WO2022059594A1 - 多孔質炭素材料及びその製造方法 - Google Patents

多孔質炭素材料及びその製造方法 Download PDF

Info

Publication number
WO2022059594A1
WO2022059594A1 PCT/JP2021/033175 JP2021033175W WO2022059594A1 WO 2022059594 A1 WO2022059594 A1 WO 2022059594A1 JP 2021033175 W JP2021033175 W JP 2021033175W WO 2022059594 A1 WO2022059594 A1 WO 2022059594A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
carbon material
resin
peak
mass
Prior art date
Application number
PCT/JP2021/033175
Other languages
English (en)
French (fr)
Inventor
真一朗 大角
豊 武内
歩 塚本
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to EP21869281.2A priority Critical patent/EP4197968A4/en
Priority to CN202180048287.3A priority patent/CN115916693A/zh
Priority to US18/044,624 priority patent/US20230335736A1/en
Priority to JP2022550511A priority patent/JPWO2022059594A1/ja
Priority to KR1020237003350A priority patent/KR20230067598A/ko
Publication of WO2022059594A1 publication Critical patent/WO2022059594A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a porous carbon material and a method for producing the same.
  • Carbon materials are useful for applications such as catalyst carriers and electrode materials, and various production methods are being studied.
  • Patent Document 1 a block copolymer having a hydrophilic block and a hydrophobic block, a mixture of phenols and a solvent added to formaldehyde is heated to obtain porous carbon, and the porous carbon is activated.
  • a method for obtaining activated carbon is disclosed.
  • reaction substrate reacts on the active metal supported on the porous carbon material (that is, on the reaction point)
  • the reaction substrate easily reaches the vicinity of the reaction point in the porous carbon material.
  • the porous carbon material is coated with the coating material, it is desired to separate the coating material from the reaction point to avoid poisoning and burial of the active metal by the coating material.
  • One aspect of the present invention is a first peak located in the range of pore diameter of 3 nm or more and less than 10 nm and a second peak located in the range of pore diameter of 10 nm or more and 1 ⁇ m or less in the pore diameter distribution measured by the mercury intrusion method.
  • a porous carbon material having a peak.
  • such a porous carbon material has a first pore group forming a first peak and a second pore group forming a second peak, and it can be said that the first pore group It can be said that it has a fine structure formed by the above and a higher-order structure formed by the second pore group.
  • the reaction substrate can efficiently move through the wide voids of the higher-order structure, the reaction substrate can be efficiently transported to the reaction site, and the reaction product can be efficiently discharged. Further, since the porous carbon material has the first pore group, a high specific surface area can be realized, and the active metal can be efficiently supported. Further, in the above-mentioned porous carbon material, by coating with a coating material along the higher-order structure, the coating material can be placed on the porous carbon material without poisoning or burying the active metal supported in the microstructure. Can be provided. As described above, in the porous carbon material, the reaction substrate can be easily reached to the reaction point, and the reaction point can be effectively functioned even if it is coated with a coating material.
  • the porous carbon material of one embodiment may have a specific surface area of 200 m 2 / g or more and 1800 m 2 / g or less.
  • the first peak may be located in the range of pore diameter of 4 nm or more and 7 nm or less.
  • the second peak may be located in the range of pore diameter of 20 nm or more and 200 nm or less.
  • Another aspect of the present invention is a preparatory step of preparing a resin molded body containing a resin material serving as a carbon source, a first template, and a second template, and firing the resin molded body.
  • the present invention relates to a method for producing a porous carbon material, which comprises a firing step for obtaining the above-mentioned porous carbon material.
  • the first template comprises amphipathic molecules and the second template comprises latex particles.
  • the first pore group is formed by the specific first template and the second pore group is formed by the specific second template, the above-mentioned first peak and the above-mentioned first peak and A porous carbon material having a second peak can be easily formed.
  • the resin material may contain a polymer of phenols and formaldehyde.
  • the preparatory step forms a carbon source resin material in a dispersion containing micelles formed by amphipathic molecules, latex particles, and an aqueous solvent, and the micelles, the latex particles, and the latex particles.
  • the resin material forming step polymerizes phenols and formaldehyde in the dispersion to obtain a precipitate containing the micelles, the latex particles, and a polymer of the phenols and formaldehyde. It may be a process.
  • the preparation step includes an impregnation step of impregnating a mass of latex particles with a dispersion liquid containing micelles formed by amphipathic molecules, the resin material or a precursor thereof, and an aqueous solvent. It may include a drying step of removing the aqueous solvent.
  • the impregnation step may be a step of impregnating the mass with a dispersion containing the micelles, phenols, formaldehyde, and an aqueous solvent
  • the drying step may be a step of impregnating the phenols and the formaldehyde.
  • the step may be a step of obtaining a resin molded product containing the mass, the micelle, and the polymer of the phenols and formaldehyde by the polymerization of the above and the removal of the aqueous solvent.
  • a porous carbon material capable of easily reaching the reaction site and allowing the reaction site to function effectively even when coated with a coating material. Further, according to the present invention, there is provided a method for producing a porous carbon material, which can easily produce the porous carbon material.
  • FIG. 1A is a cross-sectional view schematically showing an example of a resin molded body
  • FIG. 1B is a cross-sectional view schematically showing an example of a porous carbon material
  • FIG. 2A is a diagram showing an SEM photograph of the porous carbon material obtained in Example 1
  • FIG. 2B is a diagram showing a TEM photograph of the porous carbon material obtained in Example 1.
  • FIG. 3A is a diagram showing an SEM photograph of the porous carbon material obtained in Example 2
  • FIG. 3B is a diagram showing a TEM photograph of the porous carbon material obtained in Example 2.
  • FIG. 4A is a diagram showing an SEM photograph of the porous carbon material obtained in Example 3
  • FIG. 4B is a diagram showing a TEM photograph of the porous carbon material obtained in Example 3.
  • FIG. 5 is a diagram showing a pore distribution curve of the porous carbon material obtained in Example 1.
  • porous carbon material of the present embodiment is a carbon material having a plurality of pores.
  • the porous carbon material of the present embodiment is located in the pore diameter distribution measured by the mercury intrusion method, the first peak located in the range of pore diameter of 3 nm or more and less than 10 nm, and the pore diameter of 10 nm or more and 1 ⁇ m or less. It has a second peak.
  • “in the pore diameter distribution, having a peak in the range of pore diameters A 1 to A 2 means that a peak having a peak top in the range of pore diameters A 1 to A 2 exists in the pore diameter distribution curve. Means.
  • the porous carbon material of the present embodiment has a first pore group forming a first peak and a second pore group forming a second peak. Further, it can be said that the porous carbon material of the present embodiment has a microstructure formed by the first pore group and a higher-order structure formed by the second pore group.
  • the reaction substrate can efficiently move in the wide voids of the higher-order structure, the reaction substrate can be efficiently transported to the reaction site, and the reaction product can be efficiently discharged. Further, since the porous carbon material of the present embodiment has the first pore group, a high specific surface area can be realized, and the active metal can be efficiently supported. Further, in the present embodiment, by coating with a coating material along the higher-order structure, the coating material is provided on the porous carbon material without poisoning or burying the active metal supported in the microstructure. Can be done. As described above, according to the porous carbon material of the present embodiment, the reaction substrate can be easily reached to the reaction point, and the reaction point can be effectively functioned even if it is coated with a coating material.
  • the pore size distribution of the porous carbon material is measured by the mercury intrusion method. More specifically, it is measured by the following method.
  • the pore diameter distribution is represented by a pore diameter distribution curve in which the horizontal axis is the pore diameter (pore diameter) (logarithmic scale) and the vertical axis is the log differential pore volume (linear scale).
  • 40 to 80 mg of the porous carbon material is collected in a 5 cc measuring cell.
  • the mercury pressure is increased from 1 psia to 60,000 psia, and the amount of mercury injected is measured.
  • the pore distribution is obtained from the obtained curves of the pressure and the press-fitting amount.
  • the mercury contact angle is 130 degrees and the mercury surface tension is 485 days / cm.
  • the first peak is preferably located in the range of pore diameter of 4 nm or more and 7 nm or less
  • the second peak is preferably located in the range of pore diameter of 20 nm or more and 200 nm or less. ..
  • the first peak and the second peak preferably have a peak value of 0.1 mL / g or more, and more preferably a peak value of 0.5 mL / g or more.
  • the peak values of the first peak and the second peak may be, for example, 4.0 mL / g or less, and may be 2.0 mL / g or less. That is, the peak value of the first peak is, for example, 0.1 to 4.0 mL / g, 0.1 to 2.0 mL / g, 0.5 to 4.0 mL / g, or 0.5 to 2 It may be 0.0 mL / g.
  • the peak value of the second peak is, for example, 0.1 to 4.0 mL / g, 0.1 to 2.0 mL / g, 0.5 to 4.0 mL / g, or 0.5 to 2 It may be 0.0 mL / g.
