WO2022054568A1 - 4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用 - Google Patents

4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用 Download PDF

Info

Publication number
WO2022054568A1
WO2022054568A1 PCT/JP2021/031005 JP2021031005W WO2022054568A1 WO 2022054568 A1 WO2022054568 A1 WO 2022054568A1 JP 2021031005 W JP2021031005 W JP 2021031005W WO 2022054568 A1 WO2022054568 A1 WO 2022054568A1
Authority
WO
WIPO (PCT)
Prior art keywords
equivalent
amino acid
amino
group
valine
Prior art date
Application number
PCT/JP2021/031005
Other languages
English (en)
French (fr)
Inventor
鏡士朗 野中
史員 高橋
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN202180062883.7A priority Critical patent/CN116113703A/zh
Priority to EP21866528.9A priority patent/EP4212625A1/en
Publication of WO2022054568A1 publication Critical patent/WO2022054568A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
    • C12Y114/140134-(L-Gamma-glutamylamino)butanoyl-[BtrI acyl-carrier protein] monooxygenase (1.14.14.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/005Amino acids other than alpha- or beta amino acids, e.g. gamma amino acids

Definitions

  • the present invention relates to a polypeptide having 4-aminobenzoic acid hydroxide activity and its use.
  • PBO Polybenzoxazole
  • the benzoxazole skeleton is produced by the condensation of the o-aminophenol skeleton and the carboxylic acid. Therefore, 4-amino-3-hydroxybenzoic acid (4,3-AHBA) having these functional groups in the molecule is expected to be useful as a PBO monomer. In fact, the synthesis and evaluation of physical properties of polybenzoxazole using 4,3-AHBA have been studied (Non-Patent Document 2).
  • Patent Document 1 3-amino-4-hydroxybenzoic acid (3,4-AHBA) having a structure similar to 4,3-AHBA by microorganisms has been studied.
  • Patent Document 2 a method of chemically reducing and synthesizing a nitro aromatic substance has been known so far (Patent Document 2).
  • 4-ABA 4-aminobenzoic acid
  • 4-ABA 4-aminobenzoic acid
  • Patent Document 1 Japanese Patent No. 5445453
  • Patent Document 2 Japanese Patent No. 3821350
  • Non-Patent Document 1 Hiroki Murase, SENI GAKKAISHI (Textile and Industry), Vol. 66, No. 6 (2010)
  • Non-Patent Document 2 Lon J. et al. Mathias et al. , Macromolecules, Vol. 18, No. 4, pp. 616-622 (1985)
  • Non-Patent Document 3 Barrie Entsch et al. , The Journal of Biological Chemistry, Vol. 262, No. 13, pp. 6060-6068 (1987)
  • Non-Patent Document 4 Domenico L. et al. Gatti et al. , Biochemistry, Vol. 35, No. 2, pp. 567-578 (1996)
  • the present invention relates to the following 1) to 7).
  • positions 39, 43, 83, 106, 180 and 266 of the amino acid sequence shown in SEQ ID NO: 2 are the following amino acids.
  • amino acid sequence represented by SEQ ID NO: 2 or at least 90% thereof.
  • amino acid sequences represented by SEQ ID NO: 2 are at positions 39, 43, 83, 106, 180 and 266.
  • amino acid residues at the positions corresponding to the 346th, 363th or 371st, or 39th, 43rd, 83rd, 106th, 180th, 266th, 346th, 363th or 371st positions are the following amino acids.
  • a method for producing a mutant polypeptide having 4-aminobenzoic acid hydroxide activity is the following amino acids.
  • amino acid sequence represented by SEQ ID NO: 2 or at least 90% thereof.
  • the amino acid sequences represented by SEQ ID NO: 2 are at positions 39, 43, 83, 106, 180 and 266.
  • Amino acid residues at positions corresponding to positions 346, 363 or 371, or positions corresponding to positions 39, 43, 83, 106, 180, 266, 346, 363 or 371 are converted to the following amino acids.
  • a method for improving 4-aminobenzoic acid hydroxylation activity which comprises substitution.
  • the present invention relates to a polypeptide having excellent 4-aminobenzoic acid hydroxylation activity and a method for using the same.
  • the present inventors have prepared a 4-amino-3-hydroxybenzoic acid in which a variant of 4-hydroxybenzoic acid hydroxylase having a specific amino acid sequence has excellent 4-aminobenzoic acid hydroxylating activity. Found to be useful for.
  • the polypeptide having 4-aminobenzoic acid hydroxylation activity of the present invention has excellent 4-aminobenzoic acid hydroxylation activity, by using this, 4-amino-3 is efficiently derived from 4-aminobenzoic acids. -Hydroxybenzoic acids can be produced.
  • the identity of an amino acid sequence or nucleotide sequence is calculated by the Lipman-Pearson method (Science, 1985, 227: 1435-1441). Specifically, the genetic information processing software GENETYX Ver. It is calculated by performing analysis with Unit size to homology (ktup) as 2 using 12 homology analysis (Search homology) programs.
  • the "corresponding position" on an amino acid sequence or nucleotide sequence aligns the target sequence with a reference sequence (eg, the amino acid sequence set forth in SEQ ID NO: 2) so as to give maximum homology. ) Can be determined. Alignment of amino acid sequences or nucleotide sequences can be performed using known algorithms, the procedure of which is known to those of skill in the art. For example, alignment can be performed by using the Clustal W multiple alignment program (Thompson, JD et al, 1994, Nucleic Acids Res. 22: 4673-4680) with default settings. Alternatively, Clustal W2 or Clustal omega, which is a revised version of Clustal W, can also be used.
  • Crystal W, Crystal W2 and Crystal omega are, for example, European Bioinformatics Institute (European Bioinformatics Institute: EBI [www.ebi.ac.uk/index.html]) and Japanese DNA data operated by the National Institute of Genetics. It can be used on the website of the bank (DDBJ [www.dbbj.nig.ac.jp/searches-j.html]).
  • the position of the target sequence aligned to any position in the reference sequence by the above alignment is considered to be the "corresponding position" to that arbitrary position.
  • the similarity of amino acid sequences means the ratio (%) of the number of positions where the same or similar amino acid residues are present in both sequences when the two amino acid sequences are aligned to the total number of amino acid residues. ..
  • the similar amino acid residue means an amino acid residue that has properties similar to each other in terms of polarity and charge among the 20 kinds of amino acids constituting the protein and causes so-called conservative substitution.
  • Groups of such similar amino acid residues are well known to those of skill in the art, for example: arginine and lysine or glutamine; glutamic acid and aspartic acid or glutamine; serine and threonine or alanine; glutamine and aspartin or arginine; leucine. And isoleucine, etc., respectively, but are not limited to these.
  • amino acid residue refers to 20 kinds of amino acid residues constituting a protein, alanine (Ala or A), arginine (Arg or R), asparagine (Asn or N), aspartic acid (Asp or). D), cysteine (Cys or C), glutamine (Gln or Q), glutamine (Glu or E), glycine (Gly or G), histidine (His or H), isoleucine (Ile or I), leucine (Leu or L).
  • Lysine (Lys or K), methionine (Met or M), phenylalanine (Phe or F), proline (Pro or P), serine (Ser or S), threonin (Thr or T), tryptophan (Trp or W). , Tyrosine (Tyr or Y) and valine (Val or V).
  • a control region such as a promoter and a "operable linkage" of a gene means that the gene and the control region are linked so that the gene can be expressed under the control of the control region.
  • Procedures for "operable linkage" between genes and regulatory regions are well known to those of skill in the art.
  • upstream and downstream with respect to a gene mean upstream and downstream in the transcription direction of the gene.
  • gene located downstream of the promoter means that the gene is present on the 3'side of the promoter in the DNA sense strand, and upstream of the gene means 5'of the gene in the DNA sense strand. Means the area on the side.
  • the term "original” used for a cell function, property, or trait is used to indicate that the function, property, or trait originally exists in the cell.
  • the term “foreign” is used to describe a function, property, or trait that is not originally present in the cell but is introduced from the outside.
  • a “foreign" gene or polynucleotide is a gene or polynucleotide introduced externally into a cell.
  • the foreign gene or polynucleotide may be of the same species as the cell into which it was introduced or of a heterologous organism (ie, a heterologous gene or polynucleotide).
  • polypeptide having 4-aminobenzoic acid hydroxylation activity of the present invention (referred to as “polypeptide of the present invention") has an amino acid sequence represented by SEQ ID NO: 2 or an amino acid sequence having at least 90% identity thereof. , 39th, 43rd, 83rd, 106th, 180th, 266th, 346th, 363th or 371st, or 39th, 43rd, 83rd, 106th, of the amino acid sequence represented by SEQ ID NO: 2.
  • a polypeptide in which the amino acid residue at the position corresponding to the 180th position, the 266th position, the 346th position, the 363th position or the 371st position is the following amino acid.
  • a polypeptide is a reference polypeptide, that is, SEQ ID NO: 2.
  • positions 39, 43, 83, 106, 180, and 266 of the amino acid sequence shown in SEQ ID NO: 2 positions 39, 43, 83, 106, 180, and 266 of the amino acid sequence shown in SEQ ID NO: 2 ,.
  • Amino acid residues at positions corresponding to positions 346, 363 or 371, or positions corresponding to positions 39, 43, 83, 106, 180, 266, 346, 363 or 371 are described in (a) to above.
  • 4-aminobenzoic acid hydroxylation activity means an activity that catalyzes the hydroxylation of 4-aminobenzoic acid, preferably an activity that catalyzes the hydroxylation at the 3-position of 4-aminobenzoic acid. ..
  • 4-aminobenzoic acid hydroxylation activity as shown in Examples described later, a microorganism producing the polypeptide of the present invention is cultured, and the amount of 4-amino-3-hydroxybenzoic acid produced is measured by HPLC or the like. Can be determined by.
  • Such a polypeptide of the present invention comprises the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 90% identity with the amino acid sequence, and the polypeptide has 4-aminobenzoic acid hydroxylation activity.
  • HFM122 which is a polypeptide consisting of the amino acid sequence shown by SEQ ID NO: 2 (NCBI Reference Sequence: WP_010920262.1.), Is designated as 4-hydroxybenzoate-3-monooxygenase (EC1.14.13.2).
  • 4-Hydroxybenzoic acid-3-monooxygenase is an enzyme having catalytic activity that promotes either or both of the reaction of hydroxylating the 3-position of 4-hydroxybenzoate to produce protocatechuic acid and the reverse reaction.
  • 4-Hydroxybenzoate is a kind of enzyme that catalyzes the hydroxylation of scents (4-hydroxybenzoate hydroxylase).
  • Such HFM 122 has been found by the applicant to have 4-aminobenzoic acid hydroxylation activity (Japanese Patent Application No. 2018-171849).
