WO2022057550A1 - 一种正流量上下车复合稳定控制系统及方法 - Google Patents

一种正流量上下车复合稳定控制系统及方法 Download PDF

Info

Publication number
WO2022057550A1
WO2022057550A1 PCT/CN2021/112976 CN2021112976W WO2022057550A1 WO 2022057550 A1 WO2022057550 A1 WO 2022057550A1 CN 2021112976 W CN2021112976 W CN 2021112976W WO 2022057550 A1 WO2022057550 A1 WO 2022057550A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
mechanism control
main
travel
oil inlet
Prior art date
Application number
PCT/CN2021/112976
Other languages
English (en)
French (fr)
Inventor
孙辉
李水聪
常义雄
Original Assignee
江苏徐工工程机械研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏徐工工程机械研究院有限公司 filed Critical 江苏徐工工程机械研究院有限公司
Publication of WO2022057550A1 publication Critical patent/WO2022057550A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit

Definitions

  • the present disclosure belongs to the technical field of networking, and in particular relates to a compound stability control system and system for getting on and off with positive flow.
  • the traditional negative flow control mainly feeds back the signal to the displacement control port of the pump through the negative feedback port of the main valve.
  • the negative feedback port reaches the set pressure of the relief valve, and the corresponding main pump is the minimum displacement; during the reversing process of the main valve, the area of the negative feedback port gradually decreases, and the pressure fed back to the pump also decreases.
  • the displacement of the main pump gradually increases; when the valve stem reaches the maximum position, the negative feedback channel is closed, and the corresponding main pump displacement is the largest at this time; because the feedback pressure is inversely proportional to the pump displacement, the system is called negative
  • the feedback control system maintains the coordination of actions through the priority valve or the back pressure of the main valve port area when multiple actuators are compounded.
  • the negative feedback signals of the left and right travel motors are fed back to the first main pump and the second main pump respectively.
  • the boarding actuator intervenes the corresponding boarding main valve cuts off the Px circuit, so that the signal activation end of the straight-line travel valve is pressed to start reversing.
  • the main valve corresponding to the left travel motor cuts off the neutral negative feedback signal, so that the first main pump always maintains the maximum displacement.
  • the main valve corresponding to the boarding actuator first completes the reversing, and the straight-line travel valve delays the reversal of the straight-line travel valve through damping, so as to slow down the deceleration and impact of travel. Although this can play a certain role, it still cannot completely solve the deceleration and impact problem.
  • the on-board actuator performs compound action, when the on-board actuator exits, the main valve corresponding to the on-board actuator starts to close.
  • the Px circuit is always in the switching position, and the linear travel valve is always in the switching position.
  • the main valve corresponding to the boarding actuator is close to the closed position, the Px circuit is connected to the fuel tank, and the linear travel valve starts to perform the reset action.
  • the main valve opening of the boarding actuator is gradually closed, the first main pump always maintains the maximum displacement, resulting in a large impact on the boarding actuator when it stops.
  • the linear travel valve is reset, the mechanism is greatly impacted.
  • Load sensitivity is divided into pre-valve compensation load sensitivity and post-valve compensation load sensitivity.
  • Pre-valve compensation load sensitivity When the flow reaches saturation, the main pump flow mostly flows to the low load end, causing the actuator compound action to be out of balance.
  • the post-valve compensation load sensitivity makes up for the problem that the pre-valve compensation load sensitivity cannot achieve proportional distribution when the flow is saturated. Therefore, the post-valve compensation load sensitivity system is mostly used in the selection of the excavator system.
  • the load is fed back to the pressure compensation valve and the pressure feedback port of the main pump through the load feedback channel on the main valve, and the displacement of the pump is changed through the pressure difference between the two ends of the main valve and the opening area of the valve core, so that the actuator can obtain the required flow.
  • the main pump and each compensation valve feed back the highest load pressure, so that the two ends of each main valve maintain a constant pressure difference.
  • the pressure difference between the two ends of the main valve drops to the same value, thereby ensuring that the flow of the actuator decreases uniformly in a certain proportion, thereby ensuring coordination.
  • the load feedback signals of the left and right walking motors are fed back to the first main pump and the second main pump respectively.
  • the linear travel valve is switched.
  • the load feedback signal fed back by the left travel motor to the first main pump is reduced or lost, thereby greatly reducing the displacement of the first main pump.
  • the vehicle load feedback signal is gradually fed back to the first main pump, and the displacement of the first main pump is gradually increased.
  • the displacement of the first main pump drops rapidly, which causes the action of the alighting actuator to slow down rapidly and generate corresponding inertial impact, which seriously affects the comfort of control.
  • the embodiments of the present disclosure provide a positive-flow loading and unloading composite stability control system, which can reduce the impact on the loading actuator when it stops, and reduce the impact on the loading actuator when the linear travel valve is reset.
  • a compound stability control system for loading and unloading with positive flow, comprising: a first main pump; a second main pump; The second, third, fourth and fifth connections, wherein the first main oil inlet circuit includes a linear travel valve and a bypass relief valve arranged on the first connection of the first valve body, The left travel valve of the second link of the first valve body, the first ride-on mechanism control valve arranged on the third link of the first valve body, and the third link of the fourth link of the first valve body.
  • the first main pump is connected to the first main oil inlet, and the first main oil inlet
  • the path is divided into three paths in the first valve body, the first path leads to the bypass relief valve, the second path leads to the oil inlet of the straight travel valve, and the third path leads to the left travel valve , the first loading mechanism control valve, the second loading mechanism control valve and the oil inlet of the neutral unloading valve;
  • the straight line travel valve is respectively connected with the third loading mechanism control valve, the fourth loading mechanism
  • the mechanism control valve, the fifth boarding mechanism control valve and the oil inlet of the second neutral unloading valve are connected;
  • the second main pump is connected with the second main oil inlet, the second
  • the main oil inlet channel is divided
  • both the left travel valve and the right travel valve include a three-position four-way reversing structure, and the median function of the three-position four-way reversing structure is a Y-shape.
  • the first ride-on mechanism control valve, the second ride-on mechanism control valve, the third ride-on mechanism control valve, the fourth ride-on mechanism control valve, and the fifth ride-on mechanism control valve All include a three-position four-way reversing structure, and the median function of the three-position four-way reversing structure is an O type.
  • both the left travel valve and the right travel valve include a three-position six-way reversing structure.
  • the linear travel valve is a two-position four-way electromagnetic reversing valve.
  • the first main oil inlet path supplies oil to the oil inlet of the left travel valve via the linear travel valve
  • the first main oil inlet A main oil inlet circuit also supplies oil to the oil inlets of the first loading mechanism control valve, the second loading mechanism control valve and the first neutral unloading valve