  • the first peak and the second peak are peaks having the highest peak value (peak A) or peaks having the second highest peak value (peak B) among the peaks located in the range of pore diameter of 3 nm or more and 1 ⁇ m or less. It is preferable to have. That is, when the first peak is the peak A, the second peak is preferably the peak B, and when the first peak is the peak B, the second peak is the peak A. Is preferable.
  • the specific surface area of the porous carbon material of the present embodiment is preferably 200 m 2 / g or more, more preferably 400 m 2 / g or more, and further preferably 600 m 2 / g or more.
  • the specific surface area of the porous carbon material of the present embodiment is preferably 1800 m 2 / g or less, more preferably 1600 m 2 / g or less, and further preferably 1400 m 2 / g or less. As a result, the strength of the porous structure of the porous carbon material is further improved, and the porous structure tends to be more stable.
  • the specific surface area of the porous carbon material of the present embodiment is, for example, 200 to 1800 m 2 / g, 200 to 1600 m 2 / g, 200 to 1400 m 2 / g, 400 to 1800 m 2 / g, 400 to 1600 m 2 /. It may be g, 400 to 1400 m 2 / g, 600 to 1800 m 2 / g, 600 to 1600 m 2 / g, or 600 to 1400 m 2 / g.
  • the specific surface area of the porous carbon material indicates a value measured by the nitrogen adsorption method. More specifically, it is measured by the following method according to JIS Z8830. First, the porous carbon material is dried at 305 ° C. for 2 hours under nitrogen flow. Next, the nitrogen adsorption isotherm is measured using an automatic specific surface area measuring device (BELSORP mini manufactured by Microtrac Bell). Then, the specific surface area is calculated from the obtained nitrogen adsorption isotherm using the BET method.
  • BELSORP mini automatic specific surface area measuring device
  • the porous carbon material of the present embodiment may include, for example, a fired product of a resin material.
  • the porous carbon material of the present embodiment may be, for example, a fired product of a resin molded product containing a resin material.
  • the resin material may be any material that can form amorphous carbon by firing.
  • the resin material include phenol resin (novolak type phenol resin, resole type phenol resin), furan resin, epoxy resin, unsaturated polyester resin, ester resin, urea resin, melamine resin, alkyd resin, xylene resin, and polyurethane resin.
  • examples thereof include polyuric acid resin, acrylonitrile resin, polystyrene resin, bismaleimide / triazine resin, divinylbenzene resin, polyimide resin, diallyl phthalate resin, vinyl ester resin and the like.
  • the resin material a polymer of phenols and formaldehyde can be preferably used.
  • Phenols are compounds in which at least one hydroxy group is bonded to an aromatic ring.
  • phenols include phenol, o-cresol, m-cresol, p-cresol, dihydroxybenzene (1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), 1,4-dihydroxybenzene). (Hydroquinone)), 5-methylresorcinol (orcinol), ursiol, pyrogallol, fluorogluconol, hydroxyhydroquinone, hydroxynaphthalene, hydroxyanthracene, hydroxypyridine, furfuryl alcohol and the like.
  • phenol phenol, resorcinol, phloroglucinol, 1,5-dihydroxynaphthalene and furfuryl alcohol are preferable, and resorcinol is more preferable.
  • One type of phenol may be used alone, or two or more types may be used in combination.
  • the polymer may be a reaction of phenols and formaldehyde, or may be a reaction of phenols and a multimer of formaldehyde (for example, paraformaldehyde).
  • the polymer may be an acid-catalyzed polymer or a base-catalyzed polymer, but is preferably an acid-catalyzed polymer.
  • the calcined product of the resin material may be a calcined product of the resin material under the condition that amorphous carbon is formed.
  • the firing conditions may be appropriately changed depending on the type of resin material and the like.
  • the porous carbon material of the present embodiment can be produced, for example, by the following production method.
  • the method for producing a porous carbon material of the present embodiment includes a preparation step for preparing a resin molded body containing a resin material as a carbon source, a first template, and a second template, and the resin molded body.
  • the above-mentioned porous carbon material is obtained by firing the above-mentioned porous carbon material.
  • the first template contains amphipathic molecules and the second template contains latex particles.
  • the first template forms the first pore group
  • the second template forms the second pore group. Therefore, the porous carbon material of the present embodiment is formed. Can be easily manufactured.
  • a resin molded body containing a resin material as a carbon source, a first template, and a second template is prepared.
  • the resin material may be any material that can form amorphous carbon by firing.
  • the same resin material as above can be exemplified.
  • the first template may be any template that contains amphipathic molecules and can form the first pore group forming the first peak.
  • the amphipathic molecule is preferably a molecule capable of forming micelles in water. According to such an amphipathic molecule, by dispersing the formed micelles in the resin material, a resin molded product containing the first template can be easily obtained.
  • amphipathic molecule a known molecule capable of forming micelles in water can be used without particular limitation.
  • amphoteric molecule examples include a diblock copolymer having a hydrophilic block-hydrophobic block structure, a triblock copolymer having a hydrophilic block-hydrophobic block-hydrophobic block structure, and a hydrophobic block.
  • -Hydrophilic block-Triblock copolymer having a hydrophobic block structure and the like can be mentioned.
  • hydrophilic block examples include polyethylene oxide block, polyvinyl pyridine block, polymethyl methacrylate block and the like. Of these, polyethylene oxide blocks are preferred.
  • the number of ethylene oxide units in the polyethylene oxide block is preferably 20 to 150, more preferably 90 to 120. That is, the number of ethylene oxide units in the polyethylene oxide block may be, for example, 20 to 150, 20 to 120, 90 to 150 or 90 to 120.
  • hydrophobic block examples include polypropylene oxide block, hydrocarbon block, polystyrene block and the like. Of these, polypropylene oxide blocks are preferred.
  • the number of propylene oxide units in the polypropylene oxide block is preferably 30-100, more preferably 60-80. That is, the number of propylene oxide units in the polypropylene oxide block may be, for example, 30 to 100, 30 to 80, 60 to 100 or 60 to 80.
  • a polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer is preferable.
  • the pore size of the first pore group (that is, the adjustment of the peak position of the first peak) can be performed by adjusting the particle size of the micelle formed by the amphipathic molecule. ..
  • the amphipathic molecule is used as a template (first template) for forming a pore group (first pore group) having a peak (first peak) in a pore diameter range of 3 nm or more and less than 10 nm. It may be capable of forming micelles.
  • the second template may be any template that contains latex particles and can form a second pore group forming a second peak.
  • the average particle size of the latex particles is not particularly limited as long as it can form a second pore group, and may be, for example, 50 nm or more, preferably 100 nm or more.
  • the average particle size of the latex particles may be, for example, 5 ⁇ m or less, preferably 1 ⁇ m or less.
  • the average particle diameter of the latex particles indicates the value of the median diameter measured by the laser diffraction / scattering method. That is, the average particle size of the latex particles may be, for example, 50 nm to 5 ⁇ m, 50 nm to 1 ⁇ m, 100 nm to 5 ⁇ m, or 100 nm to 1 ⁇ m.
  • the pore diameter of the second pore group (that is, the adjustment of the peak position of the second peak) can be performed by adjusting the particle diameter of the latex particles.
  • the latex particles function as a template (second template) for forming a pore group (second pore group) having a peak (second peak) in the range of pore diameter of 10 nm or more and 1 ⁇ m or less. It should be.
  • the resin constituting the latex particles is not particularly limited as long as it is burnt down when the resin molded product is fired.
  • examples of the resin constituting the latex particles include polystyrene resin, polymethyl methacrylate resin and the like.
  • the blending amount of the first template may be, for example, 30 parts by mass or more, preferably 40 parts by mass or more, and more preferably 50 parts by mass or more with respect to 100 parts by mass of the resin material. Further, in the preparation step, the blending amount of the first template may be, for example, 140 parts by mass or less, preferably 120 parts by mass or less, and more preferably 100 parts by mass or less with respect to 100 parts by mass of the resin material. .. That is, the blending amount of the first template in the preparation step is, for example, 30 to 140 parts by mass, 30 to 120 parts by mass, 30 to 100 parts by mass, 40 to 140 parts by mass, 40 to 140 parts by mass with respect to 100 parts by mass of the resin material. It may be 120 parts by mass, 40 to 100 parts by mass, 50 to 140 parts by mass, 50 to 120 parts by mass, or 50 to 100 parts by mass.
  • the pore volume of pores having a pore diameter of 3 nm or more and less than 10 nm can be adjusted. That is, in the present embodiment, the blending amount of the first template may be appropriately adjusted so that the pore volume of the pores having a pore diameter of 3 nm or more and less than 10 nm in the porous carbon material is within the above-mentioned suitable range. ..
  • the blending amount of the second template may be, for example, 50 parts by mass or more, preferably 100 parts by mass or more, with respect to 100 parts by mass of the resin material. Further, in the preparation step, the blending amount of the second template may be, for example, 1500 parts by mass or less, preferably 1000 parts by mass or less, with respect to 100 parts by mass of the resin material. That is, the blending amount of the second template in the preparation step is, for example, 50 to 1500 parts by mass, 50 to 1000 parts by mass, 100 to 1500 parts by mass, or 100 to 1000 parts by mass with respect to 100 parts by mass of the resin material. good.
