WO2022057412A1 - 一种镍和锂的分离方法及其应用 - Google Patents

一种镍和锂的分离方法及其应用 Download PDF

Info

Publication number
WO2022057412A1
WO2022057412A1 PCT/CN2021/105653 CN2021105653W WO2022057412A1 WO 2022057412 A1 WO2022057412 A1 WO 2022057412A1 CN 2021105653 W CN2021105653 W CN 2021105653W WO 2022057412 A1 WO2022057412 A1 WO 2022057412A1
Authority
WO
WIPO (PCT)
Prior art keywords
extraction
optionally
nickel
lithium
organic phase
Prior art date
Application number
PCT/CN2021/105653
Other languages
English (en)
French (fr)
Inventor
王雪
Original Assignee
苏州博萃循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州博萃循环科技有限公司 filed Critical 苏州博萃循环科技有限公司
Priority to CA3192895A priority Critical patent/CA3192895A1/en
Priority to AU2021344703A priority patent/AU2021344703A1/en
Priority to EP21868241.7A priority patent/EP4215630A1/en
Priority to US18/026,560 priority patent/US20230332265A1/en
Publication of WO2022057412A1 publication Critical patent/WO2022057412A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0476Separation of nickel from cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • C22B3/326Ramified chain carboxylic acids or derivatives thereof, e.g. "versatic" acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present application belongs to the technical field of metal ion separation and purification, and relates to a method for separating nickel and lithium and its application.
  • lithium-ion batteries have been widely used in various fields, especially with the increase in the use of new energy vehicles, the waste of lithium-ion batteries is also increasing year by year. According to the survey, more than one billion lithium-ion batteries are discarded every year in the world. The reprocessing of used lithium-ion batteries and the separation and recovery of various metals are an important resource regeneration work. In addition, once the electrode materials of waste lithium-ion batteries enter the environment, it is likely to cause serious pollution to the environment. Therefore, the recovery and reuse of precious metals in waste lithium-ion batteries can not only protect the environment but also save resources, and has good economic prospects.
  • the main methods for recovering precious metals such as nickel from spent lithium-ion batteries are incineration and hydrometallurgy.
  • the application of the incineration method is limited due to the problems of complex equipment, high energy consumption, and large pollution.
  • One of the key technologies in hydrometallurgy is how to achieve effective separation of metal ions.
  • the methods used to separate metal ions mainly include chemical precipitation, membrane separation technology, ion exchange, adsorption and solvent. Extraction etc.
  • CN111018204A discloses a method for treating electroplating wastewater in combination with chemical precipitation method and membrane separation method. Electroplating wastewater is first treated by chemical precipitation method, and then separated and treated by electrodialysis membrane. The chromium and copper in the wastewater treated by chemical precipitation method The concentration of heavy metal ions such as zinc, nickel and other heavy metals can be discharged when the concentration is less than 5mg/L. Compared with the traditional chemical treatment of electroplating wastewater, the dosage of oxidizing agents is reduced by 40%, the amount of reducing agents is 50%, and the amount of electroplating sludge is reduced by 50%. It has the advantages of low cost and simple fabrication. However, due to the choice of precipitant and the influence of the environment, the separation effect is often not ideal, and further treatment of the resulting precipitate is required, otherwise it is easy to cause secondary pollution.
  • CN110527836A discloses a method for recovering valuable metals in waste nickel-cobalt-manganese lithium-ion batteries by ion exchange method.
  • the waste nickel-cobalt-manganese-manganese lithium-ion batteries are disassembled, discharged, and leached after crushing, and the leaching solution is replaced by nickel powder or cobalt powder.
  • Copper and valuable metal alkali solutions are used as neutralizers to remove iron and aluminum; chelating resin is regenerated with lithium hydroxide solution and backwashed with sulfuric acid to obtain a nickel-cobalt-manganese mixed solution; after resin adsorption, lithium in the solution is recovered as lithium hydroxide.
  • This method realizes the completion of battery stripping and leaching in one step, and no impurity elements are introduced in the process of leaching solution impurity removal and valuable metal separation and extraction, which avoids lithium entering into nickel-cobalt-manganese solution due to adsorption, and avoids the use of sodium hydroxide to cause solution.
  • the sodium ion content is high; the recovery rate of nickel, cobalt and manganese is more than 98%, and the recovery rate of lithium is more than 90%, but the ion exchanger chelating resin used is easy to oxidize and fail, and frequent regeneration will make the overall process operation cost too high. The cost is high, which is not conducive to industrial application.
  • Solvent extraction has the characteristics of high selectivity, continuous automatic operation, and easy industrialization.
  • CN109055746A discloses a method for recovering valuable metals from high-nickel lithium-ion battery cathode waste.
  • manganese and cobalt are selectively extracted from high-nickel leachate by solvent extraction, and the extraction system is P507 or P204 or Cyanex272 and sulfonation Kerosene; then, the nickel and lithium in the raffinate are further separated by solvent extraction; finally, the manganese and cobalt obtained by extraction and separation are precipitated by selective oxidation precipitation to precipitate manganese ions to realize the separation of cobalt and manganese, which has the advantages of simple system, The advantages of good separation effect and simple operation process steps realize the efficient recovery of all components of nickel, cobalt, manganese and lithium resources in high-nickel lithium-ion battery waste.
  • the extraction agent used in this method will bring a lot of lithium when extracting nickel, and a large amount of acid needs to be used to wash off the lithium, which results in high extraction cost of nickel, low recovery rate, etc.
  • the separation efficiency of lithium also needs to be improved.
  • the purpose of this application is to provide a method for separating nickel and lithium and its application.
  • the separation method utilizes a carboxylic acid compound of a specific structure as an extractant, and through the combination of means such as saponification and extraction, the nickel-lithium material is successfully separated.
  • the nickel and lithium in the liquid are separated, and the whole separation process has the advantages of simple operation, environmental friendliness and low cost.
  • the present application provides a method for separating nickel and lithium, and the method for separating comprises the following steps:
  • the extraction reagent contains any one or a combination of at least two of the carboxylic acid compounds having the structure shown in formula I:
  • n and n are independently selected from integers from 1 to 21, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 , 18, 19, 20 or 21; and 10 ⁇ m+n ⁇ 22;
  • step (2) using the saponification extractant obtained in step (1) to extract the nickel-lithium feed liquid, and layering to obtain a loaded organic phase and an aqueous raffinate phase; the aqueous raffinate phase contains lithium ions;
  • step (3) back-extracting the loaded organic phase obtained in step (2) with a back-extracting agent to obtain a metal ion-enriched solution and a regenerated organic phase; the metal ion-enriched solution contains nickel ions.