  • the polypeptide consisting of an amino acid sequence having at least 90% identity with the amino acid sequence shown in SEQ ID NO: 2 and having 4-aminobenzoic acid hydroxylation activity is at least 90% of the amino acid sequence shown in SEQ ID NO: 2. Identity, specifically, 90% or more, preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, still more preferably 98% or more, still more preferably 99% or more. Examples thereof include a polypeptide having 4-aminobenzoic acid hydroxide activity having an amino acid sequence.
  • the parent polypeptide preferably has a valine residue at position 39 of the amino acid sequence shown in SEQ ID NO: 2 or a position corresponding thereto, and has a valine residue at position 43 or a position corresponding thereto.
  • Those having a methionine residue are preferable, those having a methionine residue at the position 83 or the corresponding position are preferable, those having a methionine residue at the position 106 or the position corresponding thereto are preferable, and those having a methionine residue at the position 180 or the like are preferable.
  • valine residue at the corresponding position those having an alanine residue at the position 266 or the corresponding position are preferable, and the phenylalanine residue is preferably placed at the position 346 or the corresponding position. It is preferable to have a methionine residue at the position 363 or a position corresponding thereto, and a polypeptide having an isoleucine residue at a position 371 or a position corresponding thereto is preferable.
  • valine replaced with cysteine at the 39th position or the corresponding position, a valine at the 43rd position or the corresponding position replaced with leucine or histidine, and a methionine at the 83rd position or the corresponding position as the valine.
  • the alanine at the position or the corresponding position is replaced with valine or phenylalanine
  • the phenylalanine at the 346 position or the corresponding position is replaced with leucine
  • the methionine at the 363 position or the corresponding position is replaced with valine or leucine.
  • Substituted valine at position 371 or corresponding position is more preferably replaced with phenylalanine
  • valine at position 43 or corresponding position is replaced with histidine, at position 106 or equivalent.
  • Methionine replaced with alanine, isoleucine or threonine, valine at position 180 or equivalent replaced with alanine, alanine at position 266 or equivalent replaced with valine, position 346 or this
  • the phenylalanine at the position corresponding to is replaced with leucine
  • the methionine at the position 363 or the corresponding position is replaced with leucine
  • the isoleucine at the position 371 or the corresponding position is further replaced with phenylalanine.
  • phenylalanine is replaced with leucine
  • the methionine at the position 363 or the corresponding position is replaced with leucine
  • the isoleucine at the position 371 or the corresponding position is further replaced with phenylalanine.
  • preferable is
  • ⁇ Polynucleotide encoding the polypeptide of the present invention various mutagenesis techniques known in the art can be used as means for mutating the amino acid residue of the parent polypeptide.
  • the nucleotide sequence encoding the amino acid residue to be mutated is mutated to the nucleotide sequence encoding the amino acid residue after the mutation.
  • a polynucleotide encoding the polypeptide of the present invention can be obtained.
  • the introduction of the desired mutation into the parent gene can basically be carried out by using various site-specific mutation introduction methods well known to those skilled in the art.
  • the site-specific mutagenesis method can be performed by any method such as an inverse PCR method or an annealing method.
  • Commercially available site-directed mutagenesis kits eg, Agilent Technologies' QuikChange II Site-Directed Mutagenesis Kit, QuickChange Multi Site-Directed Mutagenesis Kit, etc. can also be used.
  • Site-specific mutagenesis into the parent gene can most generally be performed using a mutagenizing primer containing the nucleotide mutation to be introduced.
  • the mutation primer anneals to a region containing a nucleotide sequence encoding an amino acid residue to be mutated in the parent gene, and replaces the nucleotide sequence (codon) encoding the amino acid residue to be mutated with the post-mutated amino acid. It may be designed to include a nucleotide sequence having a nucleotide sequence (codon) encoding a residue. Nucleotide sequences (codons) encoding amino acid residues before and after mutation can be appropriately recognized and selected by those skilled in the art based on ordinary textbooks and the like.
  • SOE splicing by overflow extension
  • SOE is a DNA fragment obtained by amplifying the upstream side and the downstream side of the mutation site separately using two complementary primers containing the nucleotide mutation to be introduced.
  • -A method of linking to one by PCR (Gene, 1989, 77 (1): p61-68) can also be used.
  • the template DNA containing the parent gene is prepared by extracting genomic DNA from the above-mentioned microorganism producing 4-hydroxybenzoic acid hydroxylase by a conventional method, or by extracting RNA and synthesizing cDNA by reverse transcription. can do.
  • the corresponding nucleotide sequence may be chemically synthesized and used as a template DNA based on the amino acid sequence of the parent polypeptide.
  • the DNA sequence containing the base sequence encoding HFM122 described above as a polypeptide having 4-aminobenzoic acid hydroxylation activity is shown in SEQ ID NO: 1.
  • the mutation primer can be prepared by a well-known oligonucleotide synthesis method such as the phosphoramidite method (Nucleic Acids R4seaarch, 1989, 17: 7059-7071). Such primer synthesis can also be carried out using, for example, a commercially available oligonucleotide synthesizer (manufactured by ABI, etc.).
  • a primer set containing the mutation primer and introducing a site-specific mutation as described above using the parent gene as a template DNA a polynucleotide encoding the polypeptide of the present invention having the desired mutation can be obtained. Can be done.
  • the polynucleotide encoding the polypeptide of the present invention may include single-stranded or double-stranded DNA, cDNA, RNA or other artificial nucleic acids.
  • the DNA, cDNA and RNA may be chemically synthesized.
  • the polynucleotide may also contain a nucleotide sequence of an untranslated region (UTR) in addition to the open reading frame (ORF). Further, the polynucleotide may be codon-optimized according to the species of the transformant for producing the mutant polypeptide of the present invention. Information on codons used by various organisms can be obtained from Codon Usage Database ([www.kazusa.or.jp/codon/]).
  • the polynucleotide encoding the obtained polypeptide of the present invention can be incorporated into a vector.
  • the vector containing the polynucleotide is an expression vector.
  • the vector is an expression vector capable of introducing a polynucleotide encoding the polypeptide of the present invention into a host microorganism and expressing the polynucleotide in the host microorganism.
  • the vector comprises a polynucleotide encoding a polypeptide of the invention and a control region operably linked thereto.
  • the vector may be a vector that can grow and replicate independently outside the chromosome, such as a plasmid, or may be a vector that is integrated into the chromosome.
  • the vector examples include pUC-based vectors (Takarabio), pET-based vectors (Takarabio), pGEX-based vectors such as pBluescript II SK (-) (Stratagene), pUC18 / 19, pUC118 / 119, etc. GE Healthcare), pCold vector (Takarabio), pHY300PLK (Takarabio), pUB110 (Mckenzie, T.
  • the polynucleotide encoding the polypeptide of the present invention may be constructed as a DNA fragment containing the polynucleotide.
  • the DNA fragment include a PCR amplified DNA fragment and a restriction enzyme cleavage DNA fragment.
  • the DNA fragment can be an expression cassette containing a polynucleotide encoding a polypeptide of the invention and a control region operably linked thereto.
  • the control region contained in the vector or DNA fragment is a sequence for expressing a polynucleotide encoding the polypeptide of the present invention in a host cell into which the vector or DNA fragment has been introduced, and is, for example, a promoter, a terminator, or the like. Expression control regions, replication initiation sites and the like can be mentioned.
  • the type of the control region can be appropriately selected depending on the type of the host microorganism into which the vector or DNA fragment is introduced. If necessary, the vector or DNA fragment further carries selectable markers such as antibiotic resistance genes, amino acid synthesis related genes (eg, resistance genes for drugs such as ampicillin, neomycin, kanamycin, chloramphenicol). May be.
  • the vector or DNA fragment may contain a polynucleotide sequence encoding a polypeptide required for biosynthesis of 4-aminobenzoic acids.
  • Polypeptides required for biosynthesis of 4-aminobenzoic acids include, for example, 4-amino-4-deoxychorismate synthase (pabAB) and 4-amino-4-. Examples thereof include 4-amino-4-deoxychorismate lyase (pabC).
  • the polynucleotide encoding the polypeptide of the present invention can be linked to the control region or the marker gene sequence by a method such as the SOE-PCR method described above. Procedures for introducing gene sequences into vectors are well known in the art.
  • the type of the control region such as the promoter region, terminator, and secretory signal region is not particularly limited, and a normally used promoter or secretory signal sequence can be appropriately selected and used depending on the host to be introduced.
  • control region include a strong control region whose expression can be enhanced as compared with the wild type, for example, a known high expression promoter such as T7 promoter, lac promoter, tac promoter, trp promoter and the like. It is not particularly limited to these.
  • a known high expression promoter such as T7 promoter, lac promoter, tac promoter, trp promoter and the like. It is not particularly limited to these.
  • Transformation of the invention by introducing into the host a vector containing a polynucleotide encoding the polypeptide of the invention, or by introducing a DNA fragment containing the polynucleotide encoding the polypeptide of the invention into the genome of the host. You can get cells.
  • Such transformed cells are cells into which a polynucleotide encoding the polypeptide of the present invention can be expressed so that the expression of the polynucleotide is enhanced, and thus the expression of the polypeptide of the present invention is achieved. It can be said that it is a fortified cell.
  • any of fungi, yeast, actinomycetes, Escherichia coli, Bacillus subtilis and the like may be used, but Escherichia coli and actinomycetes are preferable.
  • the actinomycetes include Corynebacterium spp., Mycobacterium spp., Rhodococcus spp., Streptomyces spp., Propionibacterium spp., And more preferably Corynebacterium spp. Is Corynebacterium glutamicum.
  • a microorganism capable of supplying 4-aminobenzoic acid which is a substrate for biosynthesis of 4-amino-3-hydroxybenzoic acid, is preferable, and a microorganism having an enhanced supply capacity of 4-aminobenzoic acid is more preferable.
  • Methods of enhancing the ability of microorganisms to supply 4-aminobenzoic acids include, for example, polynucleotides encoding the polypeptides required for biosynthesis of 4-aminobenzoic acids and control regions operably linked thereto.
  • Examples thereof include a method of introducing a vector containing the above into a microorganism, and a method of substituting a strongly expressed promoter for a control region of a polynucleotide encoding a polypeptide necessary for biosynthesis of 4-aminobenzoic acids originally possessed by the microorganism. ..
  • an electroporation method for example, an electroporation method, a transformation method, a transfection method, a conjugation method, a protoplast method, a particle gun method, an Agrobacterium method, or the like can be used.
  • the method for introducing a polynucleotide into the genome of a host is not particularly limited, and examples thereof include a double crossing method using a DNA fragment containing the polynucleotide.
  • the DNA fragment may be introduced downstream of the promoter sequence of a gene having a high expression level in the above-mentioned host cell, or a fragment in which the DNA fragment and the above-mentioned control region are operably linked may be prepared in advance.
  • the linked fragment may be introduced into the genome of the host.