  • the pore volume of the pores having a pore diameter of 10 nm or more and 1 ⁇ m or less can be adjusted. That is, in the present embodiment, the blending amount of the second template may be appropriately adjusted so that the pore volume of the pores having a pore diameter of 10 nm or more and 1 ⁇ m or less in the porous carbon material is within the above-mentioned suitable range. ..
  • the preparatory step is to form a resin material in a dispersion containing a micelle formed by an amphipathic molecule, latex particles, and an aqueous solvent.
  • a resin material forming step of obtaining a precipitate containing latex particles and a resin material and a drying step of drying the precipitate to obtain a resin molded body containing the resin material, amphipathic molecules and latex particles. You can go out.
  • the resin material may be formed from the precursor of the resin material in the dispersion liquid.
  • the precursor of the resin material may be, for example, a monomer that forms the resin material by polymerization, a polymer that forms the resin material by modification, or the like.
  • the aqueous solvent is a solvent containing water, and may further contain an organic solvent having compatibility with water.
  • organic solvent include alcohols such as methanol, ethanol, 1-propanol and 2-propanol.
  • the resin material forming step may be, for example, a step of polymerizing phenols and formaldehyde in a dispersion liquid to obtain a precipitate containing a polymer of phenols and formaldehyde, micelles, and latex particles.
  • Polymerization of phenols and formaldehyde may be carried out in the presence of a polymerization catalyst.
  • the polymerization catalyst may be an acid catalyst or a base catalyst, and an acid catalyst is preferable. That is, the dispersion may contain a polymerization catalyst (acid catalyst or base catalyst), and preferably contains an acid catalyst.
  • Examples of the acid catalyst include hydrochloric acid, acetic acid, oxalic acid, sulfonic acid and the like.
  • Examples of the base catalyst include sodium hydroxide, ammonia, amine and the like.
  • the ratio C 1 / C 2 of the amount of phenols C 1 (mol) to the amount of formaldehyde C 2 (mol) provided in the dispersion may be, for example, 0.1 or more, preferably 0.3 or more. Is. Further, the ratio C 1 / C 2 may be, for example, 1.0 or less, and 0.9 or less. That is, the ratio C 1 / C 2 may be, for example, 0.1 to 1.0, 0.1 to 0.9, 0.3 to 1.0, or 0.3 to 0.9.
  • reaction conditions for the polymerization of phenols and formaldehyde are not particularly limited, and for example, the reaction temperature may be 20 to 80 ° C., and the reaction time may be 10 minutes to 96 hours.
  • the drying step the precipitate is collected and the aqueous solvent is removed to obtain a resin molded product.
  • the drying conditions are not particularly limited, and for example, the drying temperature may be 20 to 80 ° C.
  • the preparatory step comprises a mass of latex particles containing micelles formed by amphipathic molecules, a resin material (or a precursor thereof), and an aqueous solvent. It may include an impregnation step of impregnating the dispersion and a drying step of removing the aqueous solvent.
  • the agglomerate of the latex particles may be one in which the latex particles are randomly aggregated, or may be one in which the latex particles are regularly arranged.
  • the agglomerates of latex particles may be, for example, colloidal crystals.
  • the impregnation step may be, for example, a step of impregnating a mass of latex particles with a dispersion liquid containing micelles, phenols, formaldehyde, and an aqueous solvent.
  • the dispersion may further contain a polymerization catalyst (acid catalyst or base catalyst), and preferably further contains an acid catalyst.
  • a polymerization catalyst acid catalyst or base catalyst
  • the ratio C 1 / C 2 of the amount of phenols C 1 (mol) to the amount of formaldehyde C 2 (mol) provided in the dispersion may be the same as in the first aspect.
  • the drying step may be a step of removing the aqueous solvent, or may be a step of forming the resin material from the precursor of the resin material and removing the aqueous solvent.
  • a resin molded product containing a polymer of phenols and formaldehyde, a mass of latex particles, and an amphipathic molecule micelle is obtained by polymerizing phenols and formaldehyde and removing an aqueous solvent. It may be a step of obtaining.
  • the firing step is a step of firing a resin molded product to obtain a porous carbon material.
  • the firing conditions in the firing step are not particularly limited, as long as the resin material in the resin molded body can form amorphous carbon.
  • the firing temperature may be 400 to 2400 ° C.
  • the firing in the firing step is preferably performed under an inert gas atmosphere (for example, a nitrogen atmosphere or an argon atmosphere).
  • an inert gas atmosphere for example, a nitrogen atmosphere or an argon atmosphere.
  • the production method of the present embodiment may further include an activation step of heating the porous carbon material under air after the firing step.
  • the heating conditions in the activation step are not particularly limited, and for example, the heating temperature may be 400 to 800 ° C., and the heating time may be 1 minute to 1 hour. According to the activation step, the specific surface area of the porous carbon material can be increased.
  • a block-shaped porous carbon material can be obtained by the firing step.
  • the production method of the present embodiment may further include a crushing step of crushing the porous carbon material to obtain a powdery porous carbon material after the firing step.
  • the shape of the porous carbon material may be appropriately changed depending on the use of the porous carbon material.
  • FIG. 1A is a cross-sectional view schematically showing an example of a resin molded body
  • FIG. 1B is a cross-sectional view schematically showing an example of a porous carbon material.
  • the resin molded body 10 shown in FIG. 1A contains a resin material 11 and latex particles 12. Further, the resin material 11 contains an amphipathic molecule micelle (not shown). When such a resin molded body 10 is fired, micropores corresponding to the first pore group are formed by burning of the micelles in the resin material 11, and voids are generated by burning of the latex particles 12 to form a branch. Higher-order structure is formed.
  • the porous carbon material 20 shown in FIG. 1 (b) has a higher-order structure formed by burning the latex particles 12, and micropores are formed in the porous carbon material 20 due to burning of micelles. There is.
  • Such a porous carbon material 20 has a first peak due to micropores and a second peak due to a higher-order structure in the pore size distribution.
  • porous carbon material of this embodiment is not particularly limited, and the known use of the carbon material can be used without particular limitation.
  • the porous carbon material of the present embodiment can effectively function the reaction site even if it is coated with a coating material, it can be particularly preferably used for applications coated with a coating material.
  • the porous carbon material of the present embodiment can be suitably used as a carrier for a cathode catalyst of a polymer electrolyte fuel cell.
  • Cathode catalysts are used by supporting an active metal (eg platinum) on a porous carbon material and coating it with ionomer.
  • the active metal supported inside the first pore group can sufficiently exert catalytic ability without being poisoned by ionoma.
  • porous carbon material of the present embodiment can be suitably used for applications such as an electrode material for a capacitor, an electrode material for a secondary battery, and a gas adsorption material.
  • Example 1 5.9 parts by mass of resorcinol, 0.8 parts by mass of 5 mol / L hydrochloric acid, 9.3 parts by mass of polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer (Pluronic F127 manufactured by Sigma-Aldrich), water of polystyrene latex particles After mixing 44.1 parts by mass of the dispersion (polystyrene particle diameter 107 nm) and 29.7 parts by mass of ethanol, 10.1 parts by mass of a formaldehyde solution (37 parts by mass of formaldehyde content) was added to prepare a dispersion.
  • Pluronic F127 polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer
  • FIG. 5 is a diagram showing a pore distribution curve of the porous carbon material obtained in Example 1.
  • Example 2 The porous carbon material obtained in Example 1 was heated at 520 ° C. in air for 10 minutes to obtain an activated porous carbon material.
  • the first peak and the second peak in the pore distribution measured by the mercury intrusion method were 5 nm and 20 nm.
  • the specific surface area was 1079 m 2 / g.
  • Example 3 An aqueous dispersion of polystyrene latex particles (polystyrene particle diameter 463 nm) was centrifuged to obtain a precipitate of polystyrene latex particles. The precipitate was dried at 60 ° C. for 24 hours to obtain a mass of polystyrene latex particles.
  • the resin molded product was heated to 800 ° C. at 1.5 ° C./min under a nitrogen atmosphere and then held at 800 ° C. for 3 hours to obtain a block-shaped porous carbon material.
  • the obtained porous carbon material was pulverized in a mortar to obtain a powdery porous carbon material.
  • the first peak and the second peak in the pore distribution measured by the mercury intrusion method were 5 nm and 89 nm.
  • the specific surface area was 512 m 2 / g.
  • the obtained porous carbon material was pulverized in a mortar to obtain a powdery porous carbon material.
  • the first peak was 6 nm.
  • the first peak was not detected in the pore size distribution, and the formation of the fine structure could not be confirmed even in the TEM image.
  • the specific surface area was 755 m 2 / g.
  • FIG. 2A is a diagram showing an SEM photograph of the porous carbon material obtained in Example 1
  • FIG. 2B is a diagram showing a TEM photograph of the porous carbon material obtained in Example 1.
  • FIG. 3A is a diagram showing an SEM photograph of the porous carbon material obtained in Example 2
  • FIG. 3B is a diagram showing a TEM photograph of the porous carbon material obtained in Example 2.
  • FIG. 4A is a diagram showing an SEM photograph of the porous carbon material obtained in Example 3, and FIG.
  • 4B is a diagram showing a TEM photograph of the porous carbon material obtained in Example 3. It is a figure. From the results of the SEM photograph and the TEM photograph, in Examples 1 to 3, the microstructure formed by the first pore group and the higher-order structure formed by the second pore group are formed. Was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

