)을 억제될 수 있는 기술이 필요하다.
본 발명이 해결하고자 하는 과제는, 셀 발화에 따른 발화 프로파게이션을 억제할 수 있는 전지를 제공하고자 하는 것이다.
본 발명이 해결하고자 하는 과제는 양극 붕괴 또는 전지 발화 시 발생하는 수 있는 라디칼을 안정화 시킴으로써 전해질 분해 반응을 억제하고자 하는 것이다.
본 발명의 일 측면은 하기 구현예들에 따른 겔 폴리머 전해질용 조성물을 제공하는 것이다.
제1 구현예는,
리튬염; 비수계 유기 용매; 중합 개시제; 중합성 단량체, 올리고머 및 코폴리머로 이루어진 군으로부터 선택된 적어도 하나 이상의 중합성 화합물; 및 하기 화학식 1로 표시되는 화합물을 포함하며,
상기 화학식 1로 표시되는 화합물은 상기 비수계 유기 용매와 상기 화학식 1로 표시되는 화합물의 총 부피를 기준으로 10 부피% 이상으로 포함되는 것을 특징으로 하는 겔 폴리머 전해질용 조성물에 관한 것이다:
[화학식 1]
Figure PCTKR2021012871-appb-img-000001
(상기 화학식 1에서, X는 F, Cl, Br 및 I로 이루어진 군에서 선택된 적어도 어느 하나 이상의 할로겐 원자이고, n은 1 내지 6인 정수이다.).
제2 구현예는, 제1 구현예에 있어서,
상기 화학식 1로 표시되는 화합물은 플루오로 벤젠, 클로로 벤젠, 브로모 벤젠, 아이오도벤젠, 디플루오로벤젠, 디클로로벤젠, 디브로모벤젠, 디아이오도벤젠, 트리플루오로벤젠, 트리클로로벤젠, 트리브로모벤젠, 트리아이오도벤젠, 테트라플루오로벤젠, 테트라클로로벤젠, 테르라브로모벤젠, 테트라아이오도벤젠, 플루오로클로로벤젠, 플루오로브로모벤젠, 플루오로아이오도벤젠, 클로로브로모벤젠, 클로로아이오도벤젠 및 브로모아이오도벤젠으로 이루어진 군에서 선택된 적어도 어느 하나 이상인 것을 특징으로 하는 겔 폴리머 전해질용 조성물에 관한 것이다.
제3 구현예는, 제1 또는 제2 구현예에 있어서,
상기 화학식 1로 표시되는 화합물은 상기 비수계 유기 용매와 상기 화학식 1로 표시되는 화합물의 총 부피를 기준으로 15 부피% 내지 30 부피%로 포함되는 것을 특징으로 하는 겔 폴리머 전해질용 조성물에 관한 것이다.
제4 구현예는, 제2 구현예에 있어서,
상기 화학식 1로 표시되는 화합물은 플루오로벤젠, 클로로벤젠, 브로모벤젠 또는 아이오도벤젠인 것을 특징으로 하는 겔 폴리머 전해질용 조성물에 관한 것이다.
제5 구현예는, 제1 내지 제4 구현예 중 어느 한 구현예에 있어서,
상기 중합성 화합물은 비닐기, 에폭시기, 알릴(allyl)기 및 (메타)아크릴기로 이루어진 군에서 선택되는 중합성 관능기를 가지며, 중합 또는 가교에 의하여 겔상으로 변화될 수 있는 화합물인 것을 특징으로 하는 겔 폴리머 전해질용 조성물에 관한 것이다.
제6 구현예는, 제1 내지 제5 구현예 중 어느 한 구현예에 있어서,
상기 중합성 화합물의 중량평균분자량(Mw)는 300 g/mol 내지 100,000 g/mol인 것을 특징으로 하는 겔 폴리머 전해질용 조성물에 관한 것이다.
제7 구현예는, 제1 내지 제6 구현예 중 어느 한 구현예에 있어서,
상기 중합성 화합물은 상기 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 0.01 중량% 내지 10 중량%로 포함되는 것을 특징으로 하는 겔 폴리머 전해질용 조성물에 관한 것이다.
제8 구현예는, 제1 내지 제7 구현예 중 어느 한 구현예에 있어서,
상기 비수계 유기 용매는 카보네이트, 에스테르 및 에테르로 이루어진 군에서 선택되는 적어도 하나의 용매를 포함하는 것을 특징으로 하는 겔 폴리머 전해질용 조성물에 관한 것이다.
제9 구현예는, 제8 구현예에 있어서,
상기 카보네이트는 선형 카보네이트와 환형 카보네이트의 혼합 용매인 것을 특징으로 하는 겔 폴리머 전해질용 조성물에 관한 것이다.
제10 구현예는, 제9 구현예에 있어서,
상기 환형 카보네이트는 에틸렌 카보네이트; 프로필렌 카보네이트; 1,2-부틸렌 카보네이트; 2,3-부틸렌 카보네이트; 1,2-펜틸렌 카보네이트; 2,3-펜틸렌 카보네이트; 비닐렌 카보네이트; 비닐에틸렌 카보네이트; 플루오로에틸렌 카보네이트; 및 이들의 할로겐화물; 중 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 겔 폴리머 전해질용 조성물에 관한 것이다.
제11 구현예는, 제9 구현예에 있어서,
상기 선형 카보네이트는 디메틸 보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 에틸프로필 카보네이트(EPC) 및 이들의 할로겐화물; 중 어느 하나 또는 이들 중 2 이상의 혼합물을 포함하는 것을 특징으로 하는 겔 폴리머 전해질용 조성물에 관한 것이다.
제12 구현예는, 제8 구현예에 있어서,
상기 비수계 유기 용매는 환형 카보네이트와 선형 에스테르의 혼합 용매인 것을 특징으로 하는 겔 폴리머 전해질용 조성물에 관한 것이다.
제13 구현예는, 제12 구현예에 있어서,
상기 선형 에스테르는 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), 프로필 아세테이트 (propyl acetate), 메틸 프로피오네이트(Methyl propionate), 에틸 프로피오네이트(Ethyl propionate), 프로필 프로피오네이트(Propyl propionate) 및 부틸 프로피오네이트(Buthyl propionate)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2 이상의 혼합물을 포함하는 것을 특징으로 는 겔 폴리머 전해질용 조성물에 관한 것이다.
제14 구현예는, 제1 내지 제13 구현예 중 어느 한 구현예에 있어서,
상기 리튬염은 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (F2SO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 것인 겔 폴리머 전해질용 조성물에 관한 것이다.
본 발명의 다른 일 측면은 하기 구현예에 따른 겔 폴리머 전해질을 제공한다.
제15 구현예는, 제1 구현예 내지 제14 구현예 중 어느 한 구현예에 다른 겔 폴리머 조성물을 중합하여 형성된 겔 폴리머 전해질에 관한 것이다.
본 발명의 다른 일 측면은 하기 구현예에 따른 리튬 이차전지를 제공한다.
제16 구현예는,
음극, 양극, 상기 음극과 양극 사이에 개재된 분리막, 및
제15 구현예에 따른 겔 폴리머 전해질을 포함하는 것은 특징으로 하는 리튬 이차전지에 관한 것이다.
본 발명의 일 실시예에 따르면, 후술하는 화학식 1로 표시되는 화합물을 포함함으로써, 셀 발화시 발생되는 발화 프로파게이션을 억제할 수 있다.
본 발명의 일 실시예에 따르면, 활물질 붕괴에 따라 이차적으로 발생되는 전해질 분해를 억제할 수 있다.
본 발명의 일 실시예에 따르면, 전술한 화합물과 가교제를 동시에 사용함에 따라 전술한 화합물의 휘발을 억제하고 동시에 발화 프로파게이션을 효과적으로 억제할 수 있다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도 1a 내지 도 1e는 비교예 1, 비교예 4, 비교예 5, 비교예 6 및 실시예 4에서 제조된 겔 폴리머용 전해질 조성물 또는 비수 전해액을 5g 분취하여 토치(torch)를 이용하여 점화한 후 3초 후의 모습을 찍은 이미지이다.
