WO2022055221A1 - 폴리티올 조성물 및 이를 포함하는 광학 조성물 - Google Patents

폴리티올 조성물 및 이를 포함하는 광학 조성물 Download PDF

Info

Publication number
WO2022055221A1
WO2022055221A1 PCT/KR2021/012122 KR2021012122W WO2022055221A1 WO 2022055221 A1 WO2022055221 A1 WO 2022055221A1 KR 2021012122 W KR2021012122 W KR 2021012122W WO 2022055221 A1 WO2022055221 A1 WO 2022055221A1
Authority
WO
WIPO (PCT)
Prior art keywords
polythiol
compound
composition
polythiol compound
sub
Prior art date
Application number
PCT/KR2021/012122
Other languages
English (en)
French (fr)
Inventor
배재영
김정무
한혁희
명정환
류경환
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Priority to US18/044,379 priority Critical patent/US20230357484A1/en
Priority to CN202180061853.4A priority patent/CN116075541A/zh
Priority to EP21867087.5A priority patent/EP4212566A1/en
Publication of WO2022055221A1 publication Critical patent/WO2022055221A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3863Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms
    • C08G18/3865Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms containing groups having one sulfur atom between two carbon atoms
    • C08G18/3868Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms containing groups having one sulfur atom between two carbon atoms the sulfur atom belonging to a sulfide group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C315/00Preparation of sulfones; Preparation of sulfoxides
    • C07C315/04Preparation of sulfones; Preparation of sulfoxides by reactions not involving the formation of sulfone or sulfoxide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/02Thiols having mercapto groups bound to acyclic carbon atoms
    • C07C321/04Thiols having mercapto groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/12Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms
    • C07C321/14Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a polythiol composition and an optical composition comprising the same. More particularly, it relates to a polythiol composition comprising different polythiol-based compounds and an optical composition comprising the same.
  • a polythiol compound is widely used as a manufacturing raw material of a polyurethane-type resin, for example.
  • a polythiol compound is used to manufacture an optical lens using a polyurethane-based resin, and quality such as purity of the polythiol compound as a raw material may directly affect the quality of the optical lens.
  • a polythiourethane-based compound prepared by reacting a polythiol compound and an isocyanate compound may be used as the base material of the optical lens.
  • Korean Patent Laid-Open No. 10-1338568 discloses a method for synthesizing a polythiol compound by reacting a polyol compound with thiourea to produce an isothiouronium salt, and hydrolyzing it using aqueous ammonia.
  • Optical properties such as transparency and refractive index of the lens may be slightly changed according to the functional number and chain length of the synthesized polythiol compound. Therefore, it may be necessary to fine-tune the composition of the polythiol compound in order to realize an optical lens having desired optical properties with high reliability.
  • One object according to the exemplary embodiments is to provide a polythiol composition having improved reaction properties and optical properties, and a method for preparing the same.
  • One object according to exemplary embodiments is to provide an optical composition including a polythiol composition having improved reaction properties and optical properties.
  • An object according to exemplary embodiments is to provide an optical product manufactured using the optical composition.
  • the polythiol composition according to the exemplary embodiments includes at least two different polythiol-based compounds, and C 8 H 18 S 6 measured through a high performance liquid chromatography (HPLC) analysis graph obtained at a wavelength of 230 nm.
  • the peak area (%) of the indicated polythiol compound is 0.90% to 1.30%.
  • the polythiol compound represented by C 8 H 18 S 6 may have a structure of Formula 2 below.
  • the polythiol-based compound may include a sub-polythiol compound represented by Formula 2, and a main polythiol compound having a molecular weight greater than that of the sub-polythiol compound.
  • the main polythiol compound may include a tetrafunctional polythiol compound having a greater carbon number than the sub polythiol compound.
  • the main polythiol compound may include at least one of tetrafunctional polythiol compounds represented by the following Chemical Formulas 1-1 to 1-3.
  • reaction rate control index defined by Equation 1 below may be 0.006 to 0.017.
  • A is the peak area (%) of the polythiol compound represented by C 8 H 18 S 6 measured through the HPLC analysis graph
  • B is Formula 1-1 measured through the HPLC analysis graph to the peak area (%) of the polythiol compound represented by 1-3).
  • the peak area (%) of the polythiol compound represented by Formulas 1-1 to 1-3 measured through the HPLC analysis graph may be 78.6% to 85%.
  • a polyol intermediate is generated by adding a metal sulfide to the preliminary polyol compound.
  • a sub-polythiol compound formation accelerator is added to the polyol intermediate.
  • the polyol intermediate is converted into a polythiol-based compound through thiolation.
  • the polythiol composition includes at least two different polythiol-based compounds, and C 8 H 18 S 6 measured through a high performance liquid chromatography (HPLC) analysis graph obtained at a wavelength of 230 nm
  • a peak area (%) of the polythiol compound represented by may be 0.90% to 1.30%.
  • the preliminary polyol compound is synthesized through the reaction of 2-mercaptoethanol and epihalohydrin, and the sub-polythiol compound formation promoter in the polyol intermediate is a peak region ( %) may be added in a predetermined equivalent range with respect to 2-mercaptoethanol to satisfy the range.
  • the sub-polythiol compound formation promoter may include glycidol.
  • the optical composition according to the exemplary embodiments includes at least two different polythiol-based compounds, and is expressed as C 8 H 18 S 6 measured through a high performance liquid chromatography (HPLC) analysis graph obtained at a wavelength of 230 nm. and a polythiol composition having a peak area (%) of 0.90% to 1.30% of the polythiol compound, and an isocyanate-based compound.
  • HPLC high performance liquid chromatography
  • an optical article including a polythiourethane resin prepared from the above-described optically polymerizable composition is provided.
  • the polythiol composition according to the exemplary embodiments may include at least two different tetrafunctional polythiol-based compounds, and a sub-polythiol compound having a predetermined structure is measured by HPLC. It may be included in a predetermined content range.
  • the sub-polythiol compound has a relatively short chain length, reduces coloration of the lens, and adjusts the reaction rate with the isocyanate-based compound to obtain an optical lens having a desired refractive index with high reliability.
  • 1 to 4 are images of high-performance liquid chromatography (HPLC) analysis graphs of polythiol compositions prepared according to Examples.
  • a polythiol composition comprising polythiol-based compounds.
  • the polythiol composition may include at least two different polythiol-based compounds.
  • the polythiol composition may include at least two types of tetrafunctional polythiol compounds.
  • the polythiol composition may include a main polythiol compound and a sub polythiol compound.
  • Non-limiting examples of the main polythiol compound include compounds represented by the following Chemical Formulas 1-1 to 1-3.
  • the main polythiol compound may include at least one of compounds represented by the following Chemical Formulas 1-1 to 1-3.
  • the main polythiol compound may include a tetrafunctional polythiol compound represented by Formula 1-1.
  • the sub polythiol compound may include a tetrafunctional polythiol compound having a shorter chain length, a smaller molecular weight, or a smaller number of carbon atoms than the main polythiol compound.
  • the sub-polythiol compound may be represented by C 8 H 18 S 6 .
  • the sub-polythiol compound may include a compound represented by Formula 2 below.
  • the sub-polythiol compound has a smaller chain length and/or a smaller molecular weight than the main polythiol compound, and may be provided as a polymerization reaction regulator with an isocyanate-based compound to be described later.
  • reaction rate between the main polythiol compound and the isocyanate-based compound when the reaction rate between the main polythiol compound and the isocyanate-based compound is excessively increased, it may cause streaks of optical products such as lenses.
  • reaction rate between the main polythiol compound and the isocyanate-based compound is excessively reduced, cloudiness/coloration of the optical product may result, thereby reducing transmittance.
  • an appropriate reaction rate between the main polythiol compound and the isocyanate-based compound may be maintained.
  • the overall thiol value and liquid refractive index of the polythiol composition may be finely adjusted through the sub polythiol compound.
  • an optical product such as a lens having uniform optical properties and suppressed coloring and streaking can be obtained by using the polythiol composition.
  • the reaction rate may excessively increase as the low molecular weight thiol component increases.
  • the function as the above-described reaction rate regulator may not be sufficiently implemented, and coloration and transmittance reduction of the optical product may occur.
  • the content of the sub-polythiol compound (eg, peak area %) may range from 0.90% to 1.30%.
  • the content of the sub-polythiol compound measured by HPLC is 0.95% to 1.30%, preferably 1.0% to 1.30%, more preferably, 1.03% to 1.26%, or 1.05% to 1.26 It can be %.
  • the reaction rate between the polythiol composition and the isocyanate compound is in the range of 0.18 to 0.25, preferably in the range of 0.18 to 0.22, by the sub polythiol compound. Preferably, it may be maintained in the range of 0.20 to 0.22.
  • reaction rate control index (RCI) represented by the following formula 1 of the polythiol composition may be 0.006 to 0.017.
  • Equation 1 A is the content of the sub-polythiol compound measured through the peak region of the sub-polythiol compound in the HPLC analysis graph.
  • B is the content of the main polythiol compound measured through the peak area of the main polythiol compound in the HPLC analysis graph.
  • reaction rate control index may reflect the content ratio of the isocyanate-based compound and the low molecular weight polythiol and the high molecular weight polythiol participating in the polymerization reaction.
  • the sub polythiol compound may correspond to the low molecular weight polythiol, has a relatively short molecular length, and may act as a component that increases the reaction rate with the isocyanate-based compound.
  • the main polythiol compound has a relatively large molecular weight or molecular length and may provide a reduced reaction rate compared to the sub polythiol compound.
  • the reaction rate control index of Formula 1 may be adjusted in an appropriate range from the polythiol composition unit. Therefore, it is possible to obtain a highly reliable optical product while suppressing the occurrence of streaks due to excessive increase in the reaction rate, transmittance and yield decrease due to excessive decrease in the reaction rate.
  • the reaction rate control index may be 0.007 to 0.017, preferably 0.01 to 0.017, more preferably 0.012 to 0.016.
  • the content (eg, peak area%) of the main polythiol compound measured through the HPLC analysis graph may be 78.6% to 85%.
  • the HPLC peak region or content may correspond to the compounds represented by Chemical Formulas 1-1 to 1-3.
  • the content of the main polythiol compound measured by HPLC may be 78.6% to 84.1%, 79.0% to 84.0%, more preferably, 81.0% to 83.25%.
  • the polythiol composition has a thiol value (SHV) of about 96 g/eq. to 97 g/eq.
  • SHV thiol value
  • the SHV is 96.1 g/eq. to 96.8 g/eq.
  • SHV can be measured as a value obtained by dividing the sample weight by the consumed iodine equivalent when titrating a polythiol composition sample using a 0.1N iodine standard solution.
  • the liquid refractive index of the polythiol composition may be about 1.6455 to 1.647.
  • the liquid phase refractive index may be about 1.6455 to 1.6468, more preferably 1.6455 to 1.646.
  • the liquid refractive index may be measured at 25° C. using a liquid phase refractometer.
  • the purity of the polythiol composition by gel permeation chromatography may be 79% or more.
  • the GPC purity of the polythiol composition may be 79% to 88%.
  • the GPC purity may be 80% to 88%, more preferably 81% to 85%.
  • the polythiol composition may include at least two different tetrafunctional polythiol compounds.
  • the method for preparing a polythiol composition may include at least one of the steps, processes or actions described as S10, S20, S30 and S40 below. It should be understood that the terms "S10, S20, S30 and S40" below are used to distinguish processes for convenience of description and are not intended to limit the order. For example, some or all of the following processes S10, S20, S30 and S40 may be sequentially performed, and may be changed according to process conditions.
  • a polyol intermediate is produced by adding a metal sulfide to the preliminary polyol compound
  • the polyol intermediate may be produced by reacting the preliminary polyol compound and the metal sulfide.
  • the preliminary polyol compound may be obtained through a reaction with 2-mercaptoethanol and epihalohydrin as exemplified in Scheme 1 below.
  • a basic catalyst may be used to promote the reaction of 2-mercaptoethanol and epihalohydrin.
  • the basic catalyst include tertiary amines such as triethyl amine, quaternary ammonium salts, triphenylphosphine, and trivalent chromium-based compounds.
  • Epichlorohydrin may be used as epihalohydrin as illustrated in Scheme 1.
  • the obtained preliminary polyol compound may be, for example, a diol compound containing a sulfide bond.