水銀圧入法で測定される細孔径分布において、細孔径3nm以上10nm未満の範囲に位置する第一のピークと、細孔径10nm以上1μm以下の範囲に位置する第二のピークと、を有する、多孔質炭素材料。

Description

多孔質炭素材料及びその製造方法
 本発明は、多孔質炭素材料及びその製造方法に関する。
 炭素材料、特に細孔を有する多孔質炭素材料は、触媒担体、電極材料等の用途に有用であり、様々な製造方法が検討されている。例えば、特許文献1には、親水性ブロック及び疎水性ブロックを有するブロック共重合体とフェノール類とホルムアルデヒドに溶媒を加えた混合物を加熱して多孔質炭素を得て、当該多孔質炭素を賦活して活性炭を得る方法が開示されている。
特開2014-034475号公報
 多孔質炭素材料に担持された活性金属上(すなわち、反応点上)で反応基質が反応する用途では、反応基質が多孔質炭素材料中の反応点近傍に到達しやすいことが望まれる。また、多孔質炭素材料が被覆材により被覆される用途では、被覆材と反応点とを離間させ、被覆材による活性金属の被毒及び埋没を避ける事が望まれる。
 本発明は、反応基質を反応点まで容易に到達させることができ、且つ、被覆材で被覆しても反応点を有効に機能させることが可能な、多孔質炭素材料を提供することを目的とする。また、本発明は、当該多孔質炭素材料を容易に製造可能な、多孔質炭素材料の製造方法を提供することを目的とする。
 本発明の一側面は、水銀圧入法で測定される細孔径分布において、細孔径3nm以上10nm未満の範囲に位置する第一のピークと、細孔径10nm以上1μm以下の範囲に位置する第二のピークと、を有する、多孔質炭素材料に関する。
 このような多孔質炭素材料は、第一のピークを成す第一の細孔群と、第二のピークを成す第二の細孔群とを有していると言え、第一の細孔群により形成される微細構造と、第二の細孔群により形成される高次構造とを有しているとも言える。
 上記多孔質炭素材料では、高次構造が有する広い空隙を反応基質が効率良く移動できるため、反応基質を効率良く反応点に輸送でき、また、反応生成物を効率良く排出できる。また、上記多孔質炭素材料は、第一の細孔群を有するため高い比表面積を実現でき、活性金属を効率良く担持することができる。更に、上記多孔質炭素材料では、高次構造に沿って被覆材で被覆することで、微細構造内に担持された活性金属を被毒・埋没させることなく、多孔質炭素材料上に被覆材を設けることができる。このように、上記多孔質炭素材料は、反応基質を反応点まで容易に到達させることができ、且つ、被覆材で被覆しても反応点を有効に機能させることができる。
 一態様の多孔質炭素材料は、比表面積が200m/g以上1800m/g以下であってよい。
 一態様において、前記第一のピークは、細孔径4nm以上7nm以下の範囲に位置していてよい。
 一態様において、前記第二のピークは、細孔径20nm以上200nm以下の範囲に位置していてよい。
 本発明の他の一側面は、炭素源となる樹脂材料と、第一のテンプレートと、第二のテンプレートと、を含有する樹脂成形体を準備する準備工程と、前記樹脂成形体を焼成して、上述の多孔質炭素材料を得る焼成工程と、を含む、多孔質炭素材料の製造方法に関する。この製造方法において、前記第一のテンプレートは、両親媒性分子を含み、前記第二のテンプレートは、ラテックス粒子を含む。
 このような製造方法では、特定の第一のテンプレートにより第一の細孔群が形成され、特定の第二のテンプレートにより第二の細孔群が形成されるため、上述の第一のピーク及び第二のピークを有する多孔質炭素材料を容易に形成することができる。
 一態様において、前記樹脂材料は、フェノール類とホルムアルデヒドとの重合体を含んでいてよい。
 一態様において、前記準備工程は、両親媒性分子により形成されたミセルとラテックス粒子と水系溶媒とを含有する分散液中で炭素源となる樹脂材料を形成して、前記ミセル、前記ラテックス粒子及び前記樹脂材料を含有する沈殿物を得る樹脂材料形成工程と、前記沈殿物を乾燥させて、前記樹脂材料と、前記両親媒性分子と、前記ラテックス粒子とを含有する樹脂成形体を得る乾燥工程と、を含んでいてよい。
 一態様において、前記樹脂材料形成工程は、前記分散液中で、フェノール類とホルムアルデヒドとを重合させて、前記ミセルと前記ラテックス粒子と前記フェノール類及びホルムアルデヒドの重合体とを含有する沈殿物を得る工程であってよい。
 一態様において、前記準備工程は、ラテックス粒子の塊状体に、両親媒性分子により形成されたミセルと前記樹脂材料又はその前駆体と水系溶媒とを含有する分散液を含浸させる含浸工程と、前記水系溶媒を除去する乾燥工程と、を含んでいてよい。
 一態様において、前記含浸工程は、前記塊状体に、前記ミセルとフェノール類とホルムアルデヒドと水系溶媒とを含有する分散液を含浸させる工程であってよく、前記乾燥工程は、前記フェノール類及び前記ホルムアルデヒドの重合と前記水系溶媒の除去とにより、前記塊状体と前記ミセルと前記フェノール類及びホルムアルデヒドの重合体とを含有する樹脂成形体を得る工程であってよい。
 本発明によれば、反応基質を反応点まで容易に到達させることができ、且つ、被覆材で被覆しても反応点を有効に機能させることが可能な、多孔質炭素材料が提供される。また、本発明によれば、当該多孔質炭素材料を容易に製造可能な、多孔質炭素材料の製造方法が提供される。
図1(a)は、樹脂成形体の一例を模式的に示す断面図であり、図1(b)は、多孔質炭素材料の一例を模式的に示す断面図である。 図2(a)は、実施例1で得られた多孔質炭素材料のSEM写真を示す図であり、図2(b)は、実施例1で得られた多孔質炭素材料のTEM写真を示す図である。 図3(a)は、実施例2で得られた多孔質炭素材料のSEM写真を示す図であり、図3(b)は、実施例2で得られた多孔質炭素材料のTEM写真を示す図である。 図4(a)は、実施例3で得られた多孔質炭素材料のSEM写真を示す図であり、図4(b)は、実施例3で得られた多孔質炭素材料のTEM写真を示す図である。 図5は、実施例1で得られた多孔質炭素材料の細孔分布曲線を示す図である。
 以下、本発明の好適な実施形態について詳細に説明する。
(多孔質炭素材料)
 本実施形態の多孔質炭素材料は、複数の細孔を有する炭素材料である。
 本実施形態の多孔質炭素材料は、水銀圧入法で測定される細孔径分布において、細孔径3nm以上10nm未満の範囲に位置する第一のピークと、細孔径10nm以上1μm以下の範囲に位置する第二のピークと、を有する。なお、「細孔径分布において、細孔径A~Aの範囲にピークを有する」とは、細孔径A~Aの範囲にピークトップを有するピークが、細孔径分布曲線に存在することを意味する。
 本実施形態の多孔質炭素材料は、第一のピークを成す第一の細孔群と、第二のピークを成す第二の細孔群とを有しているということもできる。また、本実施形態の多孔質炭素材料は、第一の細孔群により形成される微細構造と、第二の細孔群により形成される高次構造とを有しているとも言える。
 本実施形態の多孔質炭素材料は、高次構造が有する広い空隙を反応基質が効率良く移動できるため、反応基質を効率良く反応点に輸送でき、また、反応生成物を効率良く排出できる。また、本実施形態の多孔質炭素材料は、第一の細孔群を有するため高い比表面積を実現でき、活性金属を効率良く担持することができる。更に、本実施形態では、高次構造に沿って被覆材で被覆することで、微細構造内に担持された活性金属を被毒・埋没させることなく、多孔質炭素材料上に被覆材を設けることができる。このように、本実施形態の多孔質炭素材料によれば、反応基質を反応点まで容易に到達させることができ、且つ、被覆材で被覆しても反応点を有効に機能させることができる。
 なお、本明細書中、多孔質炭素材料の細孔径分布は、水銀圧入法で測定される。より詳細には、以下の方法で測定される。また、細孔径分布は、横軸を細孔径(細孔直径)(対数目盛)、縦軸をlog微分細孔容積(リニア目盛)とした細孔径分布曲線により表される。まず、多孔質炭素材料40~80mgを5ccの測定セルに採取する。次に、自動水銀ポロシメータ(島津製作所-マイクロメリティックス社製 オートポアV9620)を用いて、水銀圧力を1psiaから60000psiaに昇圧し、水銀の圧入量を測定する。そして、得られた圧力と圧入量の曲線から、細孔分布を求める。なお、水銀接触角は130degrees、水銀表面張力は485dynes/cmとする。
