WO2022057269A1 - 电解池及臭氧水散布装置 - Google Patents

电解池及臭氧水散布装置 Download PDF

Info

Publication number
WO2022057269A1
WO2022057269A1 PCT/CN2021/091251 CN2021091251W WO2022057269A1 WO 2022057269 A1 WO2022057269 A1 WO 2022057269A1 CN 2021091251 W CN2021091251 W CN 2021091251W WO 2022057269 A1 WO2022057269 A1 WO 2022057269A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
water
ion exchange
electrolytic cell
exchange membrane
Prior art date
Application number
PCT/CN2021/091251
Other languages
English (en)
French (fr)
Inventor
城井昌也
鸢幸生
Original Assignee
青岛海尔洗衣机有限公司
Aqua株式会社
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司, Aqua株式会社, 海尔智家股份有限公司 filed Critical 青岛海尔洗衣机有限公司
Priority to CN202180063372.7A priority Critical patent/CN116323500A/zh
Publication of WO2022057269A1 publication Critical patent/WO2022057269A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Definitions

  • the present invention relates to an electrolytic cell for generating ozone water and an ozone water dispersing device using the electrolytic cell.
  • the electrolytic cell disclosed in the following Patent Document 1 has an anode, a cathode, and an ion exchange membrane.
  • Ozone water is produced
  • Patent Document 1 Japanese Patent No. 6249200
  • the present invention was made under such a background, and an object of the present invention is to provide an electrolytic cell and an ozone water distributing device capable of efficiently generating ozone water.
  • the invention relates to an electrolytic cell for generating ozone water from raw water, comprising: a casing, which has a water intake for taking in the raw water and a water outlet for discharging the ozone water; an anode, which is arranged in the casing; The casing is arranged adjacent to the anode; a first cathode is arranged on the opposite side of the anode through the ion exchange membrane in the casing; and a second cathode is arranged on the ion exchange membrane and the first cathode, has ion exchange performance.
  • the present invention is characterized in that the second cathode comprises: a carbon cathode formed of carbon fibers; and a coating member having ion exchange properties and covering the carbon fibers.
  • the present invention is characterized in that the carbon cathode comprises: a cathode side portion adjacent to the first cathode; and an exchange membrane side portion adjacent to the ion exchange membrane, and the coating member comprises: a low hydrophilic coating a coating member that partially coats the carbon fibers on the cathode side; and a high-hydrophilic coating member that partially coats the carbon fibers on the exchange membrane side, and is more hydrophilic than the low-hydrophilic coating member high.
  • the present invention is characterized in that the carbon cathode is composed of a plurality of sheet members.
  • the present invention is characterized in that the voltage applied to the second cathode is lower than the voltage applied to the first cathode.
  • the present invention is an ozone water dispersing device, comprising: the electrolytic cell; a storage part for storing raw material water; a dispersing part for distributing the ozone water generated by the electrolytic cell; The storage unit sends water to the dispersion unit.
  • ozone water is generated from the raw material water taken into the casing from the water intake port, and the generated ozone water is discharged from the drain port.
  • the first cathode is disposed on the opposite side to the anode via the ion exchange membrane, the raw material water is electrolyzed in the casing to generate ozone.
  • a second cathode having ion exchange performance is arranged between the ion exchange membrane and the first cathode.
  • the mineral component in the raw material water moves toward the first cathode side along the surface of the second cathode in an ionic state without precipitating as a salt between the ion exchange membrane and the first cathode.
  • the mineral component is finally extracted in the part on the opposite side to the ion-exchange membrane in the 1st cathode. Since precipitation of mineral components between the ion exchange membrane and the first cathode can be suppressed, ozone water can be efficiently generated.
  • ozone water can be efficiently produced even when tap water or the like that contains more mineral components than deionized water or the like is used as raw material water.
  • the second cathode includes a carbon cathode and a coating member.
  • the carbon cathode is formed of carbon fibers, and therefore has a larger surface area than a plate-like metal.
  • the carbon fibers are coated with the coating member having ion exchange properties, so that the ion exchange properties of the second cathode can be improved. Therefore, the movement of the mineral components in the raw material water to the first cathode side can be promoted. That is, precipitation of mineral components between the ion exchange membrane and the first cathode can be further suppressed.
  • the hydrophilicity of the portion of the carbon cathode on the side of the exchange membrane adjacent to the ion exchange membrane is higher than that of the portion of the carbon cathode on the side of the first cathode adjacent to the first cathode. Therefore, precipitation of mineral components on the ion exchange membrane side can be further suppressed.
  • the carbon cathode is composed of a plurality of sheet members. Therefore, the coating member can be changed for each sheet member. Thereby, the coating member suitable for suppressing precipitation of a mineral component between an ion exchange membrane and a 1st cathode can be selected for each sheet member.
  • the voltage applied to the second cathode is lower than the voltage applied to the first cathode. Therefore, the mineral components in the ion state in the vicinity of the second cathode are easily attracted to the first cathode side. Therefore, the movement of the mineral components in the raw material water to the first cathode side can be promoted. That is, precipitation of mineral components between the ion exchange membrane and the first cathode can be further suppressed.
  • the raw material water stored in the storage part is sent to the electrolytic cell by the water supply part.
  • the raw material water sent to the electrolytic cell is electrolyzed by the electrolytic cell to generate ozone water.
  • generated by the electrolytic cell is sent to the dispersion part by the water supply part, and is dispersed from the dispersion part to the outside of the ozone water dispersion apparatus.
  • FIG. 1 is a vertical cross-sectional view of an ozone water sprayer including an electrolytic cell of the present invention.
  • Figure 2 is an exploded view of the electrolytic cell.
  • 3 is a cross-sectional view of an electrolytic cell.
  • FIG. 4 is a schematic diagram for explaining the configuration of the second cathode provided in the electrolytic cell.
  • 5A is a diagram for explaining the result of a comparison experiment of the deposition amount when an electrolytic cell having ion exchange performance is used, and is an enlarged view of the surface of the ion exchange membrane before cleaning with hydrochloric acid.
  • 5B is a diagram for explaining the result of a comparison experiment of the deposition amount when an electrolytic cell having no ion exchange performance is used, and is an enlarged view of the surface of the ion exchange membrane before cleaning with hydrochloric acid.
  • 5C is a diagram for explaining the results of a comparison experiment of the deposition amount when an electrolytic cell having ion exchange performance is used, and is an enlarged view of the surface of the ion exchange membrane after washing with hydrochloric acid.
  • 5D is a diagram for explaining the result of a comparison experiment of the deposition amount when an electrolytic cell without ion exchange performance is used, and is an enlarged view of the surface of the ion exchange membrane after cleaning with hydrochloric acid.
  • ozone water sprayer ozone water dispersing device
  • 3 storage part
  • 4 electrolytic cell
  • 5 water supply part
  • 6 distributing part
  • 15 casing
  • 32 ion exchange membrane
  • 33 first cathode
  • 34 second cathode
  • 60 carbon cathode
  • 61 sheet member
  • 62 cathode side portion
  • 63 exchange membrane side portion
  • 70 coating member
  • 71 Low hydrophilicity coating member
  • 72 High hydrophilicity coating member
  • OW ozone water
  • RW raw material water.
  • FIG. 1 is a vertical cross-sectional view of an ozone water sprayer 1 as an ozone water dispersing device of the present invention.
  • the ozone water sprayer 1 includes a casing 2 , a storage unit 3 , an electrolytic cell 4 , a water supply unit 5 , a distribution unit 6 , and a power supply unit 7 .
  • the casing 2 accommodates the storage unit 3 , the electrolytic cell 4 , the water supply unit 5 , the distribution unit 6 , and the power supply unit 7 .
  • the storage part 3 stores raw material water RW.
  • the electrolytic cell 4 electrolyzes the raw material water RW to generate ozone water.
  • the spreading part 6 spreads the ozone water OW produced by the electrolytic cell 4 to the outside.
  • the water supply unit 5 supplies water from the storage unit 3 to the dispersion unit 6 via the electrolytic cell 4 .
  • the power supply unit 7 supplies power to each member of the ozone water sprayer 1 .
  • the ozone water sprayer 1 generates ozone water OW from raw material water RW based on the user's operation of an operation part (not shown) such as a switch and a lever, and disperses the generated ozone water OW.
  • the casing 2 is constituted by a trunk portion 10 , a neck portion 11 , and a head portion 12 .
  • the trunk portion 10 has a tapered shape that tapers upward from a flat bottom.
  • the neck portion 11 has a substantially cylindrical shape extending in the vertical direction.
  • the head portion 12 has a substantially square cylindrical shape extending across the neck portion 11 .
  • the storage part 3 is a container accommodated in the trunk part 10 of the cabinet 2 .
  • raw material water RW stored in the storage part 3 pure water and tap water are mentioned.