  • the DNA fragment may be preliminarily linked to a marker (such as a drug resistance gene or an auxotrophic complementary gene) for selecting a cell into which the polynucleotide of the present invention has been appropriately introduced.
  • Transformed cells into which the target vector or DNA fragment has been introduced can be selected using a selectable marker.
  • a selectable marker is an antibiotic resistance gene
  • transformed cells into which the vector or DNA fragment of interest has been introduced can be selected by culturing in the antibiotic-added medium.
  • the selectable marker is an amino acid synthesis-related gene
  • the introduction of the target vector or DNA fragment can be confirmed by examining the DNA sequence of the transformed cell by PCR or the like.
  • the transformed cells thus obtained are cultured in an appropriate medium, the polynucleotide introduced into the cells is expressed, and the polypeptide of the present invention is produced. That is, the transformed cell can be a polypeptide-producing bacterium having 4-aminobenzoic acid hydroxylation activity. Then, as shown in Examples described later, when the transformed cell of the present invention is cultured, the productivity of 4-amino-3-hydroxybenzoic acid is higher than that when the transformed cell producing the parent polypeptide is used. improves.
  • amino acid sequence shown in SEQ ID NO: 2 39th, 43rd, 83rd, 106th, 180th, 266th, 346th, 363th or 371st, or 39th, 43rd, 83rd, 106th, 180th, 266th, 346th, 363th.
  • a mutation that replaces an amino acid residue at the position corresponding to the position or position 371 with the following amino acid is useful for improving the hydroxylation activity of 4-aminobenzoic acid, and thus the productivity of 4-amino-3-hydroxybenzoic acid. Useful for improvement.
  • the transformed cells of the present invention are 4-aminobenzoic acid hydroxylated. It is a bacterium that produces a polypeptide with improved activity, and is a useful strain that produces 4-amino-3-hydroxybenzoic acids.
  • the method for producing 4-amino-3-hydroxybenzoic acid of the present invention includes the step of culturing the transformed cells of the present invention, and 4-amino by recovering 4-amino-3-hydroxybenzoic acid from the medium. -3-Hydroxybenzoic acid can be obtained.
  • the 4-amino-3-hydroxybenzoic acid is specifically referred to as the following general formula (1):
  • R 1 is a hydrogen atom, a hydroxy group (-OH), a methoxy group (-OCH 3 ), an amino group (-NH 2 ), a fluorine atom (-F), a chlorine atom (-Cl), and a bromine atom (-Cl).
  • R 2 is hydrogen atom or hydroxy group (-OH) , Methoxy group (-OCH 3 ), amino group (-NH 2 ), fluorine atom (-F), chlorine atom (-Cl), bromine atom (-Br), iodine atom (-I), carboxy group (-COOH) ), Methyl group (-CH 3 ) or ethyl group (-CH 2 CH 3 ), where X 1 and X 2 are hydrogen atoms or hydroxy groups and at least one of them is a hydroxy group. ] Examples thereof include 4-amino-3-hydroxybenzoic acid derivatives represented by.
  • R 1 a hydrogen atom, a hydroxy group (-OH), a methoxy group (-OCH 3 ), a fluorine atom (-F) or a methyl group (-CH 3 ) is preferable.
  • R2 a hydrogen atom, a hydroxy group (-OH), a methoxy group (-OCH 3 ), a fluorine atom (-F) or a methyl group (-CH 3 ) is preferable.
  • R 1 and R 2 are hydrogen atoms.
  • both X 1 and X 2 may be hydroxy groups, but it is preferable that either X 1 or X 2 is a hydroxy group.
  • 4-aminobenzoic acid which is a substrate for biosynthesis of 4-amino-3-hydroxybenzoic acid, can be present in the medium.
  • 4-aminobenzoic acid the following general formula (2):
  • R 1 and R 2 indicate the same as above.
  • Examples thereof include 4-aminobenzoic acid derivatives represented by.
  • the medium for culturing the transformed cells is either a natural medium or a synthetic medium as long as it contains a carbon source, a nitrogen source, inorganic salts, etc. and can efficiently culture the transformed cells of the present invention.
  • a carbon source for example, saccharides such as glucose, polyols such as glycerin, alcohols such as ethanol, and organic acids such as pyruvic acid, succinic acid or citric acid can be used.
  • the nitrogen source for example, peptone, meat extract, yeast extract, casein hydrolyzate, soybean lees alkaline extract, alkylamines such as methylamine, ammonia or a salt thereof and the like can be used.
  • salts such as phosphates, carbonates, sulfates, magnesium, calcium, potassium, iron, manganese, and zinc, specific amino acids, specific vitamins, antifoaming agents, and the like may be used as needed.
  • Culturing can be carried out at 10 ° C. to 40 ° C. for 6 hours to 72 hours, preferably 9 hours to 60 hours, more preferably 12 hours to 48 hours, with stirring or shaking as necessary.
  • antibiotics such as ampicillin and kanamycin may be added to the medium during culturing as needed.
  • the method for recovering and purifying 4-amino-3-hydroxybenzoic acids from the culture is not particularly limited. That is, it can be carried out by combining a well-known ion exchange resin method, precipitation method, crystallization method, recrystallization method, concentration method and other methods.
  • 4-amino-3-hydroxybenzoic acids can be obtained by removing the bacterial cells by centrifugation or the like, removing the ionic substance with a cation and anion exchange resin, and concentrating the cells.
  • the 4-amino-3-hydroxybenzoic acids accumulated in the culture may be used as they are without isolation.
  • the present invention also includes, as exemplary embodiments, the following substances, manufacturing methods, uses, methods and the like. However, the present invention is not limited to these embodiments.
  • ⁇ 1> In the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence having at least 90% identity with the amino acid sequence, positions 39, 43, 83, 106, and 180 of the amino acid sequence shown in SEQ ID NO: 2, The amino acid residues at positions corresponding to positions 266, 346, 363 or 371, or positions corresponding to positions 39, 43, 83, 106, 180, 266, 346, 363 or 371 are as follows.
  • a polypeptide having 4-aminobenzoic acid hydroxide activity which is an amino acid.
  • amino acid sequence represented by SEQ ID NO: 2 in the amino acid sequence represented by SEQ ID NO: 2 or an amino acid sequence having at least 90% identity with the amino acid sequence and having 4-aminobenzoic acid hydroxylation activity.
  • a method for producing a mutant polypeptide having 4-aminobenzoic acid hydroxylation activity which comprises substituting the amino acid residue at the position corresponding to the 363 position or the 371st position with the following amino acid.
  • amino acid sequence represented by SEQ ID NO: 2 in the amino acid sequence represented by SEQ ID NO: 2 or an amino acid sequence having at least 90% identity with the amino acid sequence and having 4-aminobenzoic acid hydroxylation activity.
  • a method for improving 4-aminobenzoic acid hydroxylation activity which comprises substituting the following amino acids for amino acid residues at positions corresponding to positions 363 or 371.
  • the amino acid sequences represented by SEQ ID NO: 2 are at positions 39, 43, 83, 106, 180, 266, 346, 363 or 371, or 39, 43. , 83, 106, 180, 266, 346, 363 or 371, which comprises substituting the following amino acids for amino acid residues of 4-amino-3-hydroxybenzoic acids. How to improve productivity.
  • ⁇ 10> A polynucleotide encoding the polypeptide according to any one of ⁇ 1> to ⁇ 3>.
  • ⁇ 11> A vector or DNA fragment containing the polynucleotide of ⁇ 10>.
  • ⁇ 12> Transformed cells containing the vector or DNA fragment of ⁇ 11>.
  • ⁇ 13> The transformed cell according to ⁇ 12>, which is Escherichia coli or a bacterium belonging to the genus Corinebacterium.
  • ⁇ 14> Transformed cells of ⁇ 12> or ⁇ 13>, which are microorganisms capable of supplying 4-aminobenzoic acids.
  • ⁇ 15> Transformed cells of ⁇ 12> or ⁇ 13> having an improved supply capacity of 4-aminobenzoic acid.
  • ⁇ 16> A method for producing 4-amino-3-hydroxybenzoic acid, which comprises a step of culturing the transformed cell according to any one of ⁇ 12> to ⁇ 15>.
  • ⁇ 17> The method of ⁇ 16>, which is cultured in a medium containing saccharides as a carbon source.
  • ⁇ 18> The method of ⁇ 16> or ⁇ 17> comprising the step of recovering 4-amino-3-hydroxybenzoic acids from the medium.
  • ⁇ 19> The method according to any one of ⁇ 16> to ⁇ 18>, wherein the culture is carried out in the presence of 4-aminobenzoic acids.
  • 4-Amino-3-hydroxybenzoic acids have the following general formula (1):
  • R 1 represents a hydrogen atom, a hydroxy group, a methoxy group, an amino group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a carboxy group, a methyl group and an ethyl group
  • R 2 is a hydrogen atom or a hydroxy group.
  • X 1 and X 2 are hydrogen atom or hydroxy group and at least one is hydroxy group. Is shown.
  • R 1 represents a hydrogen atom, a hydroxy group, a methoxy group, an amino group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a carboxy group, a methyl group and an ethyl group
  • R 2 is a hydrogen atom or a hydroxy group.
  • ⁇ 23> The method of ⁇ 22>, wherein the 4-aminobenzoic acid derivative is a 4-aminobenzoic acid derivative in which both R 1 and R 2 are hydrogen atoms.
  • Example 1 Production of 4-Amino-3-hydroxybenzoic acid
  • PCR was performed using PrimeSTAR Max DNA Polymerase (Takara Bio) unless otherwise specified.
  • a plasmid containing a gene (SEQ ID NO: 1) encoding the polypeptide HFM122 having 4-aminobenzoic acid hydroxylation activity was prepared by artificial gene synthesis, and the primer pECsfD HFM122 F (SEQ ID NO: 7, AGGAGGTTTAAATTTATGCGCACTCAGGTGGCTAT) was prepared using this as a template.
  • pECsfD HFM122 R (SEQ ID NO: 8, CTTGTTTAAACCTCCTTATACGAGTGGCAGTCCTA) was used to synthesize a DNA fragment for insertion.
  • each DNA fragment is purified using NucleoSpin Gel and PCR Clean-up (Takara Bio), and In-Fusion HD Cloning Kit (Takara Bio).
  • the plasmid pECsf_gapS_pabABC_HFM122 was constructed by ligation with. Using the obtained plasmid solution, ECOS Compentent E. E.
  • coli DH5 ⁇ strain (Nippongene) was transformed and the cell fluid was applied to LBKm agar medium (Bacto Tryptone 1%, Yeast Extract 0.5%, NaCl 1%, kanamycin sulfate 50 ⁇ g / mL, agar 1.5%). After that, the colonies were allowed to stand overnight at 37 ° C., and the obtained colonies were subjected to Sapphire Amp (Takarabio) and primers pabABC + bobA for CPCR F (SEQ ID NO: 9, GCTATCAAAACATTCGGCACATTGGTTTTCC), pabABC + pobA for CPCR R (SEQ ID NO: 10, GTCTGAT).