  • the second main oil inlet also supplies oil to the oil inlet of the right travel valve
  • the second main oil inlet also passes through the straight travel valve to the third loading mechanism control valve, the fourth loading mechanism control valve, the fifth loading mechanism control valve, and the fifth loading mechanism control valve. supply oil to the oil inlet of the vehicle mechanism control valve and the second neutral unloading valve;
  • the first main oil inlet passes through the straight-line travel valve to the third, fourth, and fifth
  • the loading mechanism control valve and the oil inlet of the second neutral position unloading valve supply oil
  • the first main oil inlet circuit also supplies oil to the first loading mechanism control valve, the second loading mechanism control valve and the second loading mechanism control valve.
  • the oil inlet of the first neutral unloading valve supplies oil
  • the second main oil inlet supplies oil to the oil inlet of the left travel valve through the linear travel valve
  • the second main oil inlet The road also supplies oil to the oil inlet of the right travel valve.
  • the straight-line travel valve is provided with a one-way conducting structure, which is configured to cause the first main inlet oil passage to the second main inlet port when the straight-line travel valve is in a reversing state.
  • the bypass oil circuit of the oil circuit is unidirectional.
  • the bypass relief valve, the straight travel valve, the left travel valve, the first ride-on mechanism control valve, the second ride-on mechanism control valve, and the first ride-on mechanism control valve The oil return ports of the neutral unloading valve are all connected with the first main oil return circuit of the first valve body, and the first main oil return circuit is communicated with the oil tank through the oil return port T;
  • the oil return ports of the third loading mechanism control valve, the fourth loading mechanism control valve, the fifth loading mechanism control valve and the second neutral unloading valve are all connected to the second valve body.
  • the second main oil return circuit is connected, and the second main oil return circuit is communicated with the first main oil return circuit.
  • a positive flow getting on and off compound stability control method based on the aforementioned positive flow getting on and off compound stability control system, including:
  • the exit pressure switch Ps_d When it is detected that the pilot pressure of the left travel valve and the right travel valve reaches the opening pressure of the main valve, the exit pressure switch Ps_d is activated, so that the pilot pressure of the left travel valve and the right travel valve is gradually increased to The maximum set pressure, so that the displacement of the first main pump and the second main pump is increased to the maximum displacement, and the first neutral unloading valve and the second neutral unloading valve gradually switch to the off position;
  • the boarding pressure switch Ps_u is activated to gradually increase the pilot pressure of the boarding mechanism control valve to the maximum set pressure
  • the straight-line travel valve is activated by sending an Xptr signal to the straight-line travel valve;
  • the first main pump and the second main pump are always kept at the maximum displacement, and the first main pump and the second main pump are communicated, so that all the The displacement of the first main pump is gradually diverted to the first ride-on mechanism control valve, the second ride-on mechanism control valve, the third ride-on mechanism control valve, and the fourth ride-on mechanism control valve and the control valve of the fifth boarding mechanism;
  • the displacement of the second main pump is supplied to the left travel valve and the right travel valve, and the first main pump provides flow to the upper carriage mechanism.
  • the method further includes:
  • the first main pump is supplied to the left travel valve with the maximum displacement
  • the second main pump is supplied to the right travel valve with the maximum displacement
  • the method further includes:
  • the method further includes: after the reversing of the straight-line travel valve is completed, the first main pump is sent to the first loading mechanism control valve, the second loading mechanism control valve, the The third driving mechanism control valve, the fourth driving mechanism control valve, and the fifth driving mechanism control valve provide flow while passing through the linear travel valve to the left travel valve and the right travel valve. Valve provides flow.
  • the first main pump after the alighting actuator is actuated, the first main pump always maintains the maximum displacement during the intervention process of the getting-on actuator, thereby effectively alleviating the problem of speed reduction and impact of alighting after the straight-line travel valve is switched;
  • the second main pump supplies displacement for the left and right traveling valves through the reversing linear travel valve, and the first main pump is controlled by each mechanism on the car. Valve supply displacement.
  • the displacement of the first main pump decreases according to the decrease of the pilot pressure signal of the get-on actuator, thereby reducing the up
  • the stop impact of the car actuator reduces the impact on the alighting actuator after the linear travel valve is reset.
  • FIG. 1 is a schematic diagram of the hydraulic principle of some embodiments of the disclosed positive flow loading and unloading composite stability control system
  • FIG. 2 is a schematic diagram of logic control signals for the execution of compound actions by the boarding actuator and the alighting actuator in some embodiments of the disclosed positive flow boarding and boarding composite stability control method;
  • FIG. 3 is a schematic diagram of the relationship between the signals when the boarding actuator and the getting off actuator perform compound actions in some embodiments of the positive flow boarding and boarding composite stability control method of the present disclosure.
  • the present disclosure provides a positive-flow getting on and off compound stability control system, including: a first main pump P1 , a second main pump P2 , a first valve body 1 , and a first main pump P2 .
  • Two valve body 2 The first valve body 1 has a first main oil inlet, and includes a first, second, third, fourth and fifth joints, wherein the first main oil inlet includes a A linear travel valve 1.2 and a bypass relief valve 1.1 in the first line of the valve body 1, a left travel valve 1.3 in the second line of the first valve body 1, and a left travel valve 1.3 in the second line of the first valve body 1.
  • the triple first boarding mechanism control valve 1.4, the second boarding mechanism control valve 1.5 arranged on the fourth side of the first valve body 1, and the second vehicle boarding mechanism control valve 1.5 arranged on the fifth side of the first valve body 1 A neutral relief valve 1.6.
  • the straight-line travel valve 1.2 keeps the straight-line walking function of the alighting car when the upper-carrying actuator and the alighting-carrying actuator perform compound actions.
  • the first neutral unloading valve 1.6 can unload the pressure of the first main oil inlet circuit in the idle working state.
  • the second valve body 2 has a second main oil inlet, and includes a first, second, third, fourth and fifth joints, wherein the second main oil inlet
  • Unloading valve 2.5 Unloading valve 2.5.
  • the second neutral position unloading valve 2.5 can unload the pressure of the second main oil inlet circuit in the idling working state.
  • the first main pump P1 is connected with the first main oil inlet circuit, which is divided into three channels in the first valve body 1, and the first channel leads to the bypass relief valve 1.1, which plays the role of system pressure control and control. Protection function, the second road leads to the oil inlet of the linear travel valve 1.2, the third road leads to the left travel valve 1.3, the first loading mechanism control valve 1.4, the second loading mechanism control valve 1.5 and the first neutral position unloading The oil inlet of the load valve 1.6.