  • the electrolytic cell 4 is arranged in the storage part 3 in the vicinity of the bottom of the storage part 3 . Details will be described later, but the electrolytic cell 4 includes a housing 15 , and generates ozone water OW by electrolyzing the raw material water RW taken into the inner space 16 of the housing 15 .
  • the casing 15 has a water intake port 15a for taking in the raw material water RW into the internal space 16; a water outlet 15b for discharging the ozone water OW from the internal space 16; and a hydrogen gas discharge port 15c for discharging the hydrogen gas (H 2 ) generated when the ozone water OW is produced ).
  • the spraying part 6 includes a rain nozzle 17 for spraying rain-like ozone water OW, and a mist nozzle 18 for spraying mist-like ozone water OW.
  • the rain nozzle 17 is arranged at one end of the head 12 of the casing 2
  • the mist nozzle 18 is arranged at the other end of the head 12 of the casing 2 .
  • the water supply part 5 includes: a first water supply pipe 19 for sending the raw material water RW in the storage part 3 into the water intake 15a of the electrolytic cell 4; a second water supply pipe 20 for conveying the ozone water OW generated by the electrolytic cell 4 The discharge port 16b is sent into the distribution part 6;
  • the pump 21 is, for example, a diaphragm-driven small pump.
  • the pump 21 is clamped in the first water supply pipe 19 .
  • the pump 21 has a pump main body 22 , a water suction port 21 a that allows the pump main body 22 to take in the raw material water RW, and a water discharge port 21 b that discharges the raw material water RW in the pump main body 22 .
  • the first water supply pipe 19 includes a water suction pipe 23, one end of which is connected to the water suction port 21a, and a water discharge pipe 24, one end of which is connected to the water discharge port 21b.
  • the other end of the water suction pipe 23 is located on the bottom side of the water surface WS of the raw material water RW in the storage part 3 .
  • the other end of the water discharge pipe 24 is connected to the water intake port 15a of the casing 15 of the electrolytic cell 4 .
  • the pump 21 is switched to either a driving state or a stopped state by the user's operation of the operation unit.
  • the spraying mode of the spraying unit 6 is switched to one of the rain mode for spraying ozone water OW from the rain nozzle 17 and the mist mode for spraying ozone water OW from the mist nozzle 18 by the operation of the operation unit by the user.
  • the power supply unit 7 includes a power source 25 such as a battery arranged below the storage unit 3 in the trunk portion 10 of the casing 2 , and a plurality of wires 26 extending from the power source 25 to the electrolytic cell 4 .
  • the power supply unit 7 may include wiring for supplying power to the pump 21 and the operation unit.
  • the raw material water RW in the storage unit 3 is supplied to the electrolytic cell 4 via the first water supply pipe 19 .
  • the raw material water RW changes into ozone water OW when passing through the electrolytic cell 4 .
  • the ozone water OW produced in the electrolytic cell 4 is supplied to the dispersion part 6 via the second water supply pipe 20 . Thereby, the ozone water OW is discharged from the dispersion part 6 .
  • FIG. 1 shows a state in which the ozone water OW is dispersed by the rain nozzle 17 .
  • FIG. 2 is an exploded view of the electrolytic cell 4 .
  • the electrolytic cell 4 is of a separate type and has a substantially cylindrical shape as a whole.
  • the electrolytic cell 4 includes: a casing 15, an anode energizing terminal 30, an anode 31, an ion exchange membrane 32, a first cathode 33, a second cathode 34, a first cathode energizing terminal 35, a second cathode energizing terminal 36, and elastic Member 37.
  • the housing 15 has a first holder 40 and a second holder 50 .
  • the first seat 40 has a bottomed cylindrical shape.
  • the first seat 40 includes a disk-shaped bottom portion 41 , a cylindrical portion 42 extending coaxially with the bottom portion 41 from a peripheral edge portion of the bottom portion 41 , and a rectangular parallelepiped portion extending from the bottom portion 41 to the opposite side of the cylindrical portion 42 . 43.
  • the water intake port 15 a and the drain port 15 b are formed in the rectangular parallelepiped portion 43 of the first base body 40 .
  • the water intake port 15 a penetrates the rectangular parallelepiped portion 43 and the bottom portion 41 .
  • the drain port 15b penetrates the rectangular parallelepiped portion 43 and the bottom portion 41 (see also FIG. 3 described later).
  • the second seat body 50 has a bottomed cylindrical shape.
  • the second seat body 50 has a shape recessed toward the opposite side of the first seat body 40 .
  • the second seat body 50 includes a disk-shaped bottom portion 51 and a cylindrical portion 52 extending from a peripheral edge portion of the bottom portion 51 to the bottom portion 51 coaxially toward the first seat body 40 .
  • the hydrogen gas discharge port 15c is formed in the second seat body 50 .
  • the hydrogen gas discharge port 15c includes: a circular hole 51a penetrating the center of the bottom part 51;
  • the first seat 40 has a pair of engaging protrusions 44 provided on the outer surface portion of the cylindrical portion 42 .
  • the second seat body 50 has a pair of engaging recesses 53 provided on the cylindrical portion 52 and respectively engaging with the corresponding engaging protrusions 44 .
  • the housing 15 is assembled by inserting the pair of engaging protrusions 44 into the corresponding engaging recesses 53 respectively.
  • the first seat body 40 may have an engaging concave portion and the second seat body 50 may have an engaging convex portion.
  • the anode 31 , the ion exchange membrane 32 , the second cathode 34 , the first cathode 33 , and the elastic member 37 are arranged in this order from the first holder 40 side to the second holder 50 side.
  • the anode 31 has, for example, a substantially rectangular parallelepiped shape.
  • the anode 31 is, for example, an alloy whose surface is coated. Alloys used as anodes may contain tungsten, iron, molybdenum, nickel, titanium, silicon, tantalum, niobium, and the like.
  • the anode 31 is not necessarily an alloy.
  • the anode 31 may be made of noble metals such as lead oxide, tin oxide, and platinum, noble metal oxides, carbon, conductive diamond, or the like.
  • the ion exchange membrane 32 is, for example, a circular thin film.
  • the ion exchange membrane 32 may be, for example, any of fluorine-based resins and hydrocarbon-based resins. From the viewpoint of corrosion resistance to ozone and peroxide, the ion exchange membrane 32 is preferably a fluorine-based resin.
  • the fluorine-based resin Nafion (registered trademark) can be used. Nafion is a fluororesin copolymer based on sulfonated tetrafluoroethylene and is a polymer with ionic conductivity. In Nafion, anions and electrons do not move, only hydrogen ions, which are cations, move.
  • the thickness of the ion exchange membrane 32 is, for example, 30 ⁇ m or more and 1.5 mm or less.
  • the thickness of the ion exchange membrane 32 is preferably 30 ⁇ m or more and 1.0 mm or less.
  • the thickness of the ion exchange membrane 32 is more preferably 30 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the ion exchange membrane 32 is more preferably 50 ⁇ m or more and 120 ⁇ m or less.
  • the thickness of the ion exchange membrane 32 is particularly preferably 51 ⁇ m.
  • the first cathode 33 has, for example, a circular plate shape.
  • a substance that is not embrittled by hydrogen is used as the first cathode 33.
  • the substance used as the first cathode 33 includes platinum group metals, nickel, stainless steel, titanium, zirconium, gold, silver, carbon, diamond, and the like.
  • the first cathode 33 has a plurality of through holes 33 a penetrating the first cathode 33 .
  • the second cathode 34 is a laminated body of a plurality of circular sheets having ion exchange performance.
  • the second cathode 34 is arranged between the ion exchange membrane 32 and the first cathode 33 .
  • the second cathode 34 includes a carbon cathode 60 formed of carbon fibers and a coating member 70 having ion exchange properties and covering the carbon fibers.
  • the carbon cathode 60 is constituted by a circular sheet member 61 formed of carbon fibers. Although 11 sheet members 61 are provided in the example of FIG. 2, the number of sheet members 61 is not limited to this. For example, 16 sheet members 61 may be provided.
  • the elastic member 37 is, for example, an annular disc spring.
  • the elastic member 37 elastically biases the first cathode 33 toward the anode 31 side. Thereby, the anode 31, the ion exchange membrane 32, the second cathode 34, and the first cathode 33 can be brought into close contact with each other.
  • the anode energization terminal 30 , the first cathode energization terminal 35 , and the second cathode energization terminal 36 are each formed, for example, in a spiral shape.
  • the anode energizing terminal 30 is disposed between the anode 31 and the first base 40 and is in contact with the anode 31 .
  • the first cathode energizing terminal 35 is arranged between the first cathode 33 and the elastic member 37 and is in contact with the first cathode 33 .
  • the second cathode current-carrying terminals 36 are arranged between the sheet members 61 and are in contact with the sheet members 61 .
  • the plurality of wirings 26 include an anode-side wiring 80 connected to the anode energizing terminal 30 , and a cathode-side wiring 81 connected to the first cathode energizing terminal 35 and the second cathode energizing terminal 36 .
  • the first cathode 33 and the second cathode 34 are connected in parallel with the cathode-side wiring 81 as a common wiring via the first cathode energizing terminal 35 and the second cathode energizing terminal 36, respectively.
  • the second cathode energization terminal 36 is connected to the tip of the cathode side wiring 81
  • the first cathode energization terminal 35 is connected to the side of the power source 25 (also refer to FIG. 4 described later) than the tip of the cathode side wiring 81.