도 2(a) 내지 (d)는 비교예 5에 따른 전지를 이용하여 못 관통 테스트한 결과를 찍은 이미지이다.
도 3(a) 내지 (d)는 비교예 6에 따른 전지를 이용하여 못 관통 테스트한 결과를 찍은 이미지이다.
도 4(a) 내지 (d)는 실시예 4에 따른 전지를 이용하여 못 관통 테스트한 결과를 찍은 이미지이다.
이하 본 발명의 구현예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
이어지는 상세한 설명에서 사용된 특정한 용어는 편의를 위한 것이지 제한적인 것은 아니다. '우', '좌', '상면' 및 '하면'의 단어들은 참조가 이루어진 도면들에서의 방향을 나타낸다. '내측으로' 및 '외측으로'의 단어들은 각각 지정된 장치, 시스템 및 그 부재들의 기하학적 중심을 향하거나 그로부터 멀어지는 방향을 나타낸다. '전방', '후방', '상방', '하방' 및 그 관련 단어들 및 어구들은 참조가 이루어진 도면에서의 위치들 및 방위들을 나타내며 제한적이어서는 안된다. 이러한 용어들은 위에서 열거된 단어들, 그 파생어 및 유사한 의미의 단어들을 포함한다.
본 발명에서 특별한 언급이 없는 한 " * "는 동일하거나, 상이한 원자 또는 화학식의 말단부 간의 연결된 부분을 의미한다.
또한, 본 명세서에서, "치환"이란 별도의 정의가 없는 한, 탄소에 결합된 적어도 하나 이상의 수소가 수소 이외의 원소로 치환된 것을 의미하며, 예를 들면, 탄소수 1 내지 5의 알킬기 또는 불소 원소로 치환된 것을 의미한다.
겔 폴리머 전해질용 조성물
본 발명의 일 측면에서는 겔 폴리머 전해질용 조성물을 제공한다.
상기 겔 폴리머 전해질용 조성물은 리튬염, 비수계 유기 용매, 중합 개시제, 가교제 및 하기 화학식 1로 표시되는 화합물을 포함하고, 상기 화학식 1로 표시되는 화합물은 상기 비수계 유기 용매와 상기 화학식 1로 표시되는 화합물의 총 부피를 기준으로 10 부피% 이상으로 포함되는 것이다:
[화학식 1]
Figure PCTKR2021012871-appb-img-000002
(상기 화학식 1에서, X는 F, Cl, Br 및 I로 이루어진 군에서 선택된 적어도 어느 하나 이상의 할로겐 원자이고, n은 1 내지 6인 정수이다.).
이하, 본 발명의 겔 폴리머 전해질용 조성물의 구성을 설명한다.
(1) 리튬염
먼저, 본 발명의 일 측면에 따른 겔 폴리머 전해질용 조성물에서, 상기 리튬염은 리튬 이차 전지 내에서 전해질 염으로서 사용되는 것으로, 이온을 전달하기 위한 매개체로서 사용되는 것이다. 통상적으로, 리튬염은 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (F2SO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함할 수 있다.
상기 리튬염은 1종 또는 필요에 따라서 2종 이상을 혼합하여 사용할 수도 있다. 상기 리튬염은 통상적으로 사용가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 겔 폴리머 전해질용 조성물 내에 0.5M 내지 2.5M, 구체적으로 0.9M 내지 2.0M 농도로 포함될 수 있다.
본 발명의 겔 폴리머 전해질용 조성물은 0.5M 이상의 전해질염을 포함함으로써, 고율 충방전 시 리튬 이온의 고갈에 의한 저항을 감소시킬 수 있다. 더욱이, 본 발명의 겔 폴리머 전해질용 조성물에서 상기 전해질염의 농도가 상기 범위를 만족하는 경우, 겔 폴리머 전해질용 조성물 중에 존재하는 리튬 양이온의 증가로 인해 높은 리튬 양이온 (Li+)의 이온전달 특성 (즉, 양이온 수송률 (transference number))을 확보할 수 있고, 리튬 이온의 확산 저항 감소 효과를 달성하여 사이클 용량 특성 향상 효과를 구현할 수 있다.
(2) 비수계 유기용매
상기 비수계 유기용매는 이차전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 제한이 없다. 예를 들면 카보네이트계 유기용매, 에테르계 유기용매 또는 에스테르계 유기용매 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
상기 유기용매 중 카보네이트계 유기용매는 환형 카보네이트계 유기용매 및 선형 카보네이트계 유기용매 중 적어도 하나 이상을 포함할 수 있다. 구체적으로, 상기 환형 카보네이트계 유기용매는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 플루오로에틸렌 카보네이트(FEC)로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함할 수 있으며, 구체적으로 고유전율을 가지는 에틸렌 카보네이트와 에틸렌 카보네이트에 비하여 상대적으로 저융점을 가지는 프로필렌 카보네이트의 혼합 용매를 포함할 수 있다.
또한, 상기 선형 카보네이트계 유기용매는 저점도 및 저유전율을 가지는 용매로서, 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트 (EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함할 수 있으며, 보다 구체적으로 디메틸 카보네이트를 포함할 수 있다.
상기 에테르계 유기용매는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 에스테르계 유기용매는 선형 에스테르계 유기용매 및 환형 에스테르계 유기용매로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.
상기 선형 에스테르계 유기용매는 그 구체적인 예로 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 환형 에스테르계 유기용매는 그 구체적인 예로 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 에스테르계 용매 중에서 환형 카보네이트계 화합물은 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 환형 카보네이트계 화합물에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트계 화합물 및 선형 에스테르계 화합물을 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 겔 폴리머 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
한편, 본 발명의 겔 폴리머 전해질용 조성물에 있어서, 상기 비수계 유기 용매는 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 리튬염 및 가교제로 이루어진 고형분의 농도가 70 중량% 이하, 구체적으로 50 중량% 이하, 보다 구체적으로 10 중량% 이하가 되도록 포함될 수 있다.
(3) 화학식 1로 표시되는 화합물
본 발명의 일 측면에 따른 겔 폴리머 전해질용 조성물은, 하기 화학식 1로 표시되는 화합물을 포함하는 것이다:
[화학식 1]
Figure PCTKR2021012871-appb-img-000003
(상기 화학식 1에서, X는 F, Cl, Br 및 I로 이루어진 군에서 선택된 적어도 어느 하나 이상의 할로겐 원자이고, n은 1 내지 6인 정수이다.).
전지의 안전성 이슈가 커지면서 리튬 폴리머 전지에서도 보다 강도 높은 안전성이 요구되고 있다. 특히, 전지가 발화하여 인접 전지에 추가적인 데미지를 주어 모듈 또는 팩 내에서 연속 발화가 일어나는 발화 프로파게이션(propagation)경우, 큰 화제로 일어날 수 있기 때문에 이를 억제될 수 있는 기술이 필요하다.
본 발명자들은 이러한 문제를 해결하고자 연구한 결과, 셀 발화시 프로파게이션을 억제하기 위해서는 연소시 발생하는 라디칼을 소기(scavenging)하여야 한다는 점을 착안하였다. 본 발명의 일 측면에서는, 라디칼을 소기하기 위하여 하기 화학식 1로 표시되는 화합물을 투입하는 것이다. 구체적으로, 화학식 1로 표시되는 화합물을 겔 폴리머용 전해질 조성물에 투입하면 고온에서 생성된 라디칼과 할로겐으로부터 생성된 벤젠 라디칼이 반응하여 라디칼을 소기하는 것으로 보인다. 또한, 니켈 리치 양극에서는 활물질이 붕괴되면서 산소 라디칼의 수도 감소하게 되는데, 이에 따라 발생되는 전해질 분해도 상기 화학식 1에 따른 화합물에 의해 감소시킬 수 있다는 잇점이 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 화학식 1로 표시되는 화합물은 할로겐화 벤젠일 수 있다.
