WO2022054759A1 - 多方向入力装置 - Google Patents

多方向入力装置 Download PDF

Info

Publication number
WO2022054759A1
WO2022054759A1 PCT/JP2021/032675 JP2021032675W WO2022054759A1 WO 2022054759 A1 WO2022054759 A1 WO 2022054759A1 JP 2021032675 W JP2021032675 W JP 2021032675W WO 2022054759 A1 WO2022054759 A1 WO 2022054759A1
Authority
WO
WIPO (PCT)
Prior art keywords
input device
lever
magnet
movable shaft
urging
Prior art date
Application number
PCT/JP2021/032675
Other languages
English (en)
French (fr)
Inventor
伸之 二宮
真人 林
周二 藤原
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Priority to JP2022547585A priority Critical patent/JP7387909B2/ja
Priority to CN202180051419.8A priority patent/CN115917691A/zh
Publication of WO2022054759A1 publication Critical patent/WO2022054759A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H25/00Switches with compound movement of handle or other operating part
    • H01H25/04Operating part movable angularly in more than one plane, e.g. joystick
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H25/00Switches with compound movement of handle or other operating part
    • H01H25/06Operating part movable both angularly and rectilinearly, the rectilinear movement being along the axis of angular movement

Definitions

  • the present invention relates to a multi-directional input device.
  • a case having a space inside, an operation member that is partially exposed from the case and accepts an operation by an operator, and an operation member arranged in the case in a direction orthogonal to each other and tilting operation with respect to the operation member.
  • multi-directional input devices including first and second drive members that rotate accordingly and rotation detection mechanisms that detect the rotation of the first and second drive members.
  • the rotation detection mechanism rotates a holder that is connected to the first and second drive members and holds a magnet, a magnetic detection element that is held in the holder and is arranged to face the magnet, and the holder. It has a cover that can be accommodated and attached from the outside of the case with the magnetic detection element positioned at a predetermined position (see, for example, Patent Document 1).
  • the distance between the magnet and the magnetic sensor changes when operating the operating member, the strength of the magnetic field detected by the magnetic sensor changes depending on the operating state, so the amount of operation may not be detected accurately.
  • the purpose is to provide a multi-directional input device that can accurately detect the amount of operation.
  • the multi-directional input device includes a housing having an opening, an operating member having a shaft portion inserted into the opening and capable of tilting with respect to the housing, and the operation.
  • a plate-shaped member arranged below the shaft, a tubular movable shaft inserted into the shaft portion and having a lower end abutting against the plate-shaped member, and a cylindrical movable shaft arranged inside the movable shaft and hitting the plate-shaped member.
  • the spacer provided in contact with the spacer, the magnet arranged on the spacer inside the movable shaft, the magnetic sensor arranged below the spacer, and the operating member provided between the operating member and the movable shaft.
  • a first spring for urging the movable shaft downward and a second spring provided between the operating member and the magnet to urge the magnet downward with respect to the operating member are included. ..
  • FIG. 1 is an exemplary diagram showing the multi-directional input device 100 of the embodiment.
  • FIG. 2 is a diagram schematically showing a state in which the multi-directional input device 100 is disassembled.
  • FIG. 3 is a diagram showing an example of a cross section taken along the line AA of FIG.
  • FIG. 4 is a diagram showing an example of a cross section taken along the line BB in FIG. 1.
  • the plan view refers to the XY plane view
  • the negative direction side of the Z axis is referred to as the lower side or the lower side
  • the positive direction side of the Z axis is referred to as the upper side or the upper side. It's not a thing.
  • the multi-directional input device 100 includes a case 110, a frame 120, an FPC (Flexible printed circuits) 125, a metal contact 130A, a magnetic sensor 130B, a stem 140, a plate 150, an actuator 160A, 160B, a spacer 160C, a spring 160D, a spring 160E, and a magnet. Includes 170, cover 180, magnetic shield 185, lever 190, cap 195.
  • FPC Flexible printed circuits
  • the multi-directional input device 100 is an input device capable of tilting the lever 190 and pushing the lever 190 downward. Such a multi-directional input device 100 can be used, for example, as an operation unit of a game machine.
  • the case 110 is made of resin as an example, and has a main body 111 and a dome portion 112.
  • the main body 111 is a member having a substantially rectangular parallelepiped shape and having no bottom.
  • the main body 111 becomes a bottomed member with the frame 120 attached from below.
  • the case 110 and the frame 120 are examples of the housing, and the main body 111 and the frame 120 are examples of the housing main body.
  • the dome portion 112 is a portion that protrudes upward from the central portion of the upper surface of the main body 111 in a dome shape, and has an opening 112A at the top.
  • the upper surface of the dome portion 112 has a spherical shape.
  • the frame 120 is made of a soft magnetic material of metal, and has an opening 121 into which an engaging portion 111A protruding from the side surface of the main body 111 of the case 110 is fitted, and a state of being attached to the main body 111 as shown in FIG. It has an engaging portion 122 that is bent at and engages with the main body 111. Since the frame 120 has a magnetic shielding effect similar to the magnetic shield 185, it is possible to reduce the influence of the disturbance magnetic field on the magnetic sensor 130B and suppress the magnetic leakage of the built-in magnet 170 to the outside.
  • the FPC 125 is arranged on the upper surface of the portion parallel to the XY plane in the center of the frame 120. In the space closed by the frame 120 and the case 110, the FPC 125, the metal contact 130A, the magnetic sensor 130B, the stem 140, the plate 150, the actuator 160A, a part of the actuator 160B, and a part of the magnet 170 are housed.
  • the frame 120 may be attached to the main body 111 of the case 110 from below, and may have any attachment structure to the case 110 as long as it is a member capable of realizing the storage space as described above.
  • the FPC 125 is, for example, a member having a wiring pattern formed on the surface of polyimide or the like, and has a wiring portion 125A.
  • An electronic component 125B, a metal contact 130A, and a magnetic sensor 130B are mounted on the FPC 125.
  • the metal contact 130A is an example of a pressing sensor, and is mounted on the -X direction side of the upper surface of the FPC 125.
  • the metal contact 130A has a metal dome capable of reversing motion, and the dome has an upwardly convex shape, and when pressed downward by the stem 140, the metal contact 130A is downwardly convex due to the reversing motion.
  • the state is set, and the pushing operation in the Z direction is detected by this.
  • the magnetic sensor 130B is mounted substantially in the center of the upper surface of the FPC 125.
  • the magnetic sensor 130B has a built-in sensor that detects a change in the magnetic field in the X direction and a sensor that detects a change in the magnetic field in the Y direction, and detects the displacement of the magnet 170 in the X direction and the Y direction.
  • the stem 140 is a resin member as an example, and is provided to press the metal contact 130A downward.
  • the plate 150 is made of metal as an example, and has a base portion 151, a leg portion 152, and an extending portion 153.
  • the plate 150 is an example of a plate-shaped member.
  • the base 151 is located in the center of the plate 150 on which the actuator 160B is mounted.
  • Legs 152 extending downward are provided on all sides of the base 151. Since the lower end of the leg portion 152 abuts on the upper surface of the FPC 125, the base portion 151 is located higher than the FPC 125 by the height of the leg portion 152.
  • a part of the magnetic sensor 130B and the electronic component 125B is arranged in the lower part of the base 151, but since the base 151 is higher than the FPC 125 by the height of the leg 152, the actuator Even if the 160B is pressed downward, the magnetic sensor 130B and the like can be protected.
  • the plate 150 is fixed to the case 110 by an extending portion 153 extending outward in a plan view from the base 151.
  • the actuator 160A is made of resin as an example, and is an example of a moving part.
  • the actuator 160A has a base portion 161A, an opening portion 162A, a shaft portion 163A, 164A, a side portion 165A, and a through hole 166A.
  • the actuator 160A holds the lever 190 so as to be tiltable in the X-axis direction, and is also tiltable in the Y-axis direction with respect to the case 110.
  • the X-axis is an example of the first axis
  • the Y-axis is an example of the second axis.
  • the fact that the lever 190 can be tilted in the X-axis direction means that the lever 190 can be tilted in the X-direction with the Y-axis as the rotation axis as shown by the arrow shown in FIG.
  • the fact that the actuator 160A can be tilted in the Y direction means that the actuator 160A can be tilted in the Y direction with the X axis as the rotation axis as shown by the arrow shown in FIG. Being able to tilt in the Y direction is an example of being able to tilt in the second axis direction.
  • the base portion 161A is the main body of the actuator 160A and has a dome-shaped shape.
  • the dome shape of the base portion 161A is a shape corresponding to the spherical surface on the lower surface side of the dome portion 112 of the case 110.
  • An opening 162A is provided at the top of the base 161A.
  • the length of the opening 162A in the X direction shown in FIG. 4 is longer than the length in the Y direction shown in FIG.
  • a shaft portion 163A is provided on the ⁇ X direction side of the base portion 161A, and a shaft portion 164A is provided on the + X direction side.
  • the shaft portion 163A is an example of the first shaft portion
  • the shaft portion 164A is an example of the second shaft portion.
  • the side surface of the base portion 161A on the ⁇ Y direction side is a side surface parallel to the XZ plane, and has a shape like a dome shape cut off.
  • the side portion 165A is provided with a through hole 166A.
  • the shaft portions 163A and 164A are provided so that the actuator 160A can be tilted in the Y direction with respect to the case 110.
  • the upper surface of the shaft portions 163A and 164A is curved like the side surface of a cylinder centered on the X axis.
  • the shaft portion 163A is fitted in the recess 111B inside the main body 111 of the case 110.
  • the width of the recess 111B in the Y-axis direction is matched with the width of the shaft portion 163A in the Y-axis direction.
  • the shaft portion 163A is held by the recess 111B so as to be rotatable in the YZ plane with the X axis as the rotation axis.
  • the shaft portion 164A is fitted in the recess 111C inside the main body 111 of the case 110. As shown in FIG. 4, the shaft portion 164A is longer in the Z direction than the shaft portion 163A.
  • the upper surface of the shaft portion 164A is curved like the side surface of a cylinder centered on the X axis.
  • the width of the recess 111C in the Y-axis direction is matched with the width of the shaft portion 164A in the Y-axis direction.
  • the shaft portion 164A is held by the recess 111C so as to be rotatable in the YZ plane with the X axis as the rotation axis.
  • the shaft portion 193 of the lever 190 is inserted into the through hole 166A, and the lever 190 is held so as to be tiltable in the X direction with the Y axis as the rotation axis.
  • Being able to tilt in the X direction is an example of being able to tilt in the first axis direction.
  • the actuator 160A moves so that the shaft portion 163A is slanted downward in FIG. 4 and presses the stem 140 downward.
  • the metal contact 130A performs a reversing operation.
  • the actuator 160B is an example of a movable shaft, and is a member that supports the lever 190 with respect to the bottom of the case 110.
  • the actuator 160B has a cylindrical portion 161B, a pedestal portion 162B, a protruding portion 163B, and a notch portion 164B.
  • the cylindrical portion 161B is held inside the lever 190.
  • a pedestal portion 162B is provided below the cylindrical portion 161B.
  • the cylindrical portion 161B extends from the upper end to the lower end of the actuator 160B, and has a storage portion 161B1 and 161B2 hollowed out in a columnar shape and a convex portion 161B3.
  • the storage portion 161B1 is a space below the convex portion 161B3 in the cylindrical hollowed out internal space of the cylindrical portion 161B
  • the storage portion 161B2 is a space in the cylindrical hollowed out internal space of the cylindrical portion 161B. It is a space above the convex portion 161B3.
  • the convex portion 161B3 is a portion of the cylindrical portion 161B that is hollowed out in a cylindrical shape and protrudes in an annular shape toward the inside slightly above the middle in the vertical direction. Since the convex portion 161B3 has a through hole in the center in a plan view, the accommodating portions 161B1 and 161B2 communicate with each other.
  • the inner diameter of the storage portion 161B1 is different between the lower end side 161B11 and the upper end side 161B12, and the inner diameter of the lower end side 161B11 is slightly larger than the inner diameter of the upper end side 161B12. There is a slight step between the lower end side 161B11 and the upper end side 161B12.
  • the inner diameter of the upper end side 161B12 is slightly larger than the outer diameter of the columnar magnet 170, so that the magnet 170 can move in the expansion / contraction direction of the spring 160E.
  • the lower end side 161B11 has a slightly larger inner diameter than the upper end side 161B12 in order to facilitate the insertion of the magnet 170.
  • the spacer 160C and the magnet 170 are stored in the storage unit 161B1, and a part of the springs 160D and 160E is stored in the storage unit 161B2.
  • the lower end of the spring 160E is inserted through the through hole in the center of the convex portion 161B3.
  • the pedestal portion 162B is a disk-shaped portion having a diameter larger than that of the cylindrical portion 161B, and has a through hole communicating with the through hole of the cylindrical portion 161B in the central portion.
  • the pedestal portion 162B is arranged on the plate 150 and is in contact with the upper surface of the plate 150.
  • the protruding portion 163B is a portion that protrudes in a rectangular parallelepiped shape in the ⁇ Y direction on the lower end side of the cylindrical portion 161B.
  • the width of the protrusion 163B in the X direction is narrower than the width of the cylindrical portion 161B.
  • the protrusion 163B is provided to prevent the actuator 160B from rotating inside the shaft portion 192 of the lever 190.
  • the cutout portion 164B is a portion where both sides of the lower end of the cylindrical portion 161B of the actuator 160B are cut out in the ⁇ Y direction.
  • the straight line connecting the centers of the widths of the two notches 164B in the X direction passes through the central axis of the cylindrical portion 161B and is parallel to the Y axis.
  • the spacer 160C has a base portion 161C, a curved portion 162C which is a spherical curved surface, and a protruding portion 163C.
  • the base portion 161C is a cylindrical portion, a curved portion 162C is provided on the lower side of the base portion 161C, and two protruding portions 163C projecting in the ⁇ Y direction are provided on the side surface of the base portion 161C.
  • the curved portion 162C protrudes downward from the lower surface of the base portion 161C and has a curved surface curved in a spherical shape.
  • the curved surface of the curved portion 162C abuts on the base 151 of the plate 150.
  • the curved surface of the curved portion 162C is a curved surface having a constant radius of curvature from the center of the upper surface of the base portion 161C.
  • FIG. 3 shows the radius of curvature with a broken line arrow.
  • the curved surface of the curved portion 162C is a curved surface having a constant radius of curvature from the center of the lower surface of the magnet 170.
  • the straight line connecting the centers of the widths of the two protrusions 163C in the X direction passes through the center in the plan view of the base and is parallel to the Y axis.