  • the linear travel valve 1.2 is respectively connected with the oil inlets of the third boarding mechanism control valve 2.2, the fourth boarding mechanism control valve 2.3, the fifth boarding mechanism control valve 2.4 and the second neutral unloading valve 2.5.
  • the second main pump P2 is connected to the second main oil inlet circuit.
  • the second main oil inlet circuit is divided into three channels in the second valve body 2.
  • the first channel leads to the bypass relief valve 1.1, which plays the role of system pressure control and control. Protection function, the second channel leads to the oil inlet of the straight travel valve 1.2, and the third channel leads to the oil inlet of the right travel valve 2.1.
  • the first ride-on mechanism control valve 1.4, the second ride-on mechanism control valve 1.5, the third ride-on mechanism control valve 2.2, the fourth ride-on mechanism control valve 2.3, and the fifth ride-on mechanism control valve 2.4 It constitutes the on-board work system.
  • the straight travel valve 1.2, the left travel valve 1.3 and the right travel valve 2.1 constitute the alighting travel system.
  • the vehicle mechanism control valve 2.3 and the fifth vehicle loading mechanism control valve 2.4 may respectively correspond to multiple loading actuators of the construction machinery, such as buckets, booms, sticks, slewing mechanisms, etc. of an excavator.
  • the left travel valve 1.3 and the right travel valve 2.1 both include a three-position four-way reversing structure, and the median function of the three-position four-way reversing structure is a Y-shape.
  • the left travel valve 1.3 and the right travel valve 2.1 are in the neutral position, the two working oil ports of the left travel motor are connected to the oil return port, and the two working oil ports of the right travel motor are both connected to the oil return port.
  • the control valves 2.4 of the boarding mechanism all include a three-position four-way reversing structure, and the median function of the three-position four-way reversing structure is O type.
  • the left travel valve 1.3 and the right travel valve 2.1 both include a three-position six-way reversing structure.
  • the linear travel valve 1.2 is a two-position four-way electromagnetic reversing valve.
  • the first main oil inlet path supplies oil to the oil inlet of the left travel valve 1.3 through the linear travel valve 1.2, and the first main oil inlet
  • the oil circuit also supplies oil to the oil inlets of the first boarding mechanism control valve 1.4, the second boarding mechanism control valve 1.5 and the first neutral unloading valve 1.6, and the second main oil inlet
  • the road supplies oil to the oil inlet of the right travel valve 2.1, and the second main oil inlet also passes through the straight travel valve 1.2 to the third boarding mechanism control valve 2.2 and the fourth boarding mechanism control valve 2.3 ,
  • the oil inlet of the fifth boarding mechanism control valve 2.4 and the second neutral unloading valve 2.5 supplies oil.
  • the first main oil inlet passes through the linear travel valve 1.2 to the third loading mechanism control valve 2.2 and the fourth loading mechanism control valve. 2.3.
  • the fifth loading mechanism control valve 2.4 and the oil inlet of the second neutral unloading valve 2.5 supply oil, and the first main oil inlet also supplies oil to the first loading mechanism control valve 1.4, the first loading mechanism
  • the control valve 1.5 of the second boarding mechanism and the oil inlet of the first neutral unloading valve 1.6 supply oil
  • the second main oil inlet passes through the straight travel valve 1.2 to the left travel valve 1.3.
  • the second main oil inlet circuit also supplies oil to the oil inlet of the right travel valve 2.1.
  • the linear travel valve 1.2 is provided with a one-way conducting structure 1.21, which is configured to make the first main oil inlet flow to the The bypass oil passage of the second main oil inlet passage is unidirectionally connected. In this way, part of the flow of the first main oil inlet channel can also supply oil to the lower vehicle through the one-way guide structure.
  • the oil return ports of 1.6 are all connected with the first main oil return circuit, and the first main oil return circuit is communicated with the oil tank through the oil return port T.
  • the right travel valve 2.1, the third boarding mechanism control valve 2.2, the fourth boarding mechanism control valve 2.3, the fifth boarding mechanism control valve 2.4 and the oil return port of the second neutral unloading valve 2.5 are all connected to the second valve body 2
  • the second main oil return circuit is connected, and the second main oil return circuit is communicated with the first main oil return circuit.
  • the embodiments of the present disclosure also provide a positive flow getting on and off compound stability control method based on the foregoing positive flow getting on and off compound stability control system, including:
  • each on-board actuator is detected by the sensor, and the pilot pressure information is converted into the pilot pressure corresponding to the on-board mechanism control valve of each on-board actuator.
  • any boarding mechanism control valve is detected (the first boarding mechanism control valve 1.4, the second boarding mechanism control valve 1.5, the third boarding mechanism control valve 2.2, the fourth boarding mechanism control valve 2.3 .
  • the pilot pressure of the fifth boarding mechanism control valve 2.4 reaches the opening pressure of the main valve, activate the boarding pressure switch Ps_u, so that the pilot pressure of the boarding mechanism control valve is gradually increased to the maximum set pressure;
  • the straight-line travel valve 1.2 is activated by sending an Xptr signal to the straight-line travel valve 1.2;
  • the Xptr control pressure increases to be greater than the spring pressure in the valve, the linear travel valve 1.2 starts to change direction, and when the Xptr control pressure increases to the set pressure, the linear travel valve 1.2 completes the direction change;
  • the first main pump P1 and the second main pump P2 are always kept at the maximum displacement, and the first main pump P1 and the second main pump P2 so that the displacement of the first main pump P1 is gradually diverted to the first boarding mechanism control valve 1.4, the second boarding mechanism control valve 1.5, the third boarding mechanism control valve 2.2, the fourth boarding mechanism control valve 2.3 and the fifth boarding mechanism control valve 2.4;
  • the method for compound stability control of positive flow on and off vehicles further includes:
  • the method for compound stability control of positive flow on and off vehicles further includes:
  • the first main pump P1 is in the direction of the first boarding mechanism control valve 1.4, the second boarding mechanism control valve 1.5, and the third boarding mechanism control valve. 2.2. While the fourth boarding mechanism control valve 2.3 and the fifth boarding mechanism control valve 2.4 provide flow, they also provide flow to the left travel valve 1.3 and the right travel valve 2.1 through the linear travel valve 1.2.
  • FIG. 2 is a schematic diagram of logic control signals for the execution of compound actions by the boarding actuator and the getting off actuator in some embodiments of the positive flow boarding and boarding composite stability control method of the present disclosure.
  • the input is the detection signal of each sensor
  • the pressure switch Ps_d for getting off is the pressure monitoring control signal for getting off the vehicle
  • the pressure switch Ps_u for getting on is the pressure monitoring control signal for getting on the vehicle
  • Xptr is the control pressure signal for the straight-line travel valve
  • Q_p1 is the displacement control signal of the first main pump P1.
  • Xp_d is the pilot pressure signal of the get-off actuator
  • Xp_u is the pilot pressure signal of the get-on actuator.
  • the embodiment of the present disclosure keeps the first main pump always at the maximum displacement during the intervening process of getting on the vehicle, and prolongs the corresponding time of the getting-on actuator.
  • the reversing time of the main valve can effectively alleviate the problem of deceleration and shock when getting off the car after the straight-line travel valve is switched.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

