WO2022057367A1 - 一种光稳定型tpu复合材料及其制备方法 - Google Patents

一种光稳定型tpu复合材料及其制备方法 Download PDF

Info

Publication number
WO2022057367A1
WO2022057367A1 PCT/CN2021/102944 CN2021102944W WO2022057367A1 WO 2022057367 A1 WO2022057367 A1 WO 2022057367A1 CN 2021102944 W CN2021102944 W CN 2021102944W WO 2022057367 A1 WO2022057367 A1 WO 2022057367A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide particles
composite material
tpu
reaction
light stabilizer
Prior art date
Application number
PCT/CN2021/102944
Other languages
English (en)
French (fr)
Inventor
何建雄
Original Assignee
何建雄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 何建雄 filed Critical 何建雄
Publication of WO2022057367A1 publication Critical patent/WO2022057367A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the invention belongs to the technical field of automotive interior materials, and particularly relates to a light-stable TPU composite material and a preparation method thereof.
  • Thermoplastic polyurethane elastomer rubber (TPU for short) is a kind of polyurethane that can be melted and plasticized by heating. It has no or little cross-linking in its chemical structure. Its molecules are basically linear, but there are certain physical cross-linking.
  • TPU is a material between rubber and plastic. Its elastic modulus is 10 ⁇ 1000Mpa, its hardness range is wide (60HA-85HD), and it is in a wide temperature range (-40 ⁇ 120°C) , has good flexibility.
  • TPU is widely used in daily necessities, sporting goods, toys, decorative materials and other fields because of its good solvent resistance, weather resistance and excellent resistance to high-energy rays.
  • the light stability of TPU materials is poor, and it is prone to yellowing and mechanical properties decline under light conditions. Therefore, how to prepare TPU materials with good mechanical properties and good light stability will cause received widespread attention.
  • CN105885394A discloses a TPU film and a preparation method thereof.
  • the TPU film is composed of TPU resin, PHA resin, anti-hydrolysis agent, light stabilizer and antioxidant.
  • This technology firstly grinds TPU resin at low temperature, combines plasticizing with planetary extruder and five-roll calendering, improves the mixing uniformity and plasticizing effect of TPU resin and various additives, reduces the number of crystal points of TPU film, and adopts The appropriate process temperature can effectively control the crystallinity of the TPU film, so that the mechanical properties of the TPU film between different batches have little difference and good air permeability.
  • this technology improves the light stability of the TPU material to a certain extent, the light stabilizer is easy to precipitate and cannot maintain the light stability of the TPU material for a long time.
  • the CN104387752A discloses a composite light stabilizer and a preparation method thereof.
  • the composite light stabilizer can be obtained by mixing the light stabilizer a containing an oxamide group and the hindered amine light stabilizer b in a certain proportion.
  • the light stabilizer a with an oxamide group can absorb the ultraviolet light that causes the deterioration of the TPU material to the greatest extent, so as to achieve the purpose of protecting the product;
  • the hindered amine light stabilizer b is used to eliminate the ultraviolet light or Free radicals generated by other reasons further protect the product and prevent the deterioration of product performance.
  • the composite light stabilizer prepared by this technology can significantly improve the light stability of thermoplastic polyurethane (TPU) products, and has almost no effect on the transparency, initial color and other properties of TPU products, the composite light stabilizer is easy to precipitate and cannot be Keep the light stability of TPU products for a long time.
  • TPU thermoplastic polyurethane
  • CN109021547A discloses an anti-blue light TPU base film and a preparation method thereof, belonging to the field of film manufacturing.
  • the TPU base material, nano-zinc oxide and light stabilizer are dried, placed in a casting machine, extruded and cast into a film, and then laminated with the upper and lower layers of PET release films to obtain anti-blue light TPU membrane.
  • the anti-blue light base film prepared by this technology is mainly used in mobile terminals and computer screens to prevent blue light from harming people, but the anti-blue light base film is not suitable for the field of automotive interiors.
  • the purpose of the present invention is to provide a light-stable TPU composite material and a preparation method thereof.
  • the TPU composite material has good light stability, tensile strength, hardness, wear resistance and weather resistance, and is suitable for the field of automotive interiors.
  • the present invention provides a light-stable TPU composite material, and the TPU composite material includes the following components in parts by weight:
  • the composite light stabilizer includes starch and a light stabilizer grafted on the starch;
  • the composite oxide particles are composite particles of rare earth oxide particles and titanium dioxide particles.
  • ASA acrylonitrile-styrene-acrylate block copolymer
  • ABS acrylonitrile-butadiene-styrene block copolymer
  • ASA does not contain double bonds, has good weather resistance, and also has good mechanical properties, thermal stability, and easy processing.
  • it is blended with the polyurethane elastomer, which helps to improve the tensile strength, hardness and wear resistance of the TPU material without affecting the weather resistance of the TPU material.
  • the composite light stabilizer has an ultraviolet absorbing effect
  • the composite oxide particle has an ultraviolet shielding effect
  • the composite light stabilizer and the composite oxide particles can be grafted on the molecular chain of the polyurethane elastomer through the crosslinking agent, which is not easy to be precipitated, and can keep the light stability of the TPU composite material effective for a long time.
  • the parts by weight of the polyurethane elastomer may be 60 parts, 63 parts, 66 parts, 68 parts, 70 parts, 72 parts, 74 parts, 77 parts or 80 parts, etc.
  • the weight parts of the ASA can be 20 parts, 22 parts, 24 parts, 26 parts, 28 parts, 30 parts, 32 parts, 34 parts, 36 parts, 38 parts or 40 parts, etc.
  • the weight parts of the composite light stabilizer can be 10 parts, 11 parts, 12 parts, 13 parts, 14 parts or 15 parts, etc.
  • the weight parts of the oxide particles may be 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts, 4.5 parts or 5 parts, etc.
  • the weight part of the crosslinking agent can be 0.3 part, 0.4 part, 0.5 part, 0.6 part, 0.7 part, 0.8 part, 0.9 part or 1 part, etc.
  • the preparation method of the composite light stabilizer comprises the following steps:
  • step a2 Dissolve the solid product obtained in step a1 in an aqueous acetic acid solution, and add paraformaldehyde to react;
  • the light stabilizer solution is added dropwise to the solution obtained in step a2 to carry out the reaction, and after the reaction is completed, the composite light stabilizer is obtained by centrifugal separation, washing and drying.
  • the diamine compound is N-(2-hydroxyethyl)-ethylenediamine and/or hexamethylenediaminetetramethylenephosphonic acid;
  • the mass ratio of starch and diamine compound described in step a1 is 10:(1-3), such as 10:1, 10:1.3, 10:1.6, 10:2, 10:2.2, 10:1 2.5, 10:2.7 or 10:3 etc.