  • the method for separating nickel and lithium mainly includes three steps.
  • step (1) an extraction reagent and a basic compound are subjected to a saponification reaction, and the acidity of the extraction reagent should not be too high; the carboxylic acids contained in the extraction reagent The carbon chain length in the compound is greater than or equal to 10 and less than or equal to 22, and within this range, any one of the carboxylic acid compounds or the combination of at least two of them remains in a liquid state;
  • the liquid is extracted and layered to obtain a loaded organic phase and an aqueous raffinate phase, wherein the aqueous raffinate phase contains lithium ions, and this step separates nickel and lithium;
  • step (3) utilizes a back extraction agent to carry out the above-mentioned loaded organic phase.
  • the m and n are each independently an integer from 2 to 20, such as 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18 or 19 et al.
  • the m and n are each independently an integer of 2-10.
  • m and n in the carboxylic acid compound are each independently an integer of 2 to 10, and the extraction reagent obtained at this time has the highest extraction efficiency.
  • the carboxyl The non-polar group in the acid compound is too large, the flow performance is not good, and the extraction efficiency is affected; on the other hand, if m and n are too low, the obtained carboxylic acid compound is too soluble in water, and it is difficult to separate the organic compounds. phase and raffinate water phase, affecting the extraction effect.
  • the carboxylic acid compound is selected from any one or a combination of at least two of the following compounds:
  • the extraction reagent further includes a diluent.
  • the diluent includes any one or a combination of at least two of diluent Escaid 110, mineral spirits, toluene, hexane, heptane, dodecane or kerosene; further optionally, kerosene and/or dodecane.
  • the kerosene comprises sulfonated kerosene.
  • the volume percentage of the carboxylic acid compound in the extraction reagent is 5-30%, such as 6%, 7%, 9%, 11%, 13%, 15%, 17%, 19%, 21% %, 23%, 25%, 27% or 29%, and specific point values between the above-mentioned point values, due to space limitations and for the sake of brevity, this application will not exhaustively list the specific point values included in the range.
  • the basic compound in step (1) includes an inorganic base.
  • the inorganic base includes any one or a combination of at least two of sodium hydroxide, potassium hydroxide or aqueous ammonia.
  • the volume ratio of the saponification extractant and the nickel-lithium feed liquid in step (2) is 1:(0.1-10), for example, 1:0.5, 1:1, 1:1.5, 1:2, 1:2.5 , 1:3, 1:3.5, 1:4, 1:4.5, 1:5, 1:5.5, 1:6, 1:6.5, 1:7, 1:7.5, 1:8, 1:8.5, 1 :9 or 1:9.5 etc.
  • the volume ratio of the saponification extractant and the nickel-lithium feed solution described in step (2) of the present application is 1:(0.1-10), and the volume ratio is too large, which leads to the volume of the nickel-lithium feed solution accounting for If the ratio is too small, it will be difficult to stir evenly during mixing; if the volume ratio is too small, the volume ratio of the nickel-lithium feed solution will be too large, which will generate more waste water, and it will be difficult to mix evenly.
  • the pH value of the aqueous raffinate phase in step (2) is 5.5 to 7.5, such as 5.6, 5.8, 6.0, 6.4, 6.7, 7.0, 7.1, 7.2 or 7.4, and specific points between the above point values Due to space limitations and for the sake of brevity, this application will not exhaustively list the specific point values included in the range.
  • the pH value of the raffinate aqueous phase is 5.5 to 7.5, and the pH value is too small, and the extraction rate of nickel is low; Increase washing costs.
  • the extraction in step (2) is carried out under stirring conditions.
  • the stirring speed of step (2) is 100 ⁇ 250rpm/min, such as 120rpm/min, 140rpm/min, 150rpm/min, 160rpm/min, 180rpm/min, 200rpm/min, 220rpm/min or 240rpm /min, and specific point values between the above-mentioned point values, due to space limitations and for the sake of brevity, this application will not exhaustively list the specific point values included in the range.
  • the time of the extraction is 5 ⁇ 30min, such as 8min, 10min, 12min, 15min, 18min, 20min, 22min, 25min or 28min, etc.
  • the specific point value between the above-mentioned point values is limited to space and publication.
  • the present application does not exhaustively list the specific point values included in the range.
  • the extraction in step (2) is multi-stage countercurrent extraction.
  • the extraction stages of the multi-stage countercurrent extraction are 2 to 20 stages, such as 3 stages, 4 stages, 5 stages, 6 stages, 7 stages, 8 stages, 9 stages, 10 stages, 12 stages, 15 stages, Level 17, 18 or 19 etc.
  • the temperature of the extraction is 10 to 35°C, such as 12°C, 15°C, 18°C, 20°C, 22°C, 25°C, 28°C, 30°C, 32°C or 34°C, and the above point values
  • the specific point values between the ranges are limited by space and for the sake of brevity, this application will not exhaustively list the specific point values included in the range.
  • the stratification time described in step (2) is 5 ⁇ 50min, such as 10min, 15min, 20min, 25min, 30min, 35min, 40min or 45min, and the specific point value between the above-mentioned point values, which is limited to space and publication.
  • the present application does not exhaustively list the specific point values included in the range.
  • the stripping agent includes an inorganic acid.
  • the inorganic acid includes any one or a combination of at least two of hydrochloric acid, nitric acid or sulfuric acid.
  • the concentration of the inorganic acid in the stripping agent is 0.5-4 mol/L, such as 0.6 mol/L, 0.9 mol/L, 1.2 mol/L, 1.5 mol/L, 1.8 mol/L, 2.1 mol/L L, 2.4mol/L, 2.7mol/L, 3mol/L, 3.3mol/L, 3.6mol/L or 3.9mol/L, as well as specific point values between the above point values, are limited to space and for the sake of brevity , this application will not exhaustively list the specific point values included in the range.
  • the number of times of the stripping in step (3) is 2 to 10 times, such as 3 times, 4 times, 5 times, 6 times, 8 times, or 9 times, and the like.
  • the volume ratio of the stripping agent and the loaded organic phase is 1:(0.1-10), such as 1:0.5, 1:1, 1:1.5, 1:2, 1:2.5, 1:3, 1:3.5, 1:4, 1:4.5, 1:5, 1:5.5, 1:6, 1:6.5, 1:7, 1:7.5, 1:8, 1:8.5, 1:9 or 1: 9.5 etc.
  • step of washing the loaded organic phase obtained in step (2) is further included.
  • the number of stages of the washing is 2 to 8, for example, 3, 4, 5, 6, or 7.
  • the washing includes mineral acid washing.
  • the pH value of the inorganic acid is 1-2, such as 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 or 1.9, and the specific point value between the above point values is limited to space and for brevity In consideration of this, the present application will not exhaustively list the specific point values included in the range.
  • the separation method specifically includes the following steps:
  • extraction reagent comprise diluent and the carboxylic acid compound with the structure as shown in formula I:
  • n and n are independently selected from integers from 1 to 21, and 10 ⁇ m+n ⁇ 22;
  • step (2) adopting the saponification extractant obtained in step (1) to extract the nickel-lithium feed liquid with a pH value of 4 ⁇ 10 according to the volume ratio of 1:(0.1 ⁇ 10), and layering to obtain a loaded organic phase containing nickel ions and a raffinate aqueous phase containing lithium ions with a pH value of 5.5 to 7.5;