상기 화학식 1로 표시되는 화합물은 플루오로 벤젠, 클로로 벤젠, 브로모 벤젠, 아이오도벤젠, 디플루오로벤젠, 디클로로벤젠, 디브로모벤젠, 디아이오도벤젠, 트리플루오로벤젠, 트리클로로벤젠, 트리브로모벤젠, 트리아이오도벤젠, 테트라플루오로벤젠, 테트라클로로벤젠, 테르라브로모벤젠, 테트라아이오도벤젠, 플루오로클로로벤젠, 플루오로브로모벤젠, 플루오로아이오도벤젠, 클로로브로모벤젠, 클로로아이오도벤젠 및 브로모아이오도벤젠으로 이루어진 군에서 선택된 적어도 어느 하나 이상일 수 있다.
상기 화학식 1로 표시되는 화합물은 플루오로벤젠, 클로로벤젠, 브로모벤젠 또는 아이오도벤젠 일 수 있다.
상기 화학식 1로 표시되는 화합물은, 플루오로 벤젠, 디플루오로벤젠, 또는 트리플루오로벤젠일 수 있다. 할로겐화 벤젠 중 전기음성도가 큰 플루오로기를 가졌을 때 생성되는 라디칼의 안정도가 커 보다 빠르게 라디칼을 소기할 수 있다.
상기 화학식 1로 표시되는 화합물은 상기 비수계 유기 용매와 상기 화학식 1로 표시되는 화합물의 총 부피를 기준으로 10 부피% 이상, 15 부피% 이상, 또는 20 부피% 이상 포함될 수 있으며, 40 부피% 이하, 35 부피% 이하, 또는 30 부피% 이하로 포함될 수 있다. 예를 들어, 상기 화학식 1로 표시되는 화합물은 상기 비수계 유기 용매와 상기 화학식 1로 표시되는 화합물의 총 부피를 기준으로 10 부피% 이상 내지 30부피% 이하, 또는 10 부피% 이상 내지 20 부피% 이하, 또는 15 부피% 이상 내지 30부피% 이하, 또는 15 부피% 이상 내지 20부피% 이하 등의 범위로 포함될 수 있다. 상기 부피 범위내로 화학식 1로 표시되는 화합물을 포함하는 경우, 전해질의 휘발량을 억제함으로써 발화 프로파게이션 억제 효과가 향상될 수 있다. 특히, 10 부피% 미만인 경우 발화 프로파게이션을 억제 효과가 미비하며, 40 부피%를 초과하는 경우 염 해리가 발생할 수 있다.
(4) 중합성 화합물
또한, 본 발명의 일 측면에 따른 겔 폴리머 전해질용 조성물은 중합성 단량체, 올리고머 및 코폴리머로 이루어진 군으로부터 선택된 적어도 하나 이상의 중합성 화합물을 포함하는 것이다.
본 발명자들은, 본 발명에 따른 과제를 해결하는 도중, 상기 화학식 1로 표시되는 화합물이 낮은 비점(boiling point) 및 낮은 발화점(flash point)를 가짐에 따라 높은 휘발도를 보이는 문제점을 발견하였다. 이에 따라 용매 내에 적은 양을 투입하는 경우 휘발되는 문제가 있었으며, 취급이 어려운 문제가 있었다.
본 발명자들은 이러한 문제를 해결하고자, 전술한 중합성 화합물을 추가로 더 포함시켰다. 이러한 중합성 화합물은 상기 화학식 1로 표시되는 화합물의 휘발 특성을 억제하여 결과적으로 발화 프로파게이션을 효과적으로 억제할 수 있다.
상기 중합성 화합물인 중합성 단량체, 올리고머 및 코폴리머는 구조 내에 중합 반응이 일어날 수 있는 비닐기, 에폭시기, 알릴(allyl)기 및 (메타)아크릴기로 이루어진 군에서 선택되는 중합성 관능기를 가지며, 중합 또는 가교에 의하여 겔상으로 변화될 수 있는 화합물로서, 통상적인 겔 폴리머 전해질 제조용 중합성 단량체, 올리고머 또는 코폴리머로 사용하고 있는 것이면 특별히 제한하지 않는다.
이중에서, 상기 중합성 단량체는 비제한적인 예로, 테트라에틸렌 글리콜 디아크릴레이트(tetraethylene glycoldiacrylate), 폴리 에틸렌 글리콜 디아크릴레이트(Poly ethylene glycol diacrylate, 분자량 50~20,000), 1,4-부탄디올 디아크릴레이트(1,4-butanediol diacrylate), 1,6-헥산디올 디아크릴레이트(1,6-hexandioldiacrylate), 트리메틸올프로판 트리아크릴레이트(trimethylolpropane triacrylate), 트리메틸올 프로판 에톡시레이트 트리아크릴레이트(trimethylolpropane ethoxylate triacrylate), 트리메틸올 프로판 프로폭시레이트트리아크릴레이트(trimethylolpropane propoxylate triacrylate), 디트리메틸올프로판 테트라아크릴레이트(ditrimethylolpropane tetraacrylate), 펜타에리트리톨 테트라아크릴레이트(pentaerythritol tetraacrylate),펜타에리트리톨 에톡시레이트 테트라아크릴레이트(pentaerythritol ethoxylate tetraacrylate), 디펜타에리트리톨 펜타아크릴레이트(dipentaerythritol pentaacrylate), 디펜타에리트리톨 헥사아크릴레이트(dipentaerythritol hexaacrylate), 폴리에틸렌글리콜 디글리시딜 에테르(poly(ethylene glycol) diglycidylether), 1,5-헥사디엔 디에폭사이드(1,5-hexadiene diepoxide), 글리세롤 프로폭시레이트 트리글리시딜 에테르(glycerol propoxylate triglycidyl ether), 비닐시클로헥센 디옥사이드(vinylcyclohexene dioxide), 1,2,7,8-디에폭시옥탄(1,2,7,8-diepoxyoctane), 4-비닐시클로헥센 디옥사이드(4-vinylcyclohexene dioxide), 부틸 글리시딜 에테르(butyl glycidyl ether), 디글리시딜 1,2-시클로헥산디카복실레이트(diglycidyl 1,2-cyclohexanedicarboxylate), 에틸렌 글리콜 디글리시딜 에테르(ethylene glycol diglycidyl ether), 글리세롤트리글리시딜 에테르(glycerol triglycidyl ether), 글리시딜 메타크릴레이트(glycidyl methacrylate) 등이 있으나, 이에 한정하지 않으며, 이들 화합물은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.
또한, 상기 코폴리머는 그 대표적인 예로서 알릴 1,1,2,2-테트라플루오로에틸 에테르(TFE))-(2,2,2-트리플루오로 에틸 아크릴레이트) 코폴리머, TFE-비닐 아세테이트 코폴리머, TFE-(2-비닐-1,3-디옥소란) 코폴리머, TFE-비닐 메타크릴레이트 코폴리머, TFE-아크릴로니트릴 코폴리머, TFE-비닐 아크릴레이트 코폴리머, TFE-메틸 아크릴레이트 코폴리머, TFE-메틸 메타크릴레이트(MMA) 코폴리머 및 TFE-2,2,2-트리플루오로 에틸 아크릴레이트(FA) 코폴리머로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.
상기 중합성 화합물은 상기 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 0.01 중량% 내지 10 중량%, 또는 1 중량% 내지 8 중량%로 포함될 수 있다. 상기 중합성 화합물의 함량이 10 중량%를 초과하면 겔 폴리머 전해질용 조성물을 전지 내에 주액하는 도중 겔화가 너무 빨리 일어나거나 너무 조밀하게 되어 저항이 큰 겔이 얻어지는 단점이 있고, 반대로 중합성 화합물의 함량이 0.01 중량% 미만이면 겔화가 잘 이루어지지 않는 문제가 발생할 수 있다.