  • the temperature of the reaction in step a1 is 180-230°C (for example, it can be 180°C, 185°C, 190°C, 195°C, 200°C, 205°C, 210°C, 215°C, 220°C, 225°C or 230°C, etc.), the time is 2-5h (for example, it can be 2h, 2.5h, 3h, 3.5h, 4h, 4.5h or 5h, etc.).
  • the concentration of the acetic acid aqueous solution in step a2 is 1-5wt%, such as 1wt%, 1.5wt%, 2wt%, 2.5wt%, 3wt%, 3.5wt%, 4wt%, 4.5wt% or 5wt% %Wait.
  • the mass ratio of the paraformaldehyde described in step a2 to the solid product obtained in step a1 is 1:3-3:1, such as 1:3, 1:2.5, 1:2, 1:1.5, 1 :1, 1.5:1, 2:1, 2.5:1 or 3:1 etc.
  • the temperature of the reaction in step a2 is 80-90°C (for example, it can be 81°C, 82°C, 83°C, 84°C, 85°C, 86°C, 87°C, 88°C, 89°C or 90°C, etc. ), the time is 1-3h (for example, it can be 1h, 1.2h, 1.5h, 1.8h, 2h, 2.3h, 2.6h, 2.8h or 3h, etc.).
  • the mass ratio of the light stabilizer in step a3 to the solid product obtained in step a1 is 0.2-0.5:1, such as 0.2:1, 0.25:1, 0.3:1, 0.35:1, 0.4:1 , 0.45:1 or 0.5:1, etc.
  • the solvent of the light stabilizer solution in step a3 is N,N-dimethylformamide.
  • the temperature of the reaction in step a3 is 70-80°C (for example, it can be 70°C, 71°C, 72°C, 73°C, 74°C, 75°C, 76°C, 77°C, 78°C, 79°C or 80°C), the time is 12-24h (for example, it can be 12h, 13h, 14h, 15h, 16h, 17h, 18h, 19h, 20h, 21h, 22h, 23h or 24h, etc.).
  • the light stabilizer is selected from 2-hydroxy-4-n-octyloxybenzophenone, 3-[3-(2-H-benzotriazol-2-yl)-4 -Hydroxy-5-tert-butylphenyl]-propionic acid-polyethylene glycol 300 ester, 2-[2-hydroxy-4-[3-(2-ethylhexyloxy)-2-hydroxypropoxy ]phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine or a combination of at least two.
  • the preparation method of the composite oxide particles comprises the following steps:
  • step b3 Mix the reaction solutions obtained in step b1 and step b2, react, and obtain the composite oxide particles after solid-liquid separation.
  • the mass ratio of the aminosilane coupling agent to the rare earth oxide particles in step b1 is 0.5-0.8:1, for example, 0.5:1, 0.55:1, 0.6:1, 0.65 :1, 0.7:1, 0.75:1, or 0.8:1, etc.
  • the mass ratio of the epoxy silane coupling agent to the titanium dioxide particles in step b2 is 0.3-0.5:1, such as 0.3:1, 0.32:1, 0.34:1, 0.36:1, 0.38:1 , 0.4:1, 4.3:1, 0.45:1, 0.47:1 or 0.5:1 etc.
  • the temperature of the reaction in step b1 and step b2 is independently 80-100°C (for example, it can be 80°C, 82°C, 85°C, 87°C, 89°C, 91°C, 93°C, 96°C, 98°C or 100°C, etc.), the reaction time is independently 5-10h (for example, it can be 5h, 5.5h, 6h, 6.5h, 7h, 7.5h, 8h, 8.5h, 9h, 9.5h or 10h Wait).
  • the mass ratio of the rare earth oxide particles to the titanium dioxide particles is 1-2:1, such as 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1 , 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1 etc.
  • the particle size of the rare earth oxide particles is 1-10 ⁇ m, such as 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m or 10 ⁇ m.
  • the particle size of the titanium dioxide particles is 50-100 nm, such as 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm or 100 nm.
  • the rare earth oxide particles are selected from one or a combination of at least two of cerium oxide particles, praseodymium oxide particles and yttrium oxide particles.
  • the organic solvents described in step b1 and step b2 are both toluene.
  • the temperature of the reaction described in step b3 is 15-30°C (for example, it can be 15°C, 18°C, 20°C, 22°C, 24°C, 27°C or 30°C, etc.), and the time is 0.5-2h ( For example, it can be 0.5h, 0.8h, 1h, 1.2h, 1.4h, 1.6h, 1.8h or 2h, etc.).
  • the crosslinking agent is a blocked isocyanate.
  • the present invention provides a preparation method of the above-mentioned TPU composite material, and the preparation method comprises the following steps:
  • step (2) the mixed material obtained in step (1) is mixed with polyurethane elastomer, ASA;
  • step (3) Extruding the mixed material obtained in step (2) through an extruder to obtain the TPU composite material.
  • the mixing method described in step (1) is: in a high-speed mixer, at 100-200r/min (for example, it can be 100r/min, 110r/min, 120r/min, 130r/min) , 140r/min, 150r/min, 160r/min, 170r/min, 180r/min, 190r/min or 200r/min, etc.) for 5-10min (for example, it can be 5min, 5.5min, 6min, 6.5min, 7min, 7.5min, 8min, 8.5min, 9min, 9.5min or 10min, etc.).
  • the mixing method in step (2) is: in a high-speed mixer, at 300-500r/min (for example, 300r/min, 320r/min, 340r/min, 360r/min, 380r/min) , 400r/min, 420r/min, 440r/min, 460r/min, 480r/min or 500r/min, etc.) for 5-10min (for example, 5min, 5.5min, 6min, 6.5min, 7min, 7.5min) , 8min, 8.5min, 9min, 9.5min or 10min, etc.).
  • 300-500r/min for example, 300r/min, 320r/min, 340r/min, 360r/min, 380r/min
  • 400r/min for example, 420r/min, 440r/min, 460r/min, 480r/min or 500r/min, etc.
  • 5-10min for example, 5min, 5.5min, 6min, 6.5min, 7min, 7.5min
  • the temperature of the extrusion section of the extruder in step (3) is 180-200°C (for example, it can be 180°C, 182°C, 185°C, 187°C, 190°C, 192°C, 194°C, 196°C, 198°C or 200°C, etc.), the material residence time is 1-3min (for example, it can be 1min, 1.2min, 1.4min, 1.6min, 1.8min, 2min, 2.2min, 2.4min, 2.6min, 2.8min or 3min, etc.) .
  • the present invention provides an application of the above-mentioned TPU composite material in the field of automobile interior decoration.
  • the present invention has the following beneficial effects:
  • the invention adopts ASA without double bond to blend with the polyurethane elastomer, which helps to improve the tensile strength, hardness and wear resistance of the TPU material without affecting the weather resistance of the TPU material.