  • step (3) after washing the loaded organic phase obtained in step (2) with mineral acid, carry out back extraction with a back extraction agent to obtain a metal ion enriched solution containing nickel ions and a regenerated organic phase; the back extraction agent and the supported organic phase are obtained.
  • the volume ratio of the organic phase is 1:(0.1-10).
  • the present application provides an application of the separation method according to the first aspect, wherein the application is to separate nickel and lithium in battery waste liquid.
  • the battery is a nickel lithium ion battery.
  • the present application provides an application of an extraction reagent comprising a carboxylic acid compound having the structure shown in formula I in separating nickel and lithium.
  • an extraction reagent containing a carboxylic acid compound of a specific structure is subjected to saponification treatment to obtain a saponified extraction agent, and then the nickel-lithium feed liquid is extracted with the saponified extraction agent, and the nickel and lithium are extracted. Lithium is separated, and finally the organic phase containing nickel after extraction is back-extracted to obtain a regenerated organic phase and a metal ion-enriched solution.
  • the whole process is easy to operate, low in acid consumption, and environmentally friendly; the metal obtained by the separation method described in this application is used.
  • the purity of nickel in the ion enrichment solution is as high as 99.9%, and the content of nickel in the raffinate aqueous phase is only 0.2 to 0.5 mg/L.
  • the purity of nickel in the solution is increased by 0.4-1.4%, and the content of nickel in the raffinate water phase is reduced by 50-93%; in addition, the extraction reagent used in this application has low solubility and stability, and can be recycled after regeneration, which is beneficial to the cost lower, suitable for high-volume industrial applications.
  • a carboxylic acid compound BC196 the structural formula is as follows:
  • the preparation method includes the following steps:
  • the carboxylic acid compound BC196 is characterized as follows:
  • a kind of separation method of nickel and lithium, concrete steps are as follows:
  • the saponified extractant obtained in the step (1) flows in from the two ends of the extractor respectively, (the volume ratio of the saponified extractant and the nickel-lithium feed liquid is 1:5) carries out multistage countercurrent extraction, and the extraction is carried out under stirring conditions, stirring The speed is 150rpm/min, the extraction time is 15min, the extraction temperature is 25°C, and the number of extraction stages is 9, left standing for 15min, and layered to obtain a loaded organic phase and a lithium ion-containing raffinate aqueous phase with a pH value of 6;
  • step (3) adopting the sulfuric acid of pH 1 to carry out 3-stage countercurrent washing to the loaded organic phase obtained in step (2), the volume ratio of the sulfuric acid of pH 1 to the loaded organic phase is 1:5; Carry out back extraction for 2 mol/L sulfuric acid, and the number of back extraction times is 3 times, and the volume ratio of the 2 mol/L sulfuric acid to the loaded organic phase is 1:10; the metal ion enrichment solution and the regenerated organic phase are obtained.
  • a kind of separation method of nickel and lithium, concrete steps are as follows:
  • the saponification extractant obtained in the step (1) flows into respectively from both ends of the extractor (the volume ratio of the saponification extractant and the nickel-lithium feed liquid is 1:5), carries out multistage countercurrent extraction, and the extraction is carried out under stirring conditions;
  • the stirring speed is 200 rpm/min, the extraction time is 10 min, the extraction temperature is 25 °C, the number of extraction stages is 6, and the mixture is allowed to stand for 20 min, and the layers are separated to obtain a loaded organic phase and a lithium ion-containing raffinate aqueous phase with a pH value of 6.5. ;
  • step (3) adopting the sulfuric acid with pH value of 1.2 to carry out 4-stage countercurrent washing to the loaded organic phase obtained in step (2), the volume ratio of the sulfuric acid with pH value of 1 and the loaded organic phase is 1:5; Carry out back extraction for 2 mol/L sulfuric acid, the number of back extraction times is 3 times, and the volume ratio of the 2 mol/L sulfuric acid to the loaded organic phase is 1:10 to obtain a metal ion enriched solution and a regenerated organic phase.
  • a kind of separation method of nickel and lithium, concrete steps are as follows:
  • the carboxylic acid compound BC196 obtained in Preparation Example 1 is dissolved in sulfonated kerosene, and the volume percentage of BC196 in the sulfonated kerosene is 25%, and then the NaOH solution with a concentration of 8 mol/L is added and mixed to obtain a degree of saponification It is 23% saponification extractant, and the saponification extractant is used as an organic phase system;
  • stirring speed is 180rpm/min
  • extraction time is 15min
  • extraction temperature is 25 °C
  • extraction stage number is 4, stand for 20min, stratify, obtain the organic phase that supports nickel ion and pH value is 7 containing lithium ion raffinate aqueous phase;
  • step (3) adopting the sulfuric acid with pH value of 1.2 to carry out 5-level countercurrent washing to the loaded organic phase obtained in step (2), the volume ratio of the sulfuric acid with pH value of 1.2 to the loaded organic phase is 1:5; Carry out back extraction for 3 mol/L sulfuric acid, the number of times of back extraction is 3 times, and the volume ratio of the 3 mol/L sulfuric acid to the loaded organic phase is 1:10 to obtain a metal ion enriched solution and a regenerated organic phase.
  • a kind of separation method of nickel and lithium its difference with embodiment 1 is only: the sulfuric acid that pH value in step (3) is 1 is replaced with the hydrochloric acid that pH value is 1, the sulfuric acid of 2mol/L is 4mol/L
  • the hydrochloric acid was replaced, and other component dosages and experimental conditions were the same as in Example 1.
  • a kind of separation method of nickel and lithium its difference with embodiment 1 is only: the carboxylic acid compound BC196 in the step (1) is used the extraction agent P507 (2-ethylhexylphosphonic acid mono-2- ethylhexyl ester) was replaced, and the dosages and experimental conditions of other components were the same as those in Example 1.
  • a kind of separation method of nickel and lithium its difference with embodiment 1 is only: the carboxylic acid compound BC196 in step (1) is replaced with the extraction agent Versatic10 (tertiary decanoic acid) of equivalent, other component consumption and
  • the experimental conditions are the same as those in Example 1.
  • Nickel content Determine the nickel content in the metal ion enrichment solution and the raffinate aqueous phase by inductively coupled plasma optical emission spectrometry (ICP-OES); and calculate the nickel content in the mass percentage of all metals in the metal ion enrichment solution, Obtain the purity of nickel in the metal ion-enriched solution.
  • ICP-OES inductively coupled plasma optical emission spectrometry
  • Nickel in metal ion enriched solution The content of nickel in the raffinate aqueous phase
  • Example 1 99.9 0.2
  • Example 2 99.9 0.5
  • Example 3 99.9 0.4
  • Example 4 99.9 0.5 Comparative Example 1 98.5 3.0 Comparative Example 2 99.5 1.0
  • the present application illustrates a method for separating nickel and lithium and its application through the above-mentioned embodiments, but the present application is not limited to the above-mentioned process steps, that is, it does not mean that the present application must rely on the above-mentioned process steps to implement.