  • the reaction temperature for generating the preliminary polyol compound may be, for example, -10 °C to 40 °C, preferably -5 °C to 30 °C, 0 °C to 25 °C, more preferably 5 °C to 20 °C.
  • the content of 2-mercaptoethanol may be 0.5 to 3 moles, preferably 0.7 to 2 moles, and more preferably 0.9 to 1.1 moles, based on 1 mole of epihalohydrin.
  • the basic catalyst may be used in an amount of 0.001 mole to 0.1 mole, 0.005 mole to 0.03 mole, more preferably 0.007 mole to 0.015 mole based on 1 mole of epihalohydrin.
  • the diol compounds may be further reacted with each other through the metal sulfide to obtain a polyol intermediate including a tetrafunctional polyol compound.
  • the metal sulfide includes an alkali metal sulfide, and as shown in Scheme 2, Na 2 S may be used.
  • a sub-polythiol compound formation accelerator may be added to the polyol intermediate.
  • a sub-polythiol compound formation accelerator may be added after the metal sulfide is added.
  • the metal sulfide and the sub-polythiol compound formation accelerator may be added substantially together or simultaneously.
  • glycidol may be used as a sub-polythiol compound formation promoter.
  • Glycidol can act as a nucleophile, unlike epihalohydrin, which acts as an electrophile. Accordingly, for example, addition reaction such as S N 2 reaction or S N 1 reaction in step S30 may be suppressed. Accordingly, the production of a sub-polythiol compound having a relatively small molecular weight may be induced.
  • the sub-polythiol compound formation accelerator may be added to satisfy the HPLC content range of the above-described sub-polythiol compound.
  • the sub-polythiol compound formation accelerator can be adjusted within the range of 0.005 equivalents to 0.02 equivalents, 0.005 equivalents to 0.018 equivalents, preferably 0.008 equivalents to 0.015 equivalents compared to 2-mercaptoethanol.
  • the sub-polythiol compound formation accelerator is added within the above range, an appropriate amount of the sub-polythiol compound may be added to the polythiol composition. Therefore, it is possible to effectively suppress all of the streaking phenomenon caused by the excessive increase in the reaction rate, the coloring and the cloudiness caused by the excessive decrease in the reaction rate.
  • step S30 the polyol intermediate may be reacted with thiourea. Accordingly, according to exemplary embodiments, an isothiouronium salt may be obtained.
  • Acid condition reflux can be used to produce isothiouronium salts.
  • Acidic compounds such as hydrochloric acid, hydrobromic acid, iodic acid, sulfuric acid, phosphoric acid and the like may be used to form acid conditions.
  • the reflux temperature may be 90° C. to 120° C., preferably 100° C. to 120° C., and may be performed for about 1 hour to 10 hours.
  • the isothiouronium salt may be converted into a polythiol-based compound.
  • the isothiouronium salt may be hydrolyzed under basic conditions to produce a polythiol-based compound.
  • Steps S30 and S40 described above may include thiolation exemplified by Scheme 3 below.
  • the basic aqueous solution may include alkali metal hydroxides and/or alkaline earth metal hydroxides such as NaOH, KOH, LiOH, Ca(OH) 2 .
  • the basic aqueous solution can be added.
  • an organic solvent may be added before adding the basic aqueous solution.
  • An organic solvent having low reactivity or substantially no reactivity and a boiling point exceeding the thiolation reaction temperature may be used so that a stable thiolation reaction proceeds.
  • organic solvent examples include toluene, xylene, chlorobenzene, and dichlorobenzene.
  • toluene may be used in consideration of reaction stability and toxicity from an organic solvent.
  • the polythiol-based compound obtained as described above may be further purified. For example, by repeatedly performing acid washing and water washing processes, impurities included in the polythiol-based compound may be removed, and transparency of the optical material prepared from the polythiol composition may be improved. After that, drying, filtration, etc. may be additionally performed.
  • the aqueous layer may be separated or removed through layer separation after the hydrolysis proceeds.
  • An acid solution e.g., concentrated hydrochloric acid
  • An acid solution is added to the obtained organic phase solution at a temperature of about 20° C. to 50° C., preferably about 30° C. to 40° C. for 20 minutes to 1 hour, or 20 minutes to 40 minutes. Acid washing can be performed.
  • a water washing process may be performed by adding degassed water having a dissolved oxygen concentration of 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less.
  • the water washing process may be performed at a temperature of about 20° C. to 50° C., preferably about 35° C. to 45° C., for 20 minutes to 1 hour, or 20 minutes to 40 minutes.
  • the water washing process may be repeated two or more times, for example, may be performed 3 to 6 times.
  • the residual organic solvent and moisture are removed by heating under reduced pressure, and filtered through a filter to obtain a polythiol-based compound of high purity.
  • the moisture remaining in the polythiol-based compound or polythiol composition may be 1,000 ppm or less, preferably 100 ppm to 500 ppm, more preferably 150 to 400 ppm.
  • the purity measured by HPLC of the polythiol-based compound may be 75% to 88%.
  • the purity may be 76% to 85%, more preferably 80% to 85%.
  • an optical composition including the above-described polythiol composition or polythiol-based compound.
  • the optical composition may be a polymerizable composition including the polythiol composition and an isocyanate-based compound.
  • the isocyanate-based compound may include a compound that can be used as a monomer for synthesizing polythiourethane.
  • the isocyanate-based compound may include 1,3-bis(isocyanatomethyl)cyclohexane, hexamethylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, toluene diisocyanate, and the like. . These may be used alone or in combination of two or more.
  • the optically polymerizable composition may further include additives such as a release agent, a reaction catalyst, a heat stabilizer, an ultraviolet absorber, a blueing agent, and the like.
  • the releasing agent examples include a fluorine-based nonionic surfactant having a perfluoroalkyl group, a hydroxyalkyl group or a phosphoric acid ester group; a silicone-based nonionic surfactant having a dimethylpolysiloxane group, a hydroxyalkyl group or a phosphoric acid ester group; alkyl quaternary ammonium salts such as trimethylcetyl ammonium salt, trimethylstearyl, dimethylethylcetyl ammonium salt, triethyldodecyl ammonium salt, trioctylmethyl ammonium salt and diethylcyclohexadodecyl ammonium salt; Acidic phosphoric acid ester etc. are mentioned. These may be used alone or in combination of two or more.
  • a catalyst used in the polymerization reaction of the polythiourethane-based resin may be used.
  • dialkyl tin halide type catalysts such as dibutyl tin dichloride and dimethyl tin dichloride
  • dialkyl tin dicarboxylate catalysts such as dimethyl tin diacetate, dibutyl tin dioctanoate, and dibutyl tin dilaurate
  • dialkyl tin dialkoxide catalysts such as dibutyltin dibutoxide and dioctyltin dibutoxide
  • dialkyl tin dithio alkoxide catalysts such as dibutyltin di(thiobutoxide)
  • dialkyl tin oxide catalysts such as di(2-ethylhexyl)tin oxide, dioctyltin oxide, and bis(butoxydibutyltin)oxide
  • the ultraviolet absorber a benzophenone-based, benzotriazole-based, salicylate-based, cyanoacrylate-based, oxanilide-based compound and the like may be used.
  • a metal fatty acid salt-based, phosphorus-based, lead-based, organotin-based compound and the like may be used. These may be used alone or in combination of two or more.
  • the bluing agent may be included as a color control agent of the optical material prepared from the polythiourethane resin.
  • the bluing agent may have an absorption band in a wavelength band from orange to yellow in a visible light region.
  • the bluing agent examples include a dye, a fluorescent brightener, a fluorescent pigment, an inorganic pigment, and the like, and may be appropriately selected according to the physical properties or resin color required for the manufactured optical product.
  • a dye for example, a dye having a maximum absorption wavelength of 520 nm to 600 nm, preferably 540 nm to 580 nm may be used.
  • anthraquinone-based dyes may be used.
  • a polythiourethane resin may be produced through a polymerization reaction of the polythiol-based compound and the isocyanate-based compound included in the polythiol composition.
  • the polythiol-based composition or polythiol-based compound is about 40% to 60% by weight
  • the isocyanate-based compound is about 40% to 60% by weight, as described above
  • the additive may be included in an amount of about 0.01 wt% to 1 wt%.
  • reaction rate of the optical composition included in Equation 1 to be described later may be maintained in the range of 0.18 to 0.25, preferably 0.18 to 0.22, by the sub polythiol compound.
  • an optical product manufactured through the above-described optical composition may be provided.
  • the optically polymerizable composition after degassing the optically polymerizable composition under reduced pressure, it may be injected into a mold for molding an optical material. Mold injection may be performed, for example, in a temperature range of 20°C to 40°C, preferably 20°C to 35°C.
  • the temperature may be gradually increased to proceed with the polymerization reaction of the polythiourethane resin.
  • the polymerization temperature may be 20 °C to 150 °C, preferably 25 °C to 125 °C.
  • the maximum polymerization temperature may be 100°C to 150°C, preferably 110°C to 140°C, more preferably 115°C to 130°C.
  • the temperature increase rate may be 1°C/min to 10°C/min, preferably 3°C/min to 8°C/min, and more preferably 4°C/min to 7°C/min.
  • the polymerization time may be from 10 hours to 20 hours, preferably from 15 hours to 20 hours.
  • a lens having uniform optical properties and mechanical properties can be easily obtained by appropriately controlling the reaction rate within the above temperature range.
  • the polymerized polythiourethane resin may be separated from the mold to obtain an optical product.
  • a curing process may be further performed.
  • the curing process is in the range of 100°C to 150°C, preferably 110°C to 140°C, more preferably 115°C to 130°C, about 1 hour to 10 hours, preferably 2 hours to 8 hours, more preferably may be performed for 3 to 6 hours.
  • the optical product may be manufactured in the form of a spectacle lens, a camera lens, a light emitting diode, etc. according to a mold shape.
  • the refractive index of the optical product may be adjusted according to the type and/or content ratio of the polythiol-based compound and the isocyanate-based compound used in the optically polymerizable composition.
  • the refractive index of the optical product may be adjusted in the range of 1.56 to 1.78, 1.58 to 1.76, 1.60 to 1.78, or 1.60 to 1.76, preferably in the range of 1.65 to 1.75 or 1.69 to 1.75.
  • the optical product may be improved by adding surface treatment such as anti-fouling, color imparting, hard coat, surface polishing, hardness strengthening, and the like.
  • the sub-polythiol compound having the HPLC content in the above-described range may be included in the polythiol composition. Accordingly, an optical product in which the polymerization reaction is maintained in an appropriate range and optical defects such as coloration and streaking are suppressed can be obtained from the polythiol-based composition.
  • reaction solution was cooled to 50° C., 305.6 parts by weight of toluene and 332.6 parts by weight of 50% NaOH were added thereto, and then hydrolysis was performed at 40-60° C. for 3 hours.
  • the composition filtered through a 3 ⁇ m Teflon filter was injected into a mold including a glass mold and a tape.
  • the temperature of the mold was slowly raised from 25° C. to 120° C. at a rate of 5° C. per minute, and polymerization was performed at 120° C. for 18 hours. After the polymerization was completed, the mold was separated and further cured at 120° C. for 4 hours to prepare a lens sample.
  • a polythiol composition and a lens sample were prepared in the same manner as in Example 1, except that the addition equivalent of glycidol used in the synthesis of the polythiol-based compound was changed.
  • the peak area % of the polythiol compound included in the composition was measured through HPLC analysis performed under the following conditions.
  • 1 to 4 are images of high-performance liquid chromatography (HPLC) analysis graphs of polythiol compositions prepared according to Examples.
  • FIGS. 1 and 2 are HPLC analysis graphs of Examples 1 and 4, respectively, and FIGS. 3 and 4 are HPLC analysis graphs of Comparative Examples 1 and 2, respectively.
  • the refractive index at 25° C. was measured using a liquid refractometer (RA-600 (Kyoto Electronics)).
  • a lens sample having a diameter of 75 mm, - 4.00D was prepared using the polymerizable composition according to Examples and Comparative Examples, and a mercury lamp light source was transmitted through the prepared lens sample, and the transmitted light was projected on a white plate.
  • the presence or absence of stria was judged by the presence or absence of contrast.
  • the evaluation criteria are as follows.
  • the standard viscosity (Standard cps) was first confirmed with a viscosity standard solution (Brookfield, 1000 cps, 25 o C). Thereafter, the viscosity was measured at 10° C. for 24 hours for the polymerizable compositions according to Examples and Comparative Examples.
  • the X-axis is time
  • the Y-axis is viscosity
  • the Y-axis is logarithmic to formulate it as in Equation 1 below, and then the reaction rate was derived.
  • Equation 1 a value represents the initial viscosity (cps), and the b value represents the reaction rate, and was expressed by rounding to the third decimal place of the measured value.
  • Example 1 ⁇ 0.20 68%
  • Example 2 ⁇ 0.18 67%
  • Example 3 ⁇ 0.21 69%
  • Example 4 ⁇ 0.22 72%
  • Example 5 ⁇ 0.17 67%
  • Example 6 ⁇ 0.17 67%
  • Example 7 ⁇ 0.23 78% Comparative Example 1 ⁇ 0.26 80% Comparative Example 2 ⁇ 0.17 64% Comparative Example 3 ⁇ 0.16 63%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