  • the TPU composite material obtains good photostability.
  • the tensile strength is 45-55MPa
  • the Shore A hardness is 70-80
  • the Taber abrasion is 90-100mg
  • the xenon lamp aging color difference ⁇ E is 0.6-0.8, which is suitable for automotive interior materials.
  • step a2 The solid product obtained in step a1 is dissolved in an aqueous acetic acid solution with a concentration of 3wt%, then paraformaldehyde is added, and the mass ratio of paraformaldehyde to the solid product obtained in step a1 is 1:1, and the temperature is raised to 90° C.
  • step b3 Mix the reaction solution obtained in step b1 and step b2 in which the mass ratio of cerium oxide particles and titanium dioxide particles is 1:1, react at normal temperature for 1 hour, and obtain the composite oxide particles after solid-liquid separation.
  • the present embodiment provides a light-stable TPU composite material, comprising the following raw material components in parts by weight:
  • the preparation method of the above-mentioned light-stable TPU composite material is as follows:
  • step (2) mixing the mixed material obtained in step (1) with polyurethane elastomer and ASA in a high-speed mixer with a rotating speed of 400 r/min for 8 min;
  • step (3) Extruding the mixed material obtained in step (2) through an extruder to obtain the TPU composite material, wherein the temperature in the extrusion section is 180° C. and the material residence time is 1.5 min.
  • the present embodiment provides a light-stable TPU composite material, comprising the following raw material components in parts by weight:
  • the preparation method of the above-mentioned light-stable TPU composite material is as follows:
  • step (2) mixing the mixed material obtained in step (1) with polyurethane elastomer and ASA in a high-speed mixer with a rotating speed of 500 r/min for 5 min;
  • step (3) Extruding the mixed material obtained in step (2) through an extruder to obtain the TPU composite material, wherein the temperature of the extrusion section is 190° C. and the material residence time is 1 min.
  • the present embodiment provides a light-stable TPU composite material, comprising the following raw material components in parts by weight:
  • the preparation method of the above-mentioned light-stable TPU composite material is as follows:
  • step (2) mixing the mixed material obtained in step (1) with polyurethane elastomer, ASA in a high-speed mixer with a rotating speed of 450r/min for 7min;
  • step (3) Extruding the mixed material obtained in step (2) through an extruder to obtain the TPU composite material, wherein the temperature in the extrusion section is 200° C. and the material residence time is 2 min.
  • the present embodiment provides a light-stable TPU composite material, comprising the following raw material components in parts by weight:
  • the preparation method of the above-mentioned light-stable TPU composite material is as follows:
  • step (2) mixing the mixed material obtained in step (1) with polyurethane elastomer and ASA in a high-speed mixer with a rotating speed of 300 r/min for 10 min;
  • step (3) The mixed material obtained in step (2) is extruded through an extruder to obtain the TPU composite material, wherein the temperature of the extrusion section is 195° C., and the material residence time is 3 min.
  • the present embodiment provides a light-stable TPU composite material, comprising the following raw material components in parts by weight:
  • the preparation method of the above-mentioned light-stable TPU composite material is as follows:
  • step (2) mixing the mixed material obtained in step (1) with polyurethane elastomer, ASA in a high-speed mixer with a rotating speed of 350r/min for 6min;