Abstract

本申请提供一种镍和锂的分离方法,包括:(1)将萃取试剂与碱性化合物进行皂化反应,得到皂化萃取剂;萃取试剂中包含特定的羧酸类化合物;(2)采用步骤(1)得到的皂化萃取剂对镍锂料液进行萃取,分层,得到负载有机相和萃余水相;(3)用反萃剂对步骤(2)得到的负载有机相进行反萃取,得到金属离子富集溶液和再生有机相

Description

一种镍和锂的分离方法及其应用 技术领域
本申请属于金属离子分离和提纯技术领域,涉及一种镍和锂的分离方法及其应用。
背景技术
目前,锂离子电池已经广泛应用于各个领域,尤其是随着新能源汽车的使用量增加,锂离子电池的废弃量也呈逐年递增趋势。据调查,全世界每年废弃的锂离子电池在十亿只以上,废旧锂离子电池的再处理及各金属的分离与回收是一项重要的资源再生工作。此外,废旧锂离子电池的电极材料一旦进入到环境中,很可能对环境造成严重污染。因此,对废旧锂离子电池中的贵金属进行回收和再利用,既可以保护环境又可以节省资源,具有较好的经济前景。
从废旧锂离子电池中回收镍等贵金属的主要方法有焚烧法和湿法冶金法。焚烧法因设备复杂、能耗高、污染大等问题,应用受到限制;湿法冶金法简便易行,成本低,具有较乐观的应用前景。湿法冶金中关键技术之一是如何实现金属离子的有效分离,现有湿法冶金工艺中,用于分离金属离子的方法主要有化学沉淀法、膜分离技术、离子交换法、吸附法和溶剂萃取法等。
CN111018204A公开了一种以化学沉淀法与膜分离法联合处理电镀废水的方法,电镀废水先用化学沉淀法处理后,再用电渗析膜分离处理,经化学沉淀法处理后的废水中铬、铜、锌、镍等重金属离子的浓度小于5mg/L即可排放,比传统的化学法处理电镀废水分别减少40%的氧化药剂用量,50%的还原药剂用量,以及50%的电镀污泥量,具有成本低,造作简单等优点,但是由于沉淀剂的选择和环境等影响,分离效果往往不是很理想,而且需要对产生的沉淀做 进一步的处理,否则很容易造成二次污染。
CN110527836A公开了一种离子交换法回收废旧镍钴锰锂离子电池中有价金属的方法,通过对废旧镍钴锰锂离子电池拆解、放电、破碎后浸出,浸出液采用镍粉或钴粉置换除铜,有价金属碱溶液做中和剂水解除铁铝;螯合树脂用氢氧化锂溶液再生、硫酸反洗得镍钴锰混合液;树脂吸附后溶液中的锂以氢氧化锂形式回收。这种方法实现了电池剥离浸出一步完成,且浸出液除杂和有价金属分离提取过程中不会引入杂质元素,避免了锂因吸附而进入镍钴锰溶液,也避免了使用氢氧化钠造成溶液中钠离子含量高;镍、钴、锰回收率达到98%以上,锂回收率90%以上,但是使用的离子交换剂螯合树脂很容易氧化失效,再生频繁会使得整体过程操作费用过高,成本高,不利于工业化应用。
溶剂萃取法具有选择性高、可连续自动化操作,易于工业化等特点,成为当前从废旧电池中回收镍等贵金属的研究热点。CN109055746A公开了一种从高镍锂离子电池正极废料中回收有价金属的方法,首先利用溶剂萃取法从高镍浸出液中选择性提取出锰和钴,萃取体系为P507或P204或Cyanex272与磺化煤油;然后,萃余液中镍和锂进一步采用溶剂萃取法分离;最后,将萃取分离得到的锰和钴采用选择性氧化沉淀法将锰离子沉淀,实现钴和锰的分离,具有体系简单、分离效果好、操作工艺步骤简单的优点,实现了高镍锂离子电池废料中镍、钴、锰和锂资源的全组分高效回收。但是这种方法选用的萃取剂萃取镍的时候会带很多的锂上去,需要用大量的酸把锂洗下来,这样一来就造成了镍的萃取成本高,回收率低等不足,并且镍和锂的分离效率也有待提高。
因此,开发一种酸耗低、萃取效率高并且成本低的镍和锂的分离方法,以提高镍锂的分离效率和回收率,成为本领域研究的重点。
发明内容
本申请的目的在于提供一种镍和锂的分离方法及其应用,所述分离方法利用一种特定结构的羧酸类化合物作为萃取剂,经过皂化和萃取等手段的结合,成功对镍锂料液中的镍和锂进行了分离,整个分离过程具有操作简单、环境友好和成本低等优势。
为达到此发明目的,本申请采用以下技术方案:
第一方面,本申请提供一种镍和锂的分离方法,所述分离方法包括如下步骤:
(1)将萃取试剂与碱性化合物进行皂化反应,得到皂化萃取剂;
所述萃取试剂中包含具有如式Ⅰ所示结构的羧酸类化合物中的任意一种或至少两种的组合:
Figure PCTCN2021105653-appb-000001
式Ⅰ;
其中,m、n各自独立地选自1~21的整数,例如1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20或21;且10≤m+n≤22;
(2)采用步骤(1)得到的皂化萃取剂对镍锂料液进行萃取,分层,得到负载有机相和萃余水相;所述萃余水相中含有锂离子;
(3)用反萃剂对步骤(2)得到的负载有机相进行反萃取,得到金属离子富集溶液和再生有机相;所述金属离子富集溶液中含有镍离子。
本申请提供的镍和锂的分离方法主要包括三个步骤,步骤(1)将萃取试剂和碱性化合物进行皂化反应,控制萃取试剂的酸性不宜过高;所述萃取试剂中 包含的羧酸类化合物中碳链长度大于等于10且小于等于22,在此范围内羧酸类化合物中的任意一种或至少两种的组合保持一种液体状态;步骤(2)采用皂化萃取剂对镍锂料液进行萃取,分层,得到负载有机相和萃余水相,其中萃余水相中含有锂离子,这一步骤将镍和锂分离;步骤(3)利用反萃剂对上述负载有机相进行反萃取,一方面得到含有镍离子的金属离子富集溶液,另一方面,使有机相再生,利于循环使用降低成本。整个分离过程酸耗低、操作简单、成本低,且镍和锂的分离效果好。
可选地,所述m和n各自独立地为2~20的整数,例如3、4、5、6、7、8、9、10、11、12、13、14、15、17、18或19等。
可选地,所述m和n各自独立地为2~10的整数。
作为本申请的可选技术方案,所述羧酸类化合物中的m和n各自独立地为2~10的整数,此时得到的萃取试剂萃取效率最高,一方面如果m和n过高,羧酸类化合物中的非极性基团过大,流动性能不好,影响萃取效率;另一方面如果m和n过低,得到的羧酸类化合物在水中溶解度过好,很难分相得到有机相和萃余水相,影响萃取效果。
可选地,所述羧酸类化合物选自如下化合物中的任意一种或至少两种的组合:
Figure PCTCN2021105653-appb-000002
Figure PCTCN2021105653-appb-000003
可选地,所述萃取试剂中还包括稀释剂。
可选地,所述稀释剂包括稀释剂Escaid 110、溶剂油、甲苯、己烷、庚烷、十二烷或煤油中的任意一种或至少两种的组合;进一步可选为煤油和/或十二烷。
可选地,所述煤油包括磺化煤油。