一种正流量上下车复合稳定控制系统,包括:第一主泵(P1)、第二主泵(P2)、第一阀体(1)与第二阀体(2);第一阀体(1)具有第一主进油回路,且包括首联、第二到第五联,其中,第一主进油路包括设置在首联的直线行走阀(1.2)和旁通溢流阀(1.1)、设置在第二联的左行走阀(1.3)、设置在第三联的第一上车机构控制阀(1.4)、设置在第四联的第二上车机构控制阀(1.5)和设置在第五联的第一中位卸荷阀(1.6);第二阀体(2)具有第二主进油路,且包括首联、第二到第五联,其中,第二主进油路包括设置在首联的右行走阀(2.1)、设置在第二联的第三上车机构控制阀(2.2)、设置在第三联的第四上车机构控制阀(2.3)、设置在第四联的第五上车机构控制阀(2.4)和设置在第五联的第二中位卸荷阀(2.5)。还公开了一种正流量上下车复合稳定控制方法。该系统和方法能有效减缓直线行走阀切换后下车降速及冲击问题。

Description

一种正流量上下车复合稳定控制系统及方法
相关申请的交叉引用
本申请是以CN申请号为202010986416.0,申请日为2020年9月18日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开属于组网技术领域,尤其涉及一种正流量上下车复合稳定控制系统及系统。
背景技术
在工程、建筑、矿山、等行业的移动液压机械,在作业过程中往往需要多执行机构相互协调运动,为此形成了移动液压机械不同类型的控制系统。在发展过程中分别形成了以日系为代表的负流量控制系统和以欧美为代表的负载敏感系统。但随着电子技术的日益发展,电气控制元件已能满足移动液压的高速运算及控制,传统的负流量系统逐步切换成正流量系统,通过现代控制技术使正流量系统的操控性大幅度提升,油耗大大降低。
传统的负流量控制主要是通过主阀的负反馈口将信号反馈至泵的排量控制口。在主阀无动作时负反馈口达到溢流阀设定压力,此时对应的主泵为最小排量;在主阀换向过程中负反馈口面积逐步减小,反馈至泵的压力也减小,此时主泵排量逐渐增大;当阀杆达到最大位置,负反馈通道关闭,此时对应的主泵排量最大;因反馈压力与泵排量大小成反比,该系统称为负反馈控制系统,在多执行机构复合时,通过优先阀或主阀口面积背压来保持动作的协调性。
对于负流量系统来说,当下车执行机构动作且上车执行机构未介入(join in)时,左右行走马达的负反馈信号分别反馈到第一主泵及第二主泵。当上车执行机构介入时,对应的上车主阀切断Px回路,从而使直线行走阀的信号激活端憋压开始换向。在换向过程中左行走马达对应的主阀切断中位负反馈信号,从而使第一主泵始终保持最大排量。上车执行机构对应的主阀先完成换向,直线行走阀通过阻尼延缓直线行走阀的换向,以减缓行走的降速及冲击,这虽然能起一定作用,但仍无法完全解决降速及冲击的问题。在上下车的执行机构执行复合动作之后上车执行机构退出时,上车执 行机构对应的主阀开始关闭,此时Px回路始终在切换位,直线行走阀始终处于切换位。当上车执行机构对应的主阀接近关闭位置时Px回路才连通到油箱,直线行走阀开始执行复位动作。该过程由于上车执行机构的主阀开口逐渐关闭,第一主泵始终保持最大排量,造成上车执行机构在停止时受到的冲击大,而第一主泵压力急速上升则导致下车执行机构在直线行走阀复位时受到的冲击大。
负载敏感分为阀前补偿负载敏感和阀后补偿负载敏感。阀前补偿负载敏感在流量达到饱和时,主泵流量多流向低负载端,造成执行机构复合动作失调。而阀后补偿负载敏感弥补了阀前补偿负载敏感在流量饱和时无法实现比例分配的问题,因此在挖掘机系统选型上多为阀后补偿负载敏感系统。通过主阀上的负载反馈通道将负载反馈至压力补偿阀及主泵的压力反馈口,通过主阀的两端压差及阀芯开口面积改变泵的排量,进而使执行机构得到所需的流量。在多执行机构复合动作时,主泵及各补偿阀反馈最高负载压力,使各主阀的两端保持恒定压差。当主泵流量达到饱和时主阀的两端压差下降至同一数值,从而保证执行机构流量按某一比例统一下降,进而保证了协调性。
对于负载敏感系统来说,负载敏感系统在下车执行机构动作且上车执行机构未介入时,左右行走马达的负载反馈信号分别反馈到第一主泵和第二主泵,当上车执行机构介入时,直线行走阀进行切换。此时左行走马达反馈到第一主泵的负载反馈信号减小或丢失,进而使第一主泵排量大幅度降低,随着上车执行机构对应的主阀开口量的逐渐增大,上车负载反馈信号才逐步反馈至第一主泵,第一主泵排量才逐渐增大。由于直线行走阀在切换过程中第一主泵的排量快速下降引起下车执行机构的动作降速快以及产生相应的惯性冲击,严重影响了操控舒适度。
发明内容
有鉴于此,本公开实施例提供一种正流量上下车复合稳定控制系统,能够减小上车执行机构在停止时受到的冲击,减缓下车执行机构在直线行走阀复位时受到的冲击。
在本公开的一个方面提供了一种正流量上下车复合稳定控制系统,包括:第一主泵;第二主泵;第一阀体,具有第一主进油路,且包括首联、第二联、第三联、第四联和第五联,其中,所述第一主进油路包括设置在所述第一阀体的首联的直线行走阀和旁通溢流阀、设置在所述第一阀体的第二联的左行走阀、设置在所述第一阀体的第 三联的第一上车机构控制阀、设置在所述第一阀体的第四联的第二上车机构控制阀和设置在所述第一阀体的第五联的第一中位卸荷阀;和第二阀体,具有第二主进油路,且包括首联、第二联、第三联、第四联和第五联,其中,所述第二主进油路包括设置在所述第二阀体的首联的右行走阀、设置在所述第二阀体的第二联的第三上车机构控制阀、设置在所述第二阀体的第三联的第四上车机构控制阀、设置在所述第二阀体的第四联的第五上车机构控制阀和设置在所述第二阀体的第五联的第二中位卸荷阀;其中,所述第一主泵与所述第一主进油路相连,所述第一主进油路在所述第一阀体内分成三路,第一路通向所述旁通溢流阀,第二路通向所述直线行走阀的进油口,第三路通向所述左行走阀、第一上车机构控制阀、第二上车机构控制阀以及中位卸荷阀的进油口;所述直线行走阀分别和所述第三上车机构控制阀、所述第四上车机构控制阀、所述第五上车机构控制阀以及所述第二中位卸荷阀的进油口连接;所述第二主泵与所述第二主进油路相连,所述第二主进油路在所述第二阀体内分成三路,第一路通向所述旁通溢流阀,第二路通向所述直线行走阀的进油口,第三路通向所述右行走阀的进油口。
在一些实施例中,所述左行走阀和所述右行走阀均包括三位四通换向结构,所述三位四通换向结构的中位机能为Y型。
在一些实施例中,所述第一上车机构控制阀、所述第二上车机构控制阀、所述第三上车机构控制阀、所述第四上车机构控制阀以及所述第五上车机构控制阀均包括三位四通换向结构,所述三位四通换向结构的中位机能为O型。
在一些实施例中,所述左行走阀和所述右行走阀均包括三位六通换向结构。
在一些实施例中,所述直线行走阀为两位四通电磁换向阀。
在一些实施例中,所述直线行走阀处于未得电的初始状态下,所述第一主进油路经过所述直线行走阀向所述左行走阀的进油口供油,所述第一主进油路还向所述第一上车机构控制阀、所述第二上车机构控制阀和所述第一中位卸荷阀的进油口供油,所述第二主进油路向所述右行走阀的进油口供油,所述第二主进油路还经过所述直线行走阀向所述第三上车机构控制阀、第四上车机构控制阀、第五上车机构控制阀以及第二中位卸荷阀的进油口供油;和