  • the voltage applied to the second cathode 34 is lower than the voltage applied to the first cathode 33 .
  • FIG. 3 is a longitudinal cross-sectional view of the electrolytic cell 4 .
  • the housing 15 has an inner space 16 between the first seat body 40 and the second seat body 50 .
  • the inner space 16 of the casing 15 accommodates the anode energizing terminal 30 , the anode 31 , the ion exchange membrane 32 , the first cathode 33 , the second cathode 34 , the first cathode energizing terminal 35 , the second cathode energizing terminal 36 and the elastic member 37 .
  • the inner space 16 is divided into an anode chamber 16A and a cathode chamber 16B by the ion exchange membrane 32 .
  • the anode energization terminal 30 and the anode 31 are arranged in the anode chamber 16A.
  • the first cathode 33 , the second cathode 34 , the first cathode energization terminal 35 , the second cathode energization terminal 36 , and the elastic member 37 are accommodated in the cathode chamber 16B.
  • the anode-side wiring 80 enters the inner space 16 of the casing 15 through, for example, the water intake 15 a provided in the first base body 40 .
  • the cathode-side wiring 81 enters the inner space 16 of the casing 15 via, for example, the hydrogen gas discharge port 15 c of the second base 50 .
  • the raw material water RW enters the anode chamber 16A from the first water supply pipe 19 through the water intake port 15 a provided in the first base body 40 .
  • the raw material water RW is electrolyzed in the anode chamber 16A to generate ozone.
  • the generated ozone is dissolved in the raw material water RW to generate ozone water OW.
  • the ozone water OW generated in the anode chamber 16A is discharged from the anode chamber 16A to the second water supply pipe 20 through the drain port 15b provided in the first base body 40 .
  • the raw material water RW enters the cathode chamber 16B from the hydrogen gas discharge port 15c provided in the second base body 50 .
  • the raw material water RW entering the cathode chamber 16B from the hydrogen gas discharge port 15c enters the cathode chamber 16B through the through holes 33a of the first cathode 33 on the ion exchange membrane 32 side of the first cathode 33 . Therefore, the cathode chamber 16B is filled with the raw material water RW, and the raw material water RW exists around the second cathode 34 .
  • FIG. 4 is a schematic diagram for explaining the configuration of the second cathode 34 .
  • the carbon cathode 60 of the second cathode 34 includes: a cathode side portion 62 adjoining the first cathode 33 ; and an exchange membrane side portion 63 adjoining the ion exchange membrane 32 .
  • the cathode side portion 62 is composed of a plurality of sheet members 61 on the first cathode 33 side
  • the exchange membrane side portion 63 is composed of a plurality of sheet members 61 on the ion exchange membrane 32 side.
  • the second cathode current-carrying terminal 36 is arranged between the sheet members 61 of the cathode side portion 62 .
  • the number of sheet members 61 is different from that in FIGS. 2 and 3 .
  • the coating member 70 includes: a low hydrophilicity coating member 71 covering the cathode side portion 62 with carbon fibers; and a high hydrophilicity coating member 72 covering the exchange membrane side portion 63 with carbon fibers.
  • the high hydrophilicity coating member 72 is more hydrophilic than the low hydrophilicity coating member 71 .
  • the low hydrophilicity coating member 71 contains a semi-hydrophobic ion exchange resin 73 .
  • a semi-hydrophobic ion exchange resin 73 for example, Nafion having a sulfonic acid group 73a can be used.
  • the highly hydrophilic coating member 72 contains a semi-hydrophobic ion exchange resin 74 , a hydrophilic ion exchange resin 75 , an ion exchange aid 76 , and a water-supplying agent 77 .
  • a semi-hydrophobic ion exchange resin 74 for example, Nafion having a sulfonic acid group 74a can be used.
  • the hydrophilic ion exchange resin 75 is more hydrophilic than the semi-hydrophobic ion exchange resins 73 and 74 .
  • the hydrophilic ion exchange resin 75 may include, for example, at least one of organic conductive polymers such as Verazole (registered trademark), sulfonated polyethersulfone, and modified graphene oxide.
  • organic conductive polymer a polymer material obtained by doping PSS (polystyrenesulfonic acid) and PTS (toluenesulfonic acid) in PEDOT (poly3,4-ethylenedioxythiophene) is particularly preferably used.
  • the modified graphene oxide may include at least any one of carbonyl-modified or sulfonic acid-modified graphene.
  • the ion exchange aid 76 is preferably a substance having a higher acid strength than the semi-hydrophobic ion exchange resin 74 .
  • Acid strength refers to the ability to act as an acid, and acid strength includes Bronsted acid strength and Lewis acid strength.
  • the ion exchange aid 76 is, for example, a solid acid catalyst.
  • a solid acid catalyst As a solid acid catalyst, a zeolite, a montmorillonite, a cesium salt of dodeca-tungsten hexaphosphate, etc. are mentioned. Since the acid strength of cesium dodecyl hexaphosphate is higher than that of the semi-hydrophobic ion exchange resin 74 , it is preferably used as the ion exchange aid 76 .
  • the water supply agent 77 preferably has high hydrophilicity, small particle size, and chemical resistance.
  • chemical resistance means resistance to strong acid and hydrogen.
  • the water-supplying agent 77 is preferably a water-insoluble solid. It is preferable that the water supply agent 77 can retain moisture appropriately, and as such a water supply agent 77, cellulose nanofibers are mentioned, for example.
  • the hydrophilicity of the high hydrophilicity coating member 72 becomes higher than that of the low hydrophilicity coating member 71 by the action of the hydrophilic ion exchange resin, the ion exchange aid, and the water-supplying agent.
  • the coating member 70 is formed by an impregnation process of impregnating a liquid coating member with carbon fibers or an evaporation coating process of evaporative coating of a gaseous coating member.
  • the ozone water OW is produced from the raw material water RW taken into the casing 15 from the water inlet 15a, and the produced ozone water OW is discharged from the water outlet 15b. Since the first cathode 33 is disposed on the opposite side of the anode 31 through the ion exchange membrane 32 in the casing 15, the raw material water RW is electrolyzed in the casing 15 to generate ozone. In this electrolytic cell 4 , a second cathode 34 having ion exchange performance is arranged between the ion exchange membrane 32 and the first cathode 33 .
  • the mineral component in the raw material water RW does not precipitate as a salt between the ion exchange membrane 32 and the first cathode 33, but moves to the first cathode 33 side in an ionic state along the surface of the second cathode 34. Then, the precipitate 100 of the mineral component is finally formed on the surface of the first cathode 33 on the side opposite to the ion exchange membrane 32 . Since precipitation of mineral components between the ion exchange membrane 32 and the first cathode 33 can be suppressed, ozone water OW can be efficiently produced.
  • mineral ions are adsorbed by the semi-hydrophobic ion-exchange resin 74 and the hydrophilic ion-exchange resin 75 of the highly hydrophilic coating member 72 , and transported to the first cathode to which a higher voltage is applied than the carbon cathode 60 . 33.
  • the carbon cathode 60 is not always sufficiently supplied with current. Therefore, there is a risk that the ion exchange performance of the second cathode 34 is lowered due to the accumulation of mineral components around the semi-hydrophobic ion exchange resin 74 and the hydrophilic ion exchange resin 75 . Even in this case, the ion exchange aid 76 having higher acid activity than the sulfonic acid group 74a adsorbs mineral ions. Therefore, the semi-hydrophobic ion exchange resin 74 and the hydrophilic ion exchange resin 75 restore acid activity. The mineral ions adsorbed to the ion exchange aid 76 are attracted to the first cathode 33 to which a high voltage is applied without precipitating around the carbon cathode 60 .
  • Mineral ions reaching the first cathode 33 may be precipitated between the carbon cathode 60 and the first cathode 33 , but the carbon cathode 60 functions as an anode and takes electrons from the mineral salt. Thereby, since the mineral salt is ionized again, the function of the first cathode 33 as a cathode can be maintained.
  • the re-ionized mineral component moves to a position where the influence from the carbon cathode 60 is sufficiently reduced, more specifically, moves to a position opposite to the carbon cathode 60 with respect to the first cathode 33 and precipitates again.
  • the second cathode 34 includes the carbon cathode 60 and the coating member 70 . Since the carbon cathode 60 is formed of carbon fibers, its surface area is larger than that of a plate-shaped metal. The carbon fibers are coated with the coating member 70 having ion exchange properties, so that the ion exchange properties of the second cathode 34 can be improved. Therefore, the movement of the mineral components in the raw material water RW to the side of the first cathode 33 can be promoted. That is, precipitation of mineral components between the ion exchange membrane 32 and the first cathode 33 can be further suppressed.
  • the hydrophilicity of the exchange membrane side portion 63 adjacent to the ion exchange membrane 32 is higher than that of the cathode side portion 62 adjacent to the first cathode 33 . Therefore, precipitation of mineral components on the ion exchange membrane 32 side can be further suppressed.
  • the second cathode current-carrying terminal 36 is arranged between the sheet members 61 of the cathode side portion 62 . Therefore, the sheet member 61 of the cathode-side portion 62 is pressed against the second cathode energizing terminal 36 by the elastic force of the elastic member 37, so there is a possibility that the carbon fibers may be cut. Further, since the cathode side portion 62 is not in contact with the ion exchange membrane 32, it does not directly participate in the electrolysis of the raw material water RW. Furthermore, the timing at which the cathode side portion 62 requires the ion exchange capacity is later than that of the exchange membrane side portion 63 .