 本実施形態において、第一のピークは、細孔径4nm以上7nm以下の範囲に位置していることが好ましく、第二のピークは、細孔径20nm以上200nm以下の範囲に位置していることが好ましい。これにより、上述の効果がより顕著に奏される。
 第一のピーク及び第二のピークは、ピーク値が0.1mL/g以上のピークであることが好ましく、ピーク値が0.5mL/g以上のピークであることがより好ましい。また、第一のピーク及び第二のピークのピーク値は、例えば4.0mL/g以下であってよく、2.0mL/g以下であってもよい。すなわち、第一のピークのピーク値は、例えば、0.1~4.0mL/g、0.1~2.0mL/g、0.5~4.0mL/g、又は、0.5~2.0mL/gであってよい。また、第二のピークのピーク値は、例えば、0.1~4.0mL/g、0.1~2.0mL/g、0.5~4.0mL/g、又は、0.5~2.0mL/gであってよい。
 第一のピーク及び第二のピークは、細孔径3nm以上1μm以下の範囲に位置するピークのうち、最もピーク値の高いピーク(ピークA)又は2番目にピーク値の高いピーク(ピークB)であることが好ましい。すなわち、第一のピークが上記ピークAであるとき、第二のピークは上記ピークBであることが好ましく、第一のピークが上記ピークBであるとき、第二のピークは上記ピークAであることが好ましい。
 本実施形態の多孔質炭素材料の比表面積は、200m/g以上であることが好ましく、400m/g以上であることがより好ましく、600m/g以上であることが更に好ましい。これにより、活性金属の担持時に、多孔質炭素材料上での活性金属の分散性が向上し、反応点がより効率良く形成される傾向がある。また、本実施形態の多孔質炭素材料の比表面積は、1800m/g以下であることが好ましく、1600m/g以下であることがより好ましく、1400m/g以下であることが更に好ましい。これにより、多孔質炭素材料の多孔構造の強度がより向上し、多孔構造がより安定する傾向がある。すなわち、本実施形態の多孔質炭素材料の比表面積は、例えば、200~1800m/g、200~1600m/g、200~1400m/g、400~1800m/g、400~1600m/g、400~1400m/g、600~1800m/g、600~1600m/g、又は、600~1400m/gであってよい。
 なお、本明細書中、多孔質炭素材料の比表面積は、窒素吸着法で測定される値を示す。より詳細には、JIS Z8830に従い、以下の方法で測定される。まず、多孔質炭素材料を窒素流通下305℃で2時間乾燥する。次に、自動比表面積測定装置(マイクロトラック・ベル社製 BELSORP mini)を用いて、窒素吸着等温線を測定する。そして、得られた窒素吸着等温線から、BET法を用いて比表面積を算出する。
 本実施形態の多孔質炭素材料は、例えば、樹脂材料の焼成物を含むものであってよい。本実施形態の多孔質炭素材料は、例えば、樹脂材料を含有する樹脂成形体の焼成物であってもよい。
 樹脂材料は焼成により無定形炭素を形成できるものであればよい。樹脂材料としては、例えば、フェノール樹脂(ノボラック型フェノール樹脂、レゾール型フェノール樹脂)、フラン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、エステル樹脂、ユリア樹脂、メラミン樹脂、アルキッド樹脂、キシレン樹脂、ポリウレタン樹脂、ポリ尿酸樹脂、アクリロニトリル樹脂、ポリスチレン樹脂、ビスマレイミド・トリアジン樹脂、ジビニルベンゼン樹脂、ポリイミド樹脂、ジアリルフタレート樹脂、ビニルエステル樹脂等が挙げられる。
 樹脂材料としては、フェノール類とホルムアルデヒドとの重合体を好適に用いることができる。
 フェノール類は、芳香環に少なくとも一つのヒドロキシ基が結合した化合物である。フェノール類としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、ジヒドロキシベンゼン(1,2-ジヒドロキシベンゼン(カテコール)、1,3-ジヒドロキシベンゼン(レゾルシノール)、1,4-ジヒドロキシベンゼン(ヒドロキノン))、5-メチルレソルシノール(オルシノール)、ウルシオール、ピロガロール、フロログルシノール、ヒドロキシヒドロキノン、ヒドロキシナフタレン、ヒドロキシアントラセン、ヒドロキシピリジン、フルフリルアルコール等が挙げられる。フェノール類としては、フェノール、レゾルシノール、フロログルシノール、1,5-ジヒドロキシナフタレン、フルフリルアルコールが好ましく、レゾルシノールがより好ましい。フェノール類は1種を単独で用いてよく、2種以上を併用してもよい。
 上記重合体は、フェノール類とホルムアルデヒドとを反応させたものであってよく、フェノール類とホルムアルデヒドの多量体(例えば、パラホルムアルデヒド)とを反応させたものであってもよい。
 上記重合体は、酸触媒による重合体であってよく、塩基触媒による重合体であってもよいが、酸触媒による重合体であることが好ましい。
 樹脂材料の焼成物は、無定形炭素が形成される条件で樹脂材料を焼成したものであればよい。焼成条件は、樹脂材料の種類等に応じて適宜変更してよい。
 本実施形態の多孔質炭素材料は、例えば、以下の製造方法によって製造することができる。
(多孔質炭素材料の製造方法)
 本実施形態の多孔質炭素材料の製造方法は、炭素源となる樹脂材料と、第一のテンプレートと、第二のテンプレートと、を含有する樹脂成形体を準備する準備工程と、前記樹脂成形体を焼成して、上述の多孔質炭素材料を得る焼成工程と、を含む。本実施形態において、第一のテンプレートは両親媒性分子を含み、第二のテンプレートはラテックス粒子を含む。
 本実施形態の製造方法によれば、第一のテンプレートにより第一の細孔群が形成され、第二のテンプレートにより第二の細孔群が形成されるため、本実施形態の多孔質炭素材料を容易に製造することができる。
 以下、図面を参照しつつ本実施形態の製造方法の各工程について詳述する。
 準備工程では、炭素源となる樹脂材料と、第一のテンプレートと、第二のテンプレートと、を含有する樹脂成形体を準備する。
 樹脂材料は、焼成により無定形炭素を形成できるものであればよい。樹脂材料としては上記と同じものが例示できる。
 第一のテンプレートは、両親媒性分子を含み、第一のピークを成す第一の細孔群を形成可能なテンプレートであればよい。
 両親媒性分子は、水中でミセルを形成可能な分子であることが好ましい。このような両親媒性分子によれば、形成されたミセルを樹脂材料中に分散させることで、容易に第一のテンプレートを含有する樹脂成形体を得ることができる。
 両親媒性分子は、水中でミセルを形成可能な公知の分子を特に制限なく用いることができる。両親媒性分子としては、例えば、親水性ブロック-疎水性ブロックの構造を有するジブロック共重合体、親水性ブロック-疎水性ブロック-親水性ブロックの構造を有するトリブロック共重合体、疎水性ブロック-親水性ブロック-疎水性ブロックの構造を有するトリブロック共重合体等が挙げられる。
 親水性ブロックとしては、例えば、ポリエチレンオキシドブロック、ポリビニルピリジンブロック、ポリメタクリル酸メチルブロック等が挙げられる。これらの中で、ポリエチレンオキシドブロックが好ましい。ポリエチレンオキシドブロック中のエチレンオキシド単位の数は、好ましくは20~150、より好ましくは90~120である。すなわち、ポリエチレンオキシドブロック中のエチレンオキシド単位の数は、例えば20~150、20~120、90~150又は90~120であってよい。
 疎水性ブロックとしては、例えば、ポリプロピレンオキシドブロック、炭化水素ブロック、ポリスチレンブロック等が挙げられる。これらの中で、ポリプロピレンオキシドブロックが好ましい。ポリプロピレンオキシドブロック中のプロピレンオキシド単位の数は、好ましくは30~100、より好ましくは60~80である。すなわち、ポリプロピレンオキシドブロック中のプロピレンオキシド単位の数は、例えば30~100、30~80、60~100又は60~80であってよい。