所述直线行走阀处于得电后的换向状态下,所述第一主进油路经过所述直线行走阀向所述第三上车机构控制阀、第四上车机构控制阀、第五上车机构控制阀以及第二中位卸荷阀的进油口供油,所述第一主进油路还向所述第一上车机构控制阀、所述第 二上车机构控制阀和所述第一中位卸荷阀的进油口供油,所述第二主进油路经过所述直线行走阀向所述左行走阀的进油口供油,所述第二主进油路还向所述右行走阀的进油口供油。
在一些实施例中,所述直线行走阀内设有单向导通结构,被配置为在所述直线行走阀处于换向状态下,使所述第一主进油路到所述第二主进油路的旁通油路单向导通。
在一些实施例中,所述旁通溢流阀、所述直线行走阀、所述左行走阀、所述第一上车机构控制阀、所述第二上车机构控制阀以及所述第一中位卸荷阀的回油口均和所述第一阀体的第一主回油路连接,所述第一主回油路通过回油口T与油箱连通;所述右行走阀、所述第三上车机构控制阀、所述第四上车机构控制阀、所述第五上车机构控制阀以及所述第二中位卸荷阀的回油口均和所述第二阀体的第二主回油路连接,所述第二主回油路和所述第一主回油路连通。
在本公开的一个方面,提供了一种基于前述的正流量上下车复合稳定控制系统的正流量上下车复合稳定控制方法,包括:
当检测到所述左行走阀和所述右行走阀的先导压力达到主阀开启压力时,激活下车压力开关Ps_d,使所述左行走阀和所述右行走阀的先导压力逐渐增大到最大设定压力,使所述第一主泵和所述第二主泵的排量增大到最大排量,以及使所述第一中位卸荷阀及所述第二中位卸荷阀逐步切换至关闭位置;
当检测到任一上车机构控制阀的先导压力达到主阀开启压力时,激活上车压力开关Ps_u,使该上车机构控制阀的先导压力逐渐增大到最大设定压力;
当检测到所述下车压力开关Ps_d及所述上车压力开关Ps_u均已被激活时,通过向所述直线行走阀发出Xptr信号,以激活所述直线行走阀;
当所述直线行走阀的Xptr控制压力增大至大于阀内弹簧压力时,所述直线行走阀开始换向,在Xptr控制压力增大到设定压力时,所述直线行走阀完成换向;
在所述直线行走阀切换过程中,使所述第一主泵与所述第二主泵始终保持最大排量,并使所述第一主泵与所述第二主泵相通,以使所述第一主泵的排量逐步分流至所述第一上车机构控制阀、所述第二上车机构控制阀、所述第三上车机构控制阀、所述第四上车机构控制阀以及所述第五上车机构控制阀;
在所述直线行走阀完成换向后,所述第二主泵的排量供至所述左行走阀和所述右行走阀,所述第一主泵向上车机构提供流量。
在一些实施例中,方法还包括:
当上车机构控制阀的先导压力逐渐减小时,使所述第一主泵的输出排量相应减小;
当先导压力降至到主阀开启压力时,使所述第一主泵的排量降至最大排量的1/2并且关闭上车压力开关Ps_u;
当上车压力开关Ps_u关闭时,使所述直线行走阀的Xptr控制压力逐渐减小至0,以使所述直线行走阀复位,并使所述第一主泵的排量从最大排量的1/2开始逐渐增大至最大排量;
当所述直线行走阀完成复位时,使所述第一主泵以最大排量供向所述左行走阀,使所述第二主泵以最大排量供向所述右行走阀。
在一些实施例中,方法还包括:
当检测到所述左行走阀和所述右行走阀的先导压力渐渐降低时,使所述第一主泵及所述第二主泵的排量逐渐减小;
当所述左行走阀和所述右行走阀的先导压力降低至主阀开启压力时,关闭下车压力开关Ps_d,使所述第一主泵及所述第二主泵均降至最小排量,并使所述第一中位卸荷阀及所述第二中位卸荷阀均复位,以实现所述第一主泵和所述第二主泵的卸荷。
在一些实施例中,方法还包括:在所述直线行走阀完成换向后,所述第一主泵在向所述第一上车机构控制阀、所述第二上车机构控制阀、所述第三上车机构控制阀、所述第四上车机构控制阀以及所述第五上车机构控制阀提供流量的同时还经过所述直线行走阀向所述左行走阀以及所述右行走阀提供流量。
基于本公开实施例,在下车执行机构动作后,第一主泵在上车执行机构的介入过程中,始终保持最大排量,从而有效地减缓直线行走阀切换后下车降速及冲击问题;在上车执行机构从其与下车执行机构进行复合动作时,通过换向后的直线行走阀使得第二主泵为左右行走阀供应排量,使第一主泵为上车的各机构控制阀供应排量。在一些实施例中,当上车执行机构从其与下车执行机构进行复合动作的状态退出时,第一主泵的排量根据上车执行机构先导压力信号下降而减小,从而减小上车执行机构的停止冲击,减缓直线行走阀复位后的下车执行机构受到的冲击。
附图说明
图1为本公开正流量上下车复合稳定控制系统的一些实施例的液压原理示意图;
图2为本公开正流量上下车复合稳定控制方法的一些实施例中上车执行机构和下车执行机构执行复合动作的逻辑控制信号示意图;
图3为本公开正流量上下车复合稳定控制方法的一些实施例中上车执行机构和下车执行机构执行复合动作时的各信号之间的关系示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参考图1-3所示,在一些实施例中,本公开提供了一种正流量上下车复合稳定控制系统,包括:第一主泵P1、第二主泵P2、第一阀体1和第二阀体2。第一阀体1具有第一主进油路,且包括首联、第二联、第三联、第四联和第五联,其中,所述第一主进油路包括设置在所述第一阀体1的首联的直线行走阀1.2和旁通溢流阀1.1、设置在所述第一阀体1的第二联的左行走阀1.3、设置在所述第一阀体1的第三联的第一上车机构控制阀1.4、设置在所述第一阀体1的第四联的第二上车机构控制阀1.5和设置在所述第一阀体1的第五联的第一中位卸荷阀1.6。直线行走阀1.2在上车执行机构和下车执行机构进行复合动作时使下车保持直线行走功能。第一中位卸荷阀1.6能够在怠速工作状态下对第一主进油路的压力进行卸荷。
第二阀体2具有第二主进油路,且包括首联、第二联、第三联、第四联和第五联,其中,所述第二主进油路包括设置在所述第二阀体2的首联的右行走阀2.1、设置在所述第二阀体2的第二联的第三上车机构控制阀2.2、设置在所述第二阀体2的第三联的第四上车机构控制阀2.3、设置在所述第二阀体2的第四联的第五上车机构控制阀2.4和设置在所述第二阀体2的第五联的第二中位卸荷阀2.5。第二中位卸荷阀2.5能够在怠速工作状态下对第二主进油路的压力进行卸荷。
第一主泵P1与第一主进油路相连,该第一主进油路在第一阀体1内分成三路,第一路通向旁通溢流阀1.1,起着系统压力控制及保护功能,第二路通向直线行走阀1.2的进油口,第三路通向左行走阀1.3、第一上车机构控制阀1.4、第二上车机构控制阀1.5以及第一中位卸荷阀1.6的进油口。直线行走阀1.2分别和第三上车机构控制阀2.2、第四上车机构控制阀2.3、第五上车机构控制阀2.4以及第二中位卸荷阀2.5 的进油口连接。
第二主泵P2与第二主进油路相连,该第二主进油路在第二阀体2内分成三路,第一路通向旁通溢流阀1.1,起着系统压力控制及保护功能,第二路通向直线行走阀1.2的进油口,第三路通向右行走阀2.1的进油口。
在本实施例中,第一上车机构控制阀1.4、第二上车机构控制阀1.5、第三上车机构控制阀2.2、第四上车机构控制阀2.3、第五上车机构控制阀2.4构成了上车工作系统。直线行走阀1.2、左行走阀1.3以及右行走阀2.1构成了下车行走系统。当正流量上下车复合稳定控制系统应用于工程机械(例如挖掘机)时,第一上车机构控制阀1.4、第二上车机构控制阀1.5、第三上车机构控制阀2.2、第四上车机构控制阀2.3、第五上车机构控制阀2.4可分别对应于工程机械的多个上车执行机构,例如挖掘机的铲斗、动臂、斗杆、回转机构等。