예시적인 실시예들에 따른 폴리티올 조성물은 적어도 2종의 서로 다른 폴리티올계 화합물을 포함하며, 230nm 파장에서 획득한 고성능액체크로마토그래피(HPLC) 분석 그래프를 통해 측정된 C8H18S6으로 표시되는 폴리티올 화합물의 피크 영역(%)이 0.90% 내지 1.30%이다. 서브 폴리티올 화합물의 조절을 통해 우수한 투과율 및 광학적 특성을 갖는 광학 제품을 제조할 수 있다.

Description

폴리티올 조성물 및 이를 포함하는 광학 조성물
본 발명은 폴리티올 조성물 및 이를 포함하는 광학 조성물에 관한 것이다. 보다 상세하게는, 서로 다른 폴리티올계 화합물들을 포함하는 폴리티올 조성물 및 이를 포함하는 광학 조성물에 관한 것이다.
폴리티올 화합물은 예를 들면, 폴리우레탄계 수지의 제조 원료로서 널리 사용되고 있다. 예를 들면, 폴리우레탄계 수지가 사용되는 광학 렌즈 제조를 위해 폴리티올 화합물이 사용되고 있으며, 제조 원료로서 폴리티올 화합물의 순도와 같은 품질이 상기 광학 렌즈의 품질에 바로 영향을 미칠 수 있다.
예를 들면, 폴리티올 화합물 및 이소시아네이트 화합물을 반응시켜 제조되는 폴리티오우레탄계 화합물이 상기 광학 렌즈의 베이스 물질로 활용될 수 있다.
예를 들면, 대한민국 공개특허공보 제10-1338568호는 폴리올 화합물을 티오우레아와 반응시켜 이소티오우로늄염을 생성하고, 암모니아수를 사용하여 이를 가수분해시킴으로써 폴리티올 화합물을 합성하는 방법을 개시하고 있다.
합성된 상기 폴리티올 화합물의 관능 수, 체인 길이 등에 따라 렌즈의 투명도, 굴절률 등과 같은 광학적 특성이 미세하게 변동될 수 있다. 따라서, 원하는 광학 특성을 갖는 광학 렌즈를 고신뢰성으로 구현하기 위해 폴리티올 화합물 조성의 미세 조절이 필요할 수 있다.
예시적인 실시예들에 따른 일 과제는 향상된 반응 특성 및 광학 특성을 갖는 폴리티올 조성물 및 이의 제조방법을 제공하는 것이다.
예시적인 실시예들에 따른 일 과제는 향상된 반응 특성 및 광학적 특성을 갖는 폴리티올 조성물을 포함하는 광학 조성물을 제공하는 것이다.
예시적인 실시예들에 따른 일 과제는 상기 광학 조성물을 사용하여 제조된 광학 제품을 제공하는 것이다.
예시적인 실시예들에 따른 폴리티올 조성물은 적어도 2종의 서로 다른 폴리티올계 화합물을 포함하며, 230nm 파장에서 획득한 고성능액체크로마토그래피(HPLC) 분석 그래프를 통해 측정된 C8H18S6으로 표시되는 폴리티올 화합물의 피크 영역(%)이 0.90% 내지 1.30%이다.
일부 실시예들에 있어서, 상기 C8H18S6으로 표시되는 폴리티올 화합물은 하기 화학식 2의 구조를 가질 수 있다.
[화학식 2]
Figure PCTKR2021012122-appb-img-000001
일부 실시예들에 있어서, 상기 폴리티올계 화합물은 상기 화학식 2로 표시되는 서브 폴리티올 화합물, 및 상기 서브 폴리티올 화합물보다 큰 분자량을 갖는 메인 폴리티올 화합물을 포함할 수 있다.
일부 실시예들에 있어서, 상기 메인 폴리티올 화합물은 상기 서브 폴리티올 화합물보다 큰 탄소수를 갖는 4관능 폴리티올 화합물을 포함할 수 있다.
일부 실시예들에 있어서, 상기 메인 폴리티올 화합물은 하기 화학식 1-1 내지 1-3으로 표시되는 4관능 폴리티올 화합물들 중 적어도 하나를 포함할 수 있다.
[화학식 1-1]
Figure PCTKR2021012122-appb-img-000002
[화학식 1-2]
Figure PCTKR2021012122-appb-img-000003
[화학식 1-3]
Figure PCTKR2021012122-appb-img-000004
일부 실시예들에 있어서, 하기 식 1로 정의되는 반응 속도 조절 지수가 0.006 내지 0.017일 수 있다.
[식 1]
반응 속도 조절 지수(Reaction rate Control Index: RCI)=A/B
(식 1 중, A는 상기 HPLC 분석 그래프를 통해 측정된 C8H18S6으로 표시되는 폴리티올 화합물의 피크 영역(%)이고, B는 상기 HPLC 분석 그래프를 통해 측정된 상기 화학식 1-1 내지 1-3으로 표시되는 폴리티올 화합물의 피크 영역(%)임).
일부 실시예들에 있어서, 상기 HPLC 분석 그래프를 통해 측정된 상기 화학식 1-1 내지 1-3으로 표시되는 폴리티올 화합물의 피크 영역(%)은 78.6% 내지 85%일 수 있다.
예시적인 실시예들에 따른 폴리티올 조성물의 제조 방법에 따르면, 예비 폴리올 화합물에 금속 황화물을 투입하여 폴리올 중간체를 생성한다. 상기 폴리올 중간체에 서브 폴리티올 화합물 형성 촉진제를 첨가한다. 상기 폴리올 중간체를 티올레이션(thiolation)을 통해 폴리티올계 화합물로 전환한다.
일부 실시예들에 있어서, 상기 폴리티올 조성물은 적어도 2종의 서로 다른 폴리티올계 화합물을 포함하며, 230nm 파장에서 획득한 고성능액체크로마토그래피(HPLC) 분석 그래프를 통해 측정된 C8H18S6으로 표시되는 폴리티올 화합물의 피크 영역(%)이 0.90% 내지 1.30%일 수 있다.
일부 실시예들에 있어서, 상기 예비 폴리올 화합물은 2-머캅토에탄올 및 에피할로히드린의 반응을 통해 합성되고, 상기 폴리올 중간체에 서브 상기 폴리티올 화합물 형성 촉진제는 상기 폴리티올 화합물의 피크 영역(%) 범위를 만족하도록 2-머캅토에탄올에 대한 소정의 당량 범위로 첨가될 수 있다.
일부 실시예들에 있어서, 상기 서브 폴리티올 화합물 형성 촉진제는 글리시돌을 포함할 수 있다.
예시적인 실시예들에 따르는 광학 조성물은 적어도 2종의 서로 다른 폴리티올계 화합물을 포함하며, 230nm 파장에서 획득한 고성능액체크로마토그래피(HPLC) 분석 그래프를 통해 측정된 C8H18S6으로 표시되는 폴리티올 화합물의 피크 영역(%)이 0.90% 내지 1.30%인 폴리티올 조성물, 및 이소시아네이트계 화합물을 포함한다.
[화학식 2]
Figure PCTKR2021012122-appb-img-000005
예시적인 실시예들에 따르면, 상술한 광학 중합성 조성물로부터 제조된 폴리티오우레탄 수지를 포함하는 광학 제품이 제공된다.
상술한 실시예들에 따르면, 예시적인 실시예들에 따르는 폴리티올 조성물은 적어도 2종의 서로 다른 4관능 폴리티올계 화합물을 포함할 수 있으며, 소정의 구조를 갖는 서브 폴리티올 화합물을 HPLC로 측정된 소정의 함량 범위로 포함할 수 있다.
상기 서브 폴리티올 화합물은 상대적으로 짧은 체인 길이를 가지며, 렌즈의 착색을 저감시키고, 이소시아네이트계 화합물과의 반응 속도를 조절하여 원하는 굴절률을 갖는 광학 렌즈를 고신뢰성으로 수득할 수 있다.
도 1 내지 도 4는 실시예들에 따라 제조된 폴리티올 조성물의 고성능 액체크로마토그래프(HPLC) 분석 그래프들의 이미지들이다.
이하, 본 출원의 실시예들에 대해 상세히 설명하기로 한다. 다만, 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미이다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미인 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 출원을 통한 일 측면에 따르면, 폴리티올계 화합물들을 포함하는 폴리티올 조성물이 제공된다.
예시적인 실시예들에 따르면, 폴리티올 조성물은 적어도 2종의 서로 다른 폴리티올계 화합물을 포함할 수 있다. 일부 실시예들에 있어서, 상기 폴리티올 조성물은 적어도 2종의 4관능 폴리티올 화합물을 포함할 수 있다.
예를 들면, 상기 폴리티올 조성물은 메인 폴리티올 화합물 및 서브 폴리티올 화합물을 포함할 수 있다.
상기 메인 폴리티올 화합물의 비제한적인 예로서, 하기 화학식 1-1 내지 1-3으로 표시되는 화합물을 들 수 있다. 예를 들면, 상기 메인 폴리티올 화합물은 하기 화학식 1-1 내지 1-3으로 표시되는 화합물들 중 적어도 하나를 포함할 수 있다.
[화학식 1-1]
Figure PCTKR2021012122-appb-img-000006
[화학식 1-2]
Figure PCTKR2021012122-appb-img-000007
[화학식 1-3]
Figure PCTKR2021012122-appb-img-000008
바람직한 일 실시예에 있어서, 상기 메인 폴리티올 화합물은 화학식 1-1로 표시되는 4관능 폴리티올 화합물을 포함할 수 있다.
상기 서브 폴리티올 화합물은 상기 메인 폴리티올 화합물보다 짧은 체인 길이, 작은 분자량 또는 적은 탄소수를 갖는 4관능 폴리티올 화합물을 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 서브 폴리티올 화합물은 C8H18S6으로 표시될 수 있다. 일부 실시예들에 있어서, 상기 서브 폴리티올 화합물은 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.
[화학식 2]
Figure PCTKR2021012122-appb-img-000009
상기 서브 폴리티올 화합물은 상술한 바와 같이, 상기 메인 폴리티올 화합물 보다 작은 체인 길이 및/또는 작은 분자량을 가지며, 후술하는 이소시아네이트계 화합물과의 중합 반응 조절제로 제공될 수 있다.
예를 들면, 상기 메인 폴리티올 화합물 및 상기 이소시아네이트계 화합물 사이의 반응 속도가 지나치게 증가하는 경우, 렌즈와 같은 광학 제품의 맥리를 초래할 수 있다. 상기 메인 폴리티올 화합물 및 상기 이소시아네이트계 화합물 사이의 반응 속도가 지나치게 감소하는 경우, 상기 광학 제품의 백탁/착색이 초래되어 투과율을 감소시킬 수 있다.
예시적인 실시예들에 따르면, 상기 서브 폴리티올 화합물이 적정량으로 포함됨에 따라, 상기 메인 폴리티올 화합물 및 상기 이소시아네이트계 화합물 사이의 적절한 반응 속도가 유지될 수 있다. 또한, 상기 폴리티올 조성물의 전체적인 티올값 및 액상 굴절률이 상기 서브 폴리티올 화합물을 통해 미세 조절될 수 있다.
그러므로, 광학적 특성이 균일하고, 착색 및 맥리 현상이 억제된 렌즈와 같은 광학 제품을 상기 폴리티올 조성물을 사용하여 획득할 수 있다. 또한, 상기 폴리티올 조성물 또는 상기 광학 제품의 화학적 안정성을 증진시킬 수 있으며, 이에 따라 렌즈 백탁 현상을 효과적으로 억제할 수 있다.