  • step (3) Extruding the mixed material obtained in step (2) through an extruder to obtain the TPU composite material, wherein the temperature of the extrusion section is 185° C. and the material residence time is 2.5 min.
  • Example 5 The difference from Example 5 is that ASA is not added, and the parts by weight of the polyurethane elastomer are 100 parts, and other conditions are the same as those of Example 5.
  • Example 5 The difference with Example 5 is that the composite light stabilizer is not added, the weight parts of the composite oxide particles is 16 parts, and other conditions are the same as those of Example 5.
  • Example 5 The difference from Example 5 is that the composite oxide particles are not added, the weight fraction of composite light stabilizer is 16 parts, and other conditions are the same as those of Example 5.
  • Shore A hardness tested according to the method of GB/T 531.1-2008;
  • the TPU composite material provided by the present invention has higher tensile strength, hardness, wear resistance and UV resistance, and its tensile strength is 45-55MPa, and the Shore A hardness is 70- 80, Taber wear is 90-100mg, xenon lamp aging color difference ⁇ E is 0.6-0.8, suitable for automotive interior materials.
  • Example 5 Compared with Example 5, in Comparative Example 1, since ASA was not added, the tensile strength, hardness and wear resistance of the obtained material were significantly decreased, and the UV resistance was also decreased to a certain extent. Compared with Example 5, the composite light stabilizer was not added in Comparative Example 2, and the composite oxide particles were not added in Comparative Example 3, which destroyed the synergistic effect between the two, so the UV resistance of the obtained TPU composite material decreased significantly. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种光稳定型TPU复合材料及其制备方法。所述TPU复合材料包括如下重量份数的原料组分:聚氨酯弹性体60-80份、ASA 20-40份、复合光稳定剂10-15份、复合氧化物粒子2-5份和交联剂0.3-1份。所述TPU复合材料的制备方法包括如下步骤:先将复合光稳定剂、复合氧化物粒子和交联剂混合;然后与聚氨酯弹性体、ASA混合;然后将得到的混合物料通过挤出机挤出,最终得到TPU复合材料。本发明提供的光稳定型TPU复合材料具有良好的拉伸强度、硬度、耐磨性、耐候性和光稳定性,适用于汽车内饰领域。

Description

一种光稳定型TPU复合材料及其制备方法
本公开基于申请号为202010986170.7,申请日为2020年9月18日的中国专利申请提出,并要求该篇中国专利申请的优先权,该篇中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明属于汽车内饰材料技术领域,具体涉及一种光稳定型TPU复合材料及其制备方法。
背景技术
热塑性聚氨酯弹性体橡胶(Thermoplastic polyurethane,简称TPU)是一类加热可以熔融塑化的聚氨酯,在化学结构上没有或很少交联,其分子基本是线性的,但是存在一定的物理交联。TPU作为弹性体是介于橡胶和塑料之间的一种材料,其弹性模量在10~1000Mpa,硬度范围宽(60HA-85HD),且在很宽的温度范围内(-40~120℃),具有良好的柔性。TPU因其良好的耐溶剂性、耐候性以及极优的耐高能射线性能,在日用品、体育用品、玩具、装饰材料等领域得到广泛应用。但是TPU材料的光稳定性较差,在光照条件下极易发生黄变,力学性能下降等缺点,因此,如何制备出既具有良好的力学性能,又具有良好的光稳定性的TPU材料,引起了人们的广泛关注。
CN105885394A公开了一种TPU薄膜及其制备方法,该TPU薄膜由TPU树脂、PHA树脂、抗水解剂、光稳定剂、抗氧剂组成。该技术先将TPU树脂低温磨粉,结合行星挤出机塑化以及五辊压延,提高了TPU树脂与各助剂的混合均匀性及塑化效果,减少TPU膜晶点的数量,并采用了合适的工艺温度,有效控制了TPU薄膜的结晶度,使TPU薄膜不同批次间力学性能差异小、透气性好。该技术虽然在一定程度上改善了TPU材料的光稳定性,但光稳定剂易析出,不能长期保持TPU材料的光稳定性。
CN104387752A公开了一种复合光稳定剂及其制备方法,该技术中通过将含有草酰胺基团的光稳定剂a和受阻胺类光稳定剂b按一定比例混合,即可得到复合光稳定剂。其中具有草酰胺基团的光稳定剂a,可以最大程度的吸收引起TPU材料性能劣化的紫外光,从而达到保护制品的目的;受阻胺类光稳定剂b用来消除制品中由于紫外光或是其他原因产生的自由基,进一步保护制品,防止 产品性能出现劣化。虽然该技术制备的复合光稳定剂可以显著提高热塑性聚氨酯(TPU)制品的光稳定性,且对TPU制品的透明性,初始颜色等性能几乎没有任何影响,但是该复合光稳定剂易析出,无法长期保持TPU制品的光稳定性。
CN109021547A公开了一种防蓝光TPU基膜及其制备方法,属于薄膜制造领域。该技术通过将TPU基料、纳米氧化锌及光稳定剂干燥后,置于流延机中挤出流延成膜,然后与上下两层PET离型膜压合,即可得到防蓝光的TPU膜。该技术制备的防蓝光基膜,主要应用于移动终端和电脑屏幕,防止蓝光对人们的伤害,但是该防蓝光基膜不适用于汽车内饰领域。
因此,如何制备出一种既具有良好的光稳定性,又具有良好的力学性能、热稳定性的TPU材料,已成为目前亟待解决的问题。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种光稳定型TPU复合材料及其制备方法。该TPU复合材料具有良好的光稳定性,拉伸强度、硬度、耐磨性及耐候性,适用于汽车内饰领域。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供一种光稳定型TPU复合材料,所述TPU复合材料包括如下重量份数的组分:
Figure PCTCN2021102944-appb-000001
所述复合光稳定剂包括淀粉和接枝在所述淀粉上的光稳定剂;
所述复合氧化物粒子为稀土氧化物粒子与二氧化钛粒子的复合粒子。