参考图1,在一些实施例中,左行走阀1.3和右行走阀2.1均包括三位四通换向结构,三位四通换向结构的中位机能为Y型。换句话说,当左行走阀1.3和右行走阀2.1处于中位时,使左行走马达的两个工作油口均连通回油口,右行走马达的两个工作油口均连通回油口。
参考图1,在一些实施例中,所述第一上车机构控制阀1.4、第二上车机构控制阀1.5、第三上车机构控制阀2.2、第四上车机构控制阀2.3以及第五上车机构控制阀2.4均包括三位四通换向结构,三位四通换向结构的中位机能为O型。
参考图1,在一些实施例中,所述左行走阀1.3和右行走阀2.1均包括三位六通换向结构。
参考图1,在一些实施例中,直线行走阀1.2为两位四通电磁换向阀。
所述直线行走阀1.2处于未得电的初始状态下,所述第一主进油路经过所述直线行走阀1.2向所述左行走阀1.3的进油口供油,所述第一主进油路还向所述第一上车机构控制阀1.4、所述第二上车机构控制阀1.5和所述第一中位卸荷阀1.6的进油口供油,所述第二主进油路向所述右行走阀2.1的进油口供油,所述第二主进油路还经过所述直线行走阀1.2向所述第三上车机构控制阀2.2、第四上车机构控制阀2.3、第五上车机构控制阀2.4以及第二中位卸荷阀2.5的进油口供油。
所述直线行走阀1.2处于得电后的换向状态下,所述第一主进油路经过所述直线行走阀1.2向所述第三上车机构控制阀2.2、第四上车机构控制阀2.3、第五上车机构控制阀2.4以及第二中位卸荷阀2.5的进油口供油,所述第一主进油路还向所述第一 上车机构控制阀1.4、所述第二上车机构控制阀1.5和所述第一中位卸荷阀1.6的进油口供油,所述第二主进油路经过所述直线行走阀1.2向所述左行走阀1.3的进油口供油,所述第二主进油路还向所述右行走阀2.1的进油口供油。
参考图1,在一些实施例中,直线行走阀1.2内设有单向导通结构1.21,被配置为在所述直线行走阀1.2处于换向状态下,使所述第一主进油路到所述第二主进油路的旁通油路单向导通。这样第一主进油路的部分流量还能通过单向导通结构向下车供油。
参考图1,在一些实施例中,旁通溢流阀1.1、直线行走阀1.2、左行走阀1.3、第一上车机构控制阀1.4、第二上车机构控制阀1.5以及中位卸荷阀1.6的回油口均和第一主回油路连接,第一主回油路通过回油口T与油箱连通。右行走阀2.1第三上车机构控制阀2.2、第四上车机构控制阀2.3、第五上车机构控制阀2.4以及第二中位卸荷阀2.5的回油口均和第二阀体2的第二主回油路连接,第二主回油路和第一主回油路连通。
参考图1及前述各个正流量上下车复合稳定控制系统的实施例,本公开实施例还提供了基于前述正流量上下车复合稳定控制系统的正流量上下车复合稳定控制方法,包括:
1)通过传感器采集对应于左行走马达和右行走马达的先导压力信息,将先导压力信息转换成左行走阀1.3和右行走阀2.1对应的先导压力。当检测到左行走阀1.3和右行走阀2.1的先导压力达到主阀开启压力时,激活下车压力开关Ps_d,使所述左行走阀1.3和所述右行走阀2.1的先导压力逐渐增大到最大设定压力,使所述第一主泵P1和所述第二主泵P2的排量增大到最大排量,以及使所述第一中位卸荷阀1.6及所述第二中位卸荷阀2.5逐步切换至关闭位置;
2)通过传感器检测各个上车执行机构的先导压力信息,将先导压力信息转换成各个上车执行机构的上车机构控制阀对应的先导压力。当检测到任一上车机构控制阀(第一上车机构控制阀1.4、所述第二上车机构控制阀1.5、第三上车机构控制阀2.2、所述第四上车机构控制阀2.3、所述第五上车机构控制阀2.4)的先导压力达到主阀开启压力时,激活上车压力开关Ps_u,使该上车机构控制阀的先导压力逐渐增大到最大设定压力;
3)当检测到下车压力开关Ps_d及上车压力开关Ps_u均已激活时,通过向所述直线行走阀1.2发出Xptr信号,以激活所述直线行走阀1.2;当所述直线行走阀1.2 的Xptr控制压力增大至大于阀内弹簧压力时,所述直线行走阀1.2开始换向,在Xptr控制压力增大到设定压力时,所述直线行走阀1.2完成换向;
4)在直线行走阀1.2切换过程中,使所述第一主泵P1与所述第二主泵P2始终保持最大排量,并使所述第一主泵P1与所述第二主泵P2相通,以使所述第一主泵P1的排量逐步分流至所述第一上车机构控制阀1.4、所述第二上车机构控制阀1.5、所述第三上车机构控制阀2.2、所述第四上车机构控制阀2.3以及所述第五上车机构控制阀2.4;
5)直线行走阀1.2完成换向后,第二主泵P2的排量供至左行走阀1.3和右行走阀2.1,第一主泵P1向上车机构提供流量。
在一些实施例中,正流量上下车复合稳定控制方法还包括:
6)当上车机构控制阀的先导压力逐渐减小时,使第一主泵P1的排量相应减小;当先导压力降至到主阀开启压力时,使第一主泵P1的排量降至最大排量的1/2并且关闭上车压力开关Ps_u;
7)当上车压力开关Ps_u关闭时,使直线行走阀1.2的Xptr控制压力逐渐减小至0,以使直线行走阀1.2复位,并使第一主泵P1的排量从最大排量的1/2开始逐渐增大至最大排量;
8)当直线行走阀1.2完成复位时,使第一主泵P1以最大排量供向左行走阀1.3,使第二主泵P2也以最大排量供向右行走阀2.1。
在一些实施例中,正流量上下车复合稳定控制方法还包括:
9)当检测到左行走阀1.3和右行走阀2.1的先导压力渐渐降低时,使第一主泵P1及第二主泵P2的排量逐渐减小;当左行走阀1.3和右行走阀2.1的先导压力降低至主阀开启压力时,关闭下车压力开关Ps_d,使第一主泵P1及第二主泵P2均降至最小排量,并使第一中位卸荷阀1.6及第二中位卸荷阀2.5均复位,以实现第一主泵P1和第二主泵P2的卸荷。
在一些实施例中,在所述直线行走阀1.2完成换向后,第一主泵P1在向第一上车机构控制阀1.4、第二上车机构控制阀1.5、第三上车机构控制阀2.2、第四上车机构控制阀2.3以及第五上车机构控制阀2.4提供流量的同时还经过直线行走阀1.2向左行走阀1.3以及右行走阀2.1提供流量。
图2为本公开正流量上下车复合稳定控制方法的一些实施例中上车执行机构和下车执行机构执行复合动作的逻辑控制信号示意图。在图2中,输入为各传感器检测信 号,下车压力开关Ps_d为下车的压力监测控制信号,上车压力开关Ps_u为上车的压力监测控制信号,Xptr为直线行走阀的控制压力信号,Q_p1为第一主泵P1的排量控制信号。
图3为本公开正流量上下车复合稳定控制方法的一些实施例中上车执行机构和下车执行机构执行复合动作时的各信号之间的关系示意图。Xp_d为下车执行机构的先导压力信号,Xp_u为上车执行机构的先导压力信号。
为了解决上车执行机构介入过程中下车降速过快且伴随一定的冲击,本公开实施例在上车介入过程中使第一主泵始终保持最大排量,延长了上车执行机构对应的主阀换向时间,有效地减缓直线行走阀切换后下车降速及冲击问题。
以上所述仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本公开的保护范围。