可选地,所述萃取试剂中羧酸类化合物的体积百分含量为5~30%,例如6%、7%、9%、11%、13%、15%、17%、19%、21%、23%、25%、27%或29%,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
可选地,步骤(1)所述碱性化合物包括无机碱。
可选地,所述无机碱包括氢氧化钠、氢氧化钾或氨水中的任意一种或至少两种的组合。
可选地,步骤(2)所述皂化萃取剂和镍锂料液的体积比为1:(0.1~10),例如1:0.5、1:1、1:1.5、1:2、1:2.5、1:3、1:3.5、1:4、1:4.5、1:5、1:5.5、1:6、1:6.5、1:7、1:7.5、1:8、1:8.5、1:9或1:9.5等。
作为本申请的可选技术方案,本申请步骤(2)中所述皂化萃取剂和镍锂料液的体积比为1:(0.1~10),体积比过大导致镍锂料液的体积占比过少,则在混合时难以搅拌均匀;体积比过小导致镍锂料液的体积占比过多,则会产生较多废水,并且也难以混合均匀。
可选地,步骤(2)所述萃余水相的pH值为5.5~7.5,例如5.6、5.8、6.0、6.4、6.7、7.0、7.1、7.2或7.4,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
作为本申请的可选技术方案,萃余水相的pH值为5.5~7.5,pH值过小,镍萃取率低;pH值过大,镍锂料液中被萃取到有机相的锂增多,增加洗涤成本。
可选地,步骤(2)所述萃取在搅拌条件下进行。
可选地,步骤(2)所述搅拌的速度为100~250rpm/min,例如120rpm/min、140rpm/min、150rpm/min、160rpm/min、180rpm/min、200rpm/min、220rpm/min或240rpm/min,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
可选地,所述萃取的时间为5~30min,例如8min、10min、12min、15min、1 8min、20min、22min、25min或28min等,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
可选地,步骤(2)所述萃取为多级逆流萃取。
可选地,所述多级逆流萃取的萃取级数为2~20级,例如3级、4级、5级、6级、7级8级、9级、10级、12级、15级、17级、18级或19级等。
可选地,所述萃取的温度为10~35℃,例如12℃、15℃、18℃、20℃、22℃、25℃、28℃、30℃、32℃或34℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
可选地,步骤(2)所述分层时间为5~50min,例如10min、15min、20min、25min、30min、35min、40min或45min,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
可选地,所述反萃剂包括无机酸。
可选地,所述无机酸包括盐酸、硝酸或硫酸中的任意一种或至少两种的组合。
可选地,所述反萃剂中无机酸的浓度为0.5~4mol/L,例如0.6mol/L、0.9mol/L、1.2mol/L、1.5mol/L、1.8mol/L、2.1mol/L、2.4mol/L、2.7mol/L、3mol/L、3.3mol/L、3.6mol/L或3.9mol/L,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
可选地,步骤(3)所述反萃取的次数为2~10次,例如3次、4次、5次、6次、8次或9次等。
可选地,所述反萃剂和负载有机相的体积比为1:(0.1~10),例如1:0.5、1:1、1:1.5、1:2、1:2.5、1:3、1:3.5、1:4、1:4.5、1:5、1:5.5、1:6、1:6.5、1:7、1:7.5、1:8、1:8.5、1:9或1:9.5等。
可选地,所述反萃取之前还包括对步骤(2)得到的负载有机相进行洗涤步骤。
可选地,所述洗涤的级数为2~8级,例如3级、4级、5级、6级或7级等。
可选地,所述洗涤包括无机酸洗涤。
可选地,所述无机酸的pH值为1~2,例如1.2、1.3、1.4、1.5、1.6、1.7、1.8或1.9,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
可选地,所述分离方法具体包括如下步骤:
(1)将萃取试剂与碱性化合物进行皂化反应,得到皂化萃取剂;所述萃取试剂中包含稀释剂和具有如式Ⅰ所示结构的羧酸类化合物:
Figure PCTCN2021105653-appb-000004
式Ⅰ;
其中,m、n各自独立地选自1~21的整数,且10≤m+n≤22;
(2)采用步骤(1)得到的皂化萃取剂对pH值为4~10的镍锂料液按照体积比为1:(0.1~10)进行萃取,分层,得到含有镍离子的负载有机相和pH值为5.5~7.5的含锂离子的萃余水相;
(3)用无机酸对步骤(2)得到的负载有机相进行洗涤后,用反萃剂进行反萃取,得到含有镍离子的金属离子富集溶液和再生有机相;所述反萃剂和负载有机相的体积比为1:(0.1~10)。
第二方面,本申请提供一种如第一方面所述的分离方法的应用,所述应用为分离电池废液中的镍和锂。
可选地,所述电池为镍锂离子电池。
第三方面,本申请提供一种包含具有式Ⅰ所示结构的羧酸类化合物的萃取试剂在分离镍和锂中的应用。
相对于现有技术,本申请具有以下有益效果:
本申请提供的镍和锂的分离方法中,首先将包含特定结构的羧酸类化合物的萃取试剂进行皂化处理,得到皂化萃取剂,随后利用皂化萃取剂对镍锂料液进行萃取,将镍和锂分离,最后对萃取后含有镍的有机相进行反萃取,得到再生有机相和金属离子富集溶液,整个过程操作简便、酸耗低、对环境友好;采用本申请所述分离方法得到的金属离子富集溶液中的镍的纯度高达99.9%,萃余水相中镍的含量仅为0.2~0.5mg/L,相比于现有技术提供的镍和锂的分离方法 得到的金属离富集溶液中镍的纯度提高了0.4~1.4%,萃余水相中的镍的含量降低了50~93%;另外本申请所使用的萃取试剂溶解度低,稳定,再生后可循环使用,有利于成本降低,适合大批量工业化应用。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
制备例1
一种羧酸类化合物BC196,结构式如下:
Figure PCTCN2021105653-appb-000005