  • the cathode-side portion 62 preferably uses the low-hydrophilic coating member 71 in which the amount of the substance for coating is smaller than that of the high-hydrophilic coating member 72 and the manufacturing man-hours are less than those of the high-hydrophilic coating member 72 .
  • the coating member 70 needs to be chemically stable when a large current flows through the carbon cathode 60 . Therefore, as the low hydrophilicity coating member 71, Nafion, which is excellent in chemical stability, is preferably used.
  • the carbon cathode 60 is composed of a plurality of sheet members 61 . Therefore, the coating member 70 can be changed for each sheet member 61 . Thereby, a coating member suitable for suppressing precipitation of mineral components between the ion exchange membrane 32 and the first cathode 33 can be selected for each sheet member 61 .
  • the voltage applied to the second cathode 34 is lower than the voltage applied to the first cathode 33 . Therefore, the mineral components in the ion state in the vicinity of the second cathode 34 are easily attracted to the first cathode 33 side. Therefore, the movement of the mineral components in the raw material water RW to the side of the first cathode 33 can be promoted. That is, precipitation of mineral components between the ion exchange membrane 32 and the first cathode 33 can be further suppressed.
  • the raw material water RW stored in the storage part 3 is sent to the electrolytic cell 4 by the water supply part 5 .
  • the raw material water RW sent to the electrolytic cell 4 is electrolyzed by the electrolytic cell 4 to generate ozone water OW.
  • the ozone water OW produced by the electrolytic cell 4 is dispersed from the dispersion part 6 .
  • 5A to 5D are images for explaining the results of the precipitation amount comparison experiment.
  • a first electrolytic cell using a carbon cathode having ion exchange performance as a second cathode and a second electrolytic cell using a carbon cathode having no ion exchange performance as a second cathode were used.
  • the precipitation amount comparison experiment after repeating the generation of ozone water using tap water as raw material water in each electrolytic cell, the amount of salt adhering to each electrolytic cell was compared.
  • the number of sheet members of the carbon cathodes of the first electrolytic cell and the second electrolytic cell is different. Specifically, the number of sheet members of the carbon cathode provided in the first electrolytic cell was 16, whereas the number of sheet members of the carbon cathode provided in the second electrolytic cell was two.
  • the ion-exchange membrane and the second cathode in the adhering state were taken out from each electrolytic cell, and a still image of the ion-exchange membrane was taken.
  • FIG. 5A precipitation of trace amounts of salt was observed on the ion exchange membrane taken out from the first electrolytic cell.
  • FIG. 5B precipitation of a large amount of salt was observed inside the ion exchange membrane taken out from the second electrolytic cell.
  • the ion-exchange membrane taken out from each electrolytic cell was immersed in 5% hydrochloric acid for 30 minutes and washed, and then a still image of the ion-exchange membrane was taken.
  • Fig. 5C no large change was observed in the ion exchange membrane taken out from the first electrolytic cell before and after washing with hydrochloric acid.
  • FIG. 5D the transparency of the ion exchange membrane taken out from the second electrolytic cell was higher than that before the hydrochloric acid cleaning (see FIG. 5B ). That is, it is presumed that mineral salts such as calcium carbonate salts were removed by the hydrochloric acid washing.
  • the coated members of each sample are as follows.
  • Sample A Nafion, Verazole, Cesium Dodecyltungstate Hexaphosphate, Cellulose Nanofibers
  • Sample B Nafion, cellulose nanofibers
  • Sample C Nafion, Verazole, Cellulose Nanofibers
  • Sample D Nafion, Cesium Dodecyltungstic Hexaphosphate, Cellulose Nanofibers
  • the durability test was performed under the following conditions. Specifically, during a period of 24 hours from the start of the experiment, a small cycle in which the generation of ozone was stopped for 5 seconds after the generation of ozone was performed for 10 seconds was repeated as one cycle. After the lapse of 24 hours from the start of the experiment, it was repeated to perform 10 small cycles and then stop the generation of ozone for 150 minutes as a large cycle of one cycle.
  • water with a TDS of 300 ppm was used during 24 hours from the start. After 24 hours from the start of the experiment, in order to observe the ozone generation capacity of the electrolytic cell immediately after being stopped for 150 minutes, water with a TDS of 450 ppm was used.
  • the water temperature was adjusted to 25° C. or higher and 30° C. or lower, the water flow rate was adjusted to 1 mL/sec or more and 1.2 mL/sec or less, the current was set to a constant current of 1.2 A, and the voltage was set to 18.0 V or less. .
  • the ozone concentration was measured every 24 hours for each main site by an ultraviolet absorption method.
  • the voltage value per second was monitored for 24 hours, and the water temperature was measured using a water thermometer when the ozone concentration was measured.
  • Table 1 below is a table showing the results of the first electrolysis experiment.
  • first time represents the first major cycle
  • “restarted” represents the second and subsequent major cycles.
  • Voltage in Table 1 represents the voltage in the electrolytic cell, and the lower the voltage, the smaller the precipitation amount of the mineral component, and the larger amount of ozone water can be produced.
  • the “stable time” in Table 1 represents the time required for the voltage to stabilize after the start of the large cycle, and the shorter the stabilization time, the more stably water can be electrolyzed.
  • the voltage at the restart is higher because the mineral components are deposited in the samples B and C when the electrolysis is stopped.
  • the cesium dodeca-tungsten hexaphosphate salt has an effect of suppressing the extraction of mineral components during the electrolysis stop.
  • the first stabilization time was 6 minutes and 52 seconds, and in the case of using sample D, the first stabilization time was 9 minutes and 50 seconds.
  • the first stabilization time was about 0 seconds. That is, with regard to the first stabilization time, the samples A and C are shorter than the samples B and D.
  • a coating member containing all of a semi-hydrophobic ion exchange resin, a hydrophilic ion exchange resin, an ion exchange aid, and a water-supplying agent is preferably used as the coating member.
  • Sample E has lower mineral resistance than sample A, so under the same experimental conditions as the first electrolysis experiment, a large amount of mineral components will adhere to the ion exchange membrane and the carbon cathode, making it difficult to measure the voltage.
  • the conditions of the durability test of the sample E are as follows. Specifically, during a period of 6 hours from the start of the experiment, a small cycle in which the generation of ozone was stopped for 5 seconds after the generation of ozone was performed for 10 seconds was repeated as one cycle. After the lapse of 24 hours from the start of the experiment, the large cycle was repeated to perform 10 small cycles and then stop the generation of ozone for 30 minutes as one cycle. In the durability test of sample E, water with a TDS of 300 ppm was used.
  • sample E In the durability test of sample E, the water temperature was adjusted to 25°C or more and 30°C or less, the flow rate of water was adjusted to 1mL/sec or more and 1.2mL/sec or less, the current was set to a constant current of 1.2A, and the voltage was set to 18.0V the following.
  • the ozone concentration was measured every 6 hours for each main site by an ultraviolet absorption method.
  • the voltage value per second was monitored for 24 hours, and the water temperature was measured with a water thermometer when the ozone concentration was measured.
  • Table 2 is a table showing the results of the second electrolysis experiment.
  • first time represents the first major cycle
  • “restarting” represents the second and subsequent major cycles.
  • Voltage indicates the voltage in the electrolytic cell, and the lower the voltage, the smaller the amount of precipitation of mineral components, and the larger amount of ozone water can be produced.
  • stable time represents the time required for the voltage to stabilize after the large cycle is started, and the shorter the stabilization time, the more stably water can be electrolyzed.
  • the electrolytic cell provided with the carbon cathode having ion exchange performance can suppress the extraction of mineral components compared to the electrolytic cell provided with the carbon cathode not having ion exchange performance.
  • the ozone water sprayer 1 shown in FIG. 1 is a structure which can distribute the ozone water OW in either a rain-like or mist-like state.
  • it may be an ozone water sprayer that can only spray the ozone water OW in one of rain-like and mist-like states.
  • the carbon cathode 60 shown in FIGS. 2 and 3 is composed of a plurality of sheet members 61 .
  • the carbon cathode 60 is not necessarily constituted by the sheet member 61, and may be constituted by, for example, a single carbon fiber block.
  • the cathode side portion 62 and the exchange membrane side portion 63 of the carbon cathode 60 are coated with different coating members 70 .
  • the highly hydrophilic coating member 72 may be coated on both the cathode side portion 62 and the exchange membrane side portion 63 .
  • the low hydrophilicity coating member 71 may be coated on both the cathode side portion 62 and the exchange membrane side portion 63 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