 両親媒性分子としては、ポリエチレンオキシド-ポリプロピレンオキシド-ポリエチレンオキシドトリブロック共重合体が好ましい。
 本実施形態では、両親媒性分子により形成されるミセルの粒径を調整することで、第一の細孔群の細孔径(すなわち、第一のピークのピーク位置の調整)を行うことができる。換言すると、両親媒性分子は、細孔径3nm以上10nm未満の範囲にピーク(第一のピーク)を成す細孔群(第一の細孔群)を形成するテンプレート(第一のテンプレート)としてのミセルを形成可能なものであってよい。
 第二のテンプレートは、ラテックス粒子を含み、第二のピークを成す第二の細孔群を形成可能なテンプレートであればよい。
 ラテックス粒子の平均粒子径は、例えば、第二の細孔群を形成可能な範囲であれば特に限定されず、例えば50nm以上であってよく、好ましくは100nm以上である。また、ラテックス粒子の平均粒子径は、例えば5μm以下であってよく、好ましくは1μm以下である。なお、本明細書中、ラテックス粒子の平均粒子径は、レーザー回折・散乱法で測定されるメジアン径の値を示す。すなわち、ラテックス粒子の平均粒子径は、例えば50nm~5μm、50nm~1μm、100nm~5μm、又は、100nm~1μmであってよい。
 本実施形態では、ラテックス粒子の粒子径を調整することで、第二の細孔群の細孔径(すなわち、第二のピークのピーク位置の調整)を行うことができる。換言すると、ラテックス粒子は、細孔径10nm以上1μm以下の範囲にピーク(第二のピーク)を成す細孔群(第二の細孔群)を形成するテンプレート(第二のテンプレート)として機能するものであればよい。
 ラテックス粒子を構成する樹脂は特に限定されず、樹脂成形体の焼成時に焼失するものであればよい。ラテックス粒子を構成する樹脂としては、例えば、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂等が挙げられる。
 準備工程において、第一のテンプレートの配合量は、樹脂材料100質量部に対して、例えば30質量部以上であってよく、好ましくは40質量部以上、より好ましくは50質量部以上である。また、準備工程において、第一のテンプレートの配合量は、樹脂材料100質量部に対して、例えば140質量部以下であってよく、好ましくは120質量部以下、より好ましくは100質量部以下である。すなわち、準備工程における第一のテンプレートの配合量は、樹脂材料100質量部に対して、例えば30~140質量部、30~120質量部、30~100質量部、40~140質量部、40~120質量部、40~100質量部、50~140質量部、50~120質量部又は50~100質量部であってよい。
 第一のテンプレートの配合量を調整することで、細孔径3nm以上10nm未満の細孔の細孔容積を調整することができる。すなわち、本実施形態では、多孔質炭素材料における細孔径3nm以上10nm未満の細孔の細孔容積が上述の好適な範囲内となるように、第一のテンプレートの配合量を適宜調整してよい。
 準備工程において、第二のテンプレートの配合量は、樹脂材料100質量部に対して、例えば50質量部以上であってよく、好ましくは100質量部以上である。また、準備工程において、第二のテンプレートの配合量は、樹脂材料100質量部に対して、例えば1500質量部以下であってよく、好ましくは1000質量部以下である。すなわち、準備工程における第二のテンプレートの配合量は、樹脂材料100質量部に対して、例えば50~1500質量部、50~1000質量部、100~1500質量部又は100~1000質量部であってよい。
 第二のテンプレートの配合量を調整することで、細孔径10nm以上1μm以下の細孔の細孔容積を調整することができる。すなわち、本実施形態では、多孔質炭素材料における細孔径10nm以上1μm以下の細孔の細孔容積が上述の好適な範囲内となるように、第二のテンプレートの配合量を適宜調整してよい。
 好適な一態様(以下、第一の態様)において、準備工程は、両親媒性分子により形成されたミセルとラテックス粒子と水系溶媒とを含有する分散液中で樹脂材料を形成して、ミセル、ラテックス粒子及び樹脂材料を含有する沈殿物を得る樹脂材料形成工程と、沈殿物を乾燥させて、樹脂材料と両親媒性分子とラテックス粒子とを含有する樹脂成形体を得る乾燥工程と、を含んでいてよい。
 樹脂材料形成工程では、例えば、分散液中で樹脂材料の前駆体から樹脂材料を形成してよい。ここで樹脂材料の前駆体とは、例えば、重合により樹脂材料を形成するモノマー、変性による樹脂材料を形成するポリマー等であってよい。
 水系溶媒は、水を含有する溶媒であり、水と相溶性を有する有機溶媒を更に含有していてもよい。有機溶媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール類等が挙げられる。
 樹脂材料形成工程は、例えば、分散液中で、フェノール類とホルムアルデヒドとを重合させて、フェノール類及びホルムアルデヒドの重合体とミセルとラテックス粒子とを含有する沈殿物を得る工程であってよい。
 フェノール類とホルムアルデヒドとの重合は、重合触媒の存在下で実施してよい。重合触媒は酸触媒又は塩基触媒であってよく、酸触媒が好ましい。すなわち、分散液は重合触媒(酸触媒又は塩基触媒)を含有していてよく、酸触媒を含有することが好ましい。
 酸触媒としては、例えば、塩酸、酢酸、シュウ酸、スルホン酸等が挙げられる。塩基触媒としては、例えば、水酸化ナトリウム、アンモニア、アミン等が挙げられる。
 分散液に供されるフェノール類の量C(mol)とホルムアルデヒドの量C(mol)との比C/Cは、例えば0.1以上であってよく、好ましくは0.3以上である。また、上記比C/Cは、例えば1.0以下であってよく、0.9以下である。すなわち、上記比C/Cは、例えば0.1~1.0、0.1~0.9、0.3~1.0又は0.3~0.9であってよい。
 フェノール類とホルムアルデヒドとの重合の反応条件は特に限定されず、例えば、反応温度は20~80℃であってよく、反応時間は10分~96時間であってよい。
 乾燥工程では、沈殿物を回収し、水系溶媒を除去することで樹脂成形体を得る。乾燥工程において、乾燥条件は特に限定されず、例えば、乾燥温度は20~80℃であってよい。
 好適な他の一態様(第二の態様)において、準備工程は、ラテックス粒子の塊状体に、両親媒性分子により形成されたミセルと樹脂材料(又はその前駆体)と水系溶媒とを含有する分散液を含浸させる含浸工程と、水系溶媒を除去する乾燥工程と、を含んでいてよい。
 ラテックス粒子の塊状体は、ラテックス粒子がランダムに凝集したものであってよく、ラテックス粒子が規則的に配置されたものであってもよい。ラテックス粒子の塊状体は、例えば、コロイド結晶であってよい。
 含浸工程は、例えば、ラテックス粒子の塊状体に、ミセルとフェノール類とホルムアルデヒドと水系溶媒とを含有する分散液を含浸させる工程であってよい。
 分散液は、重合触媒(酸触媒又は塩基触媒)を更に含有していてよく、酸触媒を更に含有することが好ましい。
 分散液に供されるフェノール類の量C(mol)とホルムアルデヒドの量C(mol)との比C/Cは、第一の態様と同様であってよい。
 第二の態様において、乾燥工程は、水系溶媒を除去する工程であってよく、樹脂材料の前駆体から樹脂材料を形成し、且つ、水系溶媒を除去する工程であってもよい。
 例えば、乾燥工程は、フェノール類及びホルムアルデヒドの重合と、水系溶媒の除去と、により、フェノール類及びホルムアルデヒドの重合体とラテックス粒子の塊状体と両親媒性分子のミセルとを含有する樹脂成形体を得る工程であってよい。
 焼成工程は、樹脂成形体を焼成し、多孔質炭素材料を得る工程である。
 焼成工程における焼成条件は特に限定されず、樹脂成形体中の樹脂材料が無定形炭素を形成可能な条件であればよい。例えば、焼成温度は400~2400℃であってよい。
 焼成工程における焼成は、不活性ガス雰囲気下(例えば、窒素雰囲気下、アルゴン雰囲気下)で行うことが好ましい。