상기 서브 폴리티올 화합물의 양이 지나치게 증가하는 경우, 저분자량 티올 성분이 증가함에 따라 상기 반응 속도가 지나치게 증가할 수 있다. 상기 서브 폴리티올 화합물의 양이 지나치게 감소하는 경우, 상술한 반응 속도 조절제로서의 기능이 충분이 구현되지 않으며, 광학 제품의 착색 및 투과율 저하가 발생할 수 있다.
예시적인 실시예들에 따르면, 230nm 파장에서 획득한 고성능액체크로마토그래피(HPLC) 분석 그래프를 통해 상기 서브 폴리티올 화합물의 피크 영역을 통해 측정한 상기 서브 폴리티올 화합물의 함량(예를 들면, peak area%)은 0.90% 내지 1.30% 범위일 수 있다.
상기 범위 내에서, 상술한 반응 속도 조절, 착색/맥리 억제 효과가 충분히 구현될 수 있다.
바람직한 일 실시예에 있어서, HPLC로 측정한 상기 서브 폴리티올 화합물의 함량은 0.95% 내지 1.30%, 바람직하게는 1.0% 내지 1.30%, 보다 바람직하게는, 1.03% 내지 1.26%, 또는 1.05% 내지 1.26%일 수 있다.
일부 실시예들에 있어서, 상기 폴리티올 조성물 및 상기 이소시아네이트계 화합물 사이의 반응 속도(실험예 수학식 1 참조)는 상기 서브 폴리티올 화합물에 의해 0.18 내지 0.25 범위, 바람직하게는 0.18 내지 0.22 범위, 보다 바람직하게는 0.20 내지 0.22 범위로 유지될 수 있다.
상술한 반응 속도의 범위 내에서, 예를 들면 지나친 반응 속도 증가로 인한 맥리 발생을 억제하면, 투과율이 향상된 렌즈를 수득할 수 있다.
일부 실시예들에 있어서, 상기 폴리티올 조성물의 하기 식 1로 표시되는 반응 속도 조절 지수(Reaction rate Control Index: RCI)는 0.006 내지 0.017일 수 있다.
[식 1]
반응 속도 조절 지수(Reaction rate Control Index: RCI) = A/B
식 1 중, A는 상기 HPLC 분석 그래프의 상기 서브 폴리티올 화합물의 피크 영역을 통해 측정한 상기 서브 폴리티올 화합물의 함량이다. B는 상기 HPLC 분석 그래프의 상기 메인 폴리티올 화합물의 피크 영역을 통해 측정한 상기 메인 폴리티올 화합물의 함량이다.
상술한 반응 속도 조절 지수(RCI)는 이소시아네이트계 화합물과 중합 반응에 참여하는 저분자 폴리티올 및 고분자 폴리티올의 함량 비를 반영할 수 있다.
예를 들면, 상기 서브 폴리티올 화합물은 상기 저분자 폴리티올에 해당될 수 있으며, 상대적으로 짧은 분자 길이를 가지고, 상기 이소시아네이트계 화합물과의 반응 속도를 증가시키는 성분으로 작용할 수 있다. 상기 메인 폴리티올 화합물은 상대적으로 큰 분자량 또는 분자 길이를 가지며 상기 서브 폴리티올 화합물 대비 감소된 반응 속도를 제공할 수 있다.
이에 따라, 예시적인 실시예들에 따르면 식 1의 반응 속도 조절 지수가 상기 폴리티올 조성물 단위에서부터 적절한 범위로 조절될 수 있다. 따라서, 반응 속도의 지나친 증가로 인한 맥리 발생, 반응 속도의 지나친 감소로 인한 투과율, 수율 저하 등을 억제하며 고신뢰성의 광학 제품을 획득할 수 있다.
일부 실시예들에 있어서, 상기 반응 속도 조절 지수는 0.007 내지 0.017, 바람직하게는 0.01 내지 0.017, 보다 바람직하게는 0.012 내지 0.016일 수 있다.
일부 실시예들에 있어서, 상기 HPLC 분석 그래프를 통해 측정한 상기 메인 폴리티올 화합물의 함량(예를 들면, peak area%)은 78.6% 내지 85%일 수 있다. 예를 들면, 상기 HPLC 피크 영역 또는 함량은 상기 화학식 1-1 내지 1-3으로 표시되는 화합물에 해당될 수 있다.
바람직한 일 실시예에 있어서, HPLC로 측정한 상기 메인 폴리티올 화합물의 함량은 78.6% 내지 84.1%, 79.0% 내지 84.0%, 보다 바람직하게는, 81.0% 내지 83.25%일 수 있다.
상술한 메인 폴리티올 화합물의 함량의 범위 내에서, 상기 폴리티올 화합물 및 이소시아네이트와의 중합 반응의 충분한 효율 및 수율을 용이하게 확보할 수 있다. 또한, 폴리티올 조성물의 적절한 순도 및 렌즈의 투과율을 향상시킬 수 있다.
일부 실시예들에 있어서, 상기 폴리티올 조성물의 티올 값(thiol value: SHV)은 약 96 g/eq. 내지 97g/eq.일 수 있다. 바람직하게는, 상기 SHV는 96.1 g/eq. 내지 96.8 g/eq. 일 수 있다.
SHV는 0.1N의 요오드 표준용액을 사용하여 폴리티올 조성물 샘플을 적정 시, 샘플 무게를 소비된 요오드 당량으로 나눈 값으로 측정될 수 있다.
일부 실시예들에 있어서, 상기 폴리티올 조성물의 액상 굴절률은 약 1.6455 내지 1.647일 수 있다. 바람직하게는, 상기 액상 굴절률은 약 1.6455 내지 1.6468, 보다 바람직하게는 1.6455 내지 1.646일 수 있다.
상기 액상 굴절률은 25℃에서 액상 굴절계를 이용하여 측정될 수 있다.
일부 실시예들에 있어서, 상기 폴리티올 조성물의 GPC(Gel Permeation Chromatography) 순도는 79% 이상일 수 있다. 예를 들면, 상기 폴리티올 조성물의 GPC 순도는 79% 내지 88%일 수 있다. 바람직하게는, 상기 GPC 순도는 80% 내지 88%, 보다 바람직하게는 81% 내지 85%일 수 있다.
본 출원을 통한 일 측면에 따르면, 폴리티올계 화합물들을 포함하는 폴리티올 조성물의 제조 방법이 제공된다. 상술한 바와 같이, 상기 폴리티올 조성물은 적어도 2종의 서로 다른 4관능 폴리티올 화합물을 포함할 수 있다.
예시적인 실시예들에 따르는 폴리티올 조성물의 제조 방법은 하기의 S10, S20, S30 및 S40으로 기재된 단계, 공정 또는 작용 중 적어도 하나를 포함할 수 있다. 아래의 용어 " S10, S20, S30 및 S40"는 설명의 편의를 위해 공정을 구분하기 위해 사용된 것이며 순서를 제한하기 위한 것이 아님을 이해해야 한다. 예를 들면, 하기의 S10, S20, S30 및 S40의 공정들 중 일부 혹은 전부가 순차적으로 수행될 수 있으며, 공정 조건에 따라 변경되어 실시될 수도 있다.
S10) 예비 폴리올 화합물에 금속 황화물을 투입하여 폴리올 중간체를 생성
S20) 상기 폴리올 중간체에 서브 폴리티올 화합물 형성 촉진제 첨가
S30) 상기 폴리올 중간체를 산 조건에서 티오우레아와 반응시켜 이소티오우로늄염을 생성
S40) 상기 이소티오우로늄염을 폴리티올계 화합물로 전환
예를 들면, 상기 S10 단계에서, 예비 폴리올 화합물 및 금속 황화물을 반응시켜 폴리올 중간체를 생성할 수 있다.
일 실시예에 있어서, 상기 예비 폴리올 화합물은 하기 반응식 1에서 예시된 바와 같이 2-머캅토에탄올 및 에피할로히드린과의 반응을 통해 수득될 수 있다.
[반응식 1]
Figure PCTKR2021012122-appb-img-000010
2-머캅토에탄올 및 에피할로히드린의 반응 촉진을 위해 염기성 촉매가 사용될 수 있다. 상기 염기성 촉매의 예로서 트리에틸 아민과 같은 3차 아민, 4차 암모늄염, 트리페닐포스핀, 3가 크롬계 화합물 등을 들 수 있다. 반응식 1에 예시된 바와 같이 에피할로히드린으로서 에피클로로히드린이 사용될 수 있다.
수득된 상기 예비 폴리올 화합물은 예를 들면, 설파이드 결합을 함유하는 디올 화합물일 수 있다.
상기 예비 폴리올 화합물 생성을 위한 반응 온도는 예를 들면, -10℃ 내지 40℃, 바람직하게는 -5℃ 내지 30℃, 0℃ 내지 25℃, 보다 바람직하게는 5℃ 내지 20℃일 수 있다.
예를 들면, 2-메캅토에탄올의 함량은 에피할로히드린 1몰에 대하여 0.5몰 내지 3몰, 바람직하게는 0.7몰 내지 2몰, 보다 바람직하게는 0.9몰 내지 1.1몰일 수 있다. 상기 염기성 촉매는 에피할로히드린 1몰에 대하여 0.001몰 내지 0.1몰, 0.005몰 내지 0.03몰, 보다 바람직하게는 0.007몰 내지 0.015몰 의 양으로 사용될 수 있다.
상술한 바와 같이 수득된 설파이드 결합 함유 디올 화합물에 금속 황화물을 투입하여 아래 반응식 2에 예시된 바와 같이, 폴리올 중간체를 형성할 수 있다.
[반응식 2]
Figure PCTKR2021012122-appb-img-000011
반응식 2에 예시된 바와 같이, 상기 금속 황화물을 통해 상기 디올 화합물들이 서로 추가 반응하여 4관능 폴리올 화합물을 포함하는 폴리올 중간체가 수득될 수 있다.
상기 금속 황화물은 알칼리 금속 황화물을 포함하며, 반응식 2에 표시된 바와 같이 Na2S가 사용될 수 있다.
예를 들면, S20 단계에서 상기 폴리올 중간체에 서브 폴리티올 화합물 형성 촉진제를 첨가할 수 있다. 일 실시예에 있어서, 상기 금속 황화물 첨가 이후 서브 폴리티올 화합물 형성 촉진제가 첨가될 수 있다. 일 실시예에 있어서, 상기 금속 황화물 및 서브 폴리티올 화합물 형성 촉진제가 실질적으로 함께 혹은 동시에 첨가될 수도 있다.
일부 실시예들에 있어서, 서브 폴리티올 화합물 형성 촉진제로서 글리시돌(glycidol)이 사용될 수 있다. 글리시돌은 친전자체(electophile)로 작용하는 에피할로히드린과 달리 친핵체(neucleophile)로서 작용할 수 있다. 이에 따라, 예를 들면 S30 단계에서 SN2 반응 혹은 SN1 반응과 같은 첨가 반응이 억제될 수 있다. 따라서, 상대적으로 작은 분자량의 서브 폴리티올 화합물 생성이 유도될 수 있다.
서브 폴리티올 화합물 형성 촉진제는 상술한 서브 폴리티올 화합물의 HPLC 측정 함량 범위를 만족하도록 첨가될 수 있다. 일 실시예에 있어서, 서브 폴리티올 화합물 형성 촉진제는 2-머캅토에탄올 대비 0.005당량 내지 0.02 당량 범위, 0.005당량 내지 0.018 범위, 바람직하게는 0.008당량 내지 0.015 당량 범위 내에서 조절될 수 있다.
상기 범위 내에서 서브 폴리티올 화합물 형성 촉진제가 첨가됨에 따라, 적절량의 서브 폴리티올 화합물이 폴리티올 조성물 내에 추가될 수 있다. 따라서, 지나친 반응 속도 증가에 따른 맥리 현상, 반응 속도의 지나친 감소에 따른 착색, 백탁 등을 모두 효과적으로 억제할 수 있다.
예를 들면, S30 단계에서, 상기 폴리올 중간체를 티오우레아와 반응시킬 수 있다. 이에 따라, 예시적인 실시예들에 따르면 이소티오우로늄염이 수득될 수 있다.