  • the width of the protrusion 163C in the X direction is adjusted to the notch 164B of the actuator 160B and is fitted into the notch 164B.
  • the protrusion 163C is provided so that the spacer 160C does not rotate in the XY plane with respect to the actuator 160B.
  • the spring 160D is an example of the first spring, and is provided between the convex portion 161B3 of the actuator 160B and the upper end surface of the concave portion 191A of the operating portion 191 of the lever 190. As shown in FIGS. 3 and 4, the spring 160D is contracted more than its natural length between the convex portion 161B3 and the upper end surface of the concave portion 191A in a neutral position where the lever 190 is not operated. , The actuator 160B is urged downward with respect to the lever 190. The spring 160D is provided to return the lever 190 to the position before the operation.
  • the spring 160E is an example of the second spring, and is provided between the upper surface of the magnet 170 and the upper end surface of the recess 191B of the operating portion 191 of the lever 190.
  • the lower end of the spring 160E is in contact with the upper surface of the magnet 170 with the through hole in the center of the convex portion 161B3 inserted.
  • the spring 160E is contracted more than its natural length between the upper surface of the magnet 170 and the upper end surface of the recess 191B in a neutral position where the lever 190 is not operated.
  • the magnet 170 is urged downward with respect to the lever 190.
  • the spring 160E is provided to keep the position of the magnet 170 in the height direction with respect to the spacer 160C and the plate 150 constant.
  • the magnet 170 is a rod-shaped permanent magnet, and as an example, the upper half is an S pole and the lower half is an N pole.
  • the upper end of the magnet 170 is inserted into the upper end side 161B12 of the accommodating portion 161B1 of the actuator 160B, and the lower half is inserted into the lower end side 161B11 of the accommodating portion 161B1 of the actuator 160B.
  • the cover 180 is an example of a cover member, and has a structure higher in strength than the lever 190.
  • the cover 180 has a base portion 181 and a dome portion 182.
  • the base 181 is a cylindrical portion and has a through hole 181A penetrating in the Z direction. As shown in FIG. 2, the through hole 181A has a shape short in the X-axis direction and long in the Y direction.
  • the shaft portion 192 of the lever 190 is inserted through the through hole 181A.
  • a dome portion 182 is provided below the base portion 181.
  • the base portion 181 is continuously provided on the top of the dome portion 182.
  • the cover 180 is attached to the lower side of the operation portion 191 of the lever 190 by inserting the through hole 181A into the shaft portion 192 of the lever 190.
  • the dome portion 182 is an example of a contact portion.
  • the upper surface (curved surface on the + Z direction side) and the lower surface (curved surface on the ⁇ Z direction side) of the dome portion 182 have a spherical shape.
  • the dome portion 182 and the dome portion 112 of the case 110 have a shape corresponding to a part of two concentric spheres. Two concentric spheres are two spheres with the same center.
  • the dome portion 182 and the dome portion 112 of the case 110 have a shape corresponding to a part of such two hollow spheres.
  • the neutral position is a position when the lever 190 is not tilted in either the X direction or the Y direction and the lever 190 is not pushed downward.
  • the lower surface of the dome portion 182 of the cover 180 abuts on the upper surface of the dome portion 112 of the case 110, and the cover 180 is sandwiched between the lower surface of the operation portion 191 and the upper surface of the dome portion 112 of the case 110 to form a metal contact.
  • the lever 190 cannot be pushed downward more than the 130A is reversed. Therefore, damage to the magnetic sensor 130B, the electronic component 125B, and the like can be suppressed.
  • cover 180 is stronger than the lever 190, the thickness of the dome portion 182 can be reduced.
  • a cover 180 may be made of a synthetic resin having high hardness.
  • the lever 190 and the cover 180 cannot be manufactured integrally by molding, and are manufactured separately. If the lever 190 and the cover 180 are separated from each other, they can be manufactured of different materials. Therefore, by manufacturing the cover 180 with a material having a higher strength than the lever 190, the strength of the cover 180 is lower than that of the case of integrally manufacturing. It can be made thin without making it.
  • the lever 190 is an example of an operating member, and has an operating portion 191 and a shaft portion 192.
  • the operation unit 191 is a disk-shaped member and has a diameter larger than that of the shaft unit 192.
  • a cap 195 is attached to the upper surface of the operation unit 191.
  • the operation unit 191 has a recess 191A and a recess 191B inside.
  • the recess 191A is a portion that communicates with the inner wall 192B of the cylindrical shaft portion 192 and is recessed upward, and the recess 191B is recessed further upward from the center of the upper end surface of the recess 191A.
  • the upper end of the spring 160D abuts on the upper end surface of the recess 191A, and the upper end of the spring 160E abuts on the upper end surface of the recess 191B.
  • the shaft portion 192 is a cylindrical portion extending downward from the center of the lower surface of the operation portion 191. As shown in FIG. 3, the shaft portion 192 has protrusions 192A protruding from both sides in the Y direction on the lower side. The two projecting portions 192A project in a rectangular parallelepiped shape in a plan view from both sides in the Y direction under the cylindrical shaft portion 192. The width of the protrusion 192A in the X direction is narrower than the width of the cylinder of the shaft portion 192. The center of the width of the protrusion 192A in the X direction coincides with the center of the width of the cylinder of the shaft portion 192. The inner wall 192A1 of the protrusion 192A is recessed in a rectangular parallelepiped shape in the Y direction from the inner wall 192B of the cylindrical shaft portion 192, similar to the outer shape of the protrusion 192A.
  • the protrusion 163B of the actuator 160B is fitted inside the protrusion 192A. This is to prevent the actuator 160B from rotating in the XY plane with respect to the lever 190. Since the lower end of the spring 160D abuts on the upper surface of the convex portion 161B3 of the actuator 160B, when the actuator 160B rotates about the central axis of the cylindrical portion 161B with the operation of the lever 190, the convex portion 161B3 is caused by the end portion of the spring 160D. This is to prevent the upper surface of the cylinder from being scraped. Further, since the lever 190 can be pushed downward from the neutral state shown in FIGS.
  • the inner wall 192A1 of the protrusion 192A extends to the upper side of the protrusion 163B of the actuator 160B in the neutral state. It is configured as follows. This is to allow the protrusion 163B to move relatively upward inside the protrusion 192A when the lever 190 is pushed in.
  • the shaft portion 192 is inserted into the through hole 181A from above by locating the protrusion 192A on the Y direction side of the through hole 181A of the cover 180. As a result, the cover 180 and the lever 190 are fixed.
  • Each of the two projecting portions 192A is provided with a shaft portion 193 that projects outward in the Y direction in a cylindrical shape. Further, the shaft portion 193 is inserted into the through hole 166A of the actuator 160A, and is rotatably held by the through hole 166A with the Y axis as the rotation axis. As a result, the lever 190 is attached to the actuator 160A and can be tilted in the X direction (direction of the arrow shown in FIG. 3) with respect to the actuator 160A.
  • the magnet 170 is in contact with the base portion 151 of the plate 150 via the spacer 160C, and the spacer 160C has a curved portion 162C having a curved surface having a constant radius of curvature from the center of the lower surface of the magnet 170, the lever.
  • the distance between the magnetic sensor 130B and the magnet 170 can be kept constant, so that the direction in which the magnet 170 is tilted by the magnetic sensor 130B. Can be detected accurately.
  • the direction in which the magnet 170 is tilted is equal to the direction in which the shaft portion 192 of the lever 190 is tilted.
  • the reason why the magnetic sensor 130B accurately detects the direction in which the magnet 170 is tilted is as follows.
  • the magnetic field of the magnet 170 is oriented in the Z-axis direction, and there is no magnetic field of the X-axis and Y-axis components.
  • the magnetic field of the X-axis component or the Y-axis component increases according to the tilt angle, so that the tilt angle can be accurately detected by the magnetic sensor 130B.
  • both the tilt angle and the distance are used. Since the strength of the magnetic field of the X-axis component or the Y-axis component changes due to the change in, the tilt angle cannot be detected accurately.
  • the spacer 160C is interposed between the magnet 170 and the base 151 of the plate 150.
  • the spacer 160C is interposed between the magnet 170 and the base 151 and the spring 160E is provided between the magnet 170 and the lever 190, even if the lever 190 is pushed downward, the magnet 170 and the magnetism
  • the distance from the sensor 130B is invariant.
  • the distance between the magnet 170 and the magnetic sensor 130B does not change when the lever 190 is pushed in from the neutral state or when the lever 190 is tilted and then pushed in from the neutral state. Therefore, even if the lever 190 is pushed in, the distance between the magnetic sensor 130B and the magnet 170 can be kept constant, and even if the lever 190 is pushed in, the magnetic sensor 130B can accurately detect the direction in which the magnet 170 is tilted. ..
  • the shaft The portion 192 is designed so as not to come out of the actuator 160A in the upward direction.
  • the cap 195 is, for example, a disk-shaped member and is made of resin.
  • the cap 195 is attached to the operation unit 191 of the lever 190.
  • the magnetic shield 185 is provided to prevent the magnetic field of the magnet 170 from leaking to the outside, shield the magnetic sensor 130B from noise such as external electromagnetic waves, and accurately detect the operation amount. Further, the magnetic shield 185 also plays a role of reinforcing the frame 120, and is also useful for suppressing damage to the magnetic sensor 130B and the electronic component 125B.
  • the magnetic shield 185 is made of a soft magnetic material of metal, and is manufactured by bending a sheet metal in the same manner as the frame 120.
  • the magnetic shield 185 has an opening 185A and a convex portion 185B. The opening 185A is provided for inserting the actuator 160A.
  • the convex portion 185B protrudes from the lower portion of the magnetic shield 185 on the ⁇ Y direction side, and is provided for contacting the frame 120.
  • the magnetic shield 185 is incorporated inside the case 110 from the lower side of the case 110, and shields the magnetic sensor 130B in the space between the case 110 and the frame 120 from noise such as external electromagnetic waves.
  • FIGS. 5 to 7 are diagrams illustrating the operation of the multi-directional input device 100.
  • FIG. 5 shows a state in which the lever 190 is tilted in the ⁇ X direction without being pushed downward in an XZ cross section.
  • FIG. 6 shows a state in which the lever 190 is pushed downward.
  • FIG. 6 shows an XZ cross section.
  • the springs 160D and 160E are compressed, the lever 190 moves downward, and the actuator 160A moves diagonally downward in the XZ cross section. Then, the stem 140 is pressed downward. As a result, the metal contact 130A performs a reversing operation.
  • the operation of pushing the lever 190 downward in this way can be performed from any state in which the lever 190 is tilted in the biaxial direction. Even if the lever 190 is tilted, when the lever 190 is pushed downward by a certain amount, the springs 160D and 160E are compressed, the lever 190 moves downward, and the actuator 160A moves. It moves diagonally downward in the XZ cross section and presses the stem 140 downward. As a result, the metal contact 130A performs a reversing operation. Further, at this time, the distance between the magnetic sensor 130B and the magnet 170 does not change and can be kept constant. This is because the spacer 160C has a curved portion 162C having a constant radius of curvature, and the displacement due to the pushing of the lever 190 is absorbed by the springs 160D and 160E, and the magnet 170 does not displace.
  • the distance between the magnetic sensor 130B and the magnet 170 can be kept constant. Therefore, based on the amount of change in the strength of the magnetic field detected by the magnetic sensor 130B. The amount of tilting the lever 190 can be accurately detected.
  • the distance between the magnetic sensor 130B and the magnet 170 can be kept constant, so that the magnetic field detected by the magnetic sensor 130B can be maintained.
  • the amount of tilting the lever 190 can be accurately detected based on the amount of change in strength. Further, the fact that the lever 190 is pushed can be detected by the metal contact 130A.
  • the lower surface of the dome portion 182 of the cover 180 abuts on the upper surface of the dome portion 112 of the case 110, as shown in FIG. 7, the lower surface 182A of the dome portion 182 having a radius larger than that of the dome portion 112 is the dome portion 112. It abuts on the upper surface 112B.
  • the operation amount of the lever 190 can be made constant and the operation amount can be stably regulated. Further, it is possible to effectively prevent the lever 190 from being pushed in by a certain amount or more.
  • FIG. 8 is an external perspective view of the multidirectional input device 200 according to the second embodiment.
  • the Z-axis direction in the figure is the vertical direction
  • the X-axis direction in the figure and the Y-axis direction in the figure are the horizontal direction.
  • the multi-directional input device 200 shown in FIG. 8 is used for a controller or the like of a game machine or the like.
  • the multi-directional input device 200 has a container shape having a substantially rectangular parallelepiped shape by combining the frame 210 and the case 230.
  • the multidirectional input device 200 has a columnar, tiltable lever 220 extending upward from the opening 210A of the frame 210.
  • the multi-directional input device 200 tilts not only in the X-axis direction (arrows D1 and D2 in the figure) and the Y-axis direction (arrows D3 and D4 in the figure) by the lever 220, but also in all directions between these directions. Operation is possible.
  • the multi-directional input device 200 may output an operation signal corresponding to the tilting operation (tilting direction and tilting angle) of the lever 220 to the outside via a metal terminal 262 provided so as to project downward from the case 230. can. Further, the multi-directional input device 200 can be pressed by the lever 220, and the push operation can be detected by the push switch 234. Further, the multi-directional input device 200 can output an operation signal corresponding to the pressing operation of the lever 220 to the outside via a metal terminal 234A provided so as to project downward from the push switch 234.
  • FIG. 9 is an external perspective view of the multi-directional input device 200 (state in which the frame 210 is removed) according to the second embodiment.
  • FIG. 10 is an exploded perspective view of the multidirectional input device 200 according to the second embodiment.
  • FIG. 11 is a perspective sectional view of the multidirectional input device 200 according to the second embodiment.
  • FIG. 12 is a top view of the multi-directional input device 200 (state in which the frame 210 and the actuator 240 are removed) according to the second embodiment.
  • the multi-directional input device 200 includes a frame 210, a lever 220, a case 230, an actuator 240, a holder unit 250, a substrate 260, an urging body 270, a coil spring 271, and an abutting member 280. To prepare for.
  • the frame 210 is a cover-shaped member with an open bottom.
  • the frame 210 has a rectangular parallelepiped shape with an open bottom.
  • the frame 210 is formed by processing a metal plate by various processing methods (for example, press processing such as punching processing and bending processing).
  • the frame 210 has a flat plate portion 211 having a rectangular shape in a horizontal and plan view, and four vertical wall portions 212 hanging downward from each of the four sides of the flat plate portion 211.