 本実施形態の製造方法は、焼成工程後に、多孔質炭素材料を空気下で加熱する賦活工程を更に有していてもよい。賦活工程における加熱条件は特に限定されず、例えば、加熱温度は400~800℃であってよく、加熱時間は1分~1時間であってよい。賦活工程によれば、多孔質炭素材料の比表面積を増大させることができる。
 本実施形態の製造方法では、焼成工程により、ブロック状の多孔質炭素材料が得られる。本実施形態の製造方法は、焼成工程後に、多孔質炭素材料を粉砕して、粉末状の多孔質炭素材料を得る粉砕工程を更に有していてよい。多孔質炭素材料の形状は、多孔質炭素材料の用途に応じて適宜変更してよい。
 図1(a)は、樹脂成形体の一例を模式的に示す断面図であり、図1(b)は、多孔質炭素材料の一例を模式的に示す断面図である。
 図1(a)に示す樹脂成形体10は、樹脂材料11とラテックス粒子12とを含有している。また、樹脂材料11中には、両親媒性分子のミセル(図示せず)が包含されている。このような樹脂成形体10を焼成すると、樹脂材料11中のミセルの焼失により、第一の細孔群に相当する微小細孔が形成され、ラテックス粒子12の焼失により、空隙が生じて枝分かれ様の高次構造が形成される。
 図1(b)に示す多孔質炭素材料20は、ラテックス粒子12の焼失によって高次構造を形成しており、また、多孔質炭素材料20中にはミセルの焼失による微小細孔が形成されている。このような多孔質炭素材料20は、細孔径分布において、微小細孔に起因する第一のピークと、高次構造に起因する第二のピークとを有する。
 本実施形態の多孔質炭素材料の用途は特に限定されず、炭素材料の公知の用途に特に制限なく用いることができる。
 本実施形態の多孔質炭素材料は、被覆材で被覆しても反応点を有効に機能させることができることから、被覆材で被覆される用途に特に好適に用いることができる。
 例えば、本実施形態の多孔質炭素材料は、固体高分子形燃料電池のカソード触媒用担体として好適に用いることができる。カソード触媒は、多孔質炭素材料に活性金属(例えば白金)を担持し、アイオノマで被覆することで使用される。本実施形態の多孔質炭素材料によれば、第一の細孔群の内部に担持された活性金属が、アイオノマによる被毒を受けずに十分に触媒能を発揮することができる。
 また、本実施形態の多孔質炭素材料は、キャパシタの電極材料、二次電池の電極材料、ガス吸着材料等の用途にも好適に用いることができる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
 レゾルシノール5.9質量部、5mol/L塩酸0.8質量部、ポリエチレンオキシド-ポリプロピレンオキシド-ポリエチレンオキシドトリブロック共重合体(Sigma-Aldrich社製 Pluronic F127)9.3質量部、ポリスチレンラテックス粒子の水分散体(ポリスチレン粒子径107nm)44.1質量部、エタノール29.7質量部を混合した後、ホルムアルデヒド液(ホルムアルデヒド含量37質量部)10.1質量部を加え、分散液を調製した。
 得られた分散液を、25℃で72時間攪拌し、沈殿物を得た。この沈殿物を70℃で24時間乾燥し、樹脂成形体を得た。この樹脂成形体を窒素雰囲気下、1.5℃/分で800℃まで昇温した後、800℃で3時間保持し、ブロック状の多孔質炭素材料を得た。得られた多孔質炭素材料は、乳鉢で粉砕し、粉末状の多孔質炭素材料とした。水銀圧入法で測定される細孔分布における第一のピークは5nm、第二のピークは23nmであった。比表面積は612m/gであった。なお、図5は、実施例1で得られた多孔質炭素材料の細孔分布曲線を示す図である。
(実施例2)
 実施例1で得られた多孔質炭素材料を空気下520℃で10分加熱し、賦活を施した多孔質炭素材料を得た。水銀圧入法で測定される細孔分布における第一のピークは5nm、第二のピークは20nmであった。比表面積は1079m/gであった。
(実施例3)
 ポリスチレンラテックス粒子の水分散体(ポリスチレン粒子径463nm)を遠心分離し、ポリスチレンラテックス粒子の沈殿物を得た。この沈殿物を60℃で24時間乾燥し、ポリスチレンラテックス粒子の塊状体を得た。
 レゾルシノール7.5質量部、フロログルシノール2.9質量部、5mol/L塩酸0.5質量部、ポリエチレンオキシド-ポリプロピレンオキシド-ポリエチレンオキシドトリブロック共重合体(Sigma-Aldrich社製 Pluronic F127)14.4質量部、エタノール52.6質量部、超純水5.5質量部を混合した後、ホルムアルデヒド液(ホルムアルデヒド含量37質量部)16.7質量部を加え、分散液を調製した。この分散液を、ポリスチレンラテックス粒子の塊状体に含浸し、25℃で24時間乾燥し、樹脂成形体を得た。この樹脂成形体を窒素雰囲気下、1.5℃/分で800℃まで昇温した後、800℃で3時間保持し、ブロック状の多孔質炭素材料を得た。得られた多孔質炭素材料は、乳鉢で粉砕し、粉末状の多孔質炭素材料とした。水銀圧入法で測定される細孔分布における第一のピークは5nm、第二のピークは89nmであった。比表面積は512m/gであった。
(比較例1)
 ポリスチレンラテックス粒子の水分散体(ポリスチレン粒子径463nm)を遠心分離し、ポリスチレンラテックス粒子の沈殿物を得た。この沈殿物を60℃で24時間乾燥し、ポリスチレンラテックス粒子の塊状体を得た。
 レゾルシノール8.8質量部、フロログルシノール3.4質量部、5mol/L塩酸0.6質量部、エタノール61.4質量部、超純水6.4質量部を混合した後、ホルムアルデヒド液(ホルムアルデヒド含量37質量部)19.5質量部を加え、分散液を調製した。この分散液を、ポリスチレンラテックス粒子の塊状体に含浸し、25℃で24時間乾燥し、樹脂成形体を得た。この樹脂成形体を窒素雰囲気下、1.5℃/分で800℃まで昇温した後、800℃で3時間保持し、ブロック状の多孔質炭素材料を得た。得られた多孔質炭素材料は、乳鉢で粉砕し、粉末状の多孔質炭素材料とした。水銀圧入法で測定される細孔分布における第二のピークは92nmであった。比較例1では、細孔径分布において第一のピークは検出されず、TEM画像でも、微細構造の形成は確認できなかった。比表面積は494m/gであった。
(比較例2)
 レゾルシノール10.8質量部、5mol/L塩酸5.3質量部、ポリエチレンオキシド-ポリプロピレンオキシド-ポリエチレンオキシドトリブロック共重合体(Sigma-Aldrich社製 Pluronic F127)9.8質量部、エタノール34.2質量部、超純水30.3質量部を混合した後、ホルムアルデヒド液(ホルムアルデヒド含量37質量部)9.7質量部を加え、分散液を調製した。この分散液を、25℃で24時間乾燥した後、60℃で24時間乾燥し、樹脂成形体を得た。この樹脂成形体を窒素雰囲気下、1.5℃/分で800℃まで昇温し、800℃で3時間保持し、ブロック状の多孔質炭素材料を得た。得られた多孔質炭素材料は、乳鉢で粉砕し、粉末状の多孔質炭素材料とした。水銀圧入法で測定される細孔分布において、第一のピークは6nmであった。比較例2では、細孔径分布において第一のピークは検出されず、TEM画像でも、微細構造の形成は確認できなかった。比表面積は755m/gであった。
 実施例1~3で得られた多孔質炭素材料のSEM写真及びTEM写真により、多孔質炭素材料の構造を観測した。結果を図2~図4に示す。図2(a)は、実施例1で得られた多孔質炭素材料のSEM写真を示す図であり、図2(b)は、実施例1で得られた多孔質炭素材料のTEM写真を示す図である。図3(a)は、実施例2で得られた多孔質炭素材料のSEM写真を示す図であり、図3(b)は、実施例2で得られた多孔質炭素材料のTEM写真を示す図である。図4(a)は、実施例3で得られた多孔質炭素材料のSEM写真を示す図であり、図4(b)は、実施例3で得られた多孔質炭素材料のTEM写真を示す図である。SEM写真及びTEM写真の結果から、実施例1~3では、第一の細孔群により形成される微細構造と、第二の細孔群により形成される高次構造とが形成されていることが確認された。
 10…樹脂成形体、11…樹脂材料、12…ラテックス粒子、20…多孔質炭素材料。