이소티오우로늄염 생성 시 산 조건 환류를 사용할 수 있다. 산 조건 형성을 위해 염산, 브롬산, 요오드산, 황산, 인산 등의 산성 화합물이 사용될 수 있다.
환류 온도는 90℃ 내지 120℃, 바람직하게는 100℃ 내지 120℃일 수 있으며, 약 1 시간 내지 10시간 동안 수행할 수 있다.
예를 들면, S40 단계에서 상기 이소티오우로늄염을 폴리티올계 화합물로 전환시킬 수 있다. 예시적인 실시예들에 따르면, 상기 이소티오우로늄염을 염기 조건에서 가수분해하여 폴리티올계 화합물을 생성할 수 있다.
상술한 S30 및 S40 단계는 아래의 반응식 3으로 예시되는 티올레이션(thiolation)을 포함할 수 있다.
[반응식 3]
Figure PCTKR2021012122-appb-img-000012
예를 들면, 이소티오우로늄염을 포함하는 반응액에 염기성 수용액을 첨가하여 가수분해 시킬 수 있다. 상기 염기성 수용액은 NaOH, KOH, LiOH, Ca(OH)2 등과 같은 알칼리 금속 수산화물 및/또는 알칼리 토금속 수산화물을 포함할 수 있다.
일 실시예에 있어서, 이소티오우로늄염을 포함하는 반응액을 20℃ 내지 60℃, 바람직하게는 25℃ 내지 55℃, 보다 바람직하게는 25℃ 내지 50℃의 온도로 냉각한 후, 상기 염기성 수용액을 첨가할 수 있다.
일 실시예에 있어서, 상기 염기성 수용액을 첨가하기 전에 유기 용매를 첨가할 수 있다. 안정적인 티올화 반응이 진행되도록 반응성이 낮거나 실질적으로 반응성이 없고, 티올화 반응 온도를 초과하는 끓는 점을 갖는 유기 용매를 사용할 수 있다.
상기 유기 용매의 예로서 톨루엔, 크실렌, 클로로벤젠, 디클로로벤젠 등을 들 수 있고, 바람직하게는 반응 안정성 및 유기 용매로부터의 독성 등을 고려하여 톨루엔이 사용될 수 있다.
상술한 바와 같이 얻어진 폴리티올계 화합물은 추가로 정제될 수 있다. 예를 들면, 산 세정 및 수세 공정을 반복적으로 수행하여 폴리티올계 화합물에 포함된 불순물 등을 제거할 수 있고, 상기 폴리티올 조성물로부터 제조된 광학 재료의 투명성을 향상시킬 수 있다. 이후, 추가적으로 건조, 여과 등을 공정 등이 수행될 수도 있다.
일 실시예에 있어서, 상기 가수 분해 진행 후 층분리를 통해 수층을 분리 또는 제거할 수 있다. 수득된 유기상 용액에 산용액(예를 들면, 농축 염산)을 투입하여 약 20℃ 내지 50℃, 바람직하게는 약 30℃ 내지 40℃ 온도에서 20분 내지 1시간 동안, 또는 20분 내지 40분 동안 산 세정을 실시할 수 있다.
상기 산 세정 후, 용존 산소 농도가 5ppm 이하, 바람직하게는 3ppm 이하, 보다 바람직하게는 2ppm 이하로 조절된 탈기수를 첨가하여 수세 공정을 실시할 수 있다. 상기 수세 공정은 약 20℃ 내지 50℃, 바람직하게는 약 35℃ 내지 45℃ 온도에서, 20분 내지 1시간 동안, 또는 20분 내지 40분 동안 수행될 수 있다. 상기 수세 공정은 2회 이상 반복 수행될 수 있으며, 예를 들면 3회 내지 6회 수행될 수 있다.
상기 산 세정 및 수세 공정 이후, 감압 조건에서 가열하여 잔류하는 유기 용매 및 수분을 제거하고, 필터를 통해 여과하여 고순도의 폴리티올계 화합물을 수득할 수 있다.
일부 실시예들에 있어서, 상기 폴리티올계 화합물 또는 폴리티올 조성물에 잔류하는 수분은 1,000ppm 이하일 수 있으며, 바람직하게는, 100 ppm 내지 500ppm, 보다 바람직하게는 150 내지 400ppm일 수 있다.
일부 실시예들에 있어서, 상기 폴리티올계 화합물의 HPLC로 측정된 순도는 75% 내지 88%일 수 있다. 바람직하게는 상기 순도는 76% 내지 85%일 수 있으며, 보다 바람직하게는 80% 내지 85%일 수 있다.
상술한 수분 및 순도 범위 내에서 공정 로드를 지나치게 증가시키지 않으면서 충분한 중합 효율을 증진하며 부반응을 억제할 수 있다.
본 출원을 통한 일 측면에 따르면, 상술한 폴리티올 조성물 또는 폴리티올계 화합물을 포함하는 광학 조성물이 제공된다.
상기 광학 조성물은 상기 폴리티올 조성물 및 이소시아네이트계 화합물을 포함하는 중합성 조성물일 수 있다.
상기 이소시아네이트계 화합물은 폴리티오우레탄 합성을 위한 단량체로 사용될 수 있는 화합물을 포함할 수 있다. 바람직한 일 실시예에 있어서, 상기 이소시아네이트계 화합물은 1,3-비스(이소시아네이토메틸) 사이클로헥산, 헥사메틸렌디이소시아네이트, 이소포론디이소시아네이트, 자일렌디이소시아네이트, 톨루엔디이소시아네이트 등을 포함할 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다.
상기 광학용 중합성 조성물은 이형제, 반응 촉매, 열 안정제, 자외선 흡수제, 블루잉(blueing) 제 등과 같은 첨가제를 더 포함할 수 있다.
상기 이형제의 예로서 퍼플루오르알킬기, 히드록시알킬기 또는 인산에스테르기를 지닌 불소계 비이온 계면활성제; 디메틸폴리실록산기, 히드록시알킬기 또는 인산에스테르기를 가진 실리콘계 비이온 계면활성제; 트리메틸세틸 암모늄염, 트리메틸스테아릴, 디메틸에틸세틸 암모늄염, 트리에틸도데실 암모늄염, 트리옥틸메틸 암모늄염, 디에틸시클로헥사도데실 암모늄염 등과 같은 알킬계 4급 암모늄염; 산성 인산에스테르 등을 들 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다.
상기 반응 촉매로서 상기 폴리티오우레탄계 수지 중합 반응에 사용되는 촉매가 사용될 수 있다. 예를 들면, 디부틸주석디클로라이드, 디메틸주석디클로라이드 등의 디알킬주석할로겐화물계 촉매; 디메틸주석디아세테이트, 디부틸주석디옥타노에이트, 디부틸주석디라우레이트 등의 디알킬주석디카르복실레이트계 촉매; 디부틸주석디부톡사이드, 디옥틸주석디부톡사이드 등의 디알킬주석디알콕사이드계 촉매; 디부틸주석디(티오부톡사이드) 등의 디알킬주석디티오알콕사이드계 촉매; 디(2-에틸헥실)주석옥사이드, 디옥틸주석옥사이드, 비스(부톡시디부틸주석)옥사이드 등의 디알킬주석산화물계 촉매; 디알킬주석황화물계 촉매 등이 사용될 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다.
상기 자외선 흡수제의 예로서 벤조페논계, 벤조트라이아졸계, 살리실레이트계, 시아노아크릴레이트계, 옥사닐라이드계 화합물 등이 사용될 수 있다. 상기 열 안정제의 예로서 금속 지방산염계, 인계, 납계, 유기주석계 화합물 등이 사용될 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다.
상기 블루잉 제는 상기 폴리티오우레탄 수지로부터 제조된 광학 재료의 색상 조절제로 포함될 수 있다. 예를 들면, 상기 블루잉 제는 가시광 영역 중 오렌지색으로부터 황색의 파장 대역에서 흡수대를 가질 수 있다.
상기 블루잉제의 예로는 염료, 형광증백제, 형광 안료, 무기 안료 등을 들 수 있으며, 제조되는 광학 제품에 요구되는 물성이나 수지 색상 등에 맞추어 적절히 선택될 수 있다. 상기 블루잉제로서 염료가 사용되는 경우, 예를 들면, 최대 흡수 파장 520 nm  내지 600nm, 바람직하게는 540 nm 내지 580nm의 염료가 사용될 수 있다. 바람직하게는 안트라퀴논계 염료가 사용될 수 있다.
상기 폴리티올 조성물에 포함된 폴리티올계 화합물 및 상기 이소시아네이트계 화합물의 중합 반응을 통해 폴리티오우레탄 수지가 생성될 수 있다.
일부 실시예들에 있어서, 상기 광학용 중합성 조성물 총 중량 중 폴리티올계 조성물 또는 폴리티올계 화합물은 약 40 중량% 내지 60 중량%, 이소시아네이트계 화합물은 약 40 중량% 내지 60 중량%, 상술한 첨가제는 약 0.01 중량% 내지 1중량%의 함량으로 포함될 수 있다.
일부 실시예들에 있어서, 후술하는 수학식 1에 포함되는 상기 광학 조성물의 반응 속도는 상기 서브 폴리티올 화합물에 의해 0.18 내지 0.25 범위, 바람직하게는 0.18 내지 0.22 범위로 유지될 수 있다.
본 출원의 일 측면에 따르면, 상술한 광학 조성물을 통해 제조된 광학 제품이 제공될 수 있다.
예를 들면, 상기 광학용 중합성 조성물을 감압하에 탈기(degassing)한 후, 광학 재료 성형용 몰드에 주입할 수 있다. 몰드 주입은 예를 들면, 20℃ 내지 40℃, 바람직하게는 20℃ 내지 35℃의 온도 범위에서 수행될 수 있다.
몰드 주입 후, 서서히 승온하며 상기 폴리티오우레탄 수지의 중합 반응을 진행시킬 수 있다. 중합 온도는 20℃ 내지 150℃일 수 있고, 바람직하게는 25℃ 내지 125℃일 수 있다. 예를 들면, 최대 중합 온도는 100℃ 내지 150℃, 바람직하게는 110℃ 내지 140℃, 보다 바람직하게는 115℃ 내지 130℃일 수 있다.
승온 속도는 1℃/min 내지 10℃/min, 바람직하게는 3℃/min 내지 8℃/min, 보다 바람직하게는 4℃/min 내지 7℃/min일 수 있다. 중합 시간은 10 시간 내지 20시간, 바람직하게는 15 시간 내지 20시간일 수 있다.
예를 들면, 상기 온도 범위 내에서 반응 속도가 적절히 제어되어 균일한 광학 특성 및 기계적 특성을 갖는 렌즈가 용이하게 수득될 수 있다.
중합 완료후 상기 몰드로부터 중합된 상기 폴리티오우레탄 수지를 분리하여 광학 제품을 획득할 수 있다. 일 실시예에 있어서, 몰드로부터 분리 후 경화 공정을 더 수행할 수 있다. 상기 경화 공정은 100℃ 내지 150℃, 바람직하게는 110℃ 내지 140℃, 보다 바람직하게는 115℃ 내지 130℃ 범위에서, 약 1 시간 내지 10시간, 바람직하게는 2 시간 내지 8시간, 보다 바람직하게는 3 시간 내지 6시간 동안 수행될 수 있다.
상기 광학 제품은 몰드 형상에 따라 안경 렌즈, 카메라 렌즈, 발광 다이오드 등의 형태로 제조될 수 있다.
상기 광학용 중합성 조성물에 사용된 폴리티올계 화합물 및 이소시아네이트계 화합물의 종류 및/또는 함량비에 따라 상기 광학 제품의 굴절률이 조절될 수 있다. 예를 들면, 상기 광학 제품의 굴절률은 1.56 내지 1.78, 1.58 내지 1.76, 1.60 내지 1.78, 또는 1.60 내지 1.76의 범위에서 조절될 수 있으며, 바람직하게는 1.65 내지 1.75의 범위 또는 1.69 내지 1.75의 범위로 조절될 수 있다.