  • a PCR reaction was carried out, and a transformant in which the introduction of the target DNA fragment was confirmed was selected.
  • the obtained transformant was inoculated into 2 mL of LBKm liquid medium (Bacto Trypton 1%, Yeast Extract 0.5%, NaCl 1%, kanamycin sulfate 50 ⁇ g / mL) and cultured at 37 ° C. overnight.
  • a plasmid was purified from this culture medium using NucleoSpin Plasmamid EasyPure (Takara Bio).
  • Corynebacterium tuf gene (Cg0587) of potassium glutamicum ATCC13032 strain has a promoter produced by artificial gene synthesis DNA fragment (SEQ ID NO: 13, Tieishijitieishishitijishieijijitieijishijitijitishieijitieijijishijishijitieijijijitieieijitijijijijitieijishijijishititijititieijieitieitishititijieieieitishijijishitititishieieishieijishieititijieitititishijieitijitieitititieijishitijijishishijititieishishitijishijieieitijitishishieishieijijijitieijishitijijitieijitititijieieieieitishieieishijishishijititijishishititieijijieititishieijitieieishitijitiei
  • each DNA fragment is purified using NucleoSpin Gel and PCR Clean-up (Takara Bio), and In-Fusion HD Cloning Kit (Takara Bio).
  • the plasmid pECsf_gapS_pabABC_tuD_HFM122 was constructed by ligation with.
  • ECOS Compentent E The polymer DH5 ⁇ strain (Nippon Gene) was transformed, the cell solution was applied to the LBKm agar medium, and the cells were allowed to stand overnight at 37 ° C. 16.
  • GCTTGTTAGATATCTTGAAATCGGCTTTC GCTTGTTAGATATCTTGAAATCGGCTTTC
  • pabABC + pubA for CPCR R SEQ ID NO: 10, GGAAGATGCGTGATCTGATCCTTCAACTC
  • the obtained transformant was inoculated into 2 mL of LBKm liquid medium and cultured at 37 ° C. overnight.
  • a plasmid was purified from this culture medium using NucleoSpin Plasmamid EasyPure (Takara Bio).
  • the genes encoding 4-amino-4-deoxychorismate synthase and 4-amino-4-deoxychorismate lyase are ligated under the control of the gap promoter, and further under the control of the tu promoter.
  • the gene encoding wild-type HFM122 is linked.
  • the plasmid pECsf_gapS_pabABC_tuD_HFM122 was used as a template, and the complementary primer HFM122 V39C F (SEQ ID NO: 17, GCTTATTGTGAAGGCCGAGTTCGGGCT) and HFM122 V39C R (SEQ ID NO: 18, GCCTTCACAATAAGCACGGTCTTTGCG) were used.
  • the PCR product was treated with DpnI (Takara Bio), and the treated solution was used for ECOS Compentent E.
  • the coli DH5 ⁇ strain (Nippon Gene) was transformed, the cell solution was applied to the LBKm agar medium, and the cells were allowed to stand overnight at 37 ° C., and the obtained colonies were selected as the transformant.
  • the transformant was inoculated into 2 mL of LBKm liquid medium and cultured at 37 ° C. overnight.
  • a plasmid was purified from this culture medium using NucleoSpin Plasmamid EasyPure (Takara Bio).
  • a plasmid containing the gene encoding each enzyme variant was obtained by PCR using the primers shown in "Primers" in Table 1 instead of the primers HFM122 V39C F and HFM122 V39C R.
  • WT indicates “transformation strain into which a plasmid containing a gene encoding a wild-type enzyme has been introduced
  • MT indicates “transformation into which a plasmid containing a gene encoding a mutant enzyme has been introduced”. Indicates "stock”.
  • the eluent B was 70% methanol, and gradient elution was performed under the conditions of a flow rate of 1.0 mL / min and a column temperature of 40 ° C.
  • a UV detector (detection wavelength 280 nm) was used to detect 4-amino-3-hydroxybenzoic acid.
  • a concentration calibration curve was prepared using a standard sample [4-amino-3-hydroxybenzoic acid (distributor code A1194, Tokyo Kasei Kogyo)], and 4-amino-3-hydroxybenzoic acid was quantified based on the concentration calibration curve. Was done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

優れた4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用法を提供する。配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列において、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基が下記のアミノ酸である、4-アミノ安息香酸水酸化活性を有するポリペプチド。 (a)39位又はこれに相当する位置:システイン (b)43位又はこれに相当する位置:ロイシン、ヒスチジン (c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン (d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン (e)180位又はこれに相当する位置:アラニン (f)266位又はこれに相当する位置:バリン、フェニルアラニン (g)346位又はこれに相当する位置:ロイシン (h)363位又はこれに相当する位置:バリン、ロイシン (i)371位又はこれに相当する位置:フェニルアラニン

Description

4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用
 本発明は4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用に関する。
 ポリベンズオキサゾール(PBO)は耐熱性や力学強度に優れたエンジニアリングプラスチックとして知られており、繊維材料及び半導体素子の絶縁膜等に利用される(非特許文献1)。
 ベンズオキサゾール骨格はo-アミノフェノール骨格とカルボン酸との縮合により生成される。そのため、これらの官能基を分子内に有する4-アミノ-3-ヒドロキシ安息香酸(4,3-AHBA)類はPBOモノマーとして有用であると期待される。実際に、4,3-AHBAを用いたポリベンズオキサゾールの合成と物性評価が検討されている(非特許文献2)。
 近年、地球環境負荷軽減等に向けて再生可能資源を原料とした微生物発酵による化合物の製造方法が注目されている。例えば、4,3-AHBAと類似した構造を有する3-アミノ-4-ヒドロキシ安息香酸(3,4-AHBA)の微生物による生産とポリマー化の検討が行われている(特許文献1)。
 4,3-AHBAの製造に関してはこれまで化学的にニトロ芳香族を還元し合成する方法等が知られている(特許文献2)。微生物法による4,3-AHBA発酵生産を可能にする方策としては、微生物内での生合成が可能な4-アミノ安息香酸(4-ABA)の3位を水酸化することが考えられるが、このような反応に関しては、一部の4-ヒドロキシ安息香酸水酸化酵素がわずかに活性を有することが報告されているのみであった(非特許文献3,4)。
  〔特許文献1〕特許第5445453号公報
  〔特許文献2〕特許第3821350号公報
  〔非特許文献1〕村瀬浩貴,SENI GAKKAISHI(繊維と工業), Vol.66, No.6 (2010)
  〔非特許文献2〕Lon J. Mathias et al., Macromolecules, Vol.18, No.4, pp.616-622 (1985)
  〔非特許文献3〕Barrie Entsch et al., The Journal of Biological Chemistry, Vol.262, No.13, pp.6060-6068 (1987)
  〔非特許文献4〕Domenico L. Gatti et al., Biochemistry, Vol.35, No.2, pp.567-578 (1996)
 本発明は以下の1)~7)に係るものである。
 1)配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列において、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基が下記のアミノ酸である、4-アミノ安息香酸水酸化活性を有するポリペプチド。
(a)39位又はこれに相当する位置:システイン
(b)43位又はこれに相当する位置:ロイシン、ヒスチジン
(c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン
(d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン
(e)180位又はこれに相当する位置:アラニン