Claims (10)

  1.  水銀圧入法で測定される細孔径分布において、細孔径3nm以上10nm未満の範囲に位置する第一のピークと、細孔径10nm以上1μm以下の範囲に位置する第二のピークと、を有する、多孔質炭素材料。
  2.  比表面積が、200m/g以上1800m/g以下である、請求項1に記載の多孔質炭素材料。
  3.  前記第一のピークが、細孔径4nm以上7nm以下の範囲に位置する、請求項1又は2に記載の多孔質炭素材料。
  4.  前記第二のピークが、細孔径20nm以上200nm以下の範囲に位置する、請求項1~3のいずれか一項に記載の多孔質炭素材料。
  5.  炭素源となる樹脂材料と、第一のテンプレートと、第二のテンプレートと、を含有する樹脂成形体を準備する準備工程と、
     前記樹脂成形体を焼成して、請求項1~3のいずれか一項に記載の多孔質炭素材料を得る焼成工程と、
    を含み、
     前記第一のテンプレートが、両親媒性分子を含み、
     前記第二のテンプレートが、ラテックス粒子を含む、多孔質炭素材料の製造方法。
  6.  前記樹脂材料がフェノール類とホルムアルデヒドとの重合体を含む、請求項5に記載の多孔質炭素材料の製造方法。
  7.  前記準備工程が、
      両親媒性分子により形成されたミセルとラテックス粒子と水系溶媒とを含有する分散液中で炭素源となる樹脂材料を形成して、前記ミセル、前記ラテックス粒子及び前記樹脂材料を含有する沈殿物を得る樹脂材料形成工程と、
      前記沈殿物を乾燥させて、前記樹脂材料と、前記両親媒性分子と、前記ラテックス粒子とを含有する樹脂成形体を得る乾燥工程と、
    を含む、請求項5又は6に記載の多孔質炭素材料の製造方法。
  8.  前記樹脂材料形成工程が、前記分散液中で、フェノール類とホルムアルデヒドとを重合させて、前記ミセルと前記ラテックス粒子と前記フェノール類及びホルムアルデヒドの重合体とを含有する沈殿物を得る工程である、請求項7に記載の多孔質炭素材料の製造方法。
  9.  前記準備工程が、
      ラテックス粒子の塊状体に、両親媒性分子により形成されたミセルと前記樹脂材料又はその前駆体と水系溶媒とを含有する分散液を含浸させる含浸工程と、
      前記水系溶媒を除去する乾燥工程と、
    を含む、請求項5又は6に記載の多孔質炭素材料の製造方法。
  10.  前記含浸工程が、前記塊状体に、前記ミセルとフェノール類とホルムアルデヒドと水系溶媒とを含有する分散液を含浸させる工程であり、
     前記乾燥工程が、前記フェノール類及び前記ホルムアルデヒドの重合と前記水系溶媒の除去とにより、前記塊状体と前記ミセルと前記フェノール類及びホルムアルデヒドの重合体とを含有する樹脂成形体を得る工程である、請求項9に記載の多孔質炭素材料の製造方法。
PCT/JP2021/033175 2020-09-17 2021-09-09 多孔質炭素材料及びその製造方法 WO2022059594A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21869281.2A EP4197968A4 (en) 2020-09-17 2021-09-09 POROUS CARBONOUS MATERIAL AND PRODUCTION METHOD THEREFOR
CN202180048287.3A CN115916693A (zh) 2020-09-17 2021-09-09 多孔质碳材料及其制造方法
US18/044,624 US20230335736A1 (en) 2020-09-17 2021-09-09 Porous carbon material and production method therefor
JP2022550511A JPWO2022059594A1 (ja) 2020-09-17 2021-09-09
KR1020237003350A KR20230067598A (ko) 2020-09-17 2021-09-09 다공질 탄소 재료 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-156580 2020-09-17
JP2020156580 2020-09-17

Publications (1)

Publication Number Publication Date
WO2022059594A1 true WO2022059594A1 (ja) 2022-03-24

Family

ID=80776992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033175 WO2022059594A1 (ja) 2020-09-17 2021-09-09 多孔質炭素材料及びその製造方法

Country Status (6)

Country Link
US (1) US20230335736A1 (ja)
EP (1) EP4197968A4 (ja)
JP (1) JPWO2022059594A1 (ja)
KR (1) KR20230067598A (ja)
CN (1) CN115916693A (ja)
WO (1) WO2022059594A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034475A (ja) 2012-08-07 2014-02-24 Osaka Univ 活性炭の製造方法
WO2016024525A1 (ja) * 2014-08-11 2016-02-18 電気化学工業株式会社 電極用導電性組成物、それを用いた電極及びリチウムイオン二次電池
JP2016032802A (ja) * 2014-07-31 2016-03-10 旭化成ケミカルズ株式会社 炭素触媒及びその製造方法
JP2016056053A (ja) * 2014-09-09 2016-04-21 東レ株式会社 多孔質炭素材料および多孔質炭素材料の製造方法
JP2017193474A (ja) * 2016-04-22 2017-10-26 国立大学法人大阪大学 多孔質炭素の製造方法
US20170365851A1 (en) * 2014-12-17 2017-12-21 Leibniz-Institut Für Polymerforschung Dresden E.V. Cathodes for li-s batteries
JP2019119632A (ja) * 2017-12-28 2019-07-22 国立研究開発法人産業技術総合研究所 多孔質炭素及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034475A (ja) 2012-08-07 2014-02-24 Osaka Univ 活性炭の製造方法
JP2016032802A (ja) * 2014-07-31 2016-03-10 旭化成ケミカルズ株式会社 炭素触媒及びその製造方法
WO2016024525A1 (ja) * 2014-08-11 2016-02-18 電気化学工業株式会社 電極用導電性組成物、それを用いた電極及びリチウムイオン二次電池
JP2016056053A (ja) * 2014-09-09 2016-04-21 東レ株式会社 多孔質炭素材料および多孔質炭素材料の製造方法
US20170365851A1 (en) * 2014-12-17 2017-12-21 Leibniz-Institut Für Polymerforschung Dresden E.V. Cathodes for li-s batteries
JP2017193474A (ja) * 2016-04-22 2017-10-26 国立大学法人大阪大学 多孔質炭素の製造方法
JP2019119632A (ja) * 2017-12-28 2019-07-22 国立研究開発法人産業技術総合研究所 多孔質炭素及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4197968A4

Also Published As

Publication number Publication date
CN115916693A (zh) 2023-04-04
US20230335736A1 (en) 2023-10-19
JPWO2022059594A1 (ja) 2022-03-24
EP4197968A1 (en) 2023-06-21
KR20230067598A (ko) 2023-05-16
EP4197968A4 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
Li et al. Hollow carbon spheres, synthesis and applications–a review
Inagaki et al. Templated mesoporous carbons: Synthesis and applications
KR100932979B1 (ko) 중공형 캡슐 구조체 및 이의 제조 방법
Mayes et al. Hierarchical ordered mesoporous carbon from phloroglucinol-glyoxal and its application in capacitive deionization of brackish water
Zhang et al. Recent advances in carbon nanospheres: synthetic routes and applications
Ma et al. Direct synthesis of ordered mesoporous carbons
Xin et al. Mesoporous carbons: recent advances in synthesis and typical applications
KR100544886B1 (ko) Hcms 탄소 캡슐 구조체에 의해 지지된 연료전지용 전극촉매 및 전극촉매의 제조 방법
US20110082024A1 (en) Controllable Synthesis of Porous Carbon Spheres, and Electrochemical Applications Thereof
Salinas-Torres et al. Effect of nitrogen doping on the pore texture of carbon xerogels based on resorcinol-melamine-formaldehyde precursors
EP2909137B1 (fr) Composition thermiquement isolante pour gel monolithique organique, son utilisation et son procede de preparation
JP2021084852A (ja) メソ多孔カーボン及びその製造方法、並びに、固体高分子形燃料電池
JP2017193474A (ja) 多孔質炭素の製造方法
US20220177309A1 (en) Process for the preparation of a porous carbonaceous material, porous carbonaceous material, and a catalyst made of the material
Tiwari et al. Polybenzoxazine-an enticing precursor for engineering heteroatom-doped porous carbon materials with applications beyond energy, environment and catalysis
KR101425374B1 (ko) 다공성 탄소 박막재료 및 이의 제조방법
WO2022059594A1 (ja) 多孔質炭素材料及びその製造方法
He et al. Three‐Arm Branched Microporous Organic Nanotube Networks
JP2007091567A (ja) 多孔質炭素材料およびその製造方法
KR101987366B1 (ko) 메조다공성 실리카 나노입자의 제조방법 및 그에 의해 제조되는 실리카 나노입자
KR20100128622A (ko) 탄질화물 메조세공체
KR100913998B1 (ko) 대기공 벌집형 탄소구조체 및 그 제조방법
KR101243161B1 (ko) 수열 처리에 의하여 설탕으로부터 탄소 기공체를 제조하는 방법
García‐Martínez et al. Synthesis and Catalytic Applications of Self‐Assembled Carbon Nanofoams
JP7284776B2 (ja) メソポーラスカーボン、並びに、燃料電池用電極触媒及び触媒層

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550511

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021869281

Country of ref document: EP

Effective date: 20230314

NENP Non-entry into the national phase

Ref country code: DE