制备方法包括如下步骤:
在圆底烧瓶中加入200mL十六醇和300mL丙酮,随后边滴加琼斯试剂,边观测圆底烧瓶中混合试剂的温度变化,待圆底烧瓶中混合试剂的温度到达14℃时,降低滴加速度,圆底烧瓶中混合试剂的温度上升到19℃,停止滴加,点板得到中间产物,中间产物用二氯甲烷溶解,再分别用稀酸、稀碱以及蒸馏水洗涤,油水分离后旋蒸去除二氯甲烷,得到所述羧酸类化合物BC196。
所述羧酸类化合物BC196表征如下:
13C NMR(101MHz,CDCl 3)δ183.50(s),77.43-76.83(m),76.67(s),45.65(s),32.31-31.38(m),29.37(dd,J=25.0,8.9Hz),27.35(d,J=3.4Hz),22.63(d,J=5.9Hz),14.02(d,J=4.4Hz);
1H NMR(400MHz,CDCl 3)δ2.24(1H),1.70(4H),1.45(20H),0.85(6H);其中,羧基中的氢未显示;
MS:256.2.
实施例1
一种镍和锂的分离方法,具体步骤如下:
(1)将制备例1得到的羧酸类化合物BC196溶于稀释剂Escaid 110中,使得Escaid 110中BC196的体积百分含量为25%,再加入浓度为10mol/L的NaOH溶液,得到皂化度为23%的皂化萃取剂,所述皂化萃取剂作为有机相体系;
(2)将镍锂料液作为水相体系(含镍1.13g/L,锂5.042g/L,pH=4.81;来源于除杂及提钴锰后的废锂离子电池正极材料浸出液),与步骤(1)中得到的皂化萃取剂分别从萃取器的两端流入,(皂化萃取剂和镍锂料液的体积比为1:5)进行多级逆流萃取,萃取在搅拌条件下进行,搅拌速度为150rpm/min,萃取时间为15min,萃取温度为25℃,萃取级数为9级,静置15min,分层,得到负载有机相和pH值为6的含锂离子的萃余水相;
(3)采用pH值为1的硫酸对步骤(2)得到的负载有机相进行3级逆流洗涤后,所述pH值为1的硫酸与负载有机相的体积比为1:5;再采用浓度为2mol/L的硫酸进行反萃取,反萃次数为3次,所述2mol/L的硫酸和负载有机相的体积比为1:10;得到金属离子富集溶液和再生有机相。
实施例2
一种镍和锂的分离方法,具体步骤如下:
(1)将制备例1得到的羧酸类化合物BC196溶于稀释剂Escaid 110中,使得Escaid 110中BC196的体积百分含量为25%,再加入浓度为10mol/L的NaOH溶液,得到皂化度为23%的皂化萃取剂,所述皂化萃取剂作为有机相体系;
(2)将镍锂料液作为水相体系(含镍1.13g/L,锂5.042g/L,pH=4.81; 来源于除杂及提钴锰后的废锂离子电池正极材料浸出液),与步骤(1)中得到的皂化萃取剂分别从萃取器的两端流入(皂化萃取剂和镍锂料液的体积比为为1:5),进行多级逆流萃取,萃取在搅拌条件下进行;搅拌速度为200rpm/min,萃取时间为10min,萃取温度为25℃,萃取级数为6级,静置20min,分层,得到负载有机相和pH值为6.5的含锂离子的萃余水相;
(3)采用pH值为1.2的硫酸对步骤(2)得到的负载有机相进行4级逆流洗涤后,所述pH值为1的硫酸与负载有机相的体积比为1:5;再采用浓度为2mol/L的硫酸进行反萃取,反萃次数为3次,所述2mol/L的硫酸和负载有机相的体积比为1:10,得到金属离子富集溶液和再生有机相。
实施例3
一种镍和锂的分离方法,具体步骤如下:
(1)将制备例1得到的羧酸类化合物BC196溶于磺化煤油中,磺化煤油中BC196的体积百分含量为25%,再加入浓度为8mol/L的NaOH溶液混合,得到皂化度为23%的皂化萃取剂,所述皂化萃取剂作为有机相体系;
(2)将镍锂料液作为水相体系(含镍1.13g/L,锂5.042g/L,pH=4.81;具体来源于废锂离子电池正极材料浸出液除杂及提钴锰后液),与步骤(1)中所述的皂化萃取剂分别从萃取器的两端流入(皂化萃取剂和镍锂料液的体积比为为1:5),进行多级逆流萃取,萃取在搅拌条件下进行,搅拌速度为180rpm/min,萃取时间为15min,萃取温度为25℃,萃取级数为4级,静置20min,分层,得到负载镍离子的有机相和pH值为7的含锂离子的萃余水相;
(3)采用pH值为1.2的硫酸对步骤(2)得到的负载有机相进行5级逆流洗涤后,所述pH值为1.2的硫酸与负载有机相的体积比为1:5;再采用浓度为 3mol/L的硫酸进行反萃取,反萃次数为3次,所述3mol/L的硫酸和负载有机相的体积比为1:10,得到金属离子富集溶液和再生有机相。
实施例4
一种镍和锂的分离方法,其与实施例1的区别仅在于:将步骤(3)中的pH值为1的硫酸用pH值为1的盐酸替代,2mol/L的硫酸用4mol/L的盐酸替换,其他组分用量和实验条件均与实施例1相同。
对比例1
一种镍和锂的分离方法,其与实施例1的区别仅在于:将步骤(1)中的羧酸类化合物BC196用等量的萃取剂P507(2-乙基己基膦酸单-2-乙基己基酯)替换,其他组分用量和实验条件均与实施例1相同。
对比例2
一种镍和锂的分离方法,其与实施例1的区别仅在于:将步骤(1)中的羧酸类化合物BC196用等量的萃取剂Versatic10(叔癸酸)替换,其他组分用量和实验条件均与实施例1相同。
性能测试:
镍含量:通过电感耦合等离子体发射光谱法(ICP-OES)测定金属离子富集溶液和萃余水相中镍的含量;并计算镍的含量占金属离子富集溶液中所有金属的质量百分比,得到金属离子富集溶液中镍的纯度。
按照上述测试方法对实施例1~4、对比例1~2中所述萃取方法步骤(2)得到的萃余水相和金属离子负集溶液进行测试,结果如表1所示。
表1
  金属离子富集溶液中镍 萃余水相中镍的含量
  的纯度(%) (mg/L)
实施例1 99.9 0.2
实施例2 99.9 0.5
实施例3 99.9 0.4
实施例4 99.9 0.5
对比例1 98.5 3.0
对比例2 99.5 1.0
根据表1数据可以看出,本申请提供的一种镍和锂的分离方法与现有技术相比具有更好的分离效果;具体而言,实施例1~4得到的金属离子富集溶液中的镍的纯度高达99.9%,萃余水相中镍的含量仅为0.2~0.5,相比于现有技术提供的镍和锂的分离方法(对比例1和对比例2)得到的金属离富集溶液中镍的纯度提高了0.4~1.4%,萃余水相中的镍的含量降低了50~93%,说明本申请提供的一种镍和锂的分离方法的分离镍和锂的效果更好。
申请人声明,本申请通过上述实施例来说明一种镍和锂的分离方法及其应用,但本申请并不局限于上述工艺步骤,即不意味着本申请必须依赖上述工艺步骤才能实施。