  • the flat plate portion 211 is formed with an opening 210A having a circular shape in a plan view at the center thereof.
  • the lever 220 is a member that is tilted by the operator.
  • the lever 220 has a lever portion 221, a shaft portion 222, a rotating shaft portion 223, and a flange portion 224.
  • the lever portion 221 is a substantially columnar portion extending upward from the opening 210A of the frame 210, and is a portion that is tilted by the operator.
  • the shaft portion 222 supports the lower end portion of the lever 220 inside the frame 210, and rotates around the rotation shaft portion 223 as the lever portion 221 is tilted. Is the part of.
  • the rotating shaft portion 223 is provided so as to project from the vicinity of the lower end portion on the outer peripheral side surface of the shaft portion 222 in each of the Y-axis positive direction and the Y-axis negative direction.
  • the rotating shaft portion 223 is supported by the actuator 240 so that the lever 220 can be tilted in the X-axis direction.
  • the flange portion 224 is a disk-shaped portion provided so as to project outward from the lower end portion on the outer peripheral side surface of the shaft portion 222.
  • a columnar accommodating portion 225 is formed inside the shaft portion 222 of the lever 220.
  • the accommodating portion 225 is a space with an open bottom.
  • the holder unit 250 is incorporated in the accommodating portion 225.
  • the case 230 is a member having a substantially thin rectangular parallelepiped shape with an open upper part.
  • the case 230 is formed by injection molding a resin material.
  • the case 230 has a bottom plate portion 231, four vertical wall portions 232, and four slide ribs 233 (an example of a "guide portion").
  • the bottom plate portion 231 is a horizontal flat plate-shaped portion having a rectangular shape in a plan view.
  • the four vertical wall portions 232 are provided so as to stand upward from each of the four sides of the bottom plate portion 231.
  • the four slide ribs 233 are provided extending upward from each of the four corners of the bottom plate portion 231.
  • Each of the four slide ribs 233 is provided with an inner edge facing the center of the case 230.
  • a push switch 234 and a push switch holder 235 are provided on the vertical wall portion 232 of one of the cases 230.
  • the push switch 234 is arranged below the rotation shaft 241 of one of the actuators 240.
  • the push switch 234 has a plurality of metal terminals 234A provided so as to project from the bottom surface.
  • the push switch 234 can output an operation signal corresponding to the pressing operation of the lever 220 to the outside via the plurality of metal terminals 234A.
  • the push switch holder 235 holds the push switch 234 from above by the holding portion 235A. Further, the push switch holder 235 supports one rotation shaft 241 of the actuator 240 rotatably and downwardly by a notch portion 235B cut out in a substantially circular shape from the lower side.
  • the actuator 240 supports the lever 220 so as to be tiltable in the X-axis direction. Further, the actuator 240 can be tilted in the Y-axis direction together with the lever 220 by being supported by the case 230 and the frame 210 so as to be tiltable in the Y-axis direction.
  • the actuator 240 has a rotation shaft 241 provided so as to project outward at each of both ends in the X-axis direction, and the rotation shaft 241 is supported by the case 230 and the frame 210. It is provided so as to be rotatable in the Y-axis direction with the moving shaft 241 as the center of rotation. Further, the actuator 240 has an elongated hole-shaped opening 242 extending in the X-axis direction.
  • a lever 220 is inserted through the opening 242. Further, the actuator 240 has bearing portions 243 provided so as to project downward at both end portions in the Y-axis direction.
  • the bearing portion 243 rotatably supports the rotating shaft portion 223 of the lever 220.
  • the holder unit 250 has a holder 251, a coil spring 252, and a magnet 253.
  • the holder 251 is an example of a "movable shaft member", and is a cylindrical member whose longitudinal direction is the vertical direction.
  • the holder 251 is provided in the accommodating portion 225 of the lever 220 so as to be movable in the vertical direction.
  • a coil spring 252 and a magnet 253 are incorporated in the cylinder inner 251A of the holder 251 (see FIG. 11).
  • the holder 251 is formed by using a resin material.
  • a portion of the lower side of the holder 251 projects downward from the accommodating portion 225.
  • a curved convex portion 251B is formed on the bottom of the holder 251.
  • the curved convex portion 251B is formed by a part of a spherical surface of a sphere having a predetermined radius centered on the rotation center of the lever 220.
  • the coil spring 252 is an example of the "first urging member”.
  • Ribs 251C extending in the vertical direction are formed on the outer peripheral side surface of the holder 251.
  • the rib 251C prevents the holder 251 from rotating by engaging with the slit 225A formed so as to extend in the vertical direction on the inner peripheral surface of the accommodating portion 225 of the lever 220.
  • the coil spring 252 is arranged above the magnet 253 in the cylinder inner 251A of the holder 251.
  • the upper end of the coil spring 252 abuts on the ceiling surface of the accommodating portion 225 of the lever 220.
  • the lower end of the coil spring 252 abuts on the upper surface of the magnet 253.
  • the coil spring 252 urges the holder 251 downward.
  • the magnet 253 is a permanent magnet and is arranged at the bottom of the cylinder inner 251A of the holder 251.
  • the upper half of the magnet 253 is magnetized to the S pole, and the lower half is magnetized to the N pole.
  • the upper and lower configurations of magnetism of the north pole and the south pole of the magnet 253 may be the opposite of this, and can be appropriately changed depending on the configuration of the magnetic sensor 261.
  • the board 260 is a flat plate-shaped member on which various electronic components are mounted.
  • a magnetic sensor 261 is mounted in the center of the upper surface of the substrate 260.
  • the magnetic sensor 261 detects a change in the magnetic field due to the magnet 253.
  • the magnetic sensor 261 includes an element that detects a change in the magnetic field in the X-axis direction, an element that detects a change in the magnetic field in the Y-axis direction, and an element that detects a change in the magnetic field in the Z-axis direction.
  • the substrate 260 is provided with a plurality of metal terminals 262 projecting downward.
  • the metal terminal 262 outputs a signal indicating the change in the magnetic field due to the magnet 253 detected by the magnetic sensor 261 to the outside as an operation signal corresponding to the tilting operation of the lever 220.
  • a PWB Print Wiring Board
  • the urging body 270 is a resin member provided on the lower side of the lever 220 so as to be movable in the vertical direction.
  • the urging body 270 has an opening 270A in the center through which the holder 251 is inserted.
  • the urging body 270 is pushed down at the peripheral portion of the opening 270A by the flange portion 224 provided on the lever 220 as the lever 220 is tilted.
  • the urging body 270 has four arm portions 270B extending in four directions at intervals of 90 degrees from the center of the urging body 270. Further, as shown in FIG.
  • the urging body 270 has a slide groove 270C (an example of a "guided portion") extending in the vertical direction (Z-axis direction) at the tip of each of the four arm portions 270B. Is provided. As shown in FIG. 12, each slide groove 270C engages with each slide rib 233 provided in the case 230. Thereby, the vertical movement (Z-axis direction) of the urging body 270 is guided by the slide groove 270C and the slide rib 233 at the tip portions of each of the four arm portions 270B.
  • the coil spring 271 is an example of a "second urging member".
  • the coil spring 271 is provided on the lower side of the urging body 270, and by urging the urging body 270 upward, the flange portion 224 of the lever 220 is pushed up via the urging body 270 to push the lever 220. Return to the neutral state.
  • the multi-directional input device 200 includes each of the four coil springs 271 below each of the four arms 270B of the urging body 270. As a result, in the urging body 270, each of the four arm portions 270B is evenly urged by the four coil springs 271.
  • the contact member 280 is a resin member provided under the urging body 270.
  • the contact member 280 has a curved concave portion 281 at a central portion thereof (that is, a position facing the curved convex portion 251B of the holder 251).
  • the curved concave portion 281 has a substantially hemispherical concave shape.
  • the curved concave portion 281 is formed along the circumference of a circle having a predetermined radius centered on the rotation center of the lever 220, similarly to the curved convex portion 251B of the holder 251.
  • the curved convex portion 251B of the holder 251 comes into contact with the curved concave portion 281 from above, and the curved convex portion 251B slides as the lever 220 tilts.
  • the radius of curvature of the curved concave portion 281 is equal to the radius of curvature of the curved convex portion 251B.
  • the contact member 280 has a holder portion 282 provided so as to project in four directions at intervals of 90 degrees with respect to the center of the contact member 280.
  • Each holder portion 282 has a columnar convex portion 283 projecting upward, and the lower end portion of the coil spring 271 is inserted in a state where the convex portion 283 is inserted into the inside of the coil spring 271 from below.
  • the downward urging force from the coil spring 271 acts on the upper surface of the substrate 260 to fix the substrate 260 to the case 230.
  • FIG. 13 is a diagram for explaining the operation of the multi-directional input device 200 according to the second embodiment.
  • FIG. 13 shows a state in which the lever 220 of the multi-directional input device 200 is tilted.
  • the holder 251 is tilted together with the lever 220.
  • the multi-directional input device 200 detects the change in the magnetic field due to the magnet 253 provided in the holder 251 by the magnetic sensor 261 provided under the magnet 253, thereby tilting the lever 220.
  • the direction and angle can be detected with high accuracy.
  • both the curved convex portion 251B of the holder 251 and the curved concave portion 281 of the contact member 280 are formed along the circumference of a circle centered on the rotation center of the lever 220. Further, the curved convex portion 251B and the curved concave portion 281 have the same radius of curvature. Therefore, the amount of protrusion of the holder 251 downward with respect to the lever 220 is constant regardless of the tilt angle of the lever 220 and the holder 251.
  • the multi-directional input device 200 according to the second embodiment when the lever 220 and the holder 251 are tilted, the distance between the magnet 253 and the magnetic sensor 261 hardly changes. Therefore, the multi-directional input device 200 according to the second embodiment can suppress unnecessary fluctuations in the magnetic field due to the magnet 253, and can suppress a decrease in detection accuracy due to the magnetic sensor 261.
  • the multidirectional input device 200 adopts a configuration in which the curved convex portion 251B of the holder 251 and the curved concave portion 281 of the contact member 280 slide, the curved surface of the holder 251 is curved.
  • the lever 220 and the holder 251 can be easily returned to the neutral state when the tilting operation of the lever 220 is released.
  • the multi-directional input device 200 when the lever 220 is in the neutral state, the urging body 270 in the horizontal state is brought into the flange portion of the lever 220 by the urging force of the four coil springs 271. It can be pressed against the lower surface of the 224. As a result, the multi-directional input device 200 according to the second embodiment can stably maintain the neutral state of the lever 220 when the lever 220 is in the neutral state.
  • the multi-directional input device 200 when the lever 220 is pressed while the lever 220 is in the neutral state, the lever 220 pushes down the rotation shaft 241 of the actuator 240.
  • the push switch 234 is pressed by one rotation shaft 241.
  • the multi-directional input device 200 according to the second embodiment can detect that the lever 220 has been pressed.
  • the multi-directional input device 200 according to the second embodiment does not change the distance between the magnet 253 provided in the holder 251 and the magnetic sensor 261 when the lever 220 is pressed. It has become. Therefore, the multi-directional input device 200 according to the second embodiment can suppress unnecessary fluctuations in the magnetic field due to the magnet 253 when the lever 220 is pressed, and thus the tilting operation by the magnetic sensor 261 can be performed. False detection can be suppressed.
  • the lowermost end portion (a part of the peripheral edge portion of the bottom surface) of the magnet 253 is formed. , Located directly above the magnetic sensor 261. That is, as shown in FIG. 13, the perpendicular line L1 passing through the lowermost end portion of the magnet 253 intersects the upper surface of the magnetic sensor 261.
  • the multi-directional input device 200 can detect the change in the magnetic field due to the magnet 253 with high sensitivity by the magnetic sensor 261 even when the lever 220 is tilted to the maximum. ..
  • the flange portion 224 of the lever 220 is provided at a position higher than the curved convex portion 251B of the holder 251 in the lever 220. There is.
  • the flange portion 224 is compared with the case where the flange portion 224 is provided at the same position as the curved convex portion 251B. The swing width can be reduced.
  • the urging body 270 is pushed down by the flange portion 224 as the lever 220 is tilted.
  • the outermost portion of the holder 251 tilted together with the lever 220 in the opening 270A of the urging body 270 is the opening 270A. Since the urging body 270 is pushed downward of the holder 251 before abutting on the inner peripheral edge portion of the holder 251, contact between the outermost portion 251D of the holder 251 and the inner peripheral edge portion of the opening 270A is avoided.
  • the "four directions" in which the arm portion 270B, the slide groove 270C, and the slide rib 233 are provided are all intermediate directions (directions different by 45 degrees) between the X axis and the Y axis. ), but it is not limited to this.
  • the "four directions" may be the same as the X-axis or the Y-axis.
  • the arm portion 270B, the slide groove 270C, and the slide rib 233 are provided in each of the "four directions", but the present invention is not limited to this.
  • the arm portion 270B, the slide groove 270C, and the slide rib 233 may be provided in each of the three directions.
  • the "guide portion" on the case 230 side is a slide rib 233
  • the "guided portion” on the urging body 270 side is a slide groove 270C
  • the present invention is not limited to this.
  • the "guide portion” on the case 230 side may be a slide groove
  • the "guided portion” on the urging body 270 side may be a slide rib.
  • the urging body 270 is configured to have a slide groove 270C in each of the four arm portions 270B, but the present invention is not limited to this, and the four slides are not provided with the four arm portions 270B. It may be configured to have a groove 270C.
  • the urging body 270 may have a rectangular shape in a plan view and may have a slide groove 270C at each of the four corners).
  • the multidirectional input device according to the exemplary embodiment of the present invention has been described above, the present invention is not limited to the specifically disclosed embodiments and uses, and deviates from the scope of claims. However, various modifications and changes are possible, and as an example, the multidirectional input device according to the present invention may be used for a game controller.
  • Multi-directional input device 110 Case 120 Frame 130A Metal contact 130B Magnetic sensor 160A, 160B Actuator 160C Spacer 162C Curved part 160D, 160E Spring 170 Magnet 180 Cover 185 Magnetic shield 190 Lever 200
  • Multi-directional input device 210 Frame 220 Lever (operation member) 221 Lever part 222 Shaft part 223 Rotating shaft part 224 Flange part 230 Case 233 Slide rib (guide part) 240 Actuator 250 Holder unit 251 Holder (movable shaft member) 251B Curved convex part 252 Coil spring (first urging member) 253 Magnet 260 Board 261 Magnetic sensor 270 Elevator 270A Opening 270B Arm 270C Slide groove (guided part) 271 Coil spring (second urging member) 280 Contact member 281 Curved recess