Claims (12)

  1. 一种正流量上下车复合稳定控制系统,包括:
    第一主泵(P1);
    第二主泵(P2);
    第一阀体(1),具有第一主进油路,且包括首联、第二联、第三联、第四联和第五联,其中,所述第一主进油路包括设置在所述第一阀体(1)的首联的直线行走阀(1.2)和旁通溢流阀(1.1)、设置在所述第一阀体(1)的第二联的左行走阀(1.3)、设置在所述第一阀体(1)的第三联的第一上车机构控制阀(1.4)、设置在所述第一阀体(1)的第四联的第二上车机构控制阀(1.5)和设置在所述第一阀体(1)的第五联的第一中位卸荷阀(1.6);和
    第二阀体(2),具有第二主进油路,且包括首联、第二联、第三联、第四联和第五联,其中,所述第二主进油路包括设置在所述第二阀体(2)的首联的右行走阀(2.1)、设置在所述第二阀体(2)的第二联的第三上车机构控制阀(2.2)、设置在所述第二阀体(2)的第三联的第四上车机构控制阀(2.3)、设置在所述第二阀体(2)的第四联的第五上车机构控制阀(2.4)和设置在所述第二阀体(2)的第五联的第二中位卸荷阀(2.5);
    其中,所述第一主泵(P1)与所述第一主进油路相连,所述第一主进油路在所述第一阀体(1)内分成三路,第一路通向所述旁通溢流阀(1.1),第二路通向所述直线行走阀(1.2)的进油口,第三路通向所述左行走阀(1.3)、第一上车机构控制阀(1.4)、第二上车机构控制阀(1.5)以及中位卸荷阀(1.6)的进油口;所述直线行走阀(1.2)分别和所述第三上车机构控制阀(2.2)、所述第四上车机构控制阀(2.3)、所述第五上车机构控制阀(2.4)以及所述第二中位卸荷阀(2.5)的进油口连接;
    所述第二主泵(P2)与所述第二主进油路相连,所述第二主进油路在所述第二阀体(2)内分成三路,第一路通向所述旁通溢流阀(1.1),第二路通向所述直线行走阀(1.2)的进油口,第三路通向所述右行走阀(2.1)的进油口。
  2. 根据权利要求1所述的正流量上下车复合稳定控制系统,其中,所述左行走阀(1.3)和所述右行走阀(2.1)均包括三位四通换向结构,所述三位四通换向结构的中位机能为Y型。
  3. 根据权利要求1所述的正流量上下车复合稳定控制系统,其中,所述第一上 车机构控制阀(1.4)、所述第二上车机构控制阀(1.5)、所述第三上车机构控制阀(2.2)、所述第四上车机构控制阀(2.3)以及所述第五上车机构控制阀(2.4)均包括三位四通换向结构,所述三位四通换向结构的中位机能为O型。
  4. 根据权利要求1所述的正流量上下车复合稳定控制系统,其中,所述左行走阀(1.3)和所述右行走阀(2.1)均包括三位六通换向结构。
  5. 根据权利要求1所述的正流量上下车复合稳定控制系统,其中,所述直线行走阀(1.2)为两位四通电磁换向阀。
  6. 根据权利要求5所述的正流量上下车复合稳定控制系统,其中,所述直线行走阀(1.2)处于未得电的初始状态下,所述第一主进油路经过所述直线行走阀(1.2)向所述左行走阀(1.3)的进油口供油,所述第一主进油路还向所述第一上车机构控制阀(1.4)、所述第二上车机构控制阀(1.5)和所述第一中位卸荷阀(1.6)的进油口供油,所述第二主进油路向所述右行走阀(2.1)的进油口供油,所述第二主进油路还经过所述直线行走阀(1.2)向所述第三上车机构控制阀(2.2)、第四上车机构控制阀(2.3)、第五上车机构控制阀(2.4)以及第二中位卸荷阀(2.5)的进油口供油;和
    所述直线行走阀(1.2)处于得电后的换向状态下,所述第一主进油路经过所述直线行走阀(1.2)向所述第三上车机构控制阀(2.2)、第四上车机构控制阀(2.3)、第五上车机构控制阀(2.4)以及第二中位卸荷阀(2.5)的进油口供油,所述第一主进油路还向所述第一上车机构控制阀(1.4)、所述第二上车机构控制阀(1.5)和所述第一中位卸荷阀(1.6)的进油口供油,所述第二主进油路经过所述直线行走阀(1.2)向所述左行走阀(1.3)的进油口供油,所述第二主进油路还向所述右行走阀(2.1)的进油口供油。
  7. 根据权利要求6所述的正流量上下车复合稳定控制系统,其中,所述直线行走阀(1.2)内设有单向导通结构(1.21),被配置为在所述直线行走阀(1.2)处于换向状态下,使所述第一主进油路到所述第二主进油路的旁通油路单向导通。
  8. 根据权利要求1所述的正流量上下车复合稳定控制系统,其中,所述旁通溢流阀(1.1)、所述直线行走阀(1.2)、所述左行走阀(1.3)、所述第一上车机构控制阀(1.4)、所述第二上车机构控制阀(1.5)以及所述第一中位卸荷阀(1.6)的回油口均和所述第一阀体(1)的第一主回油路连接,所述第一主回油路通过回油口T与油箱连通;
    所述右行走阀(2.1)、所述第三上车机构控制阀(2.2)、所述第四上车机构控制阀(2.3)、所述第五上车机构控制阀(2.4)以及所述第二中位卸荷阀(2.5)的回油口均和所述第二阀体(2)的第二主回油路连接,所述第二主回油路和所述第一主回油路连通。
  9. 一种基于权利要求1~8任一所述的正流量上下车复合稳定控制系统的正流量上下车复合稳定控制方法,包括:
    当检测到所述左行走阀(1.3)和所述右行走阀(2.1)的先导压力达到主阀开启压力时,激活下车压力开关Ps_d,使所述左行走阀(1.3)和所述右行走阀(2.1)的先导压力逐渐增大到最大设定压力,使所述第一主泵(P1)和所述第二主泵(P2)的排量增大到最大排量,以及使所述第一中位卸荷阀(1.6)及所述第二中位卸荷阀(2.5)逐步切换至关闭位置;
    当检测到任一上车机构控制阀的先导压力达到主阀开启压力时,激活上车压力开关Ps_u,使该上车机构控制阀的先导压力逐渐增大到最大设定压力;
    当检测到所述下车压力开关Ps_d及所述上车压力开关Ps_u均已被激活时,通过向所述直线行走阀(1.2)发出Xptr信号,以激活所述直线行走阀(1.2);
    当所述直线行走阀(1.2)的Xptr控制压力增大至大于阀内弹簧压力时,所述直线行走阀(1.2)开始换向,在Xptr控制压力增大到设定压力时,所述直线行走阀(1.2)完成换向;
    在所述直线行走阀(1.2)切换过程中,使所述第一主泵(P1)与所述第二主泵(P2)始终保持最大排量,并使所述第一主泵(P1)与所述第二主泵(P2)相通,以使所述第一主泵(P1)的排量逐步分流至所述第一上车机构控制阀(1.4)、所述第二上车机构控制阀(1.5)、所述第三上车机构控制阀(2.2)、所述第四上车机构控制阀(2.3)以及所述第五上车机构控制阀(2.4);
    在所述直线行走阀(1.2)完成换向后,所述第二主泵(P2)的排量供至所述左行走阀(1.3)和所述右行走阀(2.1),所述第一主泵(P1)向上车机构提供流量。
  10. 根据权利要求9所述的方法,还包括:
    当上车机构控制阀的先导压力逐渐减小时,使所述第一主泵(P1)的排量相应减小;
    当先导压力降至到主阀开启压力时,使所述第一主泵(P1)的排量降至最大排量的1/2并且关闭上车压力开关Ps_u;
    当上车压力开关Ps_u关闭时,使所述直线行走阀(1.2)的Xptr控制压力逐渐减小至0,以使所述直线行走阀(1.2)复位,并使所述第一主泵(P1)的排量从最大排量的1/2开始逐渐增大至最大排量;
    当所述直线行走阀(1.2)完成复位时,使所述第一主泵(P1)以最大排量供向所述左行走阀(1.3),使所述第二主泵(P2)以最大排量供向所述右行走阀(2.1)。
  11. 根据权利要求10所述的方法,还包括:
    当检测到所述左行走阀(1.3)和所述右行走阀(2.1)的先导压力渐渐降低时,使所述第一主泵(P1)及所述第二主泵(P2)的排量逐渐减小;
    当所述左行走阀(1.3)和所述右行走阀(2.1)的先导压力降低至主阀开启压力时,关闭下车压力开关Ps_d,使所述第一主泵(P1)及所述第二主泵(P2)均降至最小排量,并使所述第一中位卸荷阀(1.6)及所述第二中位卸荷阀(2.5)均复位,以实现所述第一主泵(P1)和所述第二主泵(P2)的卸荷。
  12. 根据权利要求9所述的方法,还包括:在所述直线行走阀(1.2)完成换向后,所述第一主泵(P1)在向所述第一上车机构控制阀(1.4)、所述第二上车机构控制阀(1.5)、所述第三上车机构控制阀(2.2)、所述第四上车机构控制阀(2.3)以及所述第五上车机构控制阀(2.4)提供流量的同时还经过所述直线行走阀(1.2)向所述左行走阀(1.3)以及所述右行走阀(2.1)提供流量。
PCT/CN2021/112976 2020-09-18 2021-08-17 一种正流量上下车复合稳定控制系统及方法 WO2022057550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010986416.0 2020-09-18
CN202010986416.0A CN112177996B (zh) 2020-09-18 2020-09-18 一种正流量上下车复合稳定控制系统及方法