ASA(丙烯腈-苯乙烯-丙烯酸酯嵌段共聚物)采用丙烯酸酯单体替代了ABS(丙烯腈-丁二烯-苯乙烯嵌段共聚物)中的含有二双键的丁二烯单体,因此ASA不含双键,耐候性好,同时还具有良好的力学性能、热稳定性,且易于加工。 本发明将其与聚氨酯弹性体共混,有助于提高TPU材料的拉伸强度、硬度和耐磨性,且不会影响TPU材料的耐候性。
本发明中,复合光稳定剂具有紫外吸收作用,复合氧化物粒子具有紫外屏蔽作用,通过二者在特定的比例下协同配合,能够使TPU复合材料获得良好的光稳定性。而且复合光稳定剂和复合氧化物粒子可以通过交联剂接枝在聚氨酯弹性体的分子链上,不易析出,能使TPU复合材料的光稳定性保持长期有效。
本发明中,所述聚氨酯弹性体的重量份数可以是60份、63份、66份、68份、70份、72份、74份、77份或80份等。
所述ASA的重量份数可以是20份、22份、24份、26份、28份、30份、32份、34份、36份、38份或40份等。
所述复合光稳定剂的重量份数可以是10份、11份、12份、13份、14份或15份等。
所述氧化物粒子的重量份数可以是2份、2.5份、3份、3.5份、4份、4.5份或5份等。
所述交联剂的重量份数可以是0.3份、0.4份、0.5份、0.6份、0.7份、0.8份、0.9份或1份等。
以下作为本发明的优选技术方案,但不作为对本发明提供的技术方案的限制,通过以下优选地技术方案,可以更好地达到和实现本发明的目的和有益效果。
作为本发明的优选技术方案,所述复合光稳定剂的制备方法包括如下步骤:
a1.将淀粉和二胺化合物溶于水中,加热反应,反应结束后加入无水乙醇,析出固体产物;
a2.将步骤a1得到的固体产物溶于醋酸水溶液中,加入多聚甲醛进行反应;
a3.将光稳定剂溶液滴加到步骤a2得到的溶液中进行反应,反应结束后,经离心分离、洗涤、干燥,得到所述复合光稳定剂。
作为本发明的优选方案,所述二胺化合物为N-(2-羟乙基)-乙二胺和/或己二胺四甲叉膦酸;
优选地,步骤a1中所述淀粉和二胺化合物的质量比为10:(1-3),例如可以是10:1、10:1.3、10:1.6、10:2、10:2.2、10:2.5、10:2.7或10:3等。
优选地,步骤a1中所述反应的温度为180-230℃(例如可以是180℃、185℃、190℃、195℃、200℃、205℃、210℃、215℃、220℃、225℃或230℃等),时间为2-5h(例如可以是2h、2.5h、3h、3.5h、4h、4.5h或5h等)。
优选地,步骤a2中所述醋酸水溶液的浓度为1-5wt%,例如可以是1wt%、1.5wt%、2wt%、2.5wt%、3wt%、3.5wt%、4wt%、4.5wt%或5wt%等。
优选地,步骤a2中所述多聚甲醛与步骤a1得到的固体产物的质量比为1:3-3:1,例如可以是1:3、1:2.5、1:2、1:1.5、1:1、1.5:1、2:1、2.5:1或3:1等。
优选地,步骤a2中所述反应的温度为80-90℃(例如可以是81℃、82℃、83℃、84℃、85℃、86℃、87℃、88℃、89℃或90℃等),时间为1-3h(例如可以是1h、1.2h、1.5h、1.8h、2h、2.3h、2.6h、2.8h或3h等)。
优选地,步骤a3中所述光稳定剂与步骤a1得到的固体产物的质量比为0.2-0.5:1,例如可以是0.2:1、0.25:1、0.3:1、0.35:1、0.4:1、0.45:1或0.5:1等。
优选地,步骤a3中所述光稳定剂溶液的溶剂为N,N-二甲基甲酰胺。
优选地,步骤a3中所述反应的温度为70-80℃(例如可以是70℃、71℃、72℃、73℃、74℃、75℃、76℃、77℃、78℃、79℃或80℃),时间为12-24h(例如可以是12h、13h、14h、15h、16h、17h、18h、19h、20h、21h、22h、23h或24h等)。
作为本发明的优选方案,所述光稳定剂选自2-羟基-4-正辛氧基二苯甲酮、3-[3-(2-H-苯并三唑-2-基)-4-羟基-5-叔丁基苯基]-丙酸-聚乙二醇300酯、2-[2-羟基-4-[3-(2-乙基己氧基)-2-羟基丙氧基]苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪中的一种或至少两种的组合。
作为本发明的优选方案,所述复合氧化物粒子的制备方法包括如下步骤:
b1.将稀土氧化物粒子和氨基硅烷偶联剂分散于有机溶剂中,反应,得到氨基硅烷偶联剂改性的稀土氧化物粒子;
b2.将二氧化钛粒子和环氧基硅烷偶联剂分散于有机溶剂中,反应,得到环氧基硅烷偶联剂改性的二氧化钛粒子;
b3.将步骤b1和步骤b2得到的反应液混合,反应,固液分离后得到所述复 合氧化物粒子。
作为本发明的优选方案,步骤b1中所述氨基硅烷偶联剂与所述稀土氧化物粒子的质量比为0.5-0.8:1,例如可以是0.5:1、0.55:1、0.6:1、0.65:1、0.7:1、0.75:1、或0.8:1等。
优选地,步骤b2中所述环氧基硅烷偶联剂与二氧化钛粒子的质量比为0.3-0.5:1,例如可以是0.3:1、0.32:1、0.34:1、0.36:1、0.38:1、0.4:1、4.3:1、0.45:1、0.47:1或0.5:1等。
优选地,步骤b1和步骤b2中所述反应的温度各自独立地为80-100℃(例如可以是80℃、82℃、85℃、87℃、89℃、91℃、93℃、96℃、98℃或100℃等),所述反应的时间各自独立地为5-10h(例如可以是5h、5.5h、6h、6.5h、7h、7.5h、8h、8.5h、9h、9.5h或10h等)。
优选地,所述稀土氧化物粒子与所述二氧化钛粒子的质量比为1-2:1,例如可以是1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1或2:1等。
优选地,所述稀土氧化物粒子的粒径为1-10μm,例如可以是1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm或10μm等。
优选地,所述二氧化钛粒子的粒径为50-100nm,例如可以是50nm、55nm、60nm、65nm、70nm、75nm、80nm、85nm、90nm、95nm或100nm等。
优选地,所述稀土氧化物粒子选自氧化铈粒子、氧化镨粒子和氧化钇粒子中的一种或至少两种的组合。
优选地,步骤b1和步骤b2中所述有机溶剂均为甲苯。
优选地,步骤b3中所述的反应的温度为15-30℃(例如可以是15℃、18℃、20℃、22℃、24℃、27℃或30℃等),时间为0.5-2h(例如可以是0.5h、0.8h、1h、1.2h、1.4h、1.6h、1.8h或2h等)。
作为本发明的优选方案,所述交联剂为封闭型异氰酸酯。
第二方面,本发明提供一种上述TPU复合材料的制备方法,所述的制备方法包括如下步骤:
(1)将复合光稳定剂、复合氧化物粒子和交联剂混合;
(2)将步骤(1)得到的混合物料与聚氨酯弹性体、ASA混合;
(3)将步骤(2)得到的混合物料通过挤出机挤出,得到所述TPU复合材料。
作为本发明的优选方案,步骤(1)中所述混合的方法为:在高速混合机中,以100-200r/min(例如可以是100r/min、110r/min、120r/min、130r/min、140r/min、150r/min、160r/min、170r/min、180r/min、190r/min或200r/min等)的转速混合5-10min(例如可以是5min、5.5min、6min、6.5min、7min、7.5min、8min、8.5min、9min、9.5min或10min等)。
优选地,步骤(2)中所述混合的方法为:在高速混合机中,以300-500r/min(例如可以是300r/min、320r/min、340r/min、360r/min、380r/min、400r/min、420r/min、440r/min、460r/min、480r/min或500r/min等)的转速混合5-10min(例如可以是5min、5.5min、6min、6.5min、7min、7.5min、8min、8.5min、9min、9.5min或10min等)。
优选地,步骤(3)所述挤出机的挤出段温度为180-200℃(例如可以是180℃、182℃、185℃、187℃、190℃、192℃、194℃、196℃、198℃或200℃等),物料停留时间为1-3min(例如可以是1min、1.2min、1.4min、1.6min、1.8min、2min、2.2min、2.4min、2.6min、2.8min或3min等)。
第三方面,本发明提供一种上述TPU复合材料在汽车内饰领域中的应用。
与现有技术相比,本发明具有以下有益效果:
本发明采用不含双键的ASA与聚氨酯弹性体共混,有助于提高TPU材料的拉伸强度、硬度和耐磨性,且不会影响TPU材料的耐候性,且通过复合光稳定剂与复合氧化物粒子的协同作用下,使TPU复合材料获得良好的光稳定性。其拉伸强度为45-55MPa,邵氏A硬度为70-80,泰伯磨耗为90-100mg,氙灯老化色差ΔE为0.6-0.8,适用作汽车内饰材料。
具体实施方式
下面通过具体实施例来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
本发明实施例中部分原料来源如表1所示:
表1
名称 牌号
多聚甲醛 Sigma-Aldrich的P6148
聚氨酯弹性体 烟台万华的WHT-1570IC
ASA LG化学的LI-912
封闭型异氰酸酯 德固赛B1530
复合光稳定剂的制备:
a1.将质量比为10:2的淀粉和N-(2-羟乙基)-乙二胺溶于水溶液中,在密闭的高压反应釜中加热至200℃后反应3h,反应结束后加入无水乙醇,析出固体产物;
a2.将步骤a1得到的固体产物溶于浓度为3wt%的醋酸水溶液中,然后加入多聚甲醛,多聚甲醛与步骤a1得到的固体产物的质量比为1:1,升温至90℃,反应2h;
a3.在75℃下,将2-羟基-4-正辛氧基二苯甲酮溶液滴加到步骤a2得到的溶液中,反应15h,反应结束后,经离心分离、洗涤、干燥,即可得到所述复合光稳定剂,其中,2-羟基-4-正辛氧基二苯甲酮溶液的溶剂为N,N-二甲基甲酰胺,且2-羟基-4-正辛氧基二苯甲酮溶液与步骤a1得到的固体产物的质量比为0.3:1。
复合氧化物粒子的制备:
b1.将质量比为1:0.6的氧化铈粒子和γ-氨丙基三甲氧基硅烷分散于甲苯中,然后升温至90℃,反应8h,得到粒径为5μm的γ-氨丙基三甲氧基硅烷改性稀土氧化铈粒子;
b2.将质量比为1:0.4的二氧化钛粒子和γ-(2,3-环氧丙氧)丙基三甲氧基硅烷分散于甲苯中,然后升温至85℃,反应9h,得到粒径为50nm的γ-(2,3-环氧丙氧)丙基三甲氧基硅烷改性二氧化钛粒子;
b3.将氧化铈粒子与二氧化钛粒子质量比为1:1的步骤b1和步骤b2得到的反应液混合,在常温下反应1h,固液分离后得到所述复合氧化物粒子。
实施例1
本实施例提供一种光稳定型TPU复合材料,包括如下重量份数的原料组分:
Figure PCTCN2021102944-appb-000002
上述光稳定型TPU复合材料的制备方法如下:
(1)将复合光稳定剂、复合氧化物粒子和封闭型异氰酸酯在转速为100r/min的高速混合机中混合7min;
(2)将步骤(1)得到的混合物料与聚氨酯弹性体和ASA在转速为400r/min的高速混合机中混合8min;
(3)将步骤(2)得到的混合物料通过挤出机挤出,得到所述TPU复合材料,其中,挤出段温度为180℃,物料停留时间为1.5min。
实施例2
本实施例提供一种光稳定型TPU复合材料,包括如下重量份数的原料组分:
Figure PCTCN2021102944-appb-000003
上述光稳定型TPU复合材料的制备方法如下:
(1)将复合光稳定剂、复合氧化物粒子和封闭型异氰酸酯在转速为150r/min的高速混合机中混合5min;
(2)将步骤(1)得到的混合物料与聚氨酯弹性体和ASA在转速为500r/min的高速混合机中混合5min;
(3)将步骤(2)得到的混合物料通过挤出机挤出,得到所述TPU复合材料,其中,挤出段温度为190℃,物料停留时间为1min。
实施例3
本实施例提供一种光稳定型TPU复合材料,包括如下重量份数的原料组分:
Figure PCTCN2021102944-appb-000004
上述光稳定型TPU复合材料的制备方法如下:
(1)将复合光稳定剂、复合氧化物粒子和封闭型异氰酸酯在转速为170r/min的高速混合机中混合9min;
(2)将步骤(1)得到的混合物料与聚氨酯弹性体、ASA在转速为450r/min的高速混合机中混合7min;
(3)将步骤(2)得到的混合物料通过挤出机挤出,得到所述TPU复合材料,其中,挤出段温度为200℃,物料停留时间为2min。
实施例4
本实施例提供一种光稳定型TPU复合材料,包括如下重量份数的原料组分:
Figure PCTCN2021102944-appb-000005
上述光稳定型TPU复合材料的制备方法如下:
(1)将复合光稳定剂、复合氧化物粒子和封闭型异氰酸酯在转速为200r/min的高速混合机中混合10min;
(2)将步骤(1)得到的混合物料与聚氨酯弹性体、ASA在转速为300r/min的高速混合机中混合10min;
(3)将步骤(2)得到的混合物料通过挤出机挤出,得到所述TPU复合材料,其中,挤出段温度为195℃,物料停留时间为3min。
实施例5
本实施例提供一种光稳定型TPU复合材料,包括如下重量份数的原料组分:
Figure PCTCN2021102944-appb-000006
上述光稳定型TPU复合材料的制备方法如下:
(1)将复合光稳定剂、复合氧化物粒子和封闭型异氰酸酯在转速为130r/min的高速混合机中混合6min;
(2)将步骤(1)得到的混合物料与聚氨酯弹性体、ASA在转速为350r/min的高速混合机中混合6min;
(3)将步骤(2)得到的混合物料通过挤出机挤出,得到所述TPU复合材料,其中,挤出段温度为185℃,物料停留时间为2.5min。
对比例1
与实施例5的区别在于,不加入ASA,聚氨酯弹性体的重量份数为100份,其他条件与实施例5相同。
对比例2
与实施例5的区别在于,不加入复合光稳定剂,复合物氧化粒子的重量份 数为16份,其他条件与实施例5相同。
对比例3
与实施例5的区别在于,不加入复合氧化物粒子,复合光稳定剂的重量份数为16份,其他条件与实施例5相同。
对上述实施例和对比例提供的TPU复合材料的性能进行测试,测试标准如下:
拉伸强度:按照GB/T 528-2009的方法测试;
邵氏A硬度:按照GB/T 531.1-2008的方法测试;
泰伯磨耗:按照ASTM D1044-2008的方法测试;
氙灯老化色差(ΔE):按照SAE J1885的方法测试,辐射能量300kJ/m 2。
上述测试的结果如下表2所示:
表2
测试项目 拉伸强度(MPa) 邵氏A硬度 泰伯磨耗(mg) ΔE
实施例1 54.3 78 91.4 0.78
实施例2 52.5 77 93.6 0.73
实施例3 50.4 75 95.7 0.62
实施例4 46.8 71 98.5 0.76
实施例5 48.7 74 96.3 0.64
对比例1 27.6 59 134.5 0.83
对比例2 29.4 86 77.2 1.59
对比例3 25.3 65 126.7 1.43
由表2的结果可以看出,本发明提供的TPU复合材料具有较高的拉伸强度、硬度、耐磨性和抗紫外性能,其拉伸强度为45-55MPa,邵氏A硬度为70-80,泰伯磨耗为90-100mg,氙灯老化色差ΔE为0.6-0.8,适用作汽车内饰材料。
其中,与实施例5相比,对比例1由于未添加ASA,因此得到的材料的拉伸强度、硬度和耐磨性明显下降,抗紫外性也有一定程度下降。与实施例5相比,对比例2未添加复合光稳定剂,对比例3未添加复合氧化物粒子,破坏了二者之间的协同作用,因此得到的TPU复合材料的抗紫外性均显著下降。
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明 的保护范围和公开范围之内。

Claims (10)

  1. 一种光稳定型TPU复合材料,其特征在于,所述TPU复合材料包括如下重量份数的组分:
    Figure PCTCN2021102944-appb-100001
    所述复合光稳定剂包括淀粉和接枝在所述淀粉上的光稳定剂;
    所述复合氧化物粒子为稀土氧化物粒子与二氧化钛粒子的复合粒子。
  2. 根据权利要求1所述的TPU复合材料,其特征在于,所述复合光稳定剂的制备方法包括如下步骤:
    a1.将淀粉和二胺化合物溶于水中,加热反应,反应结束后加入无水乙醇,析出固体产物;
    a2.将步骤a1得到的固体产物溶于醋酸水溶液中,加入多聚甲醛进行反应;
    a3.将光稳定剂溶液滴加到步骤a2得到的溶液中进行反应,反应结束后,经离心分离、洗涤、干燥,得到所述复合光稳定剂。
  3. 根据权利要求2所述的TPU复合材料,其特征在于,步骤a1中所述二胺化合物为N-(2-羟乙基)-乙二胺和/或己二胺四甲叉膦酸;
    优选地,步骤a1中所述淀粉和二胺化合物的质量比为10:(1-3);
    优选地,步骤a1中所述反应的温度为180-230℃,时间为2-5h;
    优选地,步骤a2中所述醋酸水溶液的浓度为1-5wt%;
    优选地,步骤a2中所述多聚甲醛与步骤a1得到的固体产物的质量比为1:3-3:1;