Claims (12)

  1. 一种镍和锂的分离方法,其包括如下步骤:
    (1)将萃取试剂与碱性化合物进行皂化反应,得到皂化萃取剂;
    所述萃取试剂中包含具有如式Ⅰ所示结构的羧酸类化合物中的任意一种或至少两种的组合:
    Figure PCTCN2021105653-appb-100001
    其中,m、n各自独立地选自1~21的整数,且10≤m+n≤22;
    (2)采用步骤(1)得到的皂化萃取剂对镍锂料液进行萃取,分层,得到负载有机相和萃余水相;所述萃余水相中含有锂离子;
    (3)用反萃剂对步骤(2)得到的负载有机相进行反萃取,得到金属离子富集溶液和再生有机相;所述金属离子富集溶液中含有镍离子。
  2. 根据权利要求1所述的分离方法,其中,所述m和n各自独立地为2~20的整数。
  3. 根据权利要求2所述的分离方法,其中,所述m和n各自独立地为2~10的整数。
  4. 根据权利要求2或3所述的分离方法,其中,所述羧酸类化合物选自如下化合物中的任意一种或至少两种的组合:
    Figure PCTCN2021105653-appb-100002
    Figure PCTCN2021105653-appb-100003
  5. 根据权利要求1-4任一项所述的分离方法,其中,所述萃取试剂中还包括稀释剂;
    可选地,所述稀释剂包括稀释剂Escaid 110、溶剂油、甲苯、己烷、庚烷、十二烷或煤油中的任意一种或至少两种的组合;进一步可选为煤油和/或十二烷;
    可选地,所述煤油包括磺化煤油;
    可选地,所述萃取试剂中羧酸类化合物的体积百分含量为5~30%。
  6. 根据权利要求1~5任一项所述的分离方法,其中,步骤(1)所述碱性化合物包括无机碱;
    可选地,所述无机碱包括氢氧化钠、氢氧化钾或氨水中的任意一种或至少两种的组合。
  7. 根据权利要求1~6任一项所述的分离方法,其中,步骤(2)所述皂化萃取剂和镍锂料液的体积比为1:(0.1~10);
    可选地,步骤(2)所述萃余水相的pH值为5.5~7.5;
    可选地,步骤(2)所述萃取在搅拌条件下进行;
    可选地,所述搅拌的速度为100~250rpm/min;
    可选地,所述萃取的时间为5~30min;
    可选地,步骤(2)所述萃取为多级逆流萃取;
    可选地,所述多级逆流萃取的萃取级数为2~20级;
    可选地,步骤(2)所述萃取在温度为10~35℃条件下进行;
    可选地,步骤(2)所述分层的时间为5~50min。
  8. 根据权利要求1~7任一项所述的分离方法,其中,所述反萃剂包括无机酸;
    可选地,所述无机酸包括盐酸、硝酸或硫酸中的任意一种或至少两种的组合;
    可选地,所述反萃剂中无机酸的浓度为0.5~4mol/L。
  9. 根据权利要求1~8任一项所述的分离方法,其中,步骤(3)所述反萃取的次数为2~10次;
    可选地,所述反萃剂和负载有机相的体积比为1:(0.1~10);
    可选地,所述反萃取之前还包括对步骤(2)得到的负载有机相进行洗涤的步骤;
    可选地,所述洗涤的级数为2~8级;
    可选地,所述洗涤包括无机酸洗涤;
    可选地,所述无机酸的pH值为1~2。
  10. 根据权利要求1~9任一项所述的分离方法,其具体包括如下步骤:
    (1)将萃取试剂与碱性化合物进行皂化反应,得到皂化度为0.8~40%的皂化萃取剂;所述萃取试剂中包含稀释剂和具有如式Ⅰ所示结构的羧酸类化合物:
    Figure PCTCN2021105653-appb-100004
    其中,m、n各自独立地选自1~21的整数,且10≤m+n≤22;
    (2)采用步骤(1)得到的皂化萃取剂对pH值为4~10的镍锂料液按照体积比为1:(0.1~10)进行萃取,分层,得到含有镍离子的负载有机相和pH值为5.5~7.5的含有锂离子的萃余水相;
    (3)用无机酸对步骤(2)得到的负载有机相进行洗涤后,用反萃剂进行反萃取,得到含有镍离子的金属离子富集溶液和再生有机相;所述反萃剂和负载有机相的体积比为1:(0.1~10)。
  11. 一种如权利要求1~10任一项所述的分离方法的应用,其中,所述应用为分离电池废液中的镍和锂;
    可选地,所述电池为镍锂离子电池。
  12. 一种包含具有如式Ⅰ所示结构的羧酸类化合物的萃取试剂在分离镍和锂中的应用
    Figure PCTCN2021105653-appb-100005
    其中,m、n各自独立地选自1~21的整数,且10≤m+n≤22。
PCT/CN2021/105653 2020-09-18 2021-07-12 一种镍和锂的分离方法及其应用 WO2022057412A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3192895A CA3192895A1 (en) 2020-09-18 2021-07-12 Method for separating nickel from lithium, and application thereof
AU2021344703A AU2021344703A1 (en) 2020-09-18 2021-07-12 Method for separating nickel from lithium, and application thereof
EP21868241.7A EP4215630A1 (en) 2020-09-18 2021-07-12 Method for separating nickel from lithium, and application thereof
US18/026,560 US20230332265A1 (en) 2020-09-18 2021-07-12 Method for separating nickel from lithium, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010986175.X 2020-09-18
CN202010986175.XA CN114196827A (zh) 2020-09-18 2020-09-18 一种镍和锂的分离方法及其应用