Publications (1)

Publication Number Publication Date
WO2022057550A1 true WO2022057550A1 (zh) 2022-03-24

Family

ID=73920236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112976 WO2022057550A1 (zh) 2020-09-18 2021-08-17 一种正流量上下车复合稳定控制系统及方法

Country Status (2)

Country Link
CN (1) CN112177996B (zh)
WO (1) WO2022057550A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112177996B (zh) * 2020-09-18 2023-05-05 江苏徐工工程机械研究院有限公司 一种正流量上下车复合稳定控制系统及方法
CN113089764B (zh) * 2021-04-28 2022-04-22 江苏汇智高端工程机械创新中心有限公司 一种基于流量共享的挖掘机直线行走控制系统及其方法
CN113152575B (zh) * 2021-05-19 2022-11-25 徐州徐工挖掘机械有限公司 一种基于液压桥路的集合先导正流量控制系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010097A1 (zh) * 2010-07-21 2012-01-26 湖南山河智能机械股份有限公司 液压挖掘机主阀及具有其的液压挖掘机
US20150027112A1 (en) * 2012-04-10 2015-01-29 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system for construction machine
CN205024757U (zh) * 2015-09-14 2016-02-10 山河智能装备股份有限公司 挖掘机节能装置启闭控制装置
CN109488651A (zh) * 2018-12-19 2019-03-19 江苏徐工工程机械研究院有限公司 一种多路阀及电控系统
CN208668506U (zh) * 2018-06-27 2019-03-29 潍柴动力股份有限公司 一种主阀液压回路及应用该回路的工程机械
CN110159609A (zh) * 2019-05-24 2019-08-23 山东临工工程机械有限公司 主控阀及液压系统
CN209414291U (zh) * 2018-12-11 2019-09-20 烟台艾迪液压科技有限公司 一种挖掘机用新型整体多路阀
CN112177996A (zh) * 2020-09-18 2021-01-05 江苏徐工工程机械研究院有限公司 一种正流量上下车复合稳定控制系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748465B1 (ko) * 2003-11-14 2007-08-10 가부시키가이샤 고마쓰 세이사쿠쇼 건설 기계의 유압 제어 장치
CN102286989B (zh) * 2011-07-10 2013-04-03 龙工(上海)挖掘机制造有限公司 一种挖掘机行走机构的压力控制方法
KR102564414B1 (ko) * 2018-10-29 2023-08-08 에이치디현대인프라코어 주식회사 건설기계의 주행 제어 시스템 및 건설기계의 주행 제어 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010097A1 (zh) * 2010-07-21 2012-01-26 湖南山河智能机械股份有限公司 液压挖掘机主阀及具有其的液压挖掘机
US20150027112A1 (en) * 2012-04-10 2015-01-29 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system for construction machine
CN205024757U (zh) * 2015-09-14 2016-02-10 山河智能装备股份有限公司 挖掘机节能装置启闭控制装置
CN208668506U (zh) * 2018-06-27 2019-03-29 潍柴动力股份有限公司 一种主阀液压回路及应用该回路的工程机械
CN209414291U (zh) * 2018-12-11 2019-09-20 烟台艾迪液压科技有限公司 一种挖掘机用新型整体多路阀
CN109488651A (zh) * 2018-12-19 2019-03-19 江苏徐工工程机械研究院有限公司 一种多路阀及电控系统
CN110159609A (zh) * 2019-05-24 2019-08-23 山东临工工程机械有限公司 主控阀及液压系统
CN112177996A (zh) * 2020-09-18 2021-01-05 江苏徐工工程机械研究院有限公司 一种正流量上下车复合稳定控制系统及方法

Also Published As

Publication number Publication date
CN112177996B (zh) 2023-05-05
CN112177996A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2022057550A1 (zh) 一种正流量上下车复合稳定控制系统及方法
JP5639331B2 (ja) 無限軌道式建設機械の走行装置
JP4380643B2 (ja) 作業機械の油圧制御装置
JP2009150553A (ja) 油圧駆動制御装置
JP4541209B2 (ja) 油圧回路
JP2014522465A (ja) 建設機械用の油圧システム
KR102564414B1 (ko) 건설기계의 주행 제어 시스템 및 건설기계의 주행 제어 방법
US9551361B2 (en) Travel control valve
KR870000506B1 (ko) 토목 건설기계의 유압회로 시스템
CN110173015B (zh) 直线行走阀、工程机械液压控制系统和工程机械
JPH0410536B2 (zh)
JP3662676B2 (ja) 油圧ショベルの油圧回路
CN112196855B (zh) 直线行走控制阀、直线行走控制系统及履带式工程机械
KR20080051212A (ko) 소형 굴삭기의 유압제어 장치
JP3898167B2 (ja) 建設機械の油圧回路
JPS60123630A (ja) 建設車両の制御回路
JP4767934B2 (ja) 建設機械用油圧ポンプ制御装置
JPH0374292B2 (zh)
JP4926627B2 (ja) 電油システム
JPH0468413B2 (zh)
JPH0128177B2 (zh)
JP3218299B2 (ja) 建設機械の走行速度制御回路
JPH083194B2 (ja) 建設車両の油圧回路
JPH0463932B2 (zh)
JPH0596964A (ja) 建設車両の直進走行回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868378

Country of ref document: EP

Kind code of ref document: A1