Landscapes

  • Switches With Compound Operations (AREA)
  • Position Input By Displaying (AREA)

Abstract

多方向入力装置は、開口部を有する筐体と、前記開口部に差し込まれる軸部を有し、前記筐体に対して傾倒する操作が可能な操作部材と、前記操作軸の下方に配置される板状部材と、前記軸部内に挿通され、下端が前記板状部材に当接する筒状の可動軸と、前記可動軸の内部に配置され、前記板状部材に当接するスペーサと、前記可動軸の内部で前記スペーサの上に配置される磁石と、前記スペーサの下方に配置される磁気センサと、前記操作部材と前記可動軸との間に設けられ、前記操作部材に対して前記可動軸を下方に付勢する第1ばねと、前記操作部材と前記磁石との間に設けられ、前記操作部材に対して前記磁石を下方に付勢する第2ばねとを含む。

Description

多方向入力装置
 本発明は、多方向入力装置に関する。
 従来より、内部に空間を有するケースと、前記ケースから一部を露出し操作者による操作を受け付ける操作部材と、前記ケース内に互いに直交する方向に配設されると共に前記操作部材に対する傾動操作に応じて回動する第1及び第2の駆動部材と、前記第1及び第2の駆動部材の回動を検出する回動検出機構とを具備する多方向入力装置がある。前記回動検出機構は、前記第1及び第2の駆動部材に連結されると共に磁石を保持するホルダと、前記ホルダに保持された前記磁石と対向配置される磁気検出素子と、前記ホルダを回転可能に収容すると共に前記磁気検出素子を所定位置に位置決めした状態で前記ケースの外側から取り付けられるカバーとを有する(例えば、特許文献1参照)。
特開2008-299755号公報
 ところで、操作部材を操作する際に、磁石と磁気センサとの間隔が変化すると、操作状態によって磁気センサが検出する磁界の強度が変化するため、操作量を正確に検出できない場合がある。
 そこで、操作量を正確に検出できる多方向入力装置を提供することを目的とする。
 本発明の実施形態の多方向入力装置は、開口部を有する筐体と、前記開口部に差し込まれる軸部を有し、前記筐体に対して傾倒する操作が可能な操作部材と、前記操作軸の下方に配置される板状部材と、前記軸部内に挿通され、下端が前記板状部材に当接する筒状の可動軸と、前記可動軸の内部に配置され、前記板状部材に当接するスペーサと、前記可動軸の内部で前記スペーサの上に配置される磁石と、前記スペーサの下方に配置される磁気センサと、前記操作部材と前記可動軸との間に設けられ、前記操作部材に対して前記可動軸を下方に付勢する第1ばねと、前記操作部材と前記磁石との間に設けられ、前記操作部材に対して前記磁石を下方に付勢する第2ばねとを含む。
 操作量を正確に検出できる多方向入力装置を提供することができる。
実施形態の多方向入力装置100を示す例示的な図である。 多方向入力装置100を分解した状態を例示的に示す図である。 図1のA-A矢視断面の一例を示す図である。 図1のB-B矢視断面の一例を示す図である。 多方向入力装置100の動作を説明する図である。 多方向入力装置100の動作を説明する図である。 多方向入力装置100の動作を説明する図である。 第2実施形態に係る多方向入力装置の外観斜視図である。 第2実施形態に係る多方向入力装置(フレームが取り外された状態)の外観斜視図である。 第2実施形態に係る多方向入力装置の分解斜視図である。 第2実施形態に係る多方向入力装置の斜視断面図である。 第2実施形態に係る多方向入力装置(フレームおよびアクチュエータを取り除いた状態)の上面図である。 第2実施形態に係る多方向入力装置の動作を説明するための図である。
 以下、本発明の多方向入力装置を適用した実施形態について説明する。
 <実施形態>
 図1は、実施形態の多方向入力装置100を示す例示的な図である。図2は、多方向入力装置100を分解した状態を例示的に示す図である。図3は、図1のA-A矢視断面の一例を示す図である。図4は、図1のB-B矢視断面の一例を示す図である。
 以下では、XYZ座標系を定義して説明する。また、以下では、説明の便宜上、平面視とはXY面視をいい、Z軸負方向側を下側又は下、Z軸正方向側を上側又は上と称すが、普遍的な上下関係を表すものではない。
 多方向入力装置100は、ケース110、フレーム120、FPC(Flexible printed circuits)125、メタルコンタクト130A、磁気センサ130B、ステム140、プレート150、アクチュエータ160A、160B、スペーサ160C、ばね160D、ばね160E、磁石170、カバー180、磁気シールド185、レバー190、キャップ195を含む。
 多方向入力装置100は、レバー190を傾倒させる操作と、レバー190を下方向に押し込む操作とが可能な入力装置である。このような多方向入力装置100は、例えば、ゲーム機の操作部に利用することができる。
 ケース110は、一例として樹脂製であり、本体111及びドーム部112を有する。本体111は、略直方体状で底を有しない部材である。本体111は、下側からフレーム120が取り付けられた状態で有底の部材になる。ケース110及びフレーム120は、筐体の一例であり、本体111及びフレーム120は、筐体本体の一例である。
 ドーム部112は、本体111の上面の中央部から上方向にドーム状に突出した部分であり、頂部に開口部112Aを有する。ドーム部112の上面は、球面状の形状を有する。
 フレーム120は、一例として金属の軟質磁性体製であり、ケース110の本体111の側面から突出した係合部111Aが嵌め込まれる開口部121と、図1に示すように本体111に取り付けられた状態で折り曲げられて本体111に係合する係合部122とを有する。フレーム120は、磁気シールド185と同様に磁気遮蔽効果を有するため、磁気センサ130Bに対する外乱磁場の影響を低減し、内蔵する磁石170の外部への磁気漏れを抑制することができる。
 フレーム120の中央のXY平面に平行な部分の上面には、FPC125が配置される。フレーム120とケース110によって閉じられる空間内には、FPC125、メタルコンタクト130A、磁気センサ130B、ステム140、プレート150、アクチュエータ160A、アクチュエータ160Bの一部、磁石170の一部が収納される。
 フレーム120は、ケース110の本体111に下側から取り付けられ、上述のような収納空間を実現できる部材であれば、ケース110への取り付け構造は、どのようなものであってもよい。
 FPC125は、一例としてポリイミド等の表面に配線パターンを形成した部材であり、配線部125Aを有する。FPC125には、電子部品125B、メタルコンタクト130A、磁気センサ130Bが実装される。
 メタルコンタクト130Aは、押圧センサの一例であり、FPC125の上面の-X方向側に実装されている。メタルコンタクト130Aは、反転動作が可能な金属製のドームを有しており、ドームは上方向に凸の形状を有し、ステム140によって下方向に押圧されると反転動作によって下方向に凸の状態になり、これによってZ方向の押し込み操作が検出される。
 磁気センサ130Bは、FPC125の上面の略中央に実装されている。磁気センサ130Bは、X方向における磁界の変化を検出するセンサと、Y方向における磁界の変化を検出するセンサとを内蔵しており、磁石170のX方向及びY方向への変位を検出する。
 ステム140は、一例として樹脂製の部材であり、メタルコンタクト130Aを下方向に押圧するために設けられている。
 プレート150は、一例として金属製であり、基部151、脚部152、延在部153を有する。プレート150は、板状部材の一例である。基部151は、プレート150の中央に位置し、アクチュエータ160Bが載置される。基部151の四方には、下方に延在する脚部152が設けられている。脚部152の下端がFPC125の上面に当接することにより、基部151は、脚部152の高さの分だけFPC125よりも高い位置にある。基部151の下部には、磁気センサ130Bや電子部品125Bのうちの一部のものが配置されているが、基部151が脚部152の高さの分だけFPC125よりも高い位置にあるため、アクチュエータ160Bが下方向に押圧されても、磁気センサ130B等を保護できる構成になっている。プレート150は、基部151から平面視で外側に延在する延在部153によってケース110に固定されている。
 アクチュエータ160Aは、一例として樹脂製であり、可動部の一例である。アクチュエータ160Aは、基部161A、開口部162A、軸部163A、164A、側部165A、貫通孔166Aを有する。
 アクチュエータ160Aは、レバー190をX軸方向に傾倒可能に保持するとともに、ケース110に対してY軸方向に傾倒可能である。X軸は第1軸の一例であり、Y軸は第2軸の一例である。X軸方向に傾倒可能とは、図3に示す矢印のようにY軸を回転軸として、X方向にレバー190を傾倒可能にすることである。Y方向に傾倒可能とは、アクチュエータ160Aが図4に示す矢印のようにX軸を回転軸として、Y方向に傾倒可能であることをいう。Y方向に傾倒可能であることは、第2軸方向に傾倒可能であることの一例である。
 基部161Aは、アクチュエータ160Aの本体であり、ドーム状の形状を有する。基部161Aのドーム形状は、ケース110のドーム部112の下面側の球面に対応した形状である。基部161Aの頂部には開口部162Aが設けられている。開口部162Aは、図4に示すX方向の長さの方が、図3に示すY方向の長さよりも長い。
 基部161Aの-X方向側には、軸部163Aが設けられており、+X方向側には軸部164Aが設けられている。軸部163Aは第1軸部の一例であり、軸部164Aは第2軸部の一例である。また、基部161Aの±Y方向側の側面は、XZ平面に平行な側面であり、ドーム形状を切り落としたような形状になっている。側部165Aには、貫通孔166Aが設けられている。
 軸部163A及び164Aは、アクチュエータ160Aをケース110に対してY方向に傾倒可能にするために設けられている。軸部163A及び164Aの上側の面は、X軸を中心軸とする円筒の側面のように湾曲している。
 軸部163Aは、図4に示すようにケース110の本体111の内側の凹部111Bに嵌め込まれている。凹部111BのY軸方向の幅は、軸部163AのY軸方向の幅に合わされている。軸部163Aは、凹部111Bによって、X軸を回転軸としてYZ平面内で回動可能なように保持されている。
 軸部164Aは、図4に示すようにケース110の本体111の内側の凹部111Cに嵌め込まれている。軸部164Aは、図4に示すように、軸部163AよりもZ方向に長い。
 軸部164Aの上側の面は、X軸を中心軸とする円筒の側面のように湾曲している。凹部111CのY軸方向の幅は、軸部164AのY軸方向の幅に合わされている。軸部164Aは、凹部111Cによって、X軸を回転軸としてYZ平面内で回動可能なように保持されている。
 貫通孔166Aには、レバー190の軸部193が挿入され、レバー190をY軸を回転軸としてX方向に傾倒可能に保持する。X方向に傾倒可能であることは、第1軸方向に傾倒可能であることの一例である。
 また、アクチュエータ160Aは、レバー190が下方向に押し込まれる(押圧される)と、図4において軸部163Aが斜め下方向にずれるように移動して、ステム140を下方向に押圧する。この結果、メタルコンタクト130Aが反転動作を行う。
 アクチュエータ160Bは、可動軸の一例であり、ケース110の底部に対してレバー190を支持する部材である。アクチュエータ160Bは、円筒部161B、台座部162B、突出部163B、及び切欠部164Bを有する。
 円筒部161Bは、レバー190の内側に保持されている。円筒部161Bの下側には台座部162Bが設けられている。円筒部161Bは、アクチュエータ160Bの上端から下端まで延在しており、円柱状にくり抜かれた収納部161B1及び161B2と凸部161B3とを有する。収納部161B1は円筒部161Bの円柱状にくり抜かれた内部空間のうちの凸部161B3よりも下側の空間であり、収納部161B2は円筒部161Bの円柱状にくり抜かれた内部空間のうちの凸部161B3よりも上側の空間である。凸部161B3は、円筒部161Bの円柱状にくり抜かれた内部空間の上下方向における中間よりも少し上側において、内側に向けて円環状に突出した部分である。凸部161B3は、平面視における中央に貫通孔があるため、収納部161B1及び161B2は連通している。
 また、収納部161B1は、下端側161B11と上端側161B12とで内径が異なり、下端側161B11の内径の方が上端側161B12の内径よりも僅かに大きい。下端側161B11と上端側161B12との間には僅かな段差がある。上端側161B12の内径は、円柱状の磁石170の外径より僅かに大きく、したがって磁石170はばね160Eの伸縮方向に移動可能である。下端側161B11は磁石170を差し込みやすくするために上端側161B12よりも僅かに内径を大きくしている。