(f)266位又はこれに相当する位置:バリン、フェニルアラニン
(g)346位又はこれに相当する位置:ロイシン
(h)363位又はこれに相当する位置:バリン、ロイシン
(i)371位又はこれに相当する位置:フェニルアラニン
 2)配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列からなり、かつ4-アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基が下記のアミノ酸である、4-アミノ安息香酸水酸化活性を有する変異ポリペプチドの製造方法。
(a)39位又はこれに相当する位置:システイン
(b)43位又はこれに相当する位置:ロイシン、ヒスチジン
(c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン
(d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン
(e)180位又はこれに相当する位置:アラニン
(f)266位又はこれに相当する位置:バリン、フェニルアラニン
(g)346位又はこれに相当する位置:ロイシン
(h)363位又はこれに相当する位置:バリン、ロイシン
(i)371位又はこれに相当する位置:フェニルアラニン
 3)配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列からなり、かつ4-アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基を下記のアミノ酸に置換することを含む、4-アミノ安息香酸水酸化活性の向上方法。
(a)39位又はこれに相当する位置:システイン
(b)43位又はこれに相当する位置:ロイシン、ヒスチジン
(c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン
(d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン
(e)180位又はこれに相当する位置:アラニン
(f)266位又はこれに相当する位置:バリン、フェニルアラニン
(g)346位又はこれに相当する位置:ロイシン
(h)363位又はこれに相当する位置:バリン、ロイシン
(i)371位又はこれに相当する位置:フェニルアラニン
 4)1)のポリペプチドをコードするポリヌクレオチド。
 5)4)のポリヌクレオチドを含むベクター又はDNA断片。
 6)5)のベクター又はDNA断片を含有する形質転換細胞。
 7)6)の形質転換細胞を培養する工程を含む、4-アミノ-3-ヒドロキシ安息香酸類の製造方法。
発明の詳細な説明
 本発明は、優れた4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用法を提供することに関する。
 本発明者らは、特定のアミノ酸配列を有する4-ヒドロキシ安息香酸水酸化酵素の変異体が、優れた4-アミノ安息香酸水酸化活性を有し、4-アミノ-3-ヒドロキシ安息香酸類の製造に有用であることを見出した。
 本発明の4-アミノ安息香酸水酸化活性を有するポリペプチドは優れた4-アミノ安息香酸水酸化活性を有することから、これを用いることにより、4-アミノ安息香酸類から効率よく4-アミノ-3-ヒドロキシ安息香酸類を製造することができる。
 本明細書において、アミノ酸配列又はヌクレオチド配列の同一性は、Lipman-Pearson法(Science,1985,227:1435-1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGENETYX Ver.12のホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。
 本明細書において、アミノ酸配列又はヌクレオチド配列上の「相当する位置」は、目的配列と参照配列(例えば、配列番号2で示されるアミノ酸配列)とを、最大の相同性を与えるように整列(アラインメント)させることにより決定することができる。アミノ酸配列またはヌクレオチド配列のアラインメントは、公知のアルゴリズムを用いて実行することができ、その手順は当業者に公知である。例えば、アラインメントは、Clustal Wマルチプルアラインメントプログラム(Thompson,J.D.et al,1994,Nucleic Acids Res.22:4673-4680)をデフォルト設定で用いることにより、行うことができる。あるいは、Clustal Wの改訂版であるClustal W2やClustal omegaを使用することもできる。Clustal W、Clustal W2及びClustal omegaは、例えば、欧州バイオインフォマティクス研究所(European Bioinformatics Institute:EBI[www.ebi.ac.uk/index.html])や、国立遺伝学研究所が運営する日本DNAデータバンク(DDBJ[www.ddbj.nig.ac.jp/searches-j.html])のウェブサイト上で利用することができる。上述のアラインメントにより参照配列の任意の位置にアラインされた目的配列の位置は、当該任意の位置に「相当する位置」とみなされる。
 当業者であれば、上記で得られたアミノ酸配列のアラインメントを、最適化するようにさらに微調整することができる。そのような最適アラインメントは、アミノ酸配列の類似性や挿入されるギャップの頻度等を考慮して決定するのが好ましい。ここでアミノ酸配列の類似性とは、2つのアミノ酸配列をアラインメントしたときにその両方の配列に同一又は類似のアミノ酸残基が存在する位置の数の全長アミノ酸残基数に対する割合(%)をいう。類似のアミノ酸残基とは、タンパク質を構成する20種のアミノ酸のうち、極性や電荷の点で互いに類似した性質を有しており、いわゆる保存的置換を生じるようなアミノ酸残基を意味する。そのような類似のアミノ酸残基からなるグループは当業者にはよく知られており、例えば、アルギニンとリシン又はグルタミン;グルタミン酸とアスパラギン酸又はグルタミン;セリンとスレオニン又はアラニン;グルタミンとアスパラギン又はアルギニン;ロイシンとイソロイシン等がそれぞれ挙げられるが、これらに限定されない。
 本明細書において、「アミノ酸残基」とは、タンパク質を構成する20種のアミノ酸残基、アラニン(Ala又はA)、アルギニン(Arg又はR)、アスパラギン(Asn又はN)、アスパラギン酸(Asp又はD)、システイン(Cys又はC)、グルタミン(Gln又はQ)、グルタミン酸(Glu又はE)、グリシン(Gly又はG)、ヒスチジン(His又はH)、イソロイシン(Ile又はI)、ロイシン(Leu又はL)、リシン(Lys又はK)、メチオニン(Met又はM)、フェニルアラニン(Phe又はF)、プロリン(Pro又はP)、セリン(Ser又はS)、スレオニン(Thr又はT)、トリプトファン(Trp又はW)、チロシン(Tyr又はY)及びバリン(Val又はV)を意味する。
 本明細書において、プロモーター等の制御領域と遺伝子の「作動可能な連結」とは、遺伝子と制御領域とが、該遺伝子が該制御領域の制御の下で発現し得るように連結されていることをいう。遺伝子と制御領域との「作動可能な連結」の手順は当業者に周知である。
 本明細書において、遺伝子に関する「上流」及び「下流」とは、該遺伝子の転写方向の上流及び下流をいう。例えば、「プロモーターの下流に配置された遺伝子」とは、DNAセンス鎖においてプロモーターの3’側に該遺伝子が存在することを意味し、遺伝子の上流とは、DNAセンス鎖における該遺伝子の5’側の領域を意味する。
 本明細書において、細胞の機能や性状、形質に対して使用する用語「本来」とは、当該機能や性状、形質が当該細胞に元から存在していることを表すために使用される。対照的に、用語「外来」とは、当該細胞に元から存在するのではなく、外部から導入された機能や性状、形質を表すために使用される。例えば、「外来」遺伝子又はポリヌクレオチドとは、細胞に外部から導入された遺伝子又はポリヌクレオチドである。外来遺伝子又はポリヌクレオチドは、それが導入された細胞と同種の生物由来であっても、異種の生物由来(すなわち異種遺伝子又はポリヌクレオチド)であってもよい。
<4-アミノ安息香酸水酸化活性を有するポリペプチド>
 本発明の4-アミノ安息香酸水酸化活性を有するポリペプチド(「本発明のポリペプチド」と称す)は、配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列において、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基が下記のアミノ酸であるポリペプチドである。
(a)39位又はこれに相当する位置:システイン
(b)43位又はこれに相当する位置:ロイシン、ヒスチジン
(c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン
(d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン
(e)180位又はこれに相当する位置:アラニン
(f)266位又はこれに相当する位置:バリン、フェニルアラニン
(g)346位又はこれに相当する位置:ロイシン
(h)363位又はこれに相当する位置:バリン、ロイシン
(i)371位又はこれに相当する位置:フェニルアラニン
 斯かるポリペプチドは、基準となるポリペプチド、すなわち配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列からなるポリペプチドにおいて、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基が上記(a)~(i)のアミノ酸に置換された、4-アミノ安息香酸水酸化活性を有する変異ポリペプチドである。
 本発明において、「4-アミノ安息香酸水酸化活性」とは、4-アミノ安息香酸類の水酸化を触媒する活性、好ましくは4-アミノ安息香酸類の3位の水酸化を触媒する活性を意味する。
 4-アミノ安息香酸水酸化活性は、後述する実施例に示すとおり、本発明のポリペプチドを産生する微生物を培養し、生成する4-アミノ-3-ヒドロキシ安息香酸量をHPLC等により測定することによって決定することができる。
 斯かる本発明のポリペプチドは、配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列からなり、かつ4-アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基を下記のアミノ酸に置換することにより製造できる。
(a)39位又はこれに相当する位置:システイン
(b)43位又はこれに相当する位置:ロイシン、ヒスチジン
(c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン
(d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン
(e)180位又はこれに相当する位置:アラニン
(f)266位又はこれに相当する位置:バリン、フェニルアラニン
(g)346位又はこれに相当する位置:ロイシン
(h)363位又はこれに相当する位置:バリン、ロイシン
(i)371位又はこれに相当する位置:フェニルアラニン
 ここで、配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列からなり、かつ4-アミノ安息香酸水酸化活性を有するポリペプチドは、本発明のポリペプチドの「親」ポリペプチドである。
 「親」ポリペプチドは、そのアミノ酸残基に所定の変異がなされることにより、本発明のポリペプチドとなる基準ポリペプチドを指す。
 本発明において、配列番号2で示されるアミノ酸配列(NCBI Reference Sequence:WP_010920262.1)からなるポリペプチドであるHFM122は、4-ヒドロキシ安息香酸-3-モノオキシゲナーゼ(EC1.14.13.2)として知られている。4-ヒドロキシ安息香酸-3-モノオキシゲナーゼは、4-ヒドロキシ安息香酸の3位を水酸化してプロトカテク酸を生成する反応とその逆反応のいずれかまたは両方を促進する触媒活性を有する酵素であり、4-ヒドロキシ安息香酸類の水酸化を触媒する酵素(4-ヒドロキシ安息香酸水酸化酵素)の一種である。
 斯かるHFM122は、本出願人により、4-アミノ安息香酸水酸化活性を有することが見出されている(特願2018-171849)。
 配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、かつ4-アミノ安息香酸水酸化活性を有するポリペプチドとしては、配列番号2で示されるアミノ酸配列と少なくとも90%の同一性、具体的には、90%以上、好ましくは95%以上、より好ましくは96%以上、さらに好ましくは97%以上、さらに好ましくは98%以上、さらに好ましくは99%以上の同一性を有するアミノ酸配列からなる4-アミノ安息香酸水酸化活性を有するポリペプチドが挙げられる。