一种能高效地生成臭氧水的电解池及臭氧水散布装置。电解池(4)由原料水(RW)生成臭氧水(OW)。电解池(4)包括:阳极(31);离子交换膜(32),以与阳极(31)邻接的方式配置;第一阴极(33),隔着离子交换膜(32)配置于与阳极(31)相反侧;第二阴极(34),配置于离子交换膜(32)和第一阴极(33)之间,具有离子交换性能;以及外壳(15),容纳上述这些部件。外壳(15)具有:取水口(15a),取入原料水(RW);以及排水口(15b),排出臭氧水(OW)。

Description

电解池及臭氧水散布装置 技术领域
本发明涉及生成臭氧水的电解池及使用该电解池的臭氧水散布装置。
背景技术
在下述的专利文献1中公开的电解池具有阳极、阴极以及离子交换膜。在阳极和阴极之间被施加了电压的状态下使原料水通过电解池的内部,由此生成臭氧水。详细而言,通过原料水的电解来生成臭氧,通过使生成的臭氧溶解于原料水来得到臭氧水。
作为原料水,在使用与去离子水相比含有较多矿物质成分的自来水等的情况下,在专利文献1的电解池中,矿物质成分会在阴极与离子交换膜之间以盐的形式析出。因此,恐怕会降低臭氧水的生成效率。
现有技术文献
专利文献
专利文献1:日本专利第6249200号公报
发明内容
发明所要解决的问题
本发明是在这样的背景下完成的,其目的在于提供一种能高效地生成臭氧水的电解池及臭氧水散布装置。
用于解决问题的方案
本发明是一种由原料水生成臭氧水的电解池,包括:外壳,具有取入原料水的取水口和排出臭氧水的排水口;阳极,配置于所述外壳内;离子交换膜,在所述外壳内以与所述阳极邻接的方式配置;第一阴极,在所述外壳内隔着所 述离子交换膜配置于与所述阳极相反侧;以及第二阴极,配置于所述离子交换膜和所述第一阴极之间,具有离子交换性能。
本发明的特征在于,所述第二阴极包括:碳阴极,由碳纤维形成;以及涂覆构件,具有离子交换性能,包覆所述碳纤维。
本发明的特征在于,所述碳阴极包括:阴极侧部分,与所述第一阴极邻接;以及交换膜侧部分,与所述离子交换膜邻接,所述涂覆构件包括:低亲水性涂覆构件,在所述阴极侧部分包覆所述碳纤维;以及高亲水性涂覆构件,在所述交换膜侧部分包覆所述碳纤维,亲水性比所述低亲水性涂覆构件高。
本发明的特征在于,所述碳阴极由多个片构件构成。
本发明的特征在于,施加于所述第二阴极的电压比施加于所述第一阴极的电压低。
本发明是一种臭氧水散布装置,包括:所述电解池;贮留部,贮留原料水;散布部,散布由所述电解池生成的臭氧水;以及送水部,经由所述电解池从所述贮留部向所述散布部送水。
发明效果
根据本发明,在该电解池中,由从取水口取入外壳内的原料水生成臭氧水,生成的臭氧水从排水口排出。在外壳内,由于隔着离子交换膜在与阳极相反侧配置有第一阴极,因此原料水在外壳内被电解而产生臭氧。在该电解池中,在离子交换膜与第一阴极之间配置有具有离子交换性能的第二阴极。因此,原料水中的矿物质成分在离子交换膜与第一阴极之间不以盐的形式析出而以离子状态沿着第二阴极的表面向第一阴极侧移动。并且,矿物质成分最终在第一阴极中与离子交换膜相反侧的部分析出。由于能抑制矿物质成分在离子交换膜与第一阴极之间析出,因此能高效地生成臭氧水。
特别是,即使在使用与去离子水等相比含有较多矿物质成分的自来水等来作为原料水的情况下,也能高效地生成臭氧水。
根据本发明,第二阴极包括碳阴极和涂覆构件。碳阴极由碳纤维形成,因此与板状的金属相比其表面积大。碳纤维被具有离子交换性能的涂覆构件包覆,因此能提高第二阴极的离子交换性能。因此,能促进原料水中的矿物质成分向 第一阴极侧移动。即,能进一步抑制矿物质成分在离子交换膜与第一阴极之间析出。
根据本发明,碳阴极中与离子交换膜邻接的交换膜侧部分的亲水性比碳阴极中与第一阴极邻接的第一阴极侧部分的亲水性高。因此,能进一步抑制矿物质成分在离子交换膜侧析出。
根据本发明,碳阴极由多个片构件构成。因此,可以按每个片构件变更涂覆构件。由此,能按每个片构件来选择适合抑制矿物质成分在离子交换膜与第一阴极之间析出的涂覆构件。
根据本发明,施加于第二阴极的电压比施加于第一阴极的电压低。因此,第二阴极附近的离子状态的矿物质成分容易被吸引到第一阴极侧。因此,能促进原料水中的矿物质成分向第一阴极侧移动。即,能进一步抑制矿物质成分在离子交换膜与第一阴极之间析出。
根据本发明,贮留于贮留部的原料水被送水部送至电解池。被送至电解池的原料水被电解池电解而生成臭氧水。然后,由电解池生成的臭氧水被送水部送至散布部,从散布部向臭氧水散布装置的外部散布。
附图说明
图1是具备本发明的电解池的臭氧水喷雾器的纵剖视图。
图2为电解池的爆炸图。
图3为电解池的剖视图。
图4是用于对电解池中具备的第二阴极的构成进行说明的示意图。
图5A是用于对使用具有离子交换性能的电解池的情况下的析出量比较实验的结果进行说明的图,是盐酸清洗前的离子交换膜的表面的放大图。
图5B是用于对使用不具有离子交换性能的电解池的情况下的析出量比较实验的结果进行说明的图,是盐酸清洗前的离子交换膜的表面的放大图。
图5C是用于对使用具有离子交换性能的电解池的情况下的析出量比较实验的结果进行说明的图,是盐酸清洗后的离子交换膜的表面的放大图。
图5D是用于对使用不具有离子交换性能的电解池的情况下的析出量比较实验的结果进行说明的图,是盐酸清洗后的离子交换膜的表面的放大图。
附图标记说明
1:臭氧水喷雾器(臭氧水散布装置);3:贮留部;4:电解池;5:送水部;6:散布部;15:外壳;15a:取水口;15b:排水口;31:阳极;32:离子交换膜;33:第一阴极;34:第二阴极;60:炭阴极;61:片构件;62:阴极侧部分;63:交换膜侧部分;70:涂覆构件;71:低亲水性涂覆构件;72:高亲水性涂覆构件;OW:臭氧水;RW:原料水。
具体实施方式
以下,参照附图对本发明的实施方式进行具体说明。
<臭氧水喷雾器的构成>
图1是作为本发明的臭氧水散布装置的臭氧水喷雾器1的纵剖视图。参照图1,臭氧水喷雾器1包括:机壳2、贮留部3、电解池4、送水部5、散布部6以及供电部7。
机壳2容纳贮留部3、电解池4、送水部5、散布部6以及供电部7。贮留部3贮留原料水RW。电解池4将原料水RW电解来生成臭氧水。散布部6将由电解池4生成的臭氧水OW向外部散布。送水部5经由电解池4从贮留部3向散布部6送水。供电部7向臭氧水喷雾器1的各构件供电。
臭氧水喷雾器1基于用户对开关、杆等操作部(未图示)的操作,由原料水RW生成臭氧水OW,散布生成的臭氧水OW。
机壳2由躯干部10、颈部11以及头部12构成。躯干部10具有随着从平坦的底部趋向上方而变细的锥形。颈部11具有向上下方向延伸的大致圆筒形状。头部12具有与颈部11交叉地延伸的大致方形筒状。
贮留部3是容纳于机壳2的躯干部10的容器。作为贮留于贮留部3内的原料水RW,可举出纯水、自来水。
电解池4在贮留部3的底部附近配置于贮留部3内。详细内容在后文中进 行说明,电解池4包括外壳(housing)15,将取入至外壳15的内部空间16的原料水RW电解来生成臭氧水OW。外壳15具有:取水口15a,向内部空间16取入原料水RW;排水口15b,从内部空间16排出臭氧水OW;以及氢气排出口15c,排出在生成臭氧水OW时产生的氢气(H 2)。
散布部6包括:雨喷嘴17,散布雨状的臭氧水OW;以及雾喷嘴18,散布雾状的臭氧水OW。雨喷嘴17配置于机壳2的头部12的一端,雾喷嘴18配置于机壳2的头部12的另一端。
送水部5包括:第一送水管19,将贮留部3内的原料水RW送入电解池4的取水口15a;第二送水管20,将由电解池4生成的臭氧水OW从电解池4的排出口16b送入散布部6;以及泵21,经由第一送水管19、电解池4以及第二送水管20从贮留部3向散布部6送出水。
泵21例如为隔膜驱动式的小型泵。泵21夹装于第一送水管19中。泵21具有:泵主体22;吸水口21a,使泵主体22取入原料水RW;以及吐水口21b,吐出泵主体22内的原料水RW。第一送水管19包括:吸水管23,一端连接于吸水口21a;以及吐水管24,一端连接于吐水口21b。吸水管23的另一端在贮留部3内位于比原料水RW的水面WS靠底部侧。吐水管24的另一端连接于电解池4的外壳15的取水口15a。
泵21通过用户对操作部的操作而切换为驱动状态和停止状态中某个状态。散布部6的散布模式通过用户对操作部的操作而切换为从雨喷嘴17散布臭氧水OW的雨模式和从雾喷嘴18散布臭氧水OW的雾模式中的某个模式。
供电部7包括在机壳2的躯干部10中配置于贮留部3的下方的电池等电源25和从电源25向电解池4延伸的多根配线26。虽然未图示,但供电部7也可以包括向泵21、操作部供电的配线。
通过驱动泵21,贮留部3内的原料水RW经由第一送水管19被供给至电解池4。原料水RW在通过电解池4时变化为臭氧水OW。在电解池4内生成的臭氧水OW经由第二送水管20被供给至散布部6。由此,臭氧水OW从散布部6吐出。图1示出了由雨喷嘴17来散布臭氧水OW的状态。
图2为电解池4的爆炸图。电解池4为分离式,整体呈大致圆柱状。
参照图2,电解池4包括:外壳15、阳极通电端子30、阳极31、离子交换膜32、第一阴极33、第二阴极34、第一阴极通电端子35、第二阴极通电端子36以及弹性构件37。
外壳15具有第一座体(holder)40和第二座体50。第一座体40具有有底的筒状。第一座体40包括:圆板状的底部41、从底部41的周缘部与底部41同轴状地延伸的圆筒部42以及从底部41向与圆筒部42相反侧延伸的长方体状部43。
取水口15a和排水口15b形成于第一座体40的长方体状部43。取水口15a贯穿长方体状部43和底部41。排水口15b贯穿长方体状部43和底部41(同时参照后述的图3)。
第二座体50具有有底的筒状。第二座体50具有向与第一座体40相反侧凹陷的形状。第二座体50包括圆板状的底部51和从底部51的周缘部与底部51同轴状地向第一座体40延伸的圆筒部52。氢气排出口15c形成于第二座体50。