상기 광학 제품은 안티-파울링, 색상 부여, 하드 코트, 표면 연마, 경도 강화 등과 같은 표면 처리가 부가되어 개량될 수도 있다.
상술한 실시예들에 따르면, 상술한 범위의 HPLC 함량을 갖는 서브 폴리티올 화합물이 폴리티올 조성물에 포함될 수 있다. 따라서, 중합 반응이 적절 범위로 유지되고, 착색, 맥리 등의 광학적 불량이 억제된 광학 제품을 상기 폴리티올계 조성물로부터 획득할 수 있다.
이하에서는, 구체적인 실험예들을 참조하여 본 출원에서 제공되는 실시예들에 대해 추가적으로 설명한다. 실험예에 포함된 실시예 및 비교예들은 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예 1
1) 4관능 폴리티올계 화합물의 합성
반응기 내에, 물 60.0 중량부, 트리에틸아민 0.3 중량부, 2-머캅토에탄올(2-ME) 73.0 중량부를 투입한 후, 0 ℃까지 온도를 낮추고 15 ℃ 이하의 온도에서 에피클로로히드린(ECH) 88.2 중량부를 천천히 적하 첨가하고 30℃에서 3시간동안 추가 교반하였다. 이어서 25%의 황화나트륨 수용액 148.7 중량부를 20~25℃에서 천천히 적하 투입하고, 1시간 동안 교반하였다. 이후 글리시돌(glycidol) 0.56중량부(2-머캅토에탄올 대비 0.010 당량(eq))를 더 첨가하고, 추가로 3시간 교반하였다.
이후, 36% 염산 486.8 중량부 및 티오우레아 177.8 중량부를 투입하고 110℃ 환류하에서 3시간 교반하여 티우로늄염화 반응을 진행시켰다.
얻어진 반응액을 50 ℃까지 냉각한 후, 톨루엔 305.6 중량부 및 50% NaOH 332.6 중량부를 투입한 후 40-60℃에서 3시간 동안 가수분해를 진행하였다.
1시간 동안 층분리를 진행한 후 수층을 폐기하고 얻어진 톨루엔 용액에 36%염산 120 중량부를 첨가하고, 33~40℃에서 30분 산 세정을 1회 실시하였다. 산 세정 후, 탈기수(용존 산소 농도 2ppm) 250 중량부를 첨가하여 35~45℃에서 30분간 세정을 4회 실시하였다. 가열 감압 하에서 톨루엔 및 잔여 수분을 제거 후, PTFE 타입 멤브레인필터로 필터로 여과하여 상기의 화학식 1의 4관능 폴리티올 화합물을 메인 폴리티올 화합물로 포함하는 폴리티올 조성물 140 중량부를 수득하였다.
2) 광학 조성물 및 렌즈의 제조
상술한 바와 같이 제조된 폴리티올 조성물 49.0 중량부, 자일렌 디이소시아네이트 51.0 중량부, 다이부틸 틴 클로라이드 0.01중량부, ZELEC® UN Stepan사의 인산에스테르 이형제 0.1중량부를 균일하게 혼합한 후 600Pa에서 1시간 동안 탈포 공정을 진행하여, 광학용 중합성 조성물을 제조하였다.
이후, 3μm 테프론 필터에 여과한 상기 조성물을 글라스 몰드 및 테이프를 포함하는 몰드 주형에 주입하였다. 상기 몰드 주형을 25℃에서 120℃까지 분당 5℃의 속도로 천천히 승온하고 120℃에서 18시간 중합을 진행 하였다. 중합 완료 후 몰드 주형을 분리시킨 후, 120℃ 4시간 추가 경화시켜 렌즈 샘플을 제조하였다.
실시예 2-6 및 비교예들
아래 표 1에 기재된 바와 같이, 폴리티올계 화합물 합성에서 사용된 글리시돌의 첨가 당량을 변경한 것을 제외하고는 실시예 1과 동일한 공정으로 폴리티올 조성물 및 렌즈 샘플을 제조하였다.
실험예
(1) 메인 폴리티올 화합물 및 서브 폴리티올 화합물의 HPLC 분석 함량 분석
실시예 및 비교예들에 의한 폴리티올 조성물에 있어서, 하기의 조건으로 수행된 HPLC 분석을 통해 상기 조성물에 포함된 폴리티올 화합물의 피크 영역%를 측정하였다.
<HPLC 분석 조건>
i) 설비: Agilent 1260 Infinity Ⅱ
ii) 컬럼: ZORBAX Eclipse Plus C18, 5um 4.6×250mm
iii) 이동상 기울기: Acetonitrile(0.1% Formic Acid):Water(0.01M Ammonium Formate) = 35~100:65~0
iv) 용매: Acetonitrile(0.1% Formic Acid)
v) 파장: 230nm
vi)유속:1.0ml/min
vii)주입량 : 20㎕ul
viii)시료 전처리 : 시료 : 용매 = 0.1g : 10g
HPLC 그래프의 피크에 해당되는 구체적인 화합물은 액체 크로마토그래피-질량 분광(LC-MS)을 통해 확인하였다. LC-MS 분석의 구체적인 조건은 하기와 같다.
<LC-MS 분석 조건>
LC 조건
i) 설비: LC 30A System (Shimadzu)
ii) 컬럼: YMC-Pack ODS-A 150mm x 6mm(S-5μm, 12nm)
iii) 이동상 기울기: Solvent A water Solvent B Acetonitrile
A: B (60:40) 30min (0:100) 10min
iv) 유속: 1 ml/min
v) 칼럼온도: 40 oC
vi)검출기: PDA (190~800nm)
vii) Injection Volume: 10 μL
Mass detector
i) 설비: Q Exactive(Thermo Fisher Scientific)
2) Ioniztion Method: ESI
3) Scan Range: m/z 130 ~ 1,950
4) Polarity: Positive & Negative
도 1 내지 도 4는 실시예들에 따라 제조된 폴리티올 조성물의 고성능 액체크로마토그래프(HPLC) 분석 그래프들의 이미지들이다.
구체적으로, 도 1 및 도 2는 각각 실시예 1 및 실시예 4의 HPLC 분석 그래프이고, 도 3 및 도 4는 각각 비교예 1 및 비교예 2의 HPLC 분석 그래프이다.
(2) 티올 값(SHV) 평가
비커에 실시예 및 비교예들에서 제조된 폴리티올 조성물을 약 0.1g을 투입하고 클로로포롬 25mL를 추가하여 10분간 교반하였다. 이후, 메틸알코올 10mL를 추가하여 10분간 다시 교반한 용액을 0.1N 요오드 표준용액을 이용하여 적정하고 하기 식 1에 따라 SHV를 측정하였다(이론 값: 91.7).
[식 1] SHV(g/eq.)= 시료무게(g)/{0.1x소비된 요오드양(L)}
(3) 액상 굴절률
실시예 및 비교예들에서 합성된 폴리티올 조성물에 대해 액상 굴절계(RA-600(교토전자사)를 이용하여 25℃에서의 굴절률을 측정하였다.
(4) GPC 순도
실시예 및 비교예들에서 합성된 폴리티올 조성물에 대해 APC system(Waters)을 이용하여 하기의 조건으로 수행되는 겔크로마토그래피 분석을 통해 순도를 측정하였다.
i) 컬럼: Acquity APC XT Column 45A (4.6*150mm)x2
ii) 이동상: THF
iii) 유량: 0.5mL/min
iv) 총 운전시간: 10분
v) 주입량: 10 ㎕
vi) 디텍터: RID 40℃
(5) 맥리 평가
상술한 바와 같이, 실시예 및 비교예들에 따른 중합성 조성물을 사용하여 직경 75 mm, - 4.00D의 렌즈 샘플을 제조하고 수은등 광원을 제조된 렌즈 샘플에 투과시켜, 투과광을 백색판에 투영하여 명암차의 유무로 맥리발생 유무를 판단하였다. 평가 기준은 아래와 같다.
○: 맥리 미관찰
×: 육안으로 명백히 맥리 관찰됨
(6) 중합 반응 속도 측정(Reactivity Slope)
EMS-1000(KEM사)의 비접촉식 점도계를 이용하여 먼저 점도 표준 용액 (Brookfield, 1000cps, 25oC)로 표준 점도(Standard cps)를 확인하였다. 이후 실시예 및 비교예들에 따른 중합성 조성물에 대해 10℃에서 24시간 동안 점도를 측정하였다. 측정 값을 이용하여 X축은 시간, Y축은 점도로 하고 Y축을 로그화하여 하기 수학식 1과 같이 수식화한 후, 반응 속도를 도출하였다.
[수학식 1]
Y= a × exp(b × X)
수학식 1에서, a값은 초기 점도(cps), b값은 반응 속도를 나타내며 측정값의 소수점 셋째 자리에서 반올림하여 표기하였다.
(7) 착색후 투과율 평가
초음파 세척된 실시예 및 비교예의 렌즈 샘플을 착색조에서 착색하였다(Brown 착색액, 10 분, 착색조 온도 96~98℃). 착색된 렌즈 샘플을 상온에서 흐르는 탈이온수에 세척한 후 투과율을 측정하였다(측정기기: LTM-200, LED Transmittance Meter)
폴리티올 조성물에 대한 물성 측정 결과 및 이를 사용하여 제조된 렌즈의 물성에 대한 측정 결과를 각각 하기 표 1 및 표 2에 나타낸다.
2-ME대비
글리시돌
첨가
당량
폴리티올 조성물 물성
SHV
(g/ea)
액상
굴절률
서브
폴리티올
HPLC
area %
(A)
(230nm)
메인
폴리티올
(화학식
1-1)
HPLC
area %
(B)
(230nm)
RCI
(A/B)
GPC
순도
(%)
실시예 1 0.010 eq 96.4 1.6462 1.03 83.14 0.012 83
실시예2 0.008 eq 96.6 1.6465 0.99 83.25 0.012 83
실시예3 0.012 eq 96.2 1.6458 1.05 82.43 0.013 82
실시예4 0.015 eq 96.1 1.6457 1.26 81.09 0.016 81
실시예 5 0.005 eq 96.8 1.6468 0.90 84.01 0.011 84
실시예 6 0.007 eq 96.7 1.6466 0.95 83.25 0.011 83
실시예 7 0.018 eq 95.7 1.6455 1.30 79.22 0.016 79
비교예1 0.020 eq 95.5 1.6453 1.41 78.57 0.018 78
비교예2 0.003 eq 97.0 1.6468 0.89 83.33 0.011 83
비교예3 미첨가 97.2 1.6470 0.52 84.21 0.006 84
렌즈 물성
맥리 반응 속도 착색후 투과율
실시예 1 0.20 68%
실시예2 0.18 67%
실시예3 0.21 69%
실시예4 0.22 72%
실시예 5 0.17 67%
실시예 6 0.17 67%
실시예 7 0.23 78%
비교예1 × 0.26 80%
비교예2 0.17 64%
비교예3 0.16 63%
표 1 및 표 2를 참조하면, 예시적인 실시예들에 따라 함량이 조절된 서브 폴리티올 화합물이 포함된 실시예들에서, 반응속도 및 굴절률의 지나친 증가가 방지되며, 맥리/착색이 감소된 고투과율의 광학 렌즈가 획득되었다.