또한, 상기 중합성 화합물의 중량평균분자량(Mw)은 반복 단위의 개수에 의해 조절될 수 있으며, 약 300 g/mol 내지 100,000g/mol, 구체적으로 1,000 g/mol 내지 50,000 g/mol, 보다 구체적으로 2,000 g/mol 내지 10,000 g/mol일 수 있다. 상기 올리고머의 중량평균분자량이 상기 범위 내인 경우, 이를 포함하는 겔 폴리머 전해질의 기계적 강도를 효과적으로 개선할 수 있다.
만약, 상기 중합성 화합물의 중량 평균분자량이 300 g/mol 미만이면, 적절한 기계적 강도를 기대할 수 없고, 수많은 가교 결합 형성을 위하여 보다 많은 중합개시제 사용이 요구되거나, 까다로운 추가 중합 공정이 요구되어 겔 고분자 전해질 형성 과정이 복잡해지는 단점이 있다. 한편, 중량평균분자량이 100,000g/mol을 초과하면, 올리고머 물성 자체가 경직(rigid)되고, 전해질 용매와 친화성이 낮아져 용해가 어려워지기 때문에 균일하고 우수한 겔 고분자 전해질 형성을 기대할 수 없다.
상기 중량평균분자량은 겔투과크로마토그래피(Gel Permeation Chromatography: GPC) 장치를 이용하여 측정할 수 있고, 특별하게 달리 규정하지 않는 한, 분자량은 중량평균분자량을 의미할 수 있다. 예컨대, 본 발명에서는 GPC 조건으로 Agilent社 1200시리즈를 이용하여 측정하며, 이때 사용된 컬럼은 Agilent社 PL mixed B 컬럼을 이용할 수 있고, 용매는 THF를 사용할 수 있다. 예를 들어, 구체적으로는 중량평균분자량은 겔 투과 크로마토그래피(PL GPC220, Agilent Technologies)로, 컬럼: PL MiniMixed B x 2, 용매 : THF, 유속 : 0.3 ml/min, 시료농도 : 2.0 mg/ml, 주입량 : 10 ㎕, 컬럼온도 : 40℃, Detector : Agilent RI detector, Standard : Polystyrene (3차 함수로 보정), Data processing : ChemStation 의 조건으로 측정할 수 있다.
(5) 중합 개시제
본 발명의 겔 폴리머 전해질용 조성물은 겔 폴리머 전해질 제조 시 요구되는 라디칼 반응을 수행하기 위하여 중합 개시제를 포함할 수 있다.
상기 중합 개시제는 당업계에 알려진 통상적인 열 또는 광 중합 개시제가 사용될 수 있다. 예를 들면, 상기 중합 개시제는 열에 의해 분해되어 라디칼을 형성하고, 자유라디칼 중합에 의해 전술한 가교제와 반응하여 겔 폴리머 전해질을 형성할 수 있다.
더욱 구체적으로, 상기 중합 개시제의 비제한적인 예로는 벤조일 퍼옥사이드(benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), 디라우릴 퍼옥사이드(dilauryl peroxide), 디-tert-부틸 퍼옥사이드(di-tert-butylperoxide), t-부틸 퍼옥시-2-에틸-헥사노에이트(t-butyl peroxy-2-ethyl-hexanoate), 큐밀 하이드로퍼옥사이드(cumyl hydroperoxide) 및 하이드로겐 퍼옥사이드(hydrogen peroxide) 등의 유기과산화물류나 히드로과산화물류와 2,2'-아조비스(2-시아노부탄), 2,2'-아조비스(메틸부티로니트릴), 2,2'-아조비스(이소부티로니트릴)(AIBN; 2,2'-Azobis(iso-butyronitrile)) 및 2,2'-아조비스디메틸-발레로니트릴(AMVN; 2,2'-Azobisdimethyl-Valeronitrile)로 이루어진 군에서 선택된 1종 이상 아조 화합물류 등이 있으나, 이에 한정하지 않는다.
상기 중합 개시제는 전지 내에서 열, 비제한적인 예로 30℃ 내지 100℃의 열에 의해 분해되거나 상온(5℃ 내지 30℃)에서 분해되어 라디칼을 형성하고, 자유라디칼 중합에 의해 중합성 올리고머가 아크릴레이트계 화합물과 반응하여 겔 폴리머 전해질을 형성할 수 있다.
또한, 상기 중합 개시제는 상기 가교제 100 중량부를 기준으로 하여 0.01 내지 5 중량부, 구체적으로 0.1 내지 3 중량부로 포함될 수 있다.
상기 중합 개시제가 0.01 내지 5 중량부 범위 내인 경우, 겔 고분자 전환율을 높여 겔 고분자 전해질 특성이 확보할 수 있고, 프리-겔 반응을 방지하여, 전극에 대한 겔 폴리머 전해질용 조성물의 웨팅성을 향상시킬 수있다.
(6) 첨가제
또한, 본 발명의 겔 폴리머 전해질용 조성물은 겔 폴리머 전해질 제조 시에 고출력의 환경에서 분해되어 음극 붕괴가 유발되는 것을 방지하거나, 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온 저장 시 팽윤 개선 효과 등을 더욱 향상시키기 위하여, 필요에 따라 전극 표면에 보다 안정한 이온전도성 피막을 형성할 수 있는 부가적 첨가제를 추가로 포함할 수 있다.
구체적으로, 상기 부가적 첨가제는 그 대표적인 예로 설톤계 화합물, 설파이트계 화합물, 설폰계 화합물, 설페이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 니트릴계 화합물, 환형 카보네이트계 화합물, 포스페이트계 화합물, 보레이트계 화합물, 및 리튬염계 화합물로 이루어진 군으로부터 선택된 1종 이상의 제1 첨가제를 포함할 수 있다.
상기 설톤계 화합물은 1,3-프로판 설톤(PS), 1,4-부탄 설톤, 에텐설톤, 1,3-프로펜 설톤(PRS), 1,4-부텐 설톤, 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 들 수 있으며, 이는 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 0.3 중량% 내지 5 중량%, 구체적으로 1 중량% 내지 5 중량%로 포함될 수 있다. 상기 겔 폴리머 전해질용 조성물 중에 설톤계 화합물의 함량이 5 중량%를 초과하는 경우, 전극 표면에 지나치게 두꺼운 피막이 형성되어 저항 증가와 출력 열화가 발생할 수 있고, 겔 폴리머 전해질용 조성물 중 과량의 첨가제의 의한 저항이 증가되어, 출력 특성이 열화될 수 있다.
상기 설파이트계 화합물로는 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 및 1,3-부틸렌 글리콜 설파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 3 중량% 이하로 포함될 수 있다.
상기 설폰계 화합물로는 디비닐설폰, 디메틸 설폰, 디에틸 설폰, 메틸에틸 설폰, 및 메틸비닐 설폰으로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 3 중량% 이하로 포함될 수 있다.
상기 설페이트계 화합물은 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylenesulfate; TMS), 또는 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS)을 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 3 중량% 이하로 포함될 수 있다.
또한, 상기 할로겐 치환된 카보네이트계 화합물은 플루오로에틸렌 카보네이트(FEC))를 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 5 중량% 이하로 포함할 수 있다. 상기 겔 폴리머 전해질용 조성물 중에 할로겐 치환된 카보네이트계 화합물의 함량이 5 중량%를 초과하는 경우, 셀 팽윤 성능이 열화될 수 있다.
또한, 상기 니트릴계 화합물은 숙시노니트릴, 아디포니트릴(Adn), 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 들 수 있다.