 収納部161B1にはスペーサ160Cと磁石170が収納され、収納部161B2にはばね160D及び160Eの一部が収納される。凸部161B3の中央の貫通孔にはばね160Eの下端が挿通される。
 台座部162Bは、円筒部161Bよりも大きな直径を有する円盤状の部分であり、円筒部161Bの貫通孔に連通する貫通孔を中心部に有する。台座部162Bは、プレート150の上に配置され、プレート150の上面に当接している。
 突出部163Bは、円筒部161Bの下端側において、±Y方向に直方体状に突出している部分である。突出部163BのX方向の幅は、円筒部161Bの幅よりも狭い。突出部163Bは、レバー190の軸部192の内部でアクチュエータ160Bが回転しないようにするために設けられている。
 切欠部164Bは、アクチュエータ160Bの円筒部161Bの下端の両側が±Y方向に切り欠かれた部分である。2つの切欠部164BのX方向の幅の中心同士を結ぶ直線は、円筒部161Bの中心軸を通り、Y軸に平行である。
 スペーサ160Cは、基部161C、球面状の曲面である湾曲部162C、及び突出部163Cを有する。基部161Cは円筒状の部分であり、基部161Cの下側には湾曲部162Cが設けられ、基部161Cの側面には±Y方向に突出する2つの突出部163Cが設けられている。
 湾曲部162Cは、基部161Cの下面から下方に突出しており、球状に湾曲した湾曲面を有する。湾曲部162Cの湾曲面はプレート150の基部151に当接する。湾曲部162Cの湾曲面は、基部161Cの上面の中心からの曲率半径が一定の湾曲面である。図3に曲率半径を破線の矢印で示す。基部161Cと磁石170は、円筒形状の中心軸を一致させて配置してあるため、湾曲部162Cの湾曲面は、磁石170の下面の中心からの曲率半径が一定の湾曲面である。このような湾曲面を有する湾曲部162Cを設けることにより、レバー190を様々な方向に傾倒する操作が行われたときに、磁石170とプレート150の基部151の下面側に配置される磁気センサ130Bとの間隔が一定になるようにしてある。
 2つの突出部163CのX方向の幅の中心同士を結ぶ直線は、基部の平面視における中心を通り、Y軸に平行である。突出部163CのX方向の幅は、アクチュエータ160Bの切欠部164Bに合わせられており、切欠部164Bに嵌め込まれる。突出部163Cは、アクチュエータ160Bに対してスペーサ160CがXY平面内で回転しないようにするために設けられている。
 ばね160Dは、第1ばねの一例であり、アクチュエータ160Bの凸部161B3とレバー190の操作部191の凹部191Aの上端面との間に設けられている。ばね160Dは、図3及び図4に示すようにレバー190の操作が行われていない中立位置にある状態で、凸部161B3と凹部191Aの上端面との間で自然長よりも収縮されており、レバー190に対してアクチュエータ160Bを下方に付勢している。ばね160Dは、レバー190を操作前の位置に復帰させるために設けられている。
 ばね160Eは、第2ばねの一例であり、磁石170の上面と、レバー190の操作部191の凹部191Bの上端面との間に設けられている。ばね160Eの下端は、凸部161B3の中央の貫通孔を挿通した状態で磁石170の上面に当接している。ばね160Eは、図3及び図4に示すようにレバー190の操作が行われていない中立位置にある状態で、磁石170の上面と凹部191Bの上端面との間で自然長よりも収縮されており、レバー190に対して磁石170を下方に付勢している。ばね160Eは、スペーサ160C及びプレート150に対する磁石170の高さ方向の位置を一定に保つために設けられている。
 磁石170は、棒状の永久磁石であり、一例として、上半分がS極、下半分がN極である。磁石170は、上端がアクチュエータ160Bの収納部161B1の上端側161B12に差し込まれており、下半分がアクチュエータ160Bの収納部161B1の下端側161B11の内部に差し込まれている。
 カバー180は、カバー部材の一例であり、レバー190よりも強度が高い構成になっている。カバー180は、基部181及びドーム部182を有する。基部181は、円筒状の部分であり、Z方向に貫通する貫通孔181Aを有する。貫通孔181Aは、図2に示すように、X軸方向に短く、Y方向に長い形状を有する。
 貫通孔181Aには、レバー190の軸部192が挿通されている。基部181の下側には、ドーム部182が設けられている。基部181は、ドーム部182の頂部に連続的に設けられている。
 カバー180は、貫通孔181Aがレバー190の軸部192に挿通されることによって、レバー190の操作部191の下側に取り付けられている。
 ドーム部182は、当接部の一例である。ドーム部182の上面(+Z方向側の湾曲した面)と、下面(-Z方向側の湾曲した面)とは、球面状の形状を有する。ドーム部182と、ケース110のドーム部112とは、2つの同心球の一部分に相当する形状を有する。2つの同心球とは、互いの中心が同一の2つの球である。ドーム部182と、ケース110のドーム部112とは、このような2つの中空の球体の一部分に相当する形状を有する。
 図3及び図4のように、レバー190が中立位置にある場合には、ドーム部182と、ケース110のドーム部112との間には隙間がある。中立位置とは、レバー190がX方向及びY方向のいずれの方向にも傾倒されておらず、かつ、レバー190が下方向に押し込まれていない状態のときにある位置である。
 レバー190が下方向に押し込まれると、カバー180のドーム部182の下面がケース110のドーム部112の上面に当接する。カバー180はレバー190の操作部191の下面に取り付けられているため、レバー190が下方向に押し込まれると、カバー180は操作部191の下面とケース110のドーム部112の上面との間に挟まれる。このときに、レバー190がアクチュエータ160Aを下方向に押圧し、ステム140がメタルコンタクト130Aを押圧し、メタルコンタクト130Aは反転する。また、このときに、ばね160D及び160Eが収縮し、磁石170と磁気センサ130Bとの間隔は一定に保たれる。
 カバー180のドーム部182の下面がケース110のドーム部112の上面に当接して、カバー180が操作部191の下面とケース110のドーム部112の上面との間に挟まれることにより、メタルコンタクト130Aが反転する以上にレバー190を下方向に押し込むことはできないようになっている。このため、磁気センサ130Bや電子部品125B等の破損を抑制することができる。
 また、カバー180は、レバー190よりも強度が高いため、ドーム部182の厚さを薄くできる。このようなカバー180は、一例として硬度の高い合成樹脂で作製すればよい。
 操作部191の直径が軸部192の直径よりも大きいため、成形加工でレバー190とカバー180を一体で作製することはできず、別体で製作している。レバー190とカバー180を別体にすると、別々の材料で作製できるので、カバー180をレバー190よりも強度の高い材料で作製することにより、一体で作製する場合よりも、カバー180の強度を低下させることなく薄く作製することができる。
 レバー190は、操作部材の一例であり、操作部191及び軸部192を有する。操作部191は、円盤状の部材であり、軸部192よりも大きな直径を有する。操作部191の上面にはキャップ195が取り付けられる。操作部191は、内側に凹部191A及び凹部191Bを有する。凹部191Aは円筒状の軸部192の内壁192Bに連通して上側に凹んでいる部分であり、凹部191Bは凹部191Aの上端面の中央からさらに上側に凹んでいる。凹部191Aの上端面にはばね160Dの上端が当接し、凹部191Bの上端面にはばね160Eの上端が当接する。
 軸部192は、操作部191の下面の中央から下方向に延在している円筒状の部分である。軸部192は、図3に示すように下側におけるY方向の両側から突出した突出部192Aを有する。2つの突出部192Aは、円筒状の軸部192の下側におけるY方向の両側から平面視で直方体状に突出している。突出部192AのX方向の幅は、軸部192の円筒の幅よりも狭い。突出部192AのX方向の幅の中心は、軸部192の円筒の幅の中心と一致している。突出部192Aの内壁192A1は、突出部192Aの外形形状と同様に円筒状の軸部192の内壁192BからY方向に直方体状に凹んでいる。
 突出部192Aの内側には、アクチュエータ160Bの突出部163Bが嵌め込まれる。レバー190に対してアクチュエータ160BがXY平面内で回転しないようにするためである。アクチュエータ160Bの凸部161B3の上面にはばね160Dの下端が当接するため、レバー190の操作に伴ってアクチュエータ160Bが円筒部161Bの中心軸を中心として回転すると、ばね160Dの端部によって凸部161B3の上面が削られることを抑制するためである。また、レバー190は、図3及び図4に示す中立状態よりも下方に押し込むことが可能であるため、中立状態では突出部192Aの内壁192A1がアクチュエータ160Bの突出部163Bよりも上側まで延在するように構成されている。レバー190が押し込まれたときに、突出部192Aの内部で突出部163Bが相対的に上方向に移動可能にするためである。
 軸部192は、図2に示すように、カバー180の貫通孔181AのY方向側に突出部192Aを位置させて、上側から貫通孔181Aに挿入される。これにより、カバー180とレバー190が固定される。
 2つの突出部192Aには、円筒状にY方向の外側に突出する軸部193がそれぞれ設けられている。また、軸部193は、アクチュエータ160Aの貫通孔166Aに挿入されており、貫通孔166AによってY軸を回転軸として回動自在に保持されている。これにより、レバー190は、アクチュエータ160Aに取り付けられ、かつ、アクチュエータ160Aに対してX方向(図3に示す矢印の方向)に傾倒可能になっている。
 また、磁石170は、スペーサ160Cを介してプレート150の基部151に当接しており、スペーサ160Cは磁石170の下面の中心からの曲率半径が一定の湾曲面を持つ湾曲部162Cを有するため、レバー190を下方向に押し込まずにX方向及びY方向に傾倒させた場合に、磁気センサ130Bと磁石170の間の距離を一定に保つことができるため、磁気センサ130Bで磁石170が傾倒される方向を正確に検出することができる。磁石170が傾倒する方向は、レバー190の軸部192が傾倒する方向に等しい。
 磁気センサ130Bで磁石170が傾倒される方向を正確に検出する理由は次の通りである。レバー190が中立状態のとき、磁石170の磁界はZ軸方向を向いており、X軸とY軸成分の磁界は存在しない。レバー190を傾倒させると、傾倒角度に応じてX軸成分又はY軸成分の磁界が大きくなるので、磁気センサ130Bで傾倒角度を正確に検出することができる。
 例えば、レバー190を傾倒させたときに、レバー190の下端の揺動に伴って磁石170が持ち上がって磁石170と磁気センサ130Bとの距離が変化してしまう場合には、傾倒角度と距離の両方の変化によって、X軸成分又はY軸成分の磁界の強度が変化するので、傾倒角度を正確に検出することができない。
 このような理由から、実施形態では、磁石170とプレート150の基部151との間にスペーサ160Cを介在させている。
 また、磁石170と基部151との間にはスペーサ160Cが介在しており、磁石170とレバー190の間にばね160Eを設けているため、レバー190が下方に押し込まれても、磁石170と磁気センサ130Bと間隔は不変である。中立状態からレバー190を押し込んだときにも、中立状態からレバー190を傾倒させてから押し込んだときにも、磁石170と磁気センサ130Bと間隔は不変である。このため、レバー190を押し込んでも磁気センサ130Bと磁石170の間の距離を一定に保つことができ、レバー190を押し込んでも磁気センサ130Bで磁石170が傾倒される方向を正確に検出することができる。
 また、開口部162Aは、図3に示すY方向の長さの方が、図4に示すX方向の長さよりも短く、軸部192の突出部192AはY方向側に突出しているため、軸部192は、アクチュエータ160Aから上方向に抜けないようになっている。
 キャップ195は、一例として、円盤状の部材であって、樹脂製である。キャップ195は、レバー190の操作部191に取り付けられている。