Claims (13)

  1. 적어도 2종의 서로 다른 폴리티올계 화합물을 포함하며,
    230nm 파장에서 획득한 고성능액체크로마토그래피(HPLC) 분석 그래프를 통해 측정된 C8H18S6으로 표시되는 폴리티올 화합물의 피크 영역(%)이 0.90% 내지 1.30%인, 폴리티올 조성물.
  2. 청구항 1에 있어서, 상기 C8H18S6으로 표시되는 폴리티올 화합물은 하기 화학식 2의 구조를 갖는, 폴리티올 조성물:
    [화학식 2]
    Figure PCTKR2021012122-appb-img-000013
    .
  3. 청구항 2에 있어서, 상기 폴리티올계 화합물은 상기 화학식 2로 표시되는 서브 폴리티올 화합물, 및 상기 서브 폴리티올 화합물보다 큰 분자량을 갖는 메인 폴리티올 화합물을 포함하는, 폴리티올 조성물.
  4. 청구항 3에 있어서, 상기 메인 폴리티올 화합물은 상기 서브 폴리티올 화합물보다 큰 탄소수를 갖는 4관능 폴리티올 화합물을 포함하는, 폴리티올 조성물.
  5. 청구항 3에 있어서, 상기 메인 폴리티올 화합물은 하기 화학식 1-1 내지 1-3으로 표시되는 4관능 폴리티올 화합물들 중 적어도 하나를 포함하는, 폴리티올 조성물:
    [화학식 1-1]
    Figure PCTKR2021012122-appb-img-000014
    [화학식 1-2]
    Figure PCTKR2021012122-appb-img-000015
    [화학식 1-3]
    Figure PCTKR2021012122-appb-img-000016
    .
  6. 청구항 5에 있어서, 하기 식 1로 정의되는 반응 속도 조절 지수가 0.006 내지 0.017인, 폴리티올 조성물:
    [식 1]
    반응 속도 조절 지수(Reaction rate Control Index: RCI)=A/B
    (식 1 중, A는 상기 HPLC 분석 그래프를 통해 측정된 C8H18S6으로 표시되는 폴리티올 화합물의 피크 영역(%)이고, B는 상기 HPLC 분석 그래프를 통해 측정된 상기 화학식 1-1 내지 1-3으로 표시되는 폴리티올 화합물의 피크 영역(%)임).
  7. 청구항 5에 있어서, 상기 HPLC 분석 그래프를 통해 측정된 상기 화학식 1-1 내지 1-3으로 표시되는 폴리티올 화합물의 피크 영역(%)은 78.6% 내지 85%인, 폴리티올 조성물.
  8. 예비 폴리올 화합물에 금속 황화물을 투입하여 폴리올 중간체를 생성하는 단계;
    상기 폴리올 중간체에 서브 폴리티올 화합물 형성 촉진제를 첨가하는 단계; 및
    상기 폴리올 중간체를 티올레이션(thiolation)을 통해 폴리티올계 화합물로 전환하는 단계를 포함하는, 폴리티올 조성물의 제조 방법.
  9. 청구항 8에 있어서, 상기 폴리티올 조성물은 적어도 2종의 서로 다른 폴리티올계 화합물을 포함하며, 230nm 파장에서 획득한 고성능액체크로마토그래피(HPLC) 분석 그래프를 통해 측정된 C8H18S6으로 표시되는 폴리티올 화합물의 피크 영역(%)이 0.90% 내지 1.30%인, 폴리티올 조성물의 제조 방법.
  10. 청구항 9에 있어서, 상기 예비 폴리올 화합물은 2-머캅토에탄올 및 에피할로히드린의 반응을 통해 합성되고,
    상기 폴리올 중간체에 상기 서브 폴리티올 화합물 형성 촉진제를 첨가하는 단계는 상기 폴리티올 화합물의 피크 영역(%) 범위를 만족하도록 2-머캅토에탄올에 대한 소정의 당량 범위로 첨가되는, 폴리티올 조성물의 제조 방법.
  11. 청구항 8에 있어서, 상기 서브 폴리티올 화합물 형성 촉진제는 글리시돌을 포함하는, 폴리티올 조성물의 제조 방법.
  12. 적어도 2종의 서로 다른 폴리티올계 화합물을 포함하며, 230nm 파장에서 획득한 고성능액체크로마토그래피(HPLC) 분석 그래프를 통해 측정한 C8H18S6으로 표시되는 폴리티올 화합물의 피크 영역(%)이 0.90% 내지 1.30%인 폴리티올 조성물; 및
    이소시아네이트계 화합물을 포함하는, 광학 조성물.
  13. 청구항 12의 광학 조성물로부터 제조된 폴리티오우레탄 수지를 포함하는 광학 제품.
PCT/KR2021/012122 2020-09-10 2021-09-07 폴리티올 조성물 및 이를 포함하는 광학 조성물 WO2022055221A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/044,379 US20230357484A1 (en) 2020-09-10 2021-09-07 Polythiol composition and optical composition comprising same
CN202180061853.4A CN116075541A (zh) 2020-09-10 2021-09-07 多硫醇组合物和包括其的光学组合物
EP21867087.5A EP4212566A1 (en) 2020-09-10 2021-09-07 Polythiol composition and optical composition comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200116308A KR20220033890A (ko) 2020-09-10 2020-09-10 폴리티올 조성물 및 이를 포함하는 광학용 중합성 조성물
KR10-2020-0116308 2020-09-10