氢气排出口15c包括:圆形孔51a,贯穿底部51的中央;以及多个圆弧状孔51b,以包围圆形孔51a的方式沿着底部51的周向等间隔地配置,贯穿底部51。
第一座体40具有设于圆筒部42的外表面部的一对卡合凸部44。第二座体50具有设于圆筒部52并分别与对应的卡合凸部44卡合的一对卡合凹部53。通过将一对卡合凸部44分别嵌入对应的卡合凹部53来组装出外壳15。也可以是与图2的例子不同,第一座体40具有卡合凹部而第二座体50具有卡合凸部的构成。
阳极31、离子交换膜32、第二阴极34、第一阴极33以及弹性构件37从第一座体40侧往第二座体50侧按上述顺序配置。
阳极31例如具有大致长方体形状。阳极31例如为表面被涂覆的合金。被用作阳极的合金中可以含钨、铁、钼、镍、钛、硅、钽、铌等。阳极31不一定是合金。阳极31也可以是氧化铅、氧化錫、白金等贵金属、贵金属氧化物、炭、导电性金刚石等。
离子交换膜32例如为圆形的薄膜。离子交换膜32例如可以是氟类树脂进 而烃类树脂中的某种树脂。从对臭氧、过氧化物的耐腐蚀性的角度出发,离子交换膜32优选为氟类树脂。氟类树脂可以使用Nafion(注册商标)。Nafion是以被磺化的四氟乙烯为基础的氟树脂共聚物,是具有离子电导性的聚合物。在Nafion内,阴离子、电子不移动,只有作为阳离子的氢离子会移动。
离子交换膜32的厚度例如为30μm以上1.5mm以下。离子交换膜32的厚度优选为30μm以上1.0mm以下。离子交换膜32的厚度进一步优选为30μm以上200μm以下。离子交换膜32的厚度更进一步优选为50μm以上120μm以下。离子交换膜32的厚度特别优选为51μm。
第一阴极33例如具有圆板形状。作为第一阴极33,使用不会被氢脆化的物质。具体而言,用作第一阴极33的物质可举出铂族金属、镍、不锈钢、钛、锆、金、银、碳、金刚石等。第一阴极33具有贯穿第一阴极33的多个贯穿孔33a。
第二阴极34为具有离子交换性能的圆形的多个片的层叠体。第二阴极34配置于离子交换膜32和第一阴极33之间。第二阴极34包括由碳纤维形成的碳阴极60和具有离子交换性能并包覆碳纤维的涂覆构件70。
碳阴极60通过由碳纤维形成的圆形的片构件61构成。在图2的例子中设有11枚片构件61,但片构件61的枚数不限于此。例如,可以设有16枚片构件61。
弹性构件37例如为环状的碟形弹簧。弹性构件37对第一阴极33向阳极31侧弹性施力。由此,能使阳极31、离子交换膜32、第二阴极34以及第一阴极33紧贴。
阳极通电端子30、第一阴极通电端子35以及第二阴极通电端子36分别形成为例如螺旋状。阳极通电端子30配置于阳极31与第一座体40之间,与阳极31接触。第一阴极通电端子35配置于第一阴极33与弹性构件37之间,与第一阴极33接触。第二阴极通电端子36配置于片构件61彼此之间,与片构件61接触。
多根配线26包括:阳极侧配线80,与阳极通电端子30连接;以及阴极侧配线81,与第一阴极通电端子35和第二阴极通电端子36连接。
第一阴极33和第二阴极34分别经由第一阴极通电端子35和第二阴极通电 端子36与作为公用配线的阴极侧配线81并联。其中,第二阴极通电端子36连接于阴极侧配线81的顶端,第一阴极通电端子35连接于比阴极侧配线81的顶端靠电源25(同时参照后述的图4)侧,因此施加于第二阴极34的电压比施加于第一阴极33的电压低。
图3为电解池4的纵剖视图。
外壳15在第一座体40与第二座体50之间具有内部空间16。外壳15的内部空间16中容纳有阳极通电端子30、阳极31、离子交换膜32、第一阴极33、第二阴极34、第一阴极通电端子35、第二阴极通电端子36以及弹性构件37。
内部空间16被离子交换膜32分隔为阳极室16A和阴极室16B。在阳极室16A配置有阳极通电端子30和阳极31。在阴极室16B容纳有第一阴极33、第二阴极34、第一阴极通电端子35、第二阴极通电端子36以及弹性构件37。
阳极侧配线80例如经由设于第一座体40的取水口15a进入外壳15的内部空间16。阴极侧配线81例如经由第二座体50的氢气排出口15c进入外壳15的内部空间16。
原料水RW经由设于第一座体40的取水口15a从第一送水管19进入阳极室16A。原料水RW在阳极室16A内被电解从而产生臭氧。产生的臭氧溶解于原料水RW中而生成臭氧水OW。在阳极室16A内生成的臭氧水OW经由设于第一座体40的排水口15b从阳极室16A向第二送水管20排出。
原料水RW从设于第二座体50的氢气排出口15c进入阴极室16B内。从氢气排出口15c进入阴极室16B内的原料水RW经由第一阴极33的贯穿孔33a进入阴极室16B内比第一阴极33靠离子交换膜32侧。因此,阴极室16B内充满原料水RW,第二阴极34的周围存在原料水RW。
图4是用于对第二阴极34的构成进行说明的示意图。
参照图4,第二阴极34的碳阴极60包括:阴极侧部分62,与第一阴极33邻接;以及交换膜侧部分63,与离子交换膜32邻接。阴极侧部分62由第一阴极33侧的多个片构件61构成,交换膜侧部分63由离子交换膜32侧的多个片构件61构成。第二阴极通电端子36配置于阴极侧部分62的片构件61之间。图4中,为了便于说明,片构件61的枚数与图2和图3不同。
涂覆构件70包括:低亲水性涂覆构件71,在阴极侧部分62包覆碳纤维;以及高亲水性涂覆构件72,在交换膜侧部分63包覆碳纤维。高亲水性涂覆构件72比低亲水性涂覆构件71亲水性高。
低亲水性涂覆构件71包含半疏水性离子交换树脂73。作为半疏水性离子交换树脂73,例如可以使用具有磺酸基73a的Nafion。
高亲水性涂覆构件72包含半疏水性离子交换树脂74、亲水性离子交换树脂75、离子交换助剂76以及供水剂77。半疏水性离子交换树脂74例如可以使用具有磺酸基74a的Nafion。
亲水性离子交换树脂75是亲水性比半疏水性离子交换树脂73和74高的物质。亲水性离子交换树脂75例如可以包括Verazole(注册商标)等有机导电性聚合物、磺化聚醚砜、修饰氧化石墨烯中的至少一种。作为有机导电性聚合物,特别优选使用PEDOT(聚3,4-乙烯二氧噻吩)中掺杂有PSS(聚苯乙烯磺酸)和PTS(甲苯磺酸)的高分子材料。修饰氧化石墨烯可以包括使用羰基修饰或磺酸基修饰的石墨烯中的至少任一种。
离子交换助剂76优选为比半疏水性离子交换树脂74酸强度高的物质。酸强度是指作为酸的能力,酸强度包括布朗斯台德酸强度和路易斯酸强度。离子交换助剂76例如为固体酸催化剂。作为固体酸催化剂,可举出沸石、蒙脱石、十二钨六磷酸铯盐等。由于十二钨六磷酸铯盐的酸强度比半疏水性离子交换树脂74的酸强度高,因此优选作为离子交换助剂76来使用。
供水剂77优选亲水性高、粒径小、具有化学耐性的物质。其中,化学耐性是指具有对强酸、氢的耐性。此外,从防止向水中扩散的角度出发,供水剂77优选为不溶于水的固体。供水剂77优选能适度保持水分,作为那样的供水剂77,例如可以举出纤维素纳米纤维。
通过亲水性离子交换树脂、离子交换助剂以及供水剂的作用,高亲水性涂覆构件72的亲水性变得比低亲水性涂覆构件71的亲水性高。
涂覆构件70通过对碳纤维含浸液态的涂覆构件的含浸处理或者蒸发涂敷气态的涂覆构件的蒸发涂敷处理来形成。
根据本实施方式,在该电解池4中由从取水口15a取入外壳15内的原料水 RW生成臭氧水OW,生成的臭氧水OW从排水口15b排出。在外壳15内隔着离子交换膜32在与阳极31相反侧配置有第一阴极33,因此原料水RW在外壳15内被电解而产生臭氧。在该电解池4中,在离子交换膜32与第一阴极33之间配置有具有离子交换性能的第二阴极34。因此,原料水RW中的矿物质成分不在离子交换膜32与第一阴极33之间以盐的形式析出而以离子状态沿着第二阴极34的表面向第一阴极33侧移动。并且,矿物质成分的析出物100最终形成于第一阴极33的表面上与离子交换膜32相反侧。由于能抑制矿物质成分在离子交换膜32与第一阴极33之间析出,因此能高效地生成臭氧水OW。
特别是,即使在将含有大量矿物质成分的自来水等用作原料水RW的情况下,也能高效地生成臭氧水OW。
更详细而言,矿物质离子被高亲水性涂覆构件72的半疏水性离子交换树脂74和亲水性离子交换树脂75吸附,运送到比碳阴极60被施加更高电压的第一阴极33。
碳阴极60并不总被充分供给电流。因此,存在半疏水性离子交换树脂74和亲水性离子交换树脂75的周围汇聚矿物质成分而导致第二阴极34的离子交换性能降低的隐患。即使在这种情况下,具有比磺酸基74a高的酸活性的离子交换助剂76也会吸附矿物质离子。因此,半疏水性离子交换树脂74和亲水性离子交换树脂75会恢复酸活性。被吸附到离子交换助剂76上的矿物质离子不在碳阴极60的周边析出而被吸引到被施加了高电压的第一阴极33上。
到达第一阴极33的矿物质离子有时会在碳阴极60与第一阴极33之间析出,但碳阴极60会作为阳极发挥功能,从矿物质盐中夺取电子。由此,由于矿物质盐再次离子化,因此能维持第一阴极33作为阴极的功能。再次离子化的矿物质成分向来自碳阴极60的影响被充分降低的位置移动,具体而言向相对于第一阴极33与碳阴极60相反侧的位置移动并再次析出。
根据本实施方式,第二阴极34包括碳阴极60和涂覆构件70。碳阴极60由碳纤维形成,因此与板状的金属相比其表面积大。碳纤维被具有离子交换性能的涂覆构件70包覆,因此能提高第二阴极34的离子交换性能。因此,能促进原料水RW中的矿物质成分向第一阴极33侧移动。即,能进一步抑制矿物质成分在离子交换膜32与第一阴极33之间析出。
根据本实施方式,在碳阴极60中与离子交换膜32邻接的交换膜侧部分63的亲水性比与第一阴极33邻接的阴极侧部分62的亲水性高。因此,能进一步抑制矿物质成分在离子交换膜32侧析出。
第二阴极通电端子36配置于阴极侧部分62的片构件61之间。因此,阴极侧部分62的片构件61会因弹性构件37的弹性力而被按压向第二阴极通电端子36,因此存在碳纤维被切断的隐患。此外,由于阴极侧部分62不与离子交换膜32接触,因此不直接参与原料水RW的电解。而且,阴极侧部分62要求离子交换能力的时刻比交换膜侧部分63迟。