 磁気シールド185は、磁石170の磁界が外部へ漏れ出すのを防ぎ、外部の電磁波等のノイズから磁気センサ130Bをシールド(遮蔽)し、操作量を正確に検出するために設けられている。また、磁気シールド185は、フレーム120を補強する役割も担っており、磁気センサ130Bや電子部品125Bの破損抑制にも役立っている。磁気シールド185は、金属の軟質磁性体製であり、フレーム120と同様に板金を折り曲げることで作製される。磁気シールド185は、開口部185A、凸部185Bを有する。開口部185Aは、アクチュエータ160Aを挿通するために設けられている。凸部185Bは、磁気シールド185の±Y方向側の下部から突出しており、フレーム120に接触させるために設けられている。磁気シールド185は、図2に示すようにケース110の下側からケース110の内部に組み込まれ、フレーム120との間の空間にある磁気センサ130Bを外部の電磁波等のノイズからシールドしている。
 次に、図5乃至図7を用いて、多方向入力装置100を操作したときの動作について説明する。図5乃至図7は、多方向入力装置100の動作を説明する図である。図5には、レバー190を下方向に押し込まずに-X方向に傾倒させた状態をXZ断面で示す。
 レバー190を-X方向に傾倒させると、軸部192がケース110のドーム部112の開口部112Aに当接することによって、レバー190の動きが規制される。これは、レバー190を+X方向に傾倒させたときも同様である。
 また、図3から分かるように、レバー190を±Y方向に傾倒させると、軸部192がケース110のドーム部112の開口部112Aに当接することによって、レバー190の動きが規制される。また、このときに磁気センサ130Bと磁石170の間の距離は変わらず、一定に保つことができる。曲率半径が一定の湾曲部162Cをスペーサ160Cが有するからである。
 図6には、レバー190を下方向に押し込んだ状態を示す。図6には、XZ断面を示す。一例として、レバー190を中立位置から下方向に一定量押し込むと、ばね160D及び160Eが圧縮されてレバー190が下方向に移動するとともに、アクチュエータ160AがXZ断面で斜め下方向にずれるように移動して、ステム140を下方向に押圧する。この結果、メタルコンタクト130Aが反転動作を行う。
 また、このようにレバー190を一定量押し込んだときに、カバー180のドーム部182の下面がケース110のドーム部112の上面に当接することにより、レバー190を下方向に一定量以上押し込むことはできない。このため、磁気センサ130Bや電子部品125B等の破損を抑制することができる。
 なお、このようにレバー190を下方向に押し込む操作は、レバー190を2軸方向に傾倒させたどのような状態からでも行うことができる。レバー190が傾倒していても、中立位置にある場合と同様に、レバー190を下方向に一定量押し込むと、ばね160D及び160Eが圧縮されてレバー190が下方向に移動するとともに、アクチュエータ160AがXZ断面で斜め下方向にずれるように移動して、ステム140を下方向に押圧する。この結果、メタルコンタクト130Aが反転動作を行う。また、このときに磁気センサ130Bと磁石170の間の距離は変わらず、一定に保つことができる。曲率半径が一定の湾曲部162Cをスペーサ160Cが有し、かつ、レバー190の押し込みによる変位はばね160D及び160Eによって吸収され、磁石170は変位しないからである。
 以上のように、中立状態からレバー190を傾倒させても、磁気センサ130Bと磁石170の間の距離を一定に保つことができるため、磁気センサ130Bが検出する磁界の強度の変化量に基づいてレバー190を傾倒させた量を正確に検出できる。
 したがって、操作量を正確に検出できる多方向入力装置100を提供することがきる。
 また、中立状態からレバー190を傾倒させた状態でレバー190が下方に押し込まれても、磁気センサ130Bと磁石170の間の距離を一定に保つことができるため、磁気センサ130Bが検出する磁界の強度の変化量に基づいてレバー190を傾倒させた量を正確に検出できる。また、レバー190が押し込まれたことは、メタルコンタクト130Aによって検出可能である。
 したがって、中立状態からレバー190を傾倒させた状態でレバー190が下方に押し込まれても、レバー190を傾倒する操作量を正確に検出できる多方向入力装置100を提供することがきる。
 また、カバー180のドーム部182の下面がケース110のドーム部112の上面に当接するときには、図7に示すように、ドーム部112よりも半径が大きいドーム部182の下面182Aがドーム部112の上面112Bに当接する。このような構成により、レバー190が中立位置から下方向に押し込まれても、又は、2軸方向のいずれかの方向に傾倒された状態から下方向に押し込まれても、ドーム部112の上面に、ドーム部182の下面が当接することになる。
 このため、レバー190が下方向に押し込まれたときに、レバー190の操作量を一定量にすることができるとともに、操作量を安定的に規制することができる。また、レバー190が一定量以上押し込まれることを効果的に抑制することができる。
 以上のように、レバー190を下方向に押し込むと、カバー180のドーム部182の下面182Aがケース110のドーム部112の上面112Bに当接することにより、メタルコンタクト130Aが反転する以上にレバー190を下方向に押し込むことはできないようになっている。このため、磁気センサ130Bや電子部品125B等の破損を抑制することができる。
 <第2実施形態>
 以下、本発明の第2実施形態について説明する。
 (多方向入力装置200の概要)
 図8は、第2実施形態に係る多方向入力装置200の外観斜視図である。なお、以降の説明では、便宜上、図中Z軸方向を、上下方向とし、図中X軸方向および図中Y軸方向を、水平方向とする。
 図8に示す多方向入力装置200は、ゲーム機等のコントローラ等に用いられる。図8に示すように、多方向入力装置200は、フレーム210とケース230とが組み合わされることにより、概ね直方体形状を有する容器状を有する。また、図8に示すように、多方向入力装置200は、フレーム210の開口部210Aから上方に向って延在する柱状の、傾倒操作可能なレバー220を有する。多方向入力装置200は、レバー220によるX軸方向(図中矢印D1,D2方向)およびY軸方向(図中矢印D3,D4方向)のみならず、これらの方向の間の全方向への傾倒操作が可能である。また、多方向入力装置200は、レバー220の傾倒操作(傾倒方向および傾倒角度)に応じた操作信号を、ケース230から下方に突出して設けられた金属端子262を介して外部へ出力することができる。また、多方向入力装置200は、レバー220による押下操作が可能であり、プッシュスイッチ234によって、当該押下操作を検出可能である。また、多方向入力装置200は、レバー220の押下操作に応じた操作信号を、プッシュスイッチ234から下方に突出して設けられた金属端子234Aを介して外部へ出力することができる。
 (多方向入力装置200の構成)
 図9は、第2実施形態に係る多方向入力装置200(フレーム210が取り外された状態)の外観斜視図である。図10は、第2実施形態に係る多方向入力装置200の分解斜視図である。図11は、第2実施形態に係る多方向入力装置200の斜視断面図である。図12は、第2実施形態に係る多方向入力装置200(フレーム210およびアクチュエータ240を取り除いた状態)の上面図である。
 図9~図11に示すように、多方向入力装置200は、フレーム210、レバー220、ケース230、アクチュエータ240、ホルダユニット250、基板260、付勢体270、コイルばね271、および当接部材280を備える。
 フレーム210は、下部が開口したカバー状の部材である。フレーム210は、概ね下部が開口した直方体形状を有する。フレーム210は、金属板が各種加工方法(例えば、パンチング加工、折り曲げ加工等のプレス加工)によって加工されることによって形成される。フレーム210は、水平且つ平面視において矩形状を有する平板部211と、平板部211の4辺の各々から下方に垂下して設けられた4つの垂直壁部212とを有する。平板部211は、その中央部に、平面視において円形状をなす開口部210Aが形成されている。
 レバー220は、操作者によって傾倒操作がなされる部材である。レバー220は、レバー部221、軸部222、回転軸部223、およびフランジ部224を有する。レバー部221は、フレーム210の開口部210Aから上方に向って延在する概ね円柱状の部分であって、操作者によって傾倒操作がなされる部分である。軸部222は、フレーム210の内部においてレバー220の下端部を支持し、レバー部221の傾倒操作に伴って、回転軸部223を回転中心として回動する、概ねレバー部221よりも太い円柱状の部分である。回転軸部223は、軸部222の外周側面における下端部の近傍から、Y軸正方向およびY軸負方向の各々に突出して設けられている。回転軸部223は、アクチュエータ240によって支持されることにより、レバー220をX軸方向に傾動可能にする。フランジ部224は、軸部222の外周側面における下端部から、外側に張り出して設けられた円盤状の部分である。レバー220の軸部222の内部には、円柱状の収容部225が形成されている。収容部225は、下方が開口した空間である。収容部225には、ホルダユニット250が組み込まれる。
 ケース230は、上部が開口した概ね薄型の直方体形状を有する部材である。ケース230は、樹脂素材が射出成型されることによって形成される。ケース230は、底板部231、4つの垂直壁部232、および4本のスライドリブ233(「ガイド部」の一例)を有する。底板部231は、平面視において矩形状を有する、水平な平板状の部分である。4つの垂直壁部232は、底板部231の4辺の各々から、上方に起立して設けられている。4本のスライドリブ233は、底板部231の4つ角の各々から、上方に延在して設けられている。4本のスライドリブ233の各々は、内側の縁部が、ケース230の中心を向いて設けられている。ケース230の一の垂直壁部232には、プッシュスイッチ234およびプッシュスイッチホルダ235が設けられる。プッシュスイッチ234は、アクチュエータ240の一の回動軸241に下側に配置される。プッシュスイッチ234は、レバー220の押下操作がなされたときに、アクチュエータ240の一の回動軸241によって押下され、スイッチオン状態となる。プッシュスイッチ234は、底面から突出して設けられた、複数の金属端子234Aを有する。プッシュスイッチ234は、複数の金属端子234Aを介して、レバー220の押下操作に応じた操作信号を、外部へ出力することができる。プッシュスイッチホルダ235は、保持部235Aによって、プッシュスイッチ234を上方から保持する。また、プッシュスイッチホルダ235は、下側から略円形状に切り欠かれた切り欠き部235Bによって、アクチュエータ240の一の回動軸241を、回動可能且つ下方に移動可能に支持する。
 アクチュエータ240は、レバー220をX軸方向に傾動可能に支持する。また、アクチュエータ240は、ケース230およびフレーム210によってY軸方向に傾動可能に支持されることにより、レバー220とともにY軸方向に傾動可能である。アクチュエータ240は、X軸方向における両端部の各々に外側に突出して設けられた回動軸241を有しており、当該回動軸241がケース230およびフレーム210によって支持されることにより、当該回動軸241を回転中心として、Y軸方向に回動可能に設けられる。また、アクチュエータ240は、X軸方向に延在する長穴形状の開口部242を有する。開口部242には、レバー220が挿通される。また、アクチュエータ240は、Y軸方向における両端部の各々に、下方に突出して設けられた軸受部243を有する。軸受部243は、レバー220の回転軸部223を、回動可能に軸支する。
 ホルダユニット250は、ホルダ251、コイルばね252、および磁石253を有する。ホルダ251は、「可動軸部材」の一例であり、上下方向を長手方向とする円筒状の部材である。ホルダ251は、レバー220の収容部225に、上下方向に移動可能に設けられる。ホルダ251の筒内部251Aには、コイルばね252および磁石253が組み込まれる(図11参照)。ホルダ251は、樹脂素材が用いられて形成される。ホルダ251の下側の一部は、収容部225から下方に突出する。ホルダ251の底部には、曲面状凸部251Bが形成されている。曲面状凸部251Bは、レバー220の回転中心を中心とする所定の半径の球の球面の一部によって形成されている。コイルばね252は、「第1の付勢部材」の一例である。ホルダ251の外周側面には、上下方向に延在するリブ251Cが形成されている。リブ251Cは、レバー220の収容部225の内周面に上下方向に延在して形成されたスリット225Aに係合することにより、ホルダ251の回転を防止する。コイルばね252は、ホルダ251の筒内部251Aにおいて、磁石253の上側に配置される。コイルばね252の上端は、レバー220の収容部225の天井面に当接する。コイルばね252の下端は、磁石253の上面に当接する。コイルばね252は、ホルダ251を下方に付勢する。磁石253は、永久磁石であり、ホルダ251の筒内部251Aの底部に配置される。磁石253は、上側の半分がS極に着磁されており、下側の半分がN極に着磁されている。なお、磁石253のN極とS極の着磁の上下構成は、これと逆であってよく、磁気センサ261の構成によって適宜変更可能である。