Publications (1)

Publication Number Publication Date
WO2022055221A1 true WO2022055221A1 (ko) 2022-03-17

Family

ID=80631960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012122 WO2022055221A1 (ko) 2020-09-10 2021-09-07 폴리티올 조성물 및 이를 포함하는 광학 조성물

Country Status (5)

Country Link
US (1) US20230357484A1 (ko)
EP (1) EP4212566A1 (ko)
KR (1) KR20220033890A (ko)
CN (1) CN116075541A (ko)
WO (1) WO2022055221A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742244A2 (en) * 1995-05-12 1996-11-13 Mitsui Toatsu Chemicals, Inc. Durable polysulfide composition for optical material
KR20110021371A (ko) * 2009-08-26 2011-03-04 장동규 광 조사에 의해 얻은 광학렌즈용 폴리티올 화합물을 포함한 수지 조성물 및 이를 이용한 광학렌즈
KR101338568B1 (ko) 2006-04-19 2013-12-06 미쓰이 가가쿠 가부시키가이샤 광학재료용 (폴리)티올 화합물의 제조방법 및 그것을 포함하는 중합성 조성물
KR20140142375A (ko) * 2012-08-14 2014-12-11 미쓰이 가가쿠 가부시키가이샤 폴리티올 화합물의 제조방법, 광학 재료용 중합성 조성물 및 그 용도
KR20180024561A (ko) * 2016-08-30 2018-03-08 에스케이씨 주식회사 광학 재료용 폴리티올 조성물 및 이의 제조방법
US20200031986A1 (en) * 2017-02-15 2020-01-30 Keun Sik Kim Polyol or polythiol compound, preparation method therefor, transparent polyurethane-based resin prepared therefrom, and optical body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101971110B1 (ko) * 2016-08-30 2019-04-22 에스케이씨 주식회사 광학 재료용 폴리티올 화합물
JP6562521B2 (ja) * 2017-09-29 2019-08-21 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 光学部材用樹脂の製造方法、光学部材用樹脂、眼鏡レンズ及び眼鏡

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742244A2 (en) * 1995-05-12 1996-11-13 Mitsui Toatsu Chemicals, Inc. Durable polysulfide composition for optical material
KR101338568B1 (ko) 2006-04-19 2013-12-06 미쓰이 가가쿠 가부시키가이샤 광학재료용 (폴리)티올 화합물의 제조방법 및 그것을 포함하는 중합성 조성물
KR20110021371A (ko) * 2009-08-26 2011-03-04 장동규 광 조사에 의해 얻은 광학렌즈용 폴리티올 화합물을 포함한 수지 조성물 및 이를 이용한 광학렌즈
KR20140142375A (ko) * 2012-08-14 2014-12-11 미쓰이 가가쿠 가부시키가이샤 폴리티올 화합물의 제조방법, 광학 재료용 중합성 조성물 및 그 용도
KR20180024561A (ko) * 2016-08-30 2018-03-08 에스케이씨 주식회사 광학 재료용 폴리티올 조성물 및 이의 제조방법
US20200031986A1 (en) * 2017-02-15 2020-01-30 Keun Sik Kim Polyol or polythiol compound, preparation method therefor, transparent polyurethane-based resin prepared therefrom, and optical body

Also Published As

Publication number Publication date
EP4212566A1 (en) 2023-07-19
KR20220033890A (ko) 2022-03-17
CN116075541A (zh) 2023-05-05
US20230357484A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2019235862A1 (ko) 디이소시아네이트 및 광학 렌즈의 제조방법
WO2016010342A1 (ko) 광학수지 조성물 및 이를 이용한 광학용 렌즈
WO2015020482A1 (ko) 고굴절 광학재료용 중합성 조성물 및 고굴절 광학재료의 제조방법
WO2019004601A1 (ko) 3d 프린팅용 광경화성 폴리실록산 조성물 및 이를 포함하는 치과용 조형물
WO2010076942A1 (ko) 신규 티올 화합물을 이용한 광학렌즈용 경량성 고굴절 수지 조성물 및 이를 이용한 광학렌즈
WO2018043896A1 (ko) 광학 재료용 폴리티올 조성물 및 이의 제조방법
WO2019093731A1 (ko) 광경화성 조성물 및 이의 경화물을 포함하는 코팅층
WO2021206269A1 (ko) 폴리티올 화합물의 제조 방법과 이를 포함한 광학 재료용 중합성 조성물 및 광학 렌즈
WO2018194298A2 (ko) 에폭시 아크릴계 중굴절 광학렌즈용 수지 조성물 및 그 제조방법
WO2018043901A1 (ko) 광학 재료용 폴리티올 화합물의 제조방법
WO2013069965A1 (ko) 폴리티올 화합물의 제조 방법 및 이를 포함하는 광학재료용 중합성 조성물
WO2022055221A1 (ko) 폴리티올 조성물 및 이를 포함하는 광학 조성물
WO2022114805A1 (ko) 폴리티올 조성물, 광학 조성물 및 광학 제품
WO2022119271A1 (ko) 자일릴렌디이소시아네이트 조성물 및 이를 포함하는 광학 조성물
WO2022114719A1 (ko) 폴리티올 조성물, 광학 조성물 및 광학 제품
WO2022050662A1 (ko) 폴리티올 조성물, 광학 조성물 및 광학 제품
WO2014077589A1 (ko) 에폭시 아크릴계의 고굴절 광학재료용 중합성 조성물 및 에폭시 아크릴계 고굴절 광학재료의 제조방법
WO2022065802A1 (ko) 폴리티올 조성물, 광학용 중합성 조성물 및 광학 제품
WO2022050716A1 (ko) 자일릴렌디이소시아네이트 조성물 및 이를 포함하는 광학용 중합성 조성물
WO2022050715A1 (ko) 폴리티올 조성물 및 이를 포함하는 광학용 중합성 조성물
WO2022059820A1 (ko) 비염소화 유도체를 포함하는 이소시아네이트 화합물의 제조 방법 및 이들의 조성물
WO2012108609A1 (en) Organopolysiloxane, method for preparing the same, and silicone composition comprising the same
WO2020235913A1 (ko) 경화성 조성물 및 이의 경화물을 포함하는 광학 부재
WO2021201459A1 (ko) 티오우레탄계 광학재료용 수지 조성물과 티오우레탄계 광학재료용 수지의 제조방법
WO2014129788A1 (ko) 내충격성이 우수한 폴리티오우레탄계 중합성 조성물 및 이를 이용한 광학용 수지의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21867087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021867087

Country of ref document: EP

Effective date: 20230411