    优选地,步骤a2中所述反应的温度为80-90℃,时间为1-3h;
    优选地,步骤a3中所述光稳定剂与步骤a1得到的固体产物的质量比为0.2-0.5:1;
    优选地,步骤a3中所述光稳定剂溶液的溶剂为N,N-二甲基甲酰胺。
    优选地,步骤a3中所述反应的温度为70-80℃,时间为12-24h。
  4. 根据权利要求1-3任一项所述的TPU复合材料,其特征在于,光稳定剂选自2-羟基-4-正辛氧基二苯甲酮、3-[3-(2-H-苯并三唑-2-基)-4-羟基-5-叔丁基苯基]-丙酸-聚乙二醇300酯、2-[2-羟基-4-[3-(2-乙基己氧基)-2-羟基丙氧基]苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪中的一种或至少两种的组合。
  5. 根据权利要求1-4任一项所述的TPU复合材料,其特征在于,所述复合氧化物粒子的制备方法包括如下步骤:
    b1.将稀土氧化物粒子和氨基硅烷偶联剂分散于有机溶剂中,反应,得到氨基硅烷偶联剂改性的稀土氧化物粒子;
    b2.将二氧化钛粒子和环氧基硅烷偶联剂分散于有机溶剂中,反应,得到环氧基硅烷偶联剂改性的二氧化钛粒子;
    b3.将步骤b1和步骤b2得到的反应液混合,反应,固液分离后得到所述复合氧化物粒子。
  6. 根据权利要求5所述的TPU复合材料,其特征在于,步骤b1中所述氨基硅烷偶联剂与所述稀土氧化物粒子的质量比为0.5-0.8:1;
    优选地,步骤b2中所述环氧基硅烷偶联剂与二氧化钛粒子的质量比为0.3-0.5:1;
    优选地,步骤b1和步骤b2中所述反应的温度各自独立地为80-100℃,所述反应的时间各自独立地为5-10h;
    优选地,所述稀土氧化物粒子与所述二氧化钛粒子的质量比为1-2:1;
    优选地,所述稀土氧化物粒子的粒径为1-10μm;
    优选地,所述二氧化钛粒子的粒径为50-100nm;
    优选地,所述稀土氧化物粒子选自氧化铈粒子、氧化镨粒子和氧化钇粒子中的一种或至少两种的组合;
    优选地,步骤b1和步骤b2中所述有机溶剂均为甲苯;
    优选地,步骤b3中所述反应的温度为15-30℃,时间为0.5-2h。
  7. 根据权利要求1-6任一项所述的TPU复合材料,其特征在于,所述交联剂为封闭型异氰酸酯。
  8. 一种如权利要求1-7任一项所述的TPU复合材料的制备方法,其特征在于,所述制备方法包括如下步骤:
    (1)将复合光稳定剂、复合氧化物粒子和交联剂混合;
    (2)将步骤(1)得到的混合物料与聚氨酯弹性体、ASA混合;
    (3)将步骤(2)得到的混合物料通过挤出机挤出,得到所述TPU复合材料。
  9. 根据权利要求8所述的制备方法,其特征在于,步骤(1)中所述混合的方法为:在高速混合机中,以100-200r/min的转速混合5-10min;
    优选地,步骤(2)中所述混合的方法为:在高速混合机中,以300-500r/min的转速混合5-10min;
    优选地,步骤(3)所述挤出机的挤出段温度为180-200℃,物料停留时间为1-3min。
  10. 一种如权利要求1-7任一项所述的TPU复合材料在汽车内饰中的应用。
PCT/CN2021/102944 2020-09-18 2021-06-29 一种光稳定型tpu复合材料及其制备方法 WO2022057367A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010986170.7A CN112251011B (zh) 2020-09-18 2020-09-18 一种光稳定型tpu复合材料及其制备方法
CN202010986170.7 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022057367A1 true WO2022057367A1 (zh) 2022-03-24

Family

ID=74232331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102944 WO2022057367A1 (zh) 2020-09-18 2021-06-29 一种光稳定型tpu复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN112251011B (zh)
WO (1) WO2022057367A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112251011B (zh) * 2020-09-18 2022-05-24 东莞市雄林新材料科技股份有限公司 一种光稳定型tpu复合材料及其制备方法
CN113549248B (zh) * 2021-08-09 2022-07-12 万华化学(北京)有限公司 磁性光稳定剂及制备方法、聚氨酯组合物及聚氨酯复合材料的制备方法
CN113527767B (zh) * 2021-08-09 2022-07-12 万华化学(北京)有限公司 磁性内脱模剂及制备方法、聚氨酯组合物及聚氨酯hp-rtm复合材料的制备方法
CN115044098B (zh) * 2022-06-16 2023-09-19 濮阳市中原石化实业有限公司 一种聚丙烯增韧、增强专用复合助剂

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243257A (ja) * 1988-08-03 1990-02-13 Asahi Chem Ind Co Ltd 安定化されたポリウレタン組成物
EP0487293A2 (en) * 1990-11-20 1992-05-27 Ipposha Oil Industries Co. Ltd. Stabilized acrylic fibers and polyurethane elastomer fibers and process for making same
CN1784302A (zh) * 2003-05-09 2006-06-07 巴斯福股份公司 包含热塑性聚氨酯和丙烯腈-苯乙烯-丙烯酸酯共聚物(asa)的混合物
CN102659956A (zh) * 2012-04-26 2012-09-12 江南大学 一类基于阿拉伯木聚糖改性的紫外吸收剂及其制备方法
CN103864966A (zh) * 2014-03-25 2014-06-18 中国科学院上海有机化学研究所 一种基于聚氯乙烯的紫外光稳定剂及其制备方法
CN106905158A (zh) * 2017-01-26 2017-06-30 中国科学院长春应用化学研究所 一种直接改性基底的二苯甲酮型分子及其应用
CN107022038A (zh) * 2017-06-02 2017-08-08 广西师范学院 大分子光稳定剂的制备方法
CN107903618A (zh) * 2017-11-16 2018-04-13 万华化学集团股份有限公司 一种耐污染的弹性体复合物及其制备方法和应用
CN112251011A (zh) * 2020-09-18 2021-01-22 东莞市雄林新材料科技股份有限公司 一种光稳定型tpu复合材料及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE469988T1 (de) * 2005-11-29 2010-06-15 Tfl Ledertechnik Gmbh Lederbehandlung und mittel
CN102634070A (zh) * 2011-02-15 2012-08-15 北京化工大学 一种耐紫外线可降解农膜及其制备
CN102153985B (zh) * 2011-02-26 2013-04-03 浙江万和高分子材料有限公司 植物原料改性聚氨酯热熔胶及其生产工艺
EP3279240B1 (en) * 2015-03-30 2020-02-26 Adeka Corporation Photostabilizer master batch and method for manufacturing same
CN107501504B (zh) * 2017-03-08 2018-10-02 浙江益弹新材料科技有限公司 一种热塑性聚氨酯弹性体及其制备方法
CN106893297B (zh) * 2017-03-09 2019-03-01 上海中镭新材料科技有限公司 一种免喷涂pc/asa复合材料及其制备方法
CN107245222A (zh) * 2017-06-06 2017-10-13 明光市泰丰新材料有限公司 一种led封装材料及其制备方法