상기 환형 카보네이트계 화합물은 비닐렌카보네이트(VC) 또는 비닐에틸렌 카보네이트를 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 3 중량% 이하로 포함할 수 있다. 상기 겔 폴리머 전해질용 조성물 중에 환형 카보네이트계 화합물의 함량이 3 중량%를 초과하는 경우, 셀 팽윤 억제 성능이 열화될 수 있다.
상기 포스페이트계 화합물은 리튬 디플루오로(비스옥살라토)포스페이트, 리튬 디플루오로포스페이트, 테트라메틸 트리메틸 실릴 포스페이트, 트리메틸 실릴 포스파이트, 트리스(2,2,2-트리플루오로에틸) 포스페이트 및 트리스(트리플루오로에틸) 포스파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 3중량% 이하로 포함될 수 있다.
상기 보레이트계 화합물은 리튬 옥살릴디플루오로보레이트를 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 3 중량% 이하로 포함될 수 있다.
상기 리튬염계 화합물은 상기 겔 폴리머 전해질용 조성물에 포함되는 리튬염과 상이한 화합물로서, LiPO2F2, LiODFB, LiBOB(리튬 비스옥살레이토보레이트(LiB(C2O4)2) 및 LiBF4로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 3중량% 이하로 포함할 수 있다.
상기 부가적 첨가제들은 2 종 이상이 혼합되어 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 20 중량% 이하, 구체적으로 0.1 중량% 내지 10 중량%로 포함될 수 있다. 상기 부가적 첨가제의 함량이 0.01 중량% 보다 적으면 전지의 저온 출력 개선 및 고온 저장 특성 및 고온 수명 특성 개선의 효과가 미미하고, 부가적 첨가제들의 함량이 20 중량%를 초과하면 전지의 충방전시 겔 폴리머 전해질용 조성물 내의 부반응이 과도하게 발생할 가능성이 있다. 특히, 고온에서 충분히 분해되지 못하여, 상온에서 겔 폴리머 전해질용 조성물 내에서 미반응물 또는 석출된 채로 존재하고 있을 수 있다. 이에 따라 이차전지의 수명 또는 저항특성이 저하되는 부반응이 발생될 수 있다.
겔 폴리머 전해질
다음으로, 본 발명의 일 측면에서는 종래에 알려진 중합 방법을 이용하여 상기 겔 폴리머 전해질용 조성물의 중합에 의해 제조된 겔 폴리머 전해질을 제공할 수 있다.
상기 본 발명의 겔 폴리머 전해질을 제조하기 위한 겔화 방법은 특별히 제한되지 않으며, 당 업계에 알려진 통상적인 방법에 따라 수행될 수 있다.
구체적으로, 리튬염, 비수계 유기 용매, 가교제 및 상기 화학식 1로 표시되는 화합물을 포함하는 겔 폴리머 전해질용 조성물을 제조한 다음, 이를 전지 내에 주액하고 중합 반응을 실시하여 고분자 매트릭스를 포함하는 겔 폴리머 전해질을 제조할 수 있다. 또는, 상기 중합 반응을 실시하여 고분자 매트릭스를 형성한 다음, 전해질염 및 유기용매를 포함하는 비수전해액을 추가로 함침시켜 제조할 수도 있다.
상기 중합 반응은 통상적인 열, e-빔 및 감마선 공정을 통해 실시할 수 있다. 만약, 상기 중합 반응이 열 중합일 경우 대략 1 시간 내지 8시간 정도 소요되며, 온도는 50 내지 100℃ 범위 내에서 수행될 수 있다.
한편, 종래 겔화는 통상적으로 비활성 조건(inert condition) 하에서 라디칼(radical) 중합 반응을 실시하여 라디칼 소멸제인 대기 중의 산소를 차단해야 하는 번거로움이 있다. 본 발명의 일 측면에서는 겔 폴리머 전해질 조성물 내에 산소 제거제로서 상기 화학식 1로 표시되는 화합물을 포함하여, 일반적인 공기 또는 산소 존재하에서도 겔 폴리머 전해질 제조를 위한 중합 반응을 실시할 수 있다는 장점이 있다. 즉, 중합 반응 시에 상기 화학식 1에 따른 화합물이 산소의 영향력을 감소시켜, 가교제들의 반응성을 향상시키므로 다량의 미반응 단량체가 거의 존재하지 않을 정도로 중합 반응 진척도(extent of reaction)를 증대시킬 수 있다. 그 결과, 종래 미반응 단량체가 전지 내부에 잔존하면서 야기되던 충방전 성능 저하와 같은 단점을 개선할 수 있다. 특히, 상기 산소 제거제는 난연성 관능기를 함유함으로써, 겔 폴리머 전해질의 난연성 강화 효과를 추가로 부여할 수 있다.
리튬 이차전지
또한, 본 발명의 일 측면에 따르면 전술한 겔 폴리머 전해질을 포함하는 리튬 이차전지가 제공될 수 있고, 상기 리튬 이차전지는 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 상기 양극 및 음극 사이에 게재된 분리막 및 전술한 겔 폴리머 전해질을 포함할 수 있다.
이때, 본 발명의 리튬 이차전지는 당 기술 분야에 알려진 통상적인 방법에 따라 제조할 수 있다. 예를 들면, 양극과 음극 사이에 다공성의 분리막을 넣고 리튬염이 용해되어 있는 전해질을 투입하여 제조할 수 있다. 이때, 전극조립체를 이루는 양극, 음극 및 분리막은 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.
(1) 양극
먼저, 상기 양극은 양극 집전체 상에 양극 합제층을 형성하여 제조할 수 있다. 상기 양극 합제층은 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 양극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면,Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다)) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이 중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물 (예를 들면 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등)일 수 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 모노머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 도전재는 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다.
이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙(또는 덴카 블랙), 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
(2) 음극
또한, 상기 음극은 음극 집전체 상에 음극 합제층을 형성하여 제조할 수 있다. 상기 음극 합제층은 음극 집전체 상에 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 상기 음극활물질은 리튬 금속, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물, 리튬을 도프 및 탈도프할 수 있는 물질, 및 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상 (flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코 크스 등을 들 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x≤2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다.  이러한 도전재는 양극 제조 시 사용된 도전재와 동일하거나, 상이한 것을 사용할 수 있으며, 예를 들어, 카본블랙, 아세틸렌 블랙(또는 덴카 블랙), 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
(3) 분리막
또한, 상기 분리막은 양 전극의 내부 단락을 차단하고 전해질을 함침하는 역할을 하는 것으로, 고분자 수지, 충진제 및 용매를 혼합하여 분리막 조성물을 제조한 다음, 상기 분리막 조성물을 전극 상부에 직접 코팅 및 건조하여 분리막 필름을 형성하거나, 상기 분리막 조성물을 지지체 상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리된 분리막 필름을 전극 상부에 라미네이션하여 형성할 수 있다.
상기 분리막은 통상적으로 사용되는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
이때, 상기 다공성 분리막의 기공 직경은 일반적으로 0.01 내지 50㎛이고, 기공도는 5 내지 95%일 수 있다. 또한, 상기 다공성 분리막의 두께는 일반적으로 5 내지 300㎛ 범위일 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1.
(겔 폴리머 전해질용 조성물 제조)
에틸렌 카보네이트(EC), 에틸 프로피오네이트(EP), 플루오로 벤젠(FB) = 30 : 60 : 10 (부피비)의 조성을 갖는 비수계 유기 용매와 화학식 1로 표시되는 화합물이 혼합된 혼합물에 LiPF6를 1.0M이 되도록 용해시켜 비수 전해액 96.96g을 준비하였다. 상기 비수 전해액에 중합성 화합물로 트리메틸올프로판 트리아크릴레이트(중량평균분자량 : 3,000) 3g과 중합 개시제로 디메틸 2,2'-아조비스(2-메틸프로피오네이트) (CAS No. 2589-57-3)을 0.04g 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다.