Publications (1)

Publication Number Publication Date
WO2022057412A1 true WO2022057412A1 (zh) 2022-03-24

Family

ID=80645020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105653 WO2022057412A1 (zh) 2020-09-18 2021-07-12 一种镍和锂的分离方法及其应用

Country Status (6)

Country Link
US (1) US20230332265A1 (zh)
EP (1) EP4215630A1 (zh)
CN (1) CN114196827A (zh)
AU (1) AU2021344703A1 (zh)
CA (1) CA3192895A1 (zh)
WO (1) WO2022057412A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942563A (zh) * 2009-07-06 2011-01-12 吉坤日矿日石金属株式会社 从锂离子二次电池回收物制造碳酸锂的方法
CN109055746A (zh) 2018-09-28 2018-12-21 中南大学 一种从高镍锂离子电池正极废料中回收有价金属的方法
CN110494576A (zh) * 2017-03-30 2019-11-22 捷客斯金属株式会社 锂回收方法
CN110527836A (zh) 2019-09-12 2019-12-03 金川集团股份有限公司 一种离子交换法回收废旧镍钴锰锂离子电池中有价金属的方法
CN111018204A (zh) 2019-12-27 2020-04-17 肇庆学院 化学沉淀法与膜分离法联合处理电镀废水
CN111041203A (zh) * 2019-12-27 2020-04-21 厦门钨业股份有限公司 一种用于镍锂分离的混合萃取剂及分离方法
CN111592459A (zh) * 2020-06-28 2020-08-28 北京博萃循环科技有限公司 羧酸类化合物、其制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ886300A0 (en) * 2000-07-19 2000-08-10 Canopean Pty Ltd Process for extraction of metals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942563A (zh) * 2009-07-06 2011-01-12 吉坤日矿日石金属株式会社 从锂离子二次电池回收物制造碳酸锂的方法
CN110494576A (zh) * 2017-03-30 2019-11-22 捷客斯金属株式会社 锂回收方法
CN109055746A (zh) 2018-09-28 2018-12-21 中南大学 一种从高镍锂离子电池正极废料中回收有价金属的方法
CN110527836A (zh) 2019-09-12 2019-12-03 金川集团股份有限公司 一种离子交换法回收废旧镍钴锰锂离子电池中有价金属的方法
CN111018204A (zh) 2019-12-27 2020-04-17 肇庆学院 化学沉淀法与膜分离法联合处理电镀废水
CN111041203A (zh) * 2019-12-27 2020-04-21 厦门钨业股份有限公司 一种用于镍锂分离的混合萃取剂及分离方法
CN111592459A (zh) * 2020-06-28 2020-08-28 北京博萃循环科技有限公司 羧酸类化合物、其制备方法及应用

Also Published As

Publication number Publication date
US20230332265A1 (en) 2023-10-19
CA3192895A1 (en) 2022-03-24
CN114196827A (zh) 2022-03-18
EP4215630A1 (en) 2023-07-26
AU2021344703A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
JP2023528091A (ja) カルボン酸類化合物、その調製方法及び使用
CN112538569B (zh) 一种从含镍钴锰的料液中分离镍钴锰的方法
CN112342387A (zh) 一种镍和镁的分离方法及其应用
CN109439914B (zh) 一种从废旧锂离子电池正极材料浸出液中选择性分离锂的方法
CN112342393B (zh) 采用萃取法除三元电池材料浸出液中铝的方法
CN112442596B (zh) 一种羧酸类萃取剂对电池中间料液中镍钴锰的分离回收方法
CN111020196B (zh) 一种基于poaa从放射性废渣浸出液中分离钍和富集稀土方法
WO2022048307A1 (zh) 一种含镍钴锰的料液中镍钴锰的回收方法
CN115784509A (zh) 一种氯化钴生产工艺中toc去除工艺
WO2021134517A1 (zh) 一种废旧锂离子电池中金属综合提取方法
CN112501445B (zh) 一种制备电池级镍钴锰的方法
CN114572949A (zh) 一种磷酸二氢锂生产工艺
CN114457245B (zh) 一种从氢氧化镍钴制备硫酸镍与硫酸钴的方法
CN112458281A (zh) 一种利用含镍镁废液制备镍盐的方法
WO2022057412A1 (zh) 一种镍和锂的分离方法及其应用
CN113736995A (zh) 一种羧酸类化合物作为萃取剂的应用和金属离子萃取方法
CN111129634B (zh) 失效三元锂离子电池正极材料分离回收方法
CN115386731B (zh) 一种废旧三元锂电池酸性浸出液中铝离子的协同萃取分离方法
CN114540621B (zh) 一种提取电镀污泥有价金属的工艺
CN113481367B (zh) 一种选择性萃取分离镍锂的方法
CN112442605A (zh) 一种分离镍和镁的方法及其应用
CN114933533B (zh) 一种桐油基酸性萃取剂及其制备方法和在选择性萃取分离过渡金属离子中的应用
GB2620219A (en) Method for regenerating raw materials from waste cadium-nickel battery based on solvent extraction
CN115893497A (zh) 一种从含钙铜铬硅的锰溶液中制备高纯硫酸锰的方法
CN114107672A (zh) 一种膦酸酯萃取剂及其对废锂电池浸出液中有价金属萃取分离的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3192895

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: AU2021344703

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021868241

Country of ref document: EP

Effective date: 20230418

ENP Entry into the national phase

Ref document number: 2021344703

Country of ref document: AU

Date of ref document: 20210712

Kind code of ref document: A