CN108148391B (zh) * 2017-12-30 2021-04-06 广东聚石化学股份有限公司 一种抗紫外无卤阻燃pc/abs合金及其制备方法
CN108384061B (zh) * 2018-01-31 2020-03-17 潍坊学院 一种塑料用耐热复合光稳定剂及其制备方法
DE102018218120A1 (de) * 2018-10-23 2020-04-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Stabilisierung von thermoplastischer Kunststoffneuware sowie stabilisierte Kunststoffzusammensetzungen, hieraus hergestellte Formmassen und Formteile, Stabilisator-Zusammensetzungen sowie Verwendungen hiervon
CN110527146A (zh) * 2019-08-14 2019-12-03 武汉市鑫麒盛环保科技有限责任公司 一种可降解分类垃圾袋及其制备方法
CN111394206B (zh) * 2020-04-02 2022-09-13 芊碟净智能家居科技(广东)有限公司 一种具有缓释功能的洗碗片及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243257A (ja) * 1988-08-03 1990-02-13 Asahi Chem Ind Co Ltd 安定化されたポリウレタン組成物
EP0487293A2 (en) * 1990-11-20 1992-05-27 Ipposha Oil Industries Co. Ltd. Stabilized acrylic fibers and polyurethane elastomer fibers and process for making same
CN1784302A (zh) * 2003-05-09 2006-06-07 巴斯福股份公司 包含热塑性聚氨酯和丙烯腈-苯乙烯-丙烯酸酯共聚物(asa)的混合物
CN102659956A (zh) * 2012-04-26 2012-09-12 江南大学 一类基于阿拉伯木聚糖改性的紫外吸收剂及其制备方法
CN103864966A (zh) * 2014-03-25 2014-06-18 中国科学院上海有机化学研究所 一种基于聚氯乙烯的紫外光稳定剂及其制备方法
CN106905158A (zh) * 2017-01-26 2017-06-30 中国科学院长春应用化学研究所 一种直接改性基底的二苯甲酮型分子及其应用
CN107022038A (zh) * 2017-06-02 2017-08-08 广西师范学院 大分子光稳定剂的制备方法
CN107903618A (zh) * 2017-11-16 2018-04-13 万华化学集团股份有限公司 一种耐污染的弹性体复合物及其制备方法和应用
CN112251011A (zh) * 2020-09-18 2021-01-22 东莞市雄林新材料科技股份有限公司 一种光稳定型tpu复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIGUCHI M. ET AL.: "Photostabilisation of wood surfaces using a grafted benzophenone UV absorber", POLYMER DEGRADATION AND STABILITY, vol. 61, no. 1, 28 December 2017 (2017-12-28), XP004294411, ISSN: 0141-3910, DOI: 10.1016/S0141-3910(97)00124-9 *
LI BO-WEN, QING HAN, YING-JIE DAI, TIAN SHI-KANG, XIAN WU, LI LI-HUA: "Research and Application Progress of Nano UV-Shielding Materials", DANGDAI HUAGONG, DANGDAI HUAGONG ZAZHISHE, CN, vol. 46, no. 12, 28 December 2017 (2017-12-28), CN , pages 2583 - 2586, XP055912436, ISSN: 1671-0460, DOI: 10.13840/j.cnki.cn21-1457/tq.2017.12.044 *
QIN JIXI: "Preparation and Properties of Water-Soluble Ultraviolet Absorbents with Macromolecule", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, no. 11, 15 November 2009 (2009-11-15), CN , XP055912433, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN112251011B (zh) 2022-05-24
CN112251011A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2022057367A1 (zh) 一种光稳定型tpu复合材料及其制备方法
JP3816697B2 (ja) 重合体が結合した機能剤、その製造方法、それらの使用方法及びそれらを使用した物品
EP1501903B1 (en) Non-yellowing polyester coating composition
CN101362868B (zh) 提高粉末涂料耐候性能的纳米复合改性剂及其制备方法
JP6474501B2 (ja) 赤外輻射吸収物品及び製造方法
US20120302676A1 (en) Film
CN102870232A (zh) 塑料光伏模块及其制造方法
JP6092267B2 (ja) 金属顔料を含む溶剤型顔料ペーストおよび効果付与する溶剤型被覆剤を製造するための前記溶剤型顔料ペーストの使用
Carrot et al. Polyvinyl butyral
KR100451601B1 (ko) 1,4-디케토피롤로피롤의혼정및고용체의제조방법
EP2785771B1 (de) Mehrschichtkörper aus polycarbonat mit tiefenglanzeffekt
CN113024861A (zh) 一种高韧性、高拉伸强度tpu薄膜及其制备方法
JP5324124B2 (ja) 重合体結合機能剤マスターバッチ及びその製造方法
CN113549254B (zh) 一种制备改性硫化橡胶的方法及改性硫化橡胶
CN110616034B (zh) 一种汽车外饰件车灯抗雾uv涂料及其制备方法以及其形成的漆膜
US9982137B2 (en) Stabilization of C.I. pigment yellow 139
CN109897301A (zh) 一种聚酯改性的聚氯乙烯隐形车衣膜及应用
JP2975511B2 (ja) 耐候性樹脂組成物
JPS62267360A (ja) 高分子着色成形材用の耐光安定化剤
JP2002114893A (ja) ポリエステル樹脂組成物及び当該組成物を用いてなる成形品
JP2007297494A (ja) 紫外線遮蔽性組成物、その製造方法、それらの使用方法およびそれらを使用した物品
CN116716028A (zh) 一种高耐候粉末涂料及其制备方法
US4323670A (en) Anthraquinone-azomethine compounds, processes for their preparation and processes for pigmenting organic macromolecular substances
CN117143525A (zh) 一种耐候型的水性led光固化面漆涂料及其制备方法
CN114683663A (zh) 一种抗老化tpu膜及其加工工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868196

Country of ref document: EP

Kind code of ref document: A1