(리튬 이차전지의 제조)
양극 활물질로 (LiNi1/3Co1/3Mn1/3O2; NCM) 94 중량%, 도전재로 카본 블랙(carbon black) 3 중량%, 바인더로 폴리비닐리덴플루오라이드(PVDF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 활물질 슬러리 (고형분 함량 50%)를 제조하였다. 상기 양극 활물질 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로 탄소 분말, 바인더로 PVDF, 도전재로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1중량%로 하여 용매인 NMP에 첨가하여 음극 활물질 슬러리 (고형분 함량 80%)를 제조하였다. 상기 음극 활물질 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 순차적으로 적층하여 전극조립체를 제조하였다.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 이용하여 전극조립체를 제조하고, 이를 전지케이스에 수납하고 상기 제조된 겔 폴리머 전해질용 조성물을 주액하였다.
이어서, 2일 동안 상온에서 저장한 다음, 65℃에서 5시간 가열하여 열 중합된 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다. 이에 대한 결과를 표 1에 나타내었다.
실시예 2.
겔 폴리머 전해질용 조성물 제조시에, 에틸렌 카보네이트(EC), 에틸 프로피오네이트(EP), 플루오로 벤젠(FB)의 부피비를 30 : 50 : 20으로 제어한 것을 제외하고는 실시예 1과 동일한 방법으로 겔 폴리머 전해질용 조성물 및 이를 이용한 겔 폴리머 전해질을 포함하는 리튬 이차 전지를 제조하였다. 이에 대한 결과를 표 1에 나타내었다.
실시예 3.
겔 폴리머 전해질용 조성물 제조시에, 중합성 화합물로 트리메틸올프로판 트리아크릴레이트를 겔 폴리머 전해질 조성물 100 중량% 기준으로 3 중량% 대신에 7 중량%로 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 겔 폴리머 전해질용 조성물 및 이를 이용한 겔 폴리머 전해질을 포함하는 리튬 이차 전지를 제조하였다. 이에 대한 결과를 표 1에 나타내었다.
실시예 4.
겔 폴리머 전해질용 조성물 제조시에, 중합성 화합물로 트리메틸올프로판 트리아크릴레이트를 겔 폴리머 전해질 조성물 100 중량% 기준으로 3 중량% 대신에 7 중량%로 투입한 것을 제외하고는 실시예 2와 동일한 방법으로 겔 폴리머 전해질용 조성물 및 이를 이용한 겔 폴리머 전해질을 포함하는 리튬 이차 전지를 제조하였다. 이에 대한 결과를 표 1에 나타내었다.
비교예 1.
비교예 1은 실시예 1과 비교할 때, 전해질용 조성물 제조시, 할로겐 벤젠과 가교제, 중합 개시제를 투입하지 않은 것이다. 즉, 겔 폴리머 전해질용 조성물이 아닌 기존 비수 전해액을 제조한 것이다.
(비수 전해액 제조)
구체적으로 다음과 같이 비수 전해액을 제조하였다.
에틸렌 카보네이트(EC), 에틸 프로피오네이트(EP) = 30 : 70 (부피비)의 조성을 갖는 비수계 유기 용매에 LiPF6를 1.0M이 되도록 용해시켜 비수 전해액 96.96g을 제조하였다.
(리튬 이차전지의 제조)
양극 활물질로 (LiNi1/3Co1/3Mn1/3O2; NCM) 94 중량%, 도전재로 카본 블랙(carbon black) 3 중량%, 바인더로 폴리비닐리덴플루오라이드(PVDF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 활물질 슬러리 (고형분 함량 50%)를 제조하였다. 상기 양극 활물질 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로 탄소 분말, 바인더로 PVDF, 도전재로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 활물질 슬러리 (고형분 함량 80%)를 제조하였다. 상기 음극 활물질 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 순차적으로 적층하여 전극조립체를 제조하였다.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 이용하여 전극조립체를 제조하고, 이를 전지케이스에 수납하고 상기 제조된 비수 전해액을 주액하여 리튬 이차전지(Full cell)를 제조하였다.
이에 대한 결과를 표 1에 나타내었다.
비교예 2.
비교예 2는 실시예 1과 비교할 때 전해질용 조성물 제조시, 가교제, 중합 개시제를 투입하지 않은 것이다. 즉, 겔 폴리머 전해질용 조성물이 아닌 기존 비수 전해액을 제조한 것이다.
(비수 전해액 제조)
구체적으로 다음과 같이 비수 전해액을 제조하였다.
에틸렌 카보네이트(EC), 에틸 프로피오네이트(EP), 플루오로 벤젠(FB) = 30 : 60 : 10 (부피비)의 조성을 갖는 비수계 유기 용매와 화학식 1로 표시되는 화합물이 혼합된 혼합물에 LiPF6를 1.0M이 되도록 용해시켜 비수성 전해액 96.96g을 제조하였다.
(리튬 이차 전지의 제조)
상기 제조된 비수 전해액을 이용한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다. 이에 대한 결과를 표 1에 나타내었다.
비교예 3.
비교예 3은 실시예 2와 비교할 때 전해질용 조성물 제조시, 가교제, 중합 개시제를 투입하지 않은 것이다. 즉, 겔 폴리머 전해질용 조성물이 아닌 기존 비수 전해액을 제조한 것이다.
(비수 전해액 제조)
구체적으로 다음과 같이 비수 전해액을 제조하였다.
에틸렌 카보네이트(EC), 에틸 프로피오네이트(EP), 플루오로 벤젠(FB) = 30 : 50 : 20 (부피비)의 조성을 갖는 비수계 유기 용매와 화학식 1로 표시되는 화합물이 혼합된 혼합물에 LiPF6를 1.0M이 되도록 용해시켜 비수 전해액 96.96g을 제조하였다.
(리튬 이차 전지의 제조)
상기 제조된 비수 전해액을 이용한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다. 이에 대한 결과를 표 1에 나타내었다.
비교예 4.
비교예 4는, 실시예 1과 비교할 때, 겔 폴리머 전해질용 조성물 제조시, 할로겐 벤젠을 투입하지 않은 경우이다.
(겔 폴리머 전해질용 조성물 제조)
구체적으로 다음과 같이 겔 폴리머 전해질용 조성물을 제조하였다.
에틸렌 카보네이트(EC), 에틸 프로피오네이트(EP) = 30 : 70 (부피비)의 조성을 갖는 비수계 유기 용매에 LiPF6를 1.0M이 되도록 용해시켜 비수 전해액 96.96g을 준비하였다. 상기 비수 전해액에 중합성 화합물로 트리메틸올프로판 트리아크릴레이트 3g과 중합 개시제로 디메틸 2,2'-아조비스(2-메틸프로피오네이트) (CAS No. 2589-57-3)을 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다.
(리튬 이차전지의 제조)
상기 제조된 겔 폴리머 전해질용 조성물을 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다. 이에 대한 결과를 표 1에 나타내었다.
비교예 5.
비교예 5는, 실시예 3과 비교할 때, 겔 폴리머 전해질용 조성물 제조시, 할로겐 벤젠을 투입하지 않은 경우이다.
(겔 폴리머 전해질용 조성물 제조)
구체적으로 다음과 같이 겔 폴리머 전해질용 조성물을 제조하였다.
에틸렌 카보네이트(EC), 에틸 프로피오네이트(EP) = 30 : 70 (부피비)의 조성을 갖는 비수계 유기 용매에 LiPF6를 1.0M이 되도록 용해시켜 비수 전해액 92.96g을 준비하였다. 상기 비수 전해액에 중합성 화합물로 트리메틸올프로판 트리아크릴레이트 7g과 중합 개시제로 디메틸 2,2'-아조비스(2-메틸프로피오네이트) (CAS No. 2589-57-3)을 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다.
(리튬 이차전지의 제조)
상기 제조된 겔 폴리머 전해질용 조성물을 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다. 이에 대한 결과를 표 1에 나타내었다.
비교예 6.