 基板260は、各種電子部品が実装される、平板状の部材である。基板260の上面の中央には、磁気センサ261が実装されている。磁気センサ261は、磁石253による磁場の変化を検出する。例えば、磁気センサ261は、X軸方向の磁場の変化を検出する素子と、Y軸方向の磁場の変化を検出する素子と、Z軸方向の磁場の変化を検出する素子を有して構成されている。また、基板260には、複数本の金属端子262が下方に突出して設けられている。金属端子262は、磁気センサ261によって検出された、磁石253による磁場の変化を示す信号を、レバー220の傾倒操作に応じた操作信号として、外部へ向けて出力する。基板260には、例えば、PWB(Printed Wiring Board)等が用いられる。
 付勢体270は、レバー220の下側に、上下方向に移動可能に設けられる、樹脂製の部材である。付勢体270は、ホルダ251が挿通される開口270Aを中央部に有する。付勢体270は、レバー220の傾倒に伴って、レバー220に設けられたフランジ部224によって、開口270Aの周辺部において押し下げられる。図12に示すように、本実施形態では、付勢体270は、当該付勢体270の中心から90度間隔で4方向に延在する4つ腕部270Bを有する。また、図12に示すように、付勢体270は、4つの腕部270Bの各々の先端部に、上下方向(Z軸方向)に延在するスライド溝270C(「被ガイド部」の一例)が設けられている。図12に示すように、各スライド溝270Cは、ケース230に設けられた各スライドリブ233に係合する。これにより、付勢体270の上下方向(Z軸方向)の移動は、4つ腕部270Bの各々の先端部分において、スライド溝270Cおよびスライドリブ233によってガイドされる。
 コイルばね271は、「第2の付勢部材」の一例である。コイルばね271は、付勢体270の下側に設けられ、付勢体270を上方に付勢することにより、付勢体270を介して、レバー220のフランジ部224を押し上げて、レバー220を中立状態に復帰させる。本実施形態では、多方向入力装置200は、付勢体270の4つの腕部270Bの各々の下側に、4つのコイルばね271の各々を備える。これにより、付勢体270は、4つのコイルばね271によって、4つの腕部270Bの各々が均等に付勢される。
 当接部材280は、付勢体270の下側に設けられる、樹脂製の部材である。当接部材280は、その中央部(すなわち、ホルダ251の曲面状凸部251Bと対向する位置)に、曲面状凹部281を有する。曲面状凹部281は、概ね半球状に凹んだ形状を有する。曲面状凹部281は、ホルダ251の曲面状凸部251Bと同様に、レバー220の回転中心を中心とする所定の半径の円の円周に沿って形成されている。曲面状凹部281は、上方からホルダ251の曲面状凸部251Bが当接し、レバー220の傾倒に伴って、曲面状凸部251Bが摺動する。なお、曲面状凹部281の曲率半径は、曲面状凸部251Bの曲率半径と等しい。当接部材280は、当該当接部材280の中心に対して90度間隔で4方向に突出して設けられたホルダ部282を有する。各ホルダ部282は、上方に向かって突出した円柱状の凸部283を有しており、当該凸部283がコイルばね271の内側に下側から入り込んだ状態で、コイルばね271の下端部を支持する。コイルばね271からの下方への付勢力は、基板260の上面に作用することで、基板260をケース230に固定する。
 (多方向入力装置200の動作)
 図13は、第2実施形態に係る多方向入力装置200の動作を説明するための図である。図13は、多方向入力装置200のレバー220の傾倒操作がなされた状態を示す。図13に示すように、第2実施形態に係る多方向入力装置200は、レバー220の傾倒操作がなされると、レバー220とともにホルダ251が傾倒する。この際、多方向入力装置200は、ホルダ251内に設けられた磁石253による磁界の変化を、当該磁石253の下側に設けられた磁気センサ261によって検出することにより、レバー220の傾倒操作の方向および角度を高精度に検出することができる。
 この際、ホルダ251の曲面状凸部251Bが、当接部材280の曲面状凹部281に摺動することにより、レバー220に対するホルダ251の下方への移動が規制される。ここで、ホルダ251の曲面状凸部251Bと、当接部材280の曲面状凹部281とは、いずれも、レバー220の回転中心を中心とする円の円周に沿って形成されている。また、曲面状凸部251Bおよび曲面状凹部281は、曲率半径が互いに等しい。このため、レバー220およびホルダ251の傾倒角度に依らず、レバー220に対するホルダ251の下方への突出量は一定である。
 これにより、第2実施形態に係る多方向入力装置200は、レバー220およびホルダ251が傾倒した際に、磁石253と磁気センサ261との間の距離が殆ど変化しないようになっている。よって、第2実施形態に係る多方向入力装置200は、磁石253による磁界の不要な変動を抑制することができ、磁気センサ261による検出精度の低下を抑制できる。
 また、第2実施形態に係る多方向入力装置200は、ホルダ251の曲面状凸部251Bと、当接部材280の曲面状凹部281と摺動する構成を採用しているため、ホルダ251の曲面状凸部251Bを平面に摺動させる構成と比較して、レバー220の傾倒操作が解除された際に、レバー220およびホルダ251を中立状態に復帰し易くすることができる。
 また、図13に示すように、第2実施形態に係る多方向入力装置200は、レバー220の傾倒操作がなされると、レバー220のフランジ部224が、付勢体270を押し下げる。この際、付勢体270は、4本の腕部270Bの各々が、4つのコイルばね271の各々によって均等に付勢されているため、4つのコイルばね271を均等に押し縮めながら、水平状態を維持したまま、下方へ移動することができる。そして、付勢体270は、4本の腕部270Bの各々が、4つのコイルばね271の各々によって均等に付勢されているため、押下操作が解除されたときに、水平状態を維持したまま、上方へ移動して、レバー220を中立状態に復帰させることができる。なお、付勢体270の上下方向への移動は、当該付勢体270に設けられた4つのスライド溝270Cと、ケース230に設けられた4つのスライドリブ233とによってガイドされるため、これによっても、付勢体270は、水平状態を維持したまま、下方へ移動することができる。
 また、第2実施形態に係る多方向入力装置200は、レバー220が中立状態にあるときに、4つのコイルばね271の付勢力により、水平状態にある付勢体270を、レバー220のフランジ部224の下面に押し当てることができる。これにより、第2実施形態に係る多方向入力装置200は、レバー220が中立状態にあるときに、当該レバー220の中立状態を安定的に維持することができる。
 また、第2実施形態に係る多方向入力装置200は、レバー220が中立状態のまま、レバー220の押下操作がなされた場合、レバー220によってアクチュエータ240の一の回動軸241が押し下げられ、当該一の回動軸241によって、プッシュスイッチ234が押下される。これにより、第2実施形態に係る多方向入力装置200は、レバー220の押下操作がなされたことを検知することができる。
 この際、レバー220内に設けられているホルダ251の下方への移動は、当接部材280の曲面状凹部281によって規制される。このため、レバー220の下方への移動に伴って、レバー220とホルダ251との間に設けられたコイルばね252が押し縮められることにより、ホルダ251の高さ位置が変化することなく、レバー220が下方に移動する。
 これにより、第2実施形態に係る多方向入力装置200は、レバー220の押下操作がなされた際に、ホルダ251内に設けられている磁石253と磁気センサ261との間の距離が変化しないようになっている。よって、第2実施形態に係る多方向入力装置200は、レバー220の押下操作がなされた際の、磁石253による磁界の不要な変動を抑制することができ、よって、磁気センサ261による傾倒操作の誤検出を抑制できる。
 また、図13に示すように、第2実施形態に係る多方向入力装置200は、レバー220が最大に傾斜した状態において、磁石253の最下端となる部分(底面の周縁部の一部)が、磁気センサ261の真上に位置する。すなわち、図13に示すように、磁石253の最下端となる部分を通る垂線L1が、磁気センサ261の上面と交差する。
 これにより、第2実施形態に係る多方向入力装置200は、レバー220が最大に傾斜させた場合であっても、磁石253による磁界の変化を、磁気センサ261によって高感度に検出することができる。
 また、図13に示すように、第2実施形態に係る多方向入力装置200において、レバー220のフランジ部224は、レバー220において、ホルダ251の曲面状凸部251Bよりも高い位置に設けられている。これにより、第2実施形態に係る多方向入力装置200は、レバー220の傾倒操作がなされた際に、フランジ部224を曲面状凸部251Bと同位置に設ける場合と比較して、フランジ部224の振れ幅を小さくすることができる。
 また、図13に示すように、第2実施形態に係る多方向入力装置200において、付勢体270は、レバー220の傾倒に伴ってフランジ部224によって押し下げられる。これにより、第2実施形態に係る多方向入力装置200は、レバー220の傾倒操作がなされた際に、付勢体270の開口270A内でレバー220とともに傾倒したホルダ251の最外側部が開口270Aの内周縁部に当接する前に、付勢体270がホルダ251の下方へ押し下げられるため、ホルダ251の最外側部251Dと開口270Aの内周縁部との当接が回避される。
 なお、第2実施形態では、腕部270B、スライド溝270C、およびスライドリブ233が設けられている「4方向」を、いずれも、X軸とY軸との間の中間方向(45度異なる方向)としてるが、これに限らない。例えば、当該「4方向」を、いずれも、X軸またはY軸と同方向としてもよい。
 また、第2実施形態では、腕部270B、スライド溝270C、およびスライドリブ233を、「4方向」の各々に設けているが、これに限らない。例えば、腕部270B、スライド溝270C、およびスライドリブ233を、3方向の各々に設けてもよい。
 また、第2実施形態では、ケース230側の「ガイド部」をスライドリブ233とし、付勢体270側の「被ガイド部」をスライド溝270Cとしているが、これに限らない。例えば、ケース230側の「ガイド部」をスライド溝とし、付勢体270側の「被ガイド部」をスライドリブとしてもよい。
 また、第2実施形態では、付勢体270が4つの腕部270Bの各々にスライド溝270Cを有する構成としているが、これに限らず、4つの腕部270Bを有さずに、4つのスライド溝270Cを有する構成としてもよい。例えば、付勢体270は、平面視において矩形状を有し、4つ角部の各々に、スライド溝270Cを有する構成としてもよい)。
 以上、本発明の例示的な実施形態の多方向入力装置について説明したが、本発明は、具体的に開示された実施形態、用途に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能であり、一例として本発明に係る多方向入力装置はゲームコントローラに用いられてもよい。
 本国際出願は、2020年9月9日に出願した日本国特許出願第2020-151597号、および、2021年2月24日に出願した日本国特許出願第2021-027511号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。
 100 多方向入力装置
 110 ケース
 120 フレーム
 130A メタルコンタクト
 130B 磁気センサ
 160A、160B アクチュエータ
 160C スペーサ
 162C 湾曲部
 160D、160E ばね
 170 磁石
 180 カバー
 185 磁気シールド
 190 レバー
 200 多方向入力装置
 210 フレーム
 220 レバー(操作部材)
 221 レバー部
 222 軸部
 223 回転軸部
 224 フランジ部
 230 ケース
 233 スライドリブ(ガイド部)
 240 アクチュエータ
 250 ホルダユニット
 251 ホルダ(可動軸部材)
 251B 曲面状凸部
 252 コイルばね(第1の付勢部材)
 253 磁石
 260 基板
 261 磁気センサ
 270 付勢体
 270A 開口
 270B 腕部
 270C スライド溝(被ガイド部)
 271 コイルばね(第2の付勢部材)
 280 当接部材
 281 曲面状凹部