 該親ポリペプチドは、配列番号2で示されるアミノ酸配列の39位又はこれに相当する位置に何れもバリン残基を有するものが好ましく、43位又はこれに相当する位置に何れもバリン残基を有するものが好ましく、83位又はこれに相当する位置に何れもメチオニン残基を有するものが好ましく、106位又はこれに相当する位置に何れもメチオニン残基を有するものが好ましく、180位又はこれに相当する位置に何れもバリン残基を有するものが好ましく、266位又はこれに相当する位置に何れもアラニン残基を有するものが好ましく、346位又はこれに相当する位置に何れもフェニルアラニン残基を有するものが好ましく、363位又はこれに相当する位置に何れもメチオニン残基を有するものが好ましく、371位又はこれに相当する位置に何れもイソロイシン残基を有するものが好ましく、本発明のポリペプチドは当該39位又はこれに相当する位置のバリンをシステインに置換したもの、43位又はこれに相当する位置のバリンをロイシン又はヒスチジンに置換したもの、83位又はこれに相当する位置のメチオニンをバリン、グリシン又はフェニルアラニンに置換したもの、106位又はこれに相当する位置のメチオニンをアラニン、システイン、イソロイシン又はスレオニンに置換したもの、180位又はこれに相当する位置のバリンをアラニンに置換したもの、266位又はこれに相当する位置のアラニンをバリン又はフェニルアラニンに置換したもの、346位又はこれに相当する位置のフェニルアラニンをロイシンに置換したもの、363位又はこれに相当する位置のメチオニンをバリン又はロイシンに置換したもの、371位又はこれに相当する位置のイソロイシンをフェニルアラニンに置換したものがより好ましく、43位又はこれに相当する位置のバリンをヒスチジンに置換したもの、106位又はこれに相当する位置のメチオニンをアラニン、イソロイシン又はスレオニンに置換したもの、180位又はこれに相当する位置のバリンをアラニンに置換したもの、266位又はこれに相当する位置のアラニンをバリンに置換したもの、346位又はこれに相当する位置のフェニルアラニンをロイシンに置換したもの、363位又はこれに相当する位置のメチオニンをロイシンに置換したもの、371位又はこれに相当する位置のイソロイシンをフェニルアラニンに置換したものが更に好ましい。
<本発明のポリペプチドをコードするポリヌクレオチド>
 本発明において、親ポリペプチドのアミノ酸残基を変異させる手段としては、当技術分野で公知の各種変異導入技術を使用することができる。例えば、親ポリペプチドのアミノ酸配列をコードするポリヌクレオチド(以下、親遺伝子ともいう)において、変異すべきアミノ酸残基をコードするヌクレオチド配列を、変異後のアミノ酸残基をコードするヌクレオチド配列に変異させることにより、本発明のポリペプチドをコードするポリヌクレオチドを得ることができる。
 親遺伝子への目的の変異の導入は、基本的には、当業者に周知の様々な部位特異的変異導入法を用いて行うことができる。部位特異的変異導入法は、例えば、インバースPCR法やアニーリング法などの任意の手法により行うことができる。市販の部位特異的変異導入用キット(例えば、アジレント・テクノロジー社のQuikChange II Site-Directed Mutagenesis Kitや、QuikChange Multi Site-Directed Mutagenesis Kit等)を使用することもできる。
 親遺伝子への部位特異的変異導入は、最も一般的には、導入すべきヌクレオチド変異を含む変異用プライマーを用いて行うことができる。該変異用プライマーは、親遺伝子における変異すべきアミノ酸残基をコードするヌクレオチド配列を含む領域にアニーリングし、かつその変異すべきアミノ酸残基をコードするヌクレオチド配列(コドン)に代えて変異後のアミノ酸残基をコードするヌクレオチド配列(コドン)を有するヌクレオチド配列を含むように設計すればよい。変異前及び変異後のアミノ酸残基をコードするヌクレオチド配列(コドン)は、当業者であれば通常の教科書等に基づいて適宜認識し選択することができる。あるいは、部位特異的変異導入は、導入すべきヌクレオチド変異を含む相補的な2つのプライマーを別々に用いて変異部位の上流側及び下流側をそれぞれ増幅したDNA断片を、SOE(splicing by overlap extension)-PCR(Gene,1989,77(1):p61-68)により1つに連結する方法を用いることもできる。
 親遺伝子を含む鋳型DNAは、上述した4-ヒドロキシ安息香酸水酸化酵素を産生する微生物から、常法によりゲノムDNAを抽出するか、又はRNAを抽出し逆転写によりcDNAを合成することによって、調製することができる。あるいは、親ポリペプチドのアミノ酸配列に基づいて、対応するヌクレオチド配列を化学合成して鋳型DNAとして用いてもよい。4-アミノ安息香酸水酸化活性を有するポリペプチドとして既述したHFM122をコードする塩基配列を含むDNA配列を配列番号1に示した。
 変異用プライマーは、ホスホロアミダイト法(Nucleic Acids R4esearch,1989,17:7059-7071)等の周知のオリゴヌクレオチド合成法により作製することができる。そのようなプライマー合成は、例えば市販のオリゴヌクレオチド合成装置(ABI社製など)を用いて実施することもできる。該変異用プライマーを含むプライマーセットを使用し、親遺伝子を鋳型DNAとして上記のような部位特異的変異導入を行うことにより、目的の変異を有する本発明のポリペプチドをコードするポリヌクレオチドを得ることができる。
 当該本発明のポリペプチドをコードするポリヌクレオチドは、一本鎖又は2本鎖のDNA、cDNA、RNAもしくは他の人工核酸を含み得る。該DNA、cDNA及びRNAは、化学合成されていてもよい。また当該ポリヌクレオチドは、オープンリーディングフレーム(ORF)に加えて、非翻訳領域(UTR)のヌクレオチド配列を含んでいてもよい。また当該ポリヌクレオチドは、本発明の変異ポリペプチド産生用の形質転換体の種にあわせて、コドン至適化されていてもよい。各種生物が使用するコドンの情報は、Codon Usage Database([www.kazusa.or.jp/codon/])から入手可能である。
<ベクター又はDNA断片>
 得られた本発明のポリペプチドをコードするポリヌクレオチドはベクターに組み込むことができる。当該ポリヌクレオチドを含有するベクターは、発現ベクターである。また好ましくは、該ベクターは、本発明のポリペプチドをコードするポリヌクレオチドを宿主微生物に導入することができ、かつ宿主微生物内で該ポリヌクレオチドを発現することができる発現ベクターである。好ましくは、該ベクターは、本発明のポリペプチドをコードするポリヌクレオチド、及びこれと作動可能に連結された制御領域を含む。該ベクターは、プラスミド等の染色体外で自立増殖及び複製可能なベクターであってもよく、又は染色体内に組み込まれるベクターであってもよい。
 具体的なベクターの例としては、例えば、pBluescript II SK(-)(Stratagene)、pUC18/19、pUC118/119等のpUC系ベクター(タカラバイオ)、pET系ベクター(タカラバイオ)、pGEX系ベクター(GEヘルスケア)、pCold系ベクター(タカラバイオ)、pHY300PLK(タカラバイオ)、pUB110(Mckenzie,T.et al.,1986,Plasmid 15(2):93-103)、pBR322(タカラバイオ)、pRS403(Stratagene)、pMW218/219(ニッポンジーン)、pRI909/910等のpRI系ベクター(タカラバイオ)、pBI系ベクター(クロンテック)、IN3系ベクター(インプランタイノベーションズ)、pPTR1/2(タカラバイオ)、pDJB2(D.J.Ballance et al.,Gene,36,321-331,1985)、pAB4-1(van Hartingsveldt W et al.,Mol Gen Genet,206,71-75,1987)、pLeu4(M.I.G.Roncero et al.,Gene,84,335-343,1989)、pPyr225(C.D.Skory et al.,Mol Genet Genomics,268,397-406,2002)、pFG1(Gruber,F.et al.,Curr Genet,18,447-451,1990)等が挙げられる。
 また、本発明のポリペプチドをコードするポリヌクレオチドは、これを含むDNA断片として構築されていてもよい。該DNA断片としては、例えば、PCR増幅DNA断片及び制限酵素切断DNA断片が挙げられる。好ましくは、該DNA断片は、本発明のポリペプチドをコードするポリヌクレオチド、及びこれと作動可能に連結された制御領域を含む発現カセットであり得る。
 上記ベクター又はDNA断片に含まれる制御領域は、該ベクター又はDNA断片が導入された宿主細胞内で本発明のポリペプチドをコードするポリヌクレオチドを発現させるための配列であり、例えばプロモーターやターミネーター等の発現調節領域、複製開始点等が挙げられる。該制御領域の種類は、ベクター又はDNA断片を導入する宿主微生物の種類に応じて適宜選択することができる。必要に応じて、該ベクター又はDNA断片はさらに、抗生物質耐性遺伝子、アミノ酸合成関連遺伝子等の選択マーカー(例えば、アンピシリン、ネオマイシン、カナマイシン、クロラムフェニコールなどの薬剤の耐性遺伝子)を有していてもよい。
 上記ベクター又はDNA断片には、4-アミノ安息香酸類を生合成するために必要なポリペプチドをコードするポリヌクレオチド配列が含まれていてもよい。4-アミノ安息香酸類を生合成するために必要なポリペプチドとしては、例えば、4-アミノ-4-デオキシコリスミ酸シンターゼ(4-amino-4-deoxychorismate synthase, pabAB)や4-アミノ-4-デオキシコリスミ酸リアーゼ(4-amino-4-deoxychorismate lyase, pabC)等が挙げられる。
 本発明のポリペプチドをコードするポリヌクレオチドと上記制御領域や、マーカー遺伝子配列との連結は、上述したSOE-PCR法などの方法によって行うことができる。ベクターへの遺伝子配列の導入手順は、当該分野で周知である。プロモーター領域、ターミネーター、分泌シグナル領域等の制御領域の種類は、特に限定されず、導入する宿主に応じて、通常使用されるプロモーターや分泌シグナル配列を適宜選択して用いることができる。
 該制御領域の好適な例としては、野生型に比較して発現を強化できる強制御領域、例えば公知の高発現プロモーターであるT7プロモーター、lacプロモーター、tacプロモーター、trpプロモーター等が例示されるが、これらに特に限定されない。
<形質転換細胞>
 本発明のポリペプチドをコードするポリヌクレオチドを含むベクターを宿主へ導入するか、又は本発明のポリペプチドをコードするポリヌクレオチドを含むDNA断片を宿主のゲノムに導入することにより、本発明の形質転換細胞を得ることができる。
 斯かる形質転換細胞は、本発明のポリペプチドをコードするポリヌクレオチドが発現可能なように導入された細胞であり、当該ポリヌクレオチドの発現が強化された細胞、ひいては本発明のポリペプチドの発現が強化された細胞であると言える。
 宿主細胞としては、真菌、酵母、放線菌、大腸菌、枯草菌等、いずれを用いてもよいが、大腸菌、放線菌が好ましい。放線菌としては、コリネバクテリウム属菌、マイコバクテリウム属菌、ロドコッカス属菌、ストレプトマイセス属菌、プロピオニバクテリウム属菌等が挙げられ、好ましくはコリネバクテリウム属菌であり、より好ましくはコリネバクテリウム・グルタミカムである。
 中でも、4-アミノ-3-ヒドロキシ安息香酸類の生合成の基質となる4-アミノ安息香酸類を供給できる微生物が好ましく、4-アミノ安息香酸類の供給能が強化された微生物がより好ましい。微生物の4-アミノ安息香酸類の供給能を強化する方法としては、例えば、4-アミノ安息香酸類を生合成するために必要なポリペプチドをコードするポリヌクレオチド及びこれと作動可能に連結された制御領域を含むベクターを微生物に導入する方法や、微生物が本来有する4-アミノ安息香酸類を生合成するために必要なポリペプチドをコードするポリヌクレオチドの制御領域を強発現プロモーターに置換する方法などが挙げられる。
 宿主へのベクター又はDNA断片の導入の方法としては、例えばエレクトロポレーション法、トランスフォーメーション法、トランスフェクション法、接合法、プロトプラスト法、パーティクル・ガン法、アグロバクテリウム法等を用いることができる。
 また、ポリヌクレオチドを宿主のゲノムに導入する方法としては、特に限定されないが、例えば、該ポリヌクレオチドを含むDNA断片を用いた2重交差法が挙げられる。該DNA断片は、上述する宿主細胞において発現量の多い遺伝子のプロモーター配列の下流に導入されてもよく、あるいは、予め該DNA断片と上述した制御領域とを作動可能に連結した断片を作製し、当該連結断片を宿主のゲノムに導入してもよい。さらに、該DNA断片は、本発明のポリヌクレオチドが適切に導入された細胞を選択するためのマーカー(薬剤耐性遺伝子や栄養要求性相補遺伝子など)と予め連結されていてもよい。