비교예 6은, 실시예 1 과 비교할 때, 겔 폴리머 전해질용 조성물 제조시, 비수계 유기 용매의 부피비를 조절한 경우이다.
(겔 폴리머 전해질용 조성물 제조)
구체적으로 다음과 같이 겔 폴리머 전해질용 조성물을 제조하였다.
에틸렌 카보네이트(EC), 에틸 프로피오네이트(EP), 플루오로 벤젠(FB) = 30 : 67 : 3 (부피비)의 조성을 갖는 비수계 유기 용매와 화학식 1로 표시되는 화합물이 혼합된 혼합물에 LiPF6를 1.0M이 되도록 용해시켜 비수 전해액 96.96g을 준비하였다. 상기 비수 전해액에 중합성 화합물로 트리메틸올프로판 트리아크릴레이트 3 g과 중합 개시제로 디메틸 2,2'-아조비스(2-메틸프로피오네이트) (CAS No. 2589-57-3)을 0.04g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다.
(리튬 이차전지의 제조)
상기 제조된 겔 폴리머 전해질용 조성물을 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다. 이에 대한 결과를 표 1에 나타내었다.
구분 비수계 유기 용매의 부피비 또는 비수계 유기 용매와 화학식 1로 표시되는 화합물의 부피비 리튬염 중합 개시제의 함량
(조성물 100 중량% 기준)
가교제의 함량
(조성물 100 중량% 기준)
전해질 휘발량(%)
비교예 1 EC/EP =3/7 LiPF6 1M 0wt% 0 wt% 29.5 %
비교예 2 EC/EP/FB =3/6/1 LiPF6 1M 0wt% 0 wt% 37.1 %
비교예 3 EC/EP/FB =3/5/2 LiPF6 1M 0wt% 0 wt% 44.9 %
비교예 4 EC/EP =3/7 LiPF6 1M 0.04wt% 3 wt% 9.2%
비교예 5 EC/EP =3/7 LiPF6 1M 0.04wt% 7 wt% 2.1%
비교예 6 EC/EP/FB= 30/67/3 LiPF6 1M 0.04wt% 3 wt% 9.5%
실시예 1 EC/EP/FB =3/6/1 LiPF6 1M 0.04wt% 3 wt% 10.8%
실시예 2 EC/EP/FB =3/5/2 LiPF6 1M 0.04wt% 3 wt% 11.3%
실시예 3 EC/EP/FB =3/6/1 LiPF6 1M 0.04wt% 7 wt% 2.1%
실시예 4 EC/EP/FB =3/5/2 LiPF6 1M 0.04wt% 7 wt% 2.5%
실험예
실험예 1: 전해질 휘발 특성 평가
상기 실시예 1 내지 4, 비교예 1 내지 6에서 제조된 겔 폴리머용 전해질 조성물 또는 비수 전해액을 5g 분취하여 25 ℃에서 1시간 동안 대기 중에 노출하였다. 1시간 이후의 무게 변화를 식 1에 따라 산정하였다:
[식 1]
전해질 휘발량(%) = ((최초 조성물의 무게 - 1시간 후 조성물의 무게)/최초 조성물의 무게 ) X 100.
표 1의 비교예 2, 3에서 알 수 있는 바와 같이, 비수 전해액에 할로겐화 벤젠을 포함하는 경우 휘발성이 더 높아진다. 반면, 실시예 1 내지 4에서와 같이 할로겐화 벤젠과 가교제를 동시에 사용하는 경우, 비수계 유기 용매의 휘발성을 현저히 낮출 수 있다. 또한, 가교제의 함량이 증가함에 따라 겔 매트릭스의 밀도가 높아져 휘발 특성이 보다 억제되는 양상을 보임을 확인할 수 있었다.
실험예 2: 전해질의 난연 특성 평가
상기 비교예 1, 비교예 4, 비교예 5, 비교예 6 및 실시예 4에서 제조된 겔 폴리머용 전해질 조성물 또는 비수 전해액을 5g 분취하여 토치(torch)를 이용하여 점화한 후 3초 후의 모습을 확인하였다. 또한, 그 결과를 각각 도 1a 내지 도 1e에 나타내었다.
비교예 1 의 경우, 계속적으로 연소됨을 확인할 수 있었고(도 1a),
비교예 4, 5 및 6의 경우, 불꽃의 크기는 감소하나, 계속적으로 연소됨을 확인할 수 있었다(도 1b, 도 1c, 도 1d). 특히, 비교예 4 내지 6의 경우, 전해질 휘발량을 억제할 수 있더라도, 할로겐화 벤젠에 의한 산소 라디칼은 소기(scavenging)가 가능하지 않으므로, 발화를 억제할 수 없었다.
실시예 4의 경우, 불꽃 점화시 자체 소화가 가능함을 확인할 수 있었다(도 1e).
실험예 3: 못 관통 테스트에 따른 안전성 평가
실시예 4 및 비교예 5, 비교예 6에서 제조된 리튬 이차전지를 상온에서 4.4V에서 만충전 한 후, GB/T 조건(못 직경 2.5mm, 관통속도 6 m/min)로 못 관통 실험을 진행하였다. 이에 대한 결과를 도 2 내지 도 4에 나타내었다.
도 2에 따르면, 비교예 5와 같이 할로겐화 벤젠을 투입하지 않는 경우, 못 관통 후 스파크(spark)가 발생하며(도 2(a)), 못 관통 이후에도 발화됨을 확인할 수 있다(도 2(b) 내지 도 2(d)).
도 3에 따르면, 비교예 6와 같이 할로겐화 벤젠의 함량이 본원에서 제시된 범위를 만족하지 않는 경우, 못 관통 후 스파크(spark)가 발생하며(도 3(a)), 못 관통 이후에도 발화됨을 확인할 수 있다(도 3(b) 내지 도 3(d)).
도 4에 따르면, 실시예 4와 같이 할로겐화 벤젠과 가교제를 투입하는 경우, 못 관통 후 스파크(spark)가 발생하지만(도 4(a)), 못 관통 이후 불꽃이 발생하지 않으며 연소되는 것을 확인할 수 있다(도 4(b) 내지 도 4(d)).

Claims (16)

  1. 리튬염; 비수계 유기 용매; 중합 개시제; 중합성 단량체, 올리고머 및 코폴리머로 이루어진 군으로부터 선택된 적어도 하나 이상의 중합성 화합물; 및 하기 화학식 1로 표시되는 화합물을 포함하며,
    상기 화학식 1로 표시되는 화합물은 상기 비수계 유기 용매와 상기 화학식 1로 표시되는 화합물의 총 부피를 기준으로 10 부피% 이상으로 포함되는 것을 특징으로 하는 겔 폴리머 전해질용 조성물:
    [화학식 1]
    Figure PCTKR2021012871-appb-img-000004
    (상기 화학식 1에서, X는 F, Cl, Br 및 I로 이루어진 군에서 선택된 적어도 어느 하나 이상의 할로겐 원자이고, n은 1 내지 6인 정수이다.).
  2. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 플루오로 벤젠, 클로로 벤젠, 브로모 벤젠, 아이오도벤젠, 디플루오로벤젠, 디클로로벤젠, 디브로모벤젠, 디아이오도벤젠, 트리플루오로벤젠, 트리클로로벤젠, 트리브로모벤젠, 트리아이오도벤젠, 테트라플루오로벤젠, 테트라클로로벤젠, 테르라브로모벤젠, 테트라아이오도벤젠, 플루오로클로로벤젠, 플루오로브로모벤젠, 플루오로아이오도벤젠, 클로로브로모벤젠, 클로로아이오도벤젠 및 브로모아이오도벤젠으로 이루어진 군에서 선택된 적어도 어느 하나 이상인 것을 특징으로 하는 겔 폴리머 전해질용 조성물.