Claims (14)

  1.  開口部を有する筐体と、
     前記開口部に差し込まれる軸部を有し、前記筐体に対して傾倒する操作が可能な操作部材と、
     前記操作部材の下方に配置される板状部材と、
     前記軸部内に挿通され、下端が前記板状部材に当接する筒状の可動軸と、
     前記可動軸の内部に配置され、前記板状部材に当接するスペーサと、
     前記可動軸の内部で前記スペーサの上に配置される磁石と、
     前記スペーサの下方に配置される磁気センサと、
     前記操作部材と前記可動軸との間に設けられ、前記操作部材に対して前記可動軸を下方に付勢する第1ばねと、
     前記操作部材と前記磁石との間に設けられ、前記操作部材に対して前記磁石を下方に付勢する第2ばねと
     を含む、多方向入力装置。
  2.  前記スペーサは、前記板状部材に当接する湾曲面を有する、請求項1に記載の多方向入力装置。
  3.  前記湾曲面は、前記磁石の下端面の中央を中心として所定の曲率半径で湾曲する湾曲面である、請求項2に記載の多方向入力装置。
  4.  前記磁石は円柱状であり、
     前記可動軸は、前記磁石が収納される円柱状の内部空間を有し、
     前記内部空間は、上部と下部を有し、前記下部の内径は前記上部の内径よりも大きい、請求項1乃至3のいずれか1項に記載の多方向入力装置。
  5.  前記操作部材の前記軸部は、前記可動軸に対して下方に移動可能であり、
     前記操作部材が下方に押圧されると、前記第1ばね及び前記第2ばねが収縮することによって前記軸部が前記可動軸に対して下方に移動する、請求項1乃至4のいずれか1項に記載の多方向入力装置。
  6.  軸部を有する傾倒操作可能な操作部材と、
     前記軸部の内部に上下方向に移動可能に設けられ、一部が前記軸部から下方に突出し、底部に曲面状凸部を有する可動軸部材と、
     前記軸部の内部に設けられ、前記可動軸部材を下方に付勢する第1の付勢部材と、
     前記可動軸部材の内部に配置された磁石と、
     前記可動軸部材の下方に配置された磁気センサと、
     前記可動軸部材の前記曲面状凸部と対向する位置に設けられ、前記操作部材の傾倒に伴って、前記曲面状凸部が摺動する曲面状凹部を有する当接部材と、
     上下方向に移動可能に設けられ、前記可動軸部材が挿通される開口を中央部に有し、前記操作部材の傾倒に伴って、前記操作部材に設けられたフランジ部によって、前記開口の周辺部において押し下げられる付勢体と、
     前記付勢体を上方に付勢することにより、前記付勢体を介して、前記操作部材を中立状態に復帰させる第2の付勢部材と
     を備える多方向入力装置。
  7.  前記付勢体の外側に上下方向に延在して設けられた複数のガイド部をさらに備え、
     前記付勢体は、
     前記複数のガイド部の各々と係合する複数の被ガイド部を有し、上下方向の移動が、前記複数のガイド部および前記複数の被ガイド部によってガイドされる
     請求項6に記載の多方向入力装置。
  8.  前記付勢体は、
     当該付勢体の中心から90度間隔を有する4方向の各々に、前記被ガイド部が設けられている
     請求項7に記載の多方向入力装置。
  9.  前記付勢体は、
     前記4方向の各々に延在する4つの腕部を有し、当該4つの腕部の各々の先端部に、前記被ガイド部が設けられている
     請求項8記載の多方向入力装置。
  10.  前記付勢体は、
     前記4方向に設けられた4つの前記第2の付勢部材によって、均等に付勢される
     請求項8または9に記載の多方向入力装置。
  11.  前記操作部材が最大に傾斜した状態において、
     前記磁石の最下端となる部分が、前記磁気センサの真上に位置する
     請求項6から10のいずれか一項に記載の多方向入力装置。
  12.  前記フランジ部は、
     前記操作部材において、前記可動軸部材の前記曲面状凸部よりも高い位置に設けられている
     請求項6から11のいずれか一項に記載の多方向入力装置。
  13.  前記付勢体は、
     前記操作部材の傾倒に伴って前記フランジ部によって前記可動軸部材の下方へ押し下げられることにより、前記付勢体の前記開口内で前記操作部材とともに傾倒した前記可動軸部材の最外側部と、前記付勢体の前記開口の内周縁部との当接が回避される
     請求項6から12のいずれか一項に記載の多方向入力装置。
  14.  前記操作部材は、押下操作がさらに可能であり、
     前記操作部材の前記押下操作を検出するプッシュスイッチをさらに備え、
     前記押下操作がなされた際に、前記第1の付勢部材が押し縮められることにより、前記磁石と前記磁気センサとの距離が変化しない
     請求項6から13のいずれか一項に記載の多方向入力装置。
PCT/JP2021/032675 2020-09-09 2021-09-06 多方向入力装置 WO2022054759A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022547585A JP7387909B2 (ja) 2020-09-09 2021-09-06 多方向入力装置
CN202180051419.8A CN115917691A (zh) 2020-09-09 2021-09-06 多方向输入装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-151597 2020-09-09
JP2020151597 2020-09-09
JP2021-027511 2021-02-24
JP2021027511 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022054759A1 true WO2022054759A1 (ja) 2022-03-17

Family

ID=80631837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032675 WO2022054759A1 (ja) 2020-09-09 2021-09-06 多方向入力装置

Country Status (3)

Country Link
JP (1) JP7387909B2 (ja)
CN (1) CN115917691A (ja)
WO (1) WO2022054759A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160918A (en) * 1990-07-10 1992-11-03 Orvitek, Inc. Joystick controller employing hall-effect sensors
US5831554A (en) * 1997-09-08 1998-11-03 Joseph Pollak Corporation Angular position sensor for pivoted control devices
JP2007323859A (ja) * 2006-05-30 2007-12-13 Toyo Denso Co Ltd ジョイスティック型スイッチ装置
JP2012221342A (ja) * 2011-04-12 2012-11-12 Toyo Denso Co Ltd ジョイスティック装置
WO2019169086A1 (en) * 2018-02-28 2019-09-06 Bourns, Inc. Non-contact hall-effect joystick

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160918A (en) * 1990-07-10 1992-11-03 Orvitek, Inc. Joystick controller employing hall-effect sensors
US5831554A (en) * 1997-09-08 1998-11-03 Joseph Pollak Corporation Angular position sensor for pivoted control devices
JP2007323859A (ja) * 2006-05-30 2007-12-13 Toyo Denso Co Ltd ジョイスティック型スイッチ装置
JP2012221342A (ja) * 2011-04-12 2012-11-12 Toyo Denso Co Ltd ジョイスティック装置
WO2019169086A1 (en) * 2018-02-28 2019-09-06 Bourns, Inc. Non-contact hall-effect joystick

Also Published As

Publication number Publication date
JP7387909B2 (ja) 2023-11-28
CN115917691A (zh) 2023-04-04
JPWO2022054759A1 (ja) 2022-03-17

Similar Documents

Publication Publication Date Title
KR100976747B1 (ko) 신호 입력 장치
JP2020181039A (ja) 振れ補正機能付き光学ユニット
CN217484666U (zh) 用于相机的致动器和相机模块
US20200073203A1 (en) Shake correction device, optical unit with shake correction function, and method of manufacturing same
KR101575631B1 (ko) 손떨림 보정장치
WO2022054759A1 (ja) 多方向入力装置
JP2021015236A (ja) 振れ補正機能付き光学ユニット
JP7367066B2 (ja) 多方向入力装置
JP2022155030A (ja) 光学ユニット及びスマートフォン
CN218272877U (zh) 相机模块
JP2023000994A (ja) 振れ補正機能付き光学ユニット
KR102632375B1 (ko) 센서 시프팅 액추에이터
CN115701643A (zh) 多方向输入装置
CN116264639A (zh) 用于光学图像防抖的致动器和包括致动器的相机模块
JP2001155601A (ja) 傾斜角度検出センサ
CN109143721B (zh) 光学部件用倾斜活动装置、摄像装置、光学装置以及电子设备
JP2022155032A (ja) 光学ユニット、スマートフォン及び光学ユニットの製造方法
JP2022047975A (ja) 光学ユニット
JP2024013400A (ja) 振れ補正機能付き光学ユニット
CN221531575U (zh) 用于光学图像稳定的致动器和包括其的相机模块
CN219202100U (zh) 光学单元
JP7402288B2 (ja) 画像センサ駆動装置、カメラ装置、及び電子機器
JP2014115747A (ja) ジョイスティック
CN112526691B (zh) 光学部件支撑装置、驱动装置和照相装置、电子设备
CN115225783B (zh) 图像传感器驱动装置、照相机装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547585

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866718

Country of ref document: EP

Kind code of ref document: A1