因此,阴极侧部分62优选使用用于涂覆的物质的数量比高亲水性涂覆构件72少、制造工时比高亲水性涂覆构件72少的低亲水性涂覆构件71。
但是,涂覆构件70需要在大电流流过碳阴极60时在化学上也稳定。因此,作为低亲水性涂覆构件71,优选使用在化学稳定性上优异的Nafion。
根据本实施方式,碳阴极60由多个片构件61构成。因此,可以按每个片构件61变更涂覆构件70。由此,能按每个片构件61来选择适合抑制矿物质成分在离子交换膜32与第一阴极33之间析出的涂覆构件。
根据本实施方式,施加于第二阴极34的电压比施加于第一阴极33的电压低。因此,第二阴极34附近的离子状态的矿物质成分容易被吸引到第一阴极33侧。因此,能促进原料水RW中的矿物质成分向第一阴极33侧移动。即,能进一步抑制矿物质成分在离子交换膜32与第一阴极33之间析出。
根据本实施方式,贮留于贮留部3的原料水RW被送水部5送至电解池4。被送至电解池4的原料水RW被电解池4电解而生成臭氧水OW。然后,从散布部6散布由电解池4生成的臭氧水OW。
<析出量比较实验>
接着,对为了证实电解池4的盐析出抑制效果而进行的析出量比较实验进行说明。
图5A~图5D是用于说明析出量比较实验的结果的图像。
在析出量比较实验中,使用将具有离子交换性能的碳阴极用作第二阴极的 第一电解池和将不具有离子交换性能的碳阴极用作第二阴极的第二电解池。在析出量比较实验中,使用各电解池以自来水作为原料水反复进行臭氧水的生成后,对附着于各电解池的盐的量进行比较。
第一电解池与第二电解池的碳阴极的片构件的枚数不同。具体而言,第一电解池所具备的碳阴极的片构件的枚数为16枚,与此相对,第二电解池所具备的碳阴极的片构件的枚数为2枚。
在析出量比较实验中,使用TDS(总溶解固体)为300ppm的水,执行臭氧水的生成2000个循环。TDS为300ppm的水相当于自来水。以进行臭氧的生成5秒后停止臭氧的生成5秒作为一个循环。
执行臭氧水的生成2000个循环后,将紧贴状态的离子交换膜和第二阴极从各电解池中取出,拍摄离子交换膜的静止图像。如图5A所示,在从第一电解池中取出的离子交换膜上观测到微量盐的析出。与此相对,如图5B所示,在从第二电解池取出的离子交换膜的内部观测到大量盐的析出。
将从各电解池取出的离子交换膜浸渍于5%盐酸中30分钟进行清洗后,拍摄离子交换膜的静止图像。如图5C所示,从第一电解池取出的离子交换膜在盐酸清洗前后没有观测到大的变化。另一方面,如图5D所示,从第二电解池取出的离子交换膜与盐酸清洗前(参照图5B)相比,离子交换膜的透明度变高。即,可推测通过盐酸清洗去除了碳酸钙盐等矿物质盐。
由此,可知在使用第二阴极具有离子交换性能的电解池(第一电解池)的情况下,与使用第二阴极不具有离子交换性能的电解池(第二电解池)的情况相比,能抑制矿物质盐在离子交换膜附近析出。
<电解实验>
接着,对第一电解实验和第二电解实验进行说明,第一电解实验用于对根据涂覆构件的种类而产生的臭氧生成能力的差异进行比较,第二电解实验用于对根据涂覆构件的有无而产生的臭氧生成能力的差异进行比较。
在电解试验中,使用涂覆构件不同的五种电解池作为样本。各样本的涂覆构件如下。
样本A:Nafion、Verazole、十二钨六磷酸铯盐、纤维素纳米纤维
样本B:Nafion、纤维素纳米纤维
样本C:Nafion、Verazole、纤维素纳米纤维
样本D:Nafion、十二钨六磷酸铯盐、纤维素纳米纤维
样本E:无离子交换成分
<第一电解实验>
在第一电解实验中,对样本A~样本D的性能进行了比较。
在第一电解实验中,按照以下的条件进行了耐久试验。详细而言,从实验开始起24小时的期间,重复进行以在进行臭氧的生成10秒后停止臭氧的生成5秒来作为一个循环的小循环。在从实验开始起经过24小时后,重复进行以进行10次小循环后使臭氧的生成停止150分种来作为一个循环的大循环。
在第一电解实验中,在从开始起24小时的期间使用TDS为300ppm的水。在从实验开始起经过24小时后,为了观测刚停止150分钟的电解池的臭氧生成能力,使用TDS为450ppm的水。
在第一电解实验中,将水温调整为25℃以上30℃以下,将水的流量调整为1mL/秒以上1.2mL/秒以下,将电流设为1.2A定电流,将电压设为18.0V以下。
臭氧浓度通过紫外线吸收法按照每个主要部位每隔24小时进行测定。监视每秒的电压值24小时,在臭氧浓度测定时使用水温计来测定水温。
下述表1为表示第一电解实验的结果的表格。在表1中,“首次”表示第一次大循环,“再次开始时”表示第二次以后的大循环。表1的“电压”表示电解池中的电压,电压越低,表示矿物质成分的析出量越少,能大量生成臭氧水。
表1的“稳定时间”表示大循环开始后到电压稳定为止所需的时间,稳定时间越短,表示越能将水稳定地电解。
表1
Figure PCTCN2021091251-appb-000001
在使用样本A的情况下,无论在首次还是再次开始时,到电压稳定为止的时间都为大约0秒,非常短。由此,推测在开始使用臭氧水喷雾器后立即就能将水稳定地电解。此外,在使用样本A的情况下,首次的电压的最大值为8.6V,再次开始时的电压的最大值为9.2V。由此,推测通过使用具有拥有离子交换性能的第二阴极的电解池,能充分抑制矿物质成分析出。
在使用样本B的情况下,再次开始时的电压的最大值为16.5V,在使用样本C的情况下,再次开始时的电压的最大值为16.2V。另一方面,在使用样本A的情况下,再次开始时的电压的最大值为8.6V,在使用样本D的情况下,再次开始时的电压的最大值为11.3V。即,关于再次开始时的电压的最大值,样本B和样本C比样本A和样本D大。
该结果可以认为与样本B和样本C含作为离子交换助剂的十二钨六磷酸铯盐有关。
详细而言,推测由于电解停止时样本B和样本C中析出了矿物质成分,因此再次开始时的电压变高。换言之,推测样本A和样本D中,十二钨六磷酸铯盐具有在电解停止中抑制矿物质成分析出的作用。
在使用样本B的情况下,首次的稳定时间为6分52秒,在使用样本D的情况下,首次的稳定时间为9分50秒。另一方面,无论在使用样本A的情况下还是在使用样本C的情况下,首次的稳定时间都为大约0秒。即,关于首次的稳定时间,样本A和样本C比样本B和样本D短。
该结果可以认为起因于作为亲水性离子交换树脂的Verazole和作为半疏水性离子交换树脂的Nafion的供水性能的差别。详细而言,由于Verazole比Nafion亲水性高,因此碳纤维上涂覆有Nafion的样本B和样本D与碳纤维上涂覆有Verazole的样本A和样本C相比,水更难以进入碳阴极附近。因此,可以认为样本A和样本C的稳定时间比样本B和样本D的稳定时间短。
根据第一电解实验的结果,可知作为涂覆构件优选使用将半疏水性离子交换树脂、亲水性离子交换树脂、离子交换助剂以及供水剂全都包含的涂覆构件。
<第二电解实验>
接着,对第二电解实验进行说明。在第二电解实验中,对样本A和样本E进行比较。
样本E与样本A相比矿物质耐性低,因此在与第一电解实验相同的实验条件下,离子交换膜和碳阴极上会附着大量的矿物质成分,难以测定电压。
因此,对样本A使用第一电解实验的结果,对样本E以与第一电解实验不同的条件进行耐久试验。
样本E的耐久试验的条件如下。详细而言,从实验开始起6小时的期间,重复进行以在进行臭氧的生成10秒后停止臭氧的生成5秒来作为一个循环的小循环。在从实验开始起经过24小时后,重复进行以进行10次小循环后使臭氧的生成停止30分种来作为一个循环的大循环。在样本E的耐久试验中,使用TDS为300ppm的水。
在样本E的耐久试验中,将水温调整为25℃以上30℃以下,将水的流量调整为1mL/秒以上1.2mL/秒以下,将电流设为1.2A定电流,将电压设为18.0V以下。
臭氧浓度通过紫外线吸收法按照每个主要部位每隔6小时进行测定。监视每秒的电压值24小时,在臭氧浓度测定时使用水温计测定水温。
下述表2为表示第二电解实验的结果的表格。在表2中,“首次”表示第一次大循环,“再次开始时”表示第二次以后的大循环。表2的“电压”表示电解池中的电压,电压越低,表示矿物质成分的析出量越少,能大量生成臭氧水。表2的“稳定时间”表示大循环开始后到电压稳定所需的时间,稳定时间越短,表示越能将水稳定地电解。
表2
Figure PCTCN2021091251-appb-000002
在使用样本E的情况下,再次开始时的电压的最大值为18.5V,再次开始时的稳定时间为60秒。另一方面,在使用样本A的情况下,再次开始时的电压的最大值为8.6V,再次开始时的稳定时间为大约0秒。因而,得到了如下结构:在使用样本E的情况下,与使用样本A的情况相比,再次开始时析出了较多的矿物质成分。
根据第二电解实验的结果,推测具备具有离子交换性能的碳阴极的电解池与具备不具有离子交换性能的碳阴极的电解池相比能抑制矿物质成分析出。
<其他实施方式>
本发明不限于以上说明的实施方式,还能以其他的方式来实施。
例如,图1所示的臭氧水喷雾器1为能将臭氧水OW以雨状和雾状的任一种状态散布的构成。然而,也可以是与图1所示的臭氧水喷雾器1不同,只能散布雨状和雾状的其中一种状态的臭氧水OW的臭氧水喷雾器。
例如,图2和图3所示的碳阴极60由多个片构件61构成。然而,碳阴极60不一定由片构件61构成,例如也可以由单个碳纤维块构成。
例如,如图4所示,碳阴极60中阴极侧部分62与交换膜侧部分63被涂上不同的涂覆构件70。然而,也可以是,高亲水性涂覆构件72涂在阴极侧部分62和交换膜侧部分63双方。或者,也可以是,低亲水性涂覆构件71涂在阴极侧部分62和交换膜侧部分63双方。
在本说明书中,在使用“~”或“-”表示数值范围的情况下,除非特别限定地提及,否则这两个符号包括两边的端点,单位相同。
另外,可以在技术方案所记载的范围内进行各种变更。