  3. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 상기 비수계 유기 용매와 상기 화학식 1로 표시되는 화합물의 총 부피를 기준으로 10 부피% 내지 30 부피%로 포함되는 것을 특징으로 하는 겔 폴리머 전해질용 조성물.
  4. 제2항에 있어서,
    상기 화학식 1로 표시되는 화합물은 플루오로벤젠, 클로로벤젠, 브로모벤젠 또는 아이오도벤젠인 것을 특징으로 하는 겔 폴리머 전해질용 조성물.
  5. 제1항에 있어서,
    상기 중합성 화합물은 비닐기, 에폭시기, 알릴(allyl)기 및 (메타)아크릴기로 이루어진 군에서 선택되는 중합성 관능기를 가지며, 중합 또는 가교에 의하여 겔상으로 변화될 수 있는 화합물인 것을 특징으로 하는 겔 폴리머 전해질용 조성물.
  6. 제1항에 있어서,
    상기 중합성 화합물의 중량평균분자량(Mw)는 300 g/mol 내지 100,000 g/mol인 것을 특징으로 하는 겔 폴리머 전해질용 조성물.
  7. 제1항에 있어서,
    상기 중합성 화합물은 상기 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 0.01 중량% 내지 10 중량%로 포함되는 것을 특징으로 하는 겔 폴리머 전해질용 조성물.
  8. 제1항에 있어서,
    상기 비수계 유기 용매는 카보네이트, 에스테르 및 에테르로 이루어진 군에서 선택되는 적어도 하나의 용매를 포함하는 것을 특징으로 하는 겔 폴리머 전해질용 조성물.
  9. 제8항에 있어서,
    상기 카보네이트는 선형 카보네이트와 환형 카보네이트의 혼합 용매인 것을 특징으로 하는 겔 폴리머 전해질용 조성물.
  10. 제9항에 있어서,
    상기 환형 카보네이트는 에틸렌 카보네이트; 프로필렌 카보네이트; 1,2-부틸렌 카보네이트; 2,3-부틸렌 카보네이트; 1,2-펜틸렌 카보네이트; 2,3-펜틸렌 카보네이트; 비닐렌 카보네이트; 비닐에틸렌 카보네이트; 플루오로에틸렌 카보네이트; 및 이들의 할로겐화물; 중 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 겔 폴리머 전해질용 조성물.
  11. 제9항에 있어서,
    상기 선형 카보네이트는 디메틸 보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 에틸프로필 카보네이트(EPC) 및 이들의 할로겐화물; 중 어느 하나 또는 이들 중 2 이상의 혼합물을 포함하는 것을 특징으로 는 겔 폴리머 전해질용 조성물.
  12. 제8항에 있어서,
    상기 비수계 유기 용매는 환형 카보네이트와 선형 에스테르의 혼합 용매인 것을 특징으로 하는 겔 폴리머 전해질용 조성물.
  13. 제12항에 있어서,
    상기 선형 에스테르는 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), 프로필 아세테이트 (propyl acetate), 메틸 프로피오네이트(Methyl propionate), 에틸 프로피오네이트(Ethyl propionate), 프로필 프로피오네이트(Propyl propionate) 및 부틸 프로피오네이트(Buthyl propionate)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2 이상의 혼합물을 포함하는 것을 특징으로 는 겔 폴리머 전해질용 조성물.
  14. 상기 제1항에 있어서,
    상기 리튬염은 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (F2SO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 것인 겔 폴리머 전해질용 조성물.
  15. 제1항의 겔 폴리머 조성물을 중합하여 형성된 겔 폴리머 전해질.
  16. 음극, 양극, 상기 음극과 양극 사이에 개재된 분리막, 및
    제15항에 따른 겔 폴리머 전해질을 포함하는 것은 특징으로 하는 리튬 이차전지.
PCT/KR2021/012871 2020-09-18 2021-09-17 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지 WO2022060184A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21869806.6A EP4191726A1 (en) 2020-09-18 2021-09-17 Composition for gel polymer electrolyte, and lithium secondary battery comprising gel polymer electrolyte formed therefrom
US18/012,216 US20230261260A1 (en) 2020-09-18 2021-09-17 Composition for gel polymer electrolyte and lithium secondary battery including gel polymer electrolyte formed therefrom
CN202180043480.8A CN115917823A (zh) 2020-09-18 2021-09-17 用于凝胶聚合物电解质的组合物和包括由该组合物形成的凝胶聚合物电解质的锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0120923 2020-09-18
KR20200120923 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022060184A1 true WO2022060184A1 (ko) 2022-03-24

Family

ID=80776280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012871 WO2022060184A1 (ko) 2020-09-18 2021-09-17 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지

Country Status (5)

Country Link
US (1) US20230261260A1 (ko)
EP (1) EP4191726A1 (ko)
KR (1) KR20220038006A (ko)
CN (1) CN115917823A (ko)
WO (1) WO2022060184A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571267B1 (ko) * 2004-11-29 2006-04-13 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR100805123B1 (ko) * 2007-02-15 2008-02-21 삼성에스디아이 주식회사 리튬 이차 전지
KR20080086638A (ko) * 2007-03-23 2008-09-26 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN102064342A (zh) * 2010-12-21 2011-05-18 东莞市杉杉电池材料有限公司 一种新型锂离子电池凝胶电解质
KR20200034635A (ko) * 2018-09-21 2020-03-31 주식회사 엘지화학 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
KR20200120923A (ko) 2018-02-20 2020-10-22 에이에스엠엘 네델란즈 비.브이. 센서 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571267B1 (ko) * 2004-11-29 2006-04-13 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR100805123B1 (ko) * 2007-02-15 2008-02-21 삼성에스디아이 주식회사 리튬 이차 전지
KR20080086638A (ko) * 2007-03-23 2008-09-26 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN102064342A (zh) * 2010-12-21 2011-05-18 东莞市杉杉电池材料有限公司 一种新型锂离子电池凝胶电解质
KR20200120923A (ko) 2018-02-20 2020-10-22 에이에스엠엘 네델란즈 비.브이. 센서 시스템
KR20200034635A (ko) * 2018-09-21 2020-03-31 주식회사 엘지화학 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
US20230261260A1 (en) 2023-08-17
CN115917823A (zh) 2023-04-04
EP4191726A1 (en) 2023-06-07
KR20220038006A (ko) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2020067779A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2019107921A1 (ko) 젤 폴리머 전해질용 조성물 및 이를 포함하는 젤 폴리머 전해질 및 리튬 이차 전지
WO2018106078A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2021033987A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020060295A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2020055110A1 (ko) 리튬 이차전지용 열경화성 전해질 조성물, 이로부터 제조된 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2020096343A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2019108031A1 (ko) 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
WO2020036336A1 (ko) 리튬 이차 전지용 전해질
WO2022092831A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020036337A1 (ko) 리튬 이차 전지용 전해질
WO2017171449A1 (ko) 겔 폴리머 전해질용 조성물 및 겔 폴리머 전해질
WO2018131952A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020055122A1 (ko) 리튬 이차전지용 열경화성 전해질 조성물, 이로부터 제조된 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2019209089A1 (ko) 리튬 이차 전지 및 이의 제조방법
WO2022055331A1 (ko) 겔 폴리머 전해질 이차전지의 제조방법 및 이에 의해 제조된 겔 폴리머 전해질 이차전지
WO2019108024A1 (ko) 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
WO2022060184A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2019093862A1 (ko) 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
WO2019103496A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021025544A1 (ko) 겔 고분자 전해질용 고분자, 이를 포함하는 겔 고분자 전해질 및 리튬 이차전지
WO2019190128A1 (ko) 파우치형 이차전지의 제조 방법
WO2020190076A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019108019A1 (ko) 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
WO2019098612A1 (ko) 양극 슬러리 조성물, 이를 포함하는 이차전지용 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021869806

Country of ref document: EP

Effective date: 20230301

NENP Non-entry into the national phase

Ref country code: DE