Claims (6)

  1. 一种由原料水生成臭氧水的电解池,其特征在于,包括:
    外壳,具有取入原料水的取水口和排出臭氧水的排水口;
    阳极,配置于所述外壳内;
    离子交换膜,在所述外壳内以与所述阳极邻接的方式配置;
    第一阴极,在所述外壳内隔着所述离子交换膜配置于与所述阳极相反侧;以及
    第二阴极,配置于所述离子交换膜和所述第一阴极之间,具有离子交换性能。
  2. 根据权利要求1所述的电解池,其特征在于,
    所述第二阴极包括:碳阴极,由碳纤维形成;以及涂覆构件,具有离子交换性能,包覆所述碳纤维。
  3. 根据权利要求2所述的电解池,其特征在于,
    所述碳阴极包括:阴极侧部分,与所述第一阴极邻接;以及交换膜侧部分,与所述离子交换膜邻接,
    所述涂覆构件包括:低亲水性涂覆构件,在所述阴极侧部分包覆所述碳纤维;以及高亲水性涂覆构件,在所述交换膜侧部分包覆所述碳纤维,亲水性比所述低亲水性涂覆构件高。
  4. 根据权利要求2或3所述的电解池,其特征在于,
    所述碳阴极由多个片构件构成。
  5. 根据权利要求1至4的任一项所述的电解池,其特征在于,
    施加于所述第二阴极的电压比施加于所述第一阴极的电压低。
  6. 一种臭氧水散布装置,其特征在于,包括:
    权利要求1至5的任一项所述的电解池;
    贮留部,贮留原料水;
    散布部,散布由所述电解池生成的臭氧水;以及
    送水部,经由所述电解池从所述贮留部向所述散布部送水。
PCT/CN2021/091251 2020-09-15 2021-04-30 电解池及臭氧水散布装置 WO2022057269A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180063372.7A CN116323500A (zh) 2020-09-15 2021-04-30 电解池及臭氧水散布装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-154911 2020-09-15
JP2020154911A JP6864939B1 (ja) 2020-09-15 2020-09-15 電解セルおよびオゾン水散布装置

Publications (1)

Publication Number Publication Date
WO2022057269A1 true WO2022057269A1 (zh) 2022-03-24

Family

ID=75638807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091251 WO2022057269A1 (zh) 2020-09-15 2021-04-30 电解池及臭氧水散布装置

Country Status (3)

Country Link
JP (2) JP6864939B1 (zh)
CN (1) CN116323500A (zh)
WO (1) WO2022057269A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113148959A (zh) * 2021-05-06 2021-07-23 嘉兴摩净电子科技有限公司 一种臭氧水制备装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133559A (ja) * 1997-07-23 1999-02-09 V M C:Kk オゾン水の製造装置
JPH11209887A (ja) * 1998-01-23 1999-08-03 Suga Test Instr Co Ltd 水電解ガス発生装置
CN1809655A (zh) * 2003-06-25 2006-07-26 勒特勒公司 通过电解制备臭氧的装置
JP2012012695A (ja) * 2010-07-05 2012-01-19 Panasonic Electric Works Co Ltd 電解電極ユニット及びこれを用いた電解水生成装置
CN107075701A (zh) * 2015-07-03 2017-08-18 阿库亚爱克斯公司 电解装置及电解臭氧水制造装置
JP6249200B1 (ja) * 2016-11-04 2017-12-20 昌也 城井 電解セル及びそれを用いたオゾン水噴出装置
CN112154124A (zh) * 2018-05-25 2020-12-29 松下知识产权经营株式会社 电解水生成装置和电解水生成系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4637885B2 (ja) * 2007-08-28 2011-02-23 日科ミクロン株式会社 オゾン水生成装置
CN103781731A (zh) * 2011-09-08 2014-05-07 阿库亚爱克斯公司 电解装置及其电解方法
JP6710882B1 (ja) * 2019-09-20 2020-06-17 高光産業株式会社 電解セル及びこれを備えるオゾン水生成装置並びに電解セルの性能回復方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133559A (ja) * 1997-07-23 1999-02-09 V M C:Kk オゾン水の製造装置
JPH11209887A (ja) * 1998-01-23 1999-08-03 Suga Test Instr Co Ltd 水電解ガス発生装置
CN1809655A (zh) * 2003-06-25 2006-07-26 勒特勒公司 通过电解制备臭氧的装置
JP2012012695A (ja) * 2010-07-05 2012-01-19 Panasonic Electric Works Co Ltd 電解電極ユニット及びこれを用いた電解水生成装置
CN107075701A (zh) * 2015-07-03 2017-08-18 阿库亚爱克斯公司 电解装置及电解臭氧水制造装置
JP6249200B1 (ja) * 2016-11-04 2017-12-20 昌也 城井 電解セル及びそれを用いたオゾン水噴出装置
CN112154124A (zh) * 2018-05-25 2020-12-29 松下知识产权经营株式会社 电解水生成装置和电解水生成系统

Also Published As

Publication number Publication date
JP2022048964A (ja) 2022-03-28
JP2022048865A (ja) 2022-03-28
CN116323500A (zh) 2023-06-23
JP6864939B1 (ja) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2016047055A1 (ja) 電解液体生成装置、電解液体生成装置を備える液体改質装置、および電解液体生成装置で生成された電解液体を用いる電気機器
JP5308282B2 (ja) オゾン発生装置の運転方法及びオゾン発生装置
CN106661743B (zh) 电极单元、具备电极单元的电解槽、电解装置、电极单元的电极的制造方法
US11220754B2 (en) Ozone generator for a faucet
US20110129758A1 (en) Water electrolysis apparatus and water electrolysis system
JP2014504680A (ja) 特にh2及びo2を生成するための電解槽及び該電解槽を備えたアセンブリ
TW201243109A (en) Apparatus for electrolyzing sulfuric acid and method for electrolyzing sulfuric acid
WO2022057269A1 (zh) 电解池及臭氧水散布装置
JP7195662B2 (ja) 水素ガス生成装置
WO2018168876A1 (ja) 有機物生成システム及び有機物の製造方法
TWI546419B (zh) 電解電極元件及具有該電解電極元件之電解水生成裝置
JP6963789B2 (ja) 水素ガス生成装置およびそれを含む水素ガス吸入装置
JP6438739B2 (ja) 電解方法
JP2012107331A (ja) 水電解システム
JP5130781B2 (ja) 過酸化水素製造装置並びにそれを用いた空調機、空気清浄機及び加湿器
JP6710882B1 (ja) 電解セル及びこれを備えるオゾン水生成装置並びに電解セルの性能回復方法
JP6216967B2 (ja) 電極、および、ガス生成装置
JP2010265502A (ja) 活性酸素発生装置及び加湿器、空気清浄機
JP6467690B2 (ja) 電解液体生成装置、電解液体生成装置を備えた液体改質装置または電解液体生成装置で生成された電解液体を利用する電気機器
KR101130073B1 (ko) 약산성수의 제조장치
JP2021120140A (ja) オゾン水の生成方法、生成噴霧器及び生成噴霧装置
KR101822465B1 (ko) 수소수 생성을 위한 전극 어셈블리 및 이를 포함하는 휴대용 수소수 제조장치
JP4053805B2 (ja) 機能水、その製造方法及び製造装置
CN108314148A (zh) 臭氧电极装置及纯水机
JP6847477B1 (ja) 電解水製造装置及びこれを用いる電解水の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868107

Country of ref document: EP

Kind code of ref document: A1