 目的のベクター又はDNA断片が導入された形質転換細胞は、選択マーカーを利用して選択することができる。例えば、選択マーカーが抗生物質耐性遺伝子である場合、該抗生物質添加培地で培養することで、目的のベクター又はDNA断片が導入された形質転換細胞を選択することができる。また例えば、選択マーカーがアミノ酸合成関連遺伝子である場合、該アミノ酸要求性の宿主微生物に遺伝子導入した後、該アミノ酸要求性の有無を指標に、目的のベクター又はDNA断片が導入された形質転換細胞を選択することができる。あるいは、PCR等によって形質転換細胞のDNA配列を調べることで目的のベクター又はDNA断片の導入を確認することもできる。
 斯くして得られた形質転換細胞は、これを適切な培地で培養すれば、当該細胞に導入されたポリヌクレオチドが発現して、本発明のポリペプチドが生成される。すなわち、当該形質転換細胞は、4-アミノ安息香酸水酸化活性を有するポリペプチド産生菌となり得る。そして、後述する実施例に示すとおり、本発明の形質転換細胞を培養した場合、親ポリペプチドを産生する形質転換細胞を用いた場合に比べて4-アミノ-3-ヒドロキシ安息香酸の生産性が向上する。
 すなわち、配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列からなり、かつ4-アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基を下記のアミノ酸に置換する変異は、4-アミノ安息香酸水酸化活性向上に有用であり、ひいては4-アミノ-3-ヒドロキシ安息香酸類の生産性の向上に有用である。
(a)39位又はこれに相当する位置:システイン
(b)43位又はこれに相当する位置:ロイシン、ヒスチジン
(c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン
(d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン
(e)180位又はこれに相当する位置:アラニン
(f)266位又はこれに相当する位置:バリン、フェニルアラニン
(g)346位又はこれに相当する位置:ロイシン
(h)363位又はこれに相当する位置:バリン、ロイシン
(i)371位又はこれに相当する位置:フェニルアラニン
 そして、本発明の形質転換細胞は、4-アミノ安息香酸水酸化活性が向上されたポリペプチドの産生菌であり、有用な4-アミノ-3-ヒドロキシ安息香酸類の生産株である。
<4-アミノ-3-ヒドロキシ安息香酸類の製造>
 本発明の4-アミノ-3-ヒドロキシ安息香酸類の製造方法は、本発明の形質転換細胞を培養する工程を含み、培地中から4-アミノ-3-ヒドロキシ安息香酸類を回収することにより4-アミノ-3-ヒドロキシ安息香酸類を取得できる。
 本発明において、4-アミノ-3-ヒドロキシ安息香酸類としては、具体的には下記の一般式(1):
Figure JPOXMLDOC01-appb-C000003
 〔式中、Rは水素原子、ヒドロキシ基(-OH)、メトキシ基(-OCH)、アミノ基(-NH)、フッ素原子(-F)、塩素原子(-Cl)、臭素原子(-Br)、ヨウ素原子(-I)、カルボキシ基(-COOH)、メチル基(-CH)、エチル基(-CHCH)を示し、Rは水素原子又はヒドロキシ基(-OH)、メトキシ基(-OCH)、アミノ基(-NH)、フッ素原子(-F)、塩素原子(-Cl)、臭素原子(-Br)、ヨウ素原子(-I)、カルボキシ基(-COOH)、メチル基(-CH)又はエチル基(-CHCH)を示し、X及びXは水素原子又はヒドロキシ基であって少なくとも一方はヒドロキシ基を示す。〕
で示される4-アミノ-3-ヒドロキシ安息香酸誘導体が挙げられる。
 Rで示される官能基としては、水素原子、ヒドロキシ基(-OH)、メトキシ基(-OCH)、フッ素原子(-F)又はメチル基(-CH)が好ましい。
 Rで示される官能基としては、水素原子、ヒドロキシ基(-OH)、メトキシ基(-OCH)、フッ素原子(-F)又はメチル基(-CH)が好ましい。
 R及びRは、共に水素原子であるのがより好ましい。
 また、X及びXは、共にヒドロキシ基であってもよいが、X又はXの何れか一方がヒドロキシ基であるのが好ましい。
 なお、当該培地には、必要に応じて、4-アミノ-3-ヒドロキシ安息香酸類の生合成の基質となる4-アミノ安息香酸類を存在させることができる。
 ここで、4-アミノ安息香酸類としては、下記一般式(2):
Figure JPOXMLDOC01-appb-C000004
〔式中、R及びRは前記と同じものを示す。〕
で示される4-アミノ安息香酸誘導体が挙げられる。
 形質転換細胞を培養する培地は、炭素源、窒素源、無機塩類等を含有し、本発明の形質転換細胞の培養を効率的に行うことができる培地であれば、天然培地、合成培地のいずれを用いてもよい。炭素源としては、例えば、グルコース等の糖類、グリセリン等のポリオール類、エタノール等のアルコール類、またはピルビン酸、コハク酸もしくはクエン酸等の有機酸類を使用することができる。また、窒素源としては、例えば、ペプトン、肉エキス、酵母エキス、カゼイン加水分解物、大豆粕アルカリ抽出物、メチルアミン等のアルキルアミン類、またはアンモニアもしくはその塩等を使用することができる。その他、リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウム、カリウム、鉄、マンガン、亜鉛等の塩類、特定のアミノ酸、特定のビタミン、消泡剤等も必要に応じて使用してもよい。
 培養は、通常、10℃~40℃で、6時間~72時間、好ましくは9時間~60時間、より好ましくは12時間~48時間、必要に応じ撹拌または振とうしながら行うことができる。また、培養中は必要に応じてアンピシリンやカナマイシン等の抗生物質を培地に添加してもよい。
 培養物からの4-アミノ-3-ヒドロキシ安息香酸類の回収及び精製方法は特に制限されない。すなわち、周知のイオン交換樹脂法、沈澱法、晶析法、再結晶法、濃縮法その他の方法を組み合わせることにより実施できる。例えば、菌体を遠心分離等で除去した後、カチオン及びアニオン交換樹脂でイオン性の物質を除き、濃縮すれば4-アミノ-3-ヒドロキシ安息香酸類を取得することができる。培養物中に蓄積された4-アミノ-3-ヒドロキシ安息香酸類は、そのまま単離することなく用いてもよい。
 本発明はまた、例示的実施形態として以下の物質、製造方法、用途、方法等を包含する。但し、本発明はこれらの実施形態に限定されない。
<1>配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列において、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基が下記のアミノ酸である、4-アミノ安息香酸水酸化活性を有するポリペプチド。
(a)39位又はこれに相当する位置:システイン
(b)43位又はこれに相当する位置:ロイシン、ヒスチジン
(c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン
(d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン
(e)180位又はこれに相当する位置:アラニン
(f)266位又はこれに相当する位置:バリン、フェニルアラニン
(g)346位又はこれに相当する位置:ロイシン
(h)363位又はこれに相当する位置:バリン、ロイシン
(i)371位又はこれに相当する位置:フェニルアラニン
<2>配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列において、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基が下記のアミノ酸に置換された、4-アミノ安息香酸水酸化活性を有する変異ポリペプチド。
(a)39位又はこれに相当する位置:システイン
(b)43位又はこれに相当する位置:ロイシン、ヒスチジン
(c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン
(d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン
(e)180位又はこれに相当する位置:アラニン
(f)266位又はこれに相当する位置:バリン、フェニルアラニン
(g)346位又はこれに相当する位置:ロイシン
(h)363位又はこれに相当する位置:バリン、ロイシン
(i)371位又はこれに相当する位置:フェニルアラニン
<3>アミノ酸残基の置換が43位又はこれに相当する位置のバリンのヒスチジンへの置換、106位又はこれに相当する位置のメチオニンのアラニン、イソロイシン又はスレオニンへの置換、180位又はこれに相当する位置のバリンのアラニンへの置換、266位又はこれに相当する位置のアラニンのバリンへの置換、346位又はこれに相当する位置のフェニルアラニンのロイシンへの置換、363位又はこれに相当する位置のメチオニンのロイシンへの置換、371位又はこれに相当する位置のイソロイシンのフェニルアラニンへの置換である、<2>の変異ポリペプチド。
<4>配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列からなり、かつ4-アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基を下記のアミノ酸に置換することを含む、4-アミノ安息香酸水酸化活性を有する変異ポリペプチドの製造方法。
(a)39位又はこれに相当する位置:システイン
(b)43位又はこれに相当する位置:ロイシン、ヒスチジン
(c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン
(d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン
(e)180位又はこれに相当する位置:アラニン
(f)266位又はこれに相当する位置:バリン、フェニルアラニン
(g)346位又はこれに相当する位置:ロイシン
(h)363位又はこれに相当する位置:バリン、ロイシン
(i)371位又はこれに相当する位置:フェニルアラニン
<5>アミノ酸残基の置換が43位又はこれに相当する位置のバリンのヒスチジンへの置換、106位又はこれに相当する位置のメチオニンのアラニン、イソロイシン又はスレオニンへの置換、180位又はこれに相当する位置のバリンのアラニンへの置換、266位又はこれに相当する位置のアラニンのバリンへの置換、346位又はこれに相当する位置のフェニルアラニンのロイシンへの置換、363位又はこれに相当する位置のメチオニンのロイシンへの置換、371位又はこれに相当する位置のイソロイシンのフェニルアラニンへの置換である、<4>の方法。
<6>配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列からなり、かつ4-アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基を下記のアミノ酸に置換することを含む、4-アミノ安息香酸水酸化活性の向上方法。
(a)39位又はこれに相当する位置:システイン
(b)43位又はこれに相当する位置:ロイシン、ヒスチジン
(c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン
(d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン
(e)180位又はこれに相当する位置:アラニン
(f)266位又はこれに相当する位置:バリン、フェニルアラニン
(g)346位又はこれに相当する位置:ロイシン
(h)363位又はこれに相当する位置:バリン、ロイシン
(i)371位又はこれに相当する位置:フェニルアラニン
<7>アミノ酸残基の置換が43位又はこれに相当する位置のバリンのヒスチジンへの置換、106位又はこれに相当する位置のメチオニンのアラニン、イソロイシン又はスレオニンへの置換、180位又はこれに相当する位置のバリンのアラニンへの置換、266位又はこれに相当する位置のアラニンのバリンへの置換、346位又はこれに相当する位置のフェニルアラニンのロイシンへの置換、363位又はこれに相当する位置のメチオニンのロイシンへの置換、371位又はこれに相当する位置のイソロイシンのフェニルアラニンへの置換である、<6>の方法。
<8>配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列からなり、かつ4-アミノ安息香酸水酸化活性を有するポリペプチドを用いて4-アミノ-3-ヒドロキシ安息香酸類を製造する場合において、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基を下記のアミノ酸に置換することを含む、4-アミノ-3-ヒドロキシ安息香酸類の生産性向上方法。
(a)39位又はこれに相当する位置:システイン
(b)43位又はこれに相当する位置:ロイシン、ヒスチジン
(c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン
(d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン
(e)180位又はこれに相当する位置:アラニン
(f)266位又はこれに相当する位置:バリン、フェニルアラニン
(g)346位又はこれに相当する位置:ロイシン
(h)363位又はこれに相当する位置:バリン、ロイシン
(i)371位又はこれに相当する位置:フェニルアラニン
<9>アミノ酸残基の置換が43位又はこれに相当する位置のバリンのヒスチジンへの置換、106位又はこれに相当する位置のメチオニンのアラニン、イソロイシン又はスレオニンへの置換、180位又はこれに相当する位置のバリンのアラニンへの置換、266位又はこれに相当する位置のアラニンのバリンへの置換、346位又はこれに相当する位置のフェニルアラニンのロイシンへの置換、363位又はこれに相当する位置のメチオニンのロイシンへの置換、371位又はこれに相当する位置のイソロイシンのフェニルアラニンへの置換である、<8>の方法。
<10><1>~<3>のいずれかに記載のポリペプチドをコードするポリヌクレオチド。<11><10>のポリヌクレオチドを含むベクター又はDNA断片。
<12><11>のベクター又はDNA断片を含有する形質転換細胞。
<13>大腸菌又はコリネバクテリム属菌である、<12>記載の形質転換細胞。
<14>4-アミノ安息香酸類を供給可能な微生物である、<12>又は<13>の形質転換細胞。
<15>4-アミノ安息香酸類の供給能が向上した、<12>又は<13>の形質転換細胞。
<16><12>~<15>のいずれかの形質転換細胞を培養する工程を含む、4-アミノ-3-ヒドロキシ安息香酸類の製造方法。
<17>炭素源として糖類を含む培地で培養される、<16>の方法。
<18>4-アミノ-3-ヒドロキシ安息香酸類を培地から回収する工程を含む、<16>又は<17>の方法。
<19>培養が4-アミノ安息香酸類の存在下で行われる、<16>~<18>のいずれかの方法。
<20>4-アミノ-3-ヒドロキシ安息香酸類が、下記の一般式(1):
Figure JPOXMLDOC01-appb-C000005
 〔式中、Rは水素原子、ヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、エチル基を示し、Rは水素原子又はヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、又はエチル基を示し、X及びXは水素原子又はヒドロキシ基であって少なくとも一方はヒドロキシ基を示す。〕
で示される4-アミノ-3-ヒドロキシ安息香酸誘導体である、<16>~<19>のいずれかの方法。
<21>4-アミノ-3-ヒドロキシ安息香酸誘導体が、R及びRが共に水素原子である4-アミノ-3-ヒドロキシ安息香酸誘導体である、<20>の方法。
<22>4-アミノ安息香酸類が、下記の一般式(2):
Figure JPOXMLDOC01-appb-C000006
 〔式中、Rは水素原子、ヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、エチル基を示し、Rは水素原子又はヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、又はエチル基を示す。〕
で示される4-アミノ安息香酸誘導体である、<19>~<21>のいずれかの方法。
<23>4-アミノ安息香酸誘導体が、R及びRが共に水素原子である4-アミノ安息香酸誘導体である、<22>の方法。
 以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。
実施例1 4-アミノ-3-ヒドロキシ安息香酸の生産
 以下の実施例において、特に記載のない限りPCRはPrimeSTAR Max DNA Polymerase(タカラバイオ)を使用して行った。
(1)野生型酵素をコードする遺伝子を含むプラスミドの作製
(a)プラスミドpECsf_gapS_pabABCの作製
 コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)ATCC13032株から常法によって抽出されたゲノムを鋳型に、プライマーGN14_127(配列番号3、TATTAATTAAATGCGCGTTTTAATTATTGATAATTATGATTC)とGN14_133(配列番号4、TTGCGGCCGCTTGTTTAAACCTCCTTACAGAAAAATGGTTGGGCG)を用いたPCRにて4-アミノ-4-デオキシコリスミ酸シンターゼおよび4-アミノ-4-デオキシコリスミ酸リアーゼをコードする遺伝子が含まれたDNA断片を増幅し、これをプラスミドpECsf_gapS(特願2015-25491参照)のPacI部位とNotI部位の間に挿入することで、プラスミドpECsf_gapS_pabABCを得た。
(b)プラスミドpECsf_gapS_pabABC_HFM122の作製
 上記で得られたプラスミドpECsf_gapS_pabABCを鋳型に、プライマーpabABCcory vec R(配列番号5、AAATTTAAACCTCCTTTACAGAAAAATGGTTGG)とpabABCcory vec F(配列番号6、GGAGGTTTAAACAAGCGGCCGCGATATC)を用いたPCRにてベクター用DNA断片を合成した。続いて4-アミノ安息香酸水酸化活性を有するポリペプチドHFM122をコードする遺伝子(配列番号1)を含むプラスミドを人工遺伝子合成により作製し、これを鋳型としてプライマーpECsfD HFM122 F(配列番号7、AGGAGGTTTAAATTTATGCGCACTCAGGTGGCTAT)とpECsfD HFM122 R(配列番号8、CTTGTTTAAACCTCCTTATACGAGTGGCAGTCCTA)を用いたPCRにてインサート用DNA断片を合成した。これらのPCR産物に対してDpnI(タカラバイオ)による処理を行った後、NucleoSpin Gel and PCR Clean-up(タカラバイオ)を用いて各DNA断片を精製し、In-Fusion HD Cloning Kit(タカラバイオ)により連結することでプラスミドpECsf_gapS_pabABC_HFM122を構築した。得られたプラスミド溶液を用いてECOS Competent E. coli DH5α株(ニッポンジーン)を形質転換し、細胞液をLBKm寒天培地(Bacto Trypton 1%、Yeast Extract 0.5%、NaCl 1%,カナマイシン硫酸塩50μg/mL、寒天 1.5%)に塗布した後37℃で一晩静置し、得られたコロニーに対しSapphire Amp(タカラバイオ)およびプライマーpabABC+pobA for CPCR F(配列番号9,GCTATCAAAACATTCGGCACATTGGTTTTCC)、pabABC+pobA for CPCR R(配列番号10,GGAAGATGCGTGATCTGATCCTTCAACTC)を用いたPCR反応を行い、目的DNA断片の導入が確認された形質転換株を選抜した。得られた形質転換株をLBKm液体培地(Bacto Trypton 1%、Yeast Extract 0.5%、NaCl 1%,カナマイシン硫酸塩50μg/mL)2mLに接種し、37℃で一晩培養した。この培養液よりNucleoSpin Plasmid EasyPure(タカラバイオ)を用いてプラスミドの精製を行った。
(c)プラスミドpECsf_gapS_pabABC_tuD_HFM122の作製
 上記で得られたプラスミドpECsf_gapS_pabABC_HFM122を鋳型に、プライマーpabC last R(配列番号11、TTACAGAAAAATGGTTGGGCGCAA)とHFM122 F(配列番号12、ATGCGCACTCAGGTGGCTATCG)を用いたPCRにてベクター用DNA断片を合成した。続いて、コリネバクテリウム・グルタミカムATCC13032株が有するtuf遺伝子(cg0587)のプロモーター(以下、tuプロモーターと称する)を含むDNA断片(配列番号13、TACGTACCTGCAGGTAGCGTGTCAGTAGGCGCGTAGGGTAAGTGGGGTAGCGGCTTGTTAGATATCTTGAAATCGGCTTTCAACAGCATTGATTTCGATGTATTTAGCTGGCCGTTACCCTGCGAATGTCCACAGGGTAGCTGGTAGTTTGAAAATCAACGCCGTTGCCCTTAGGATTCAGTAACTGGCACATTTTGTAATGCGCTAGATCTGTGTGCTCAGTCTTCCAGGCTGCTTATCACAGTGAAAGCAAAACCAATTCGTGGCTGCGAAAGTCGTAGCCACCACGAAGTCCAAAGGAGGATCTAAATTATGAATAATATAAAAGGAGGAATTAATTAA)を人工遺伝子合成により作製し、これを鋳型としてプライマーpabC-Ptu F(配列番号14、ACCATTTTTCTGTAATACGTACCTGCAGGTAGCGTG)とPtu-HFM122 R(配列番号15、CACCTGAGTGCGCATTTAATTAATTCCTCCTTTTA)を用いたPCRにてインサート用DNA断片を合成した。これらのPCR産物に対してDpnI(タカラバイオ)による処理を行った後、NucleoSpin Gel and PCR Clean-up(タカラバイオ)を用いて各DNA断片を精製し、In-Fusion HD Cloning Kit(タカラバイオ)により連結することでプラスミドpECsf_gapS_pabABC_tuD_HFM122を構築した。得られたプラスミド溶液を用いてECOS Competent E. coli DH5α株(ニッポンジーン)を形質転換し、細胞液をLBKm寒天培地に塗布した後37℃で一晩静置し、得られたコロニーに対しSapphire Amp(タカラバイオ)およびプライマーPtu seq 1(配列番号16,GCTTGTTAGATATCTTGAAATCGGCTTTC)、pabABC+pobA for CPCR R(配列番号10,GGAAGATGCGTGATCTGATCCTTCAACTC)を用いたPCR反応を行い、目的DNA断片の導入が確認された形質転換株を選抜した。得られた形質転換株をLBKm液体培地2mLに接種し、37℃で一晩培養した。この培養液よりNucleoSpin Plasmid EasyPure(タカラバイオ)を用いてプラスミドの精製を行った。
 構築したプラスミドにおいては、gapプロモーターの制御下に4-アミノ-4-デオキシコリスミ酸シンターゼおよび4-アミノ-4-デオキシコリスミ酸リアーゼをコードする遺伝子が連結され、さらにtuプロモーターの制御下に野生型HFM122をコードする遺伝子が連結されている。
(2)変異型酵素をコードする遺伝子を含むプラスミドの作製
 変異型酵素をコードする遺伝子を含むプラスミドの作製について、HFM122の39位のバリンがシステインに置換された変異型酵素をコードする遺伝子を含むプラスミドの作製を例として以下に示す。
 プラスミドpECsf_gapS_pabABC_tuD_HFM122を鋳型として、相補的プライマーHFM122 V39C F(配列番号17、GCTTATTGTGAAGGCCGAGTTCGGGCT)、HFM122 V39C R(配列番号18、GCCTTCACAATAAGCACGGTCTTTGCG)を用いたPCRにてプラスミドpECsf_gapS_pabABC_tuD_HFM122_V39Cを構築した。PCR産物に対してDpnI(タカラバイオ)による処理を行い、処理後の液を用いてECOS Competent E.coli DH5α株(ニッポンジーン)を形質転換し、細胞液をLBKm寒天培地に塗布した後37℃で一晩静置し、得られたコロニーを形質転換株として選抜した。形質転換株をLBKm液体培地2mLに接種し、37℃で一晩培養した。この培養液よりNucleoSpin Plasmid EasyPure(タカラバイオ)を用いてプラスミドの精製を行った。
 同様に、プライマーHFM122 V39C FおよびHFM122 V39C Rに代えて表1の「プライマー」に示すプライマーを用いたPCRにて各酵素変異体をコードする遺伝子を含むプラスミドを得た。
Figure JPOXMLDOC01-appb-T000007
(3)プラスミドの宿主細胞への導入
 上記で得られた各プラスミドを用いて、コリネバクテリウム・グルタミカムDRHG145株(特願2014-523757参照)をエレクトロポレーション法(Bio-rad)により形質転換した。得られた形質転換細胞液をLBKm寒天培地に塗布した後30℃で2日間静置し、得られたコロニーを形質転換株とした。
(4)形質転換株の培養
 上記で得られた形質転換株をそれぞれ表2に示すCGXII培地(カナマイシン硫酸塩50μg/mLを含む)600μLに接種し、30℃で約48時間培養した後、遠心分離により菌体を除去したものを培養上清とした。得られた培養上清中の4-アミノ-3-ヒドロキシ安息香酸濃度を参考例1の方法に従って定量し、下記式に従い4-アミノ-3-ヒドロキシ安息香酸の生産能向上率を算出した。ここで、「WT」は「野生型酵素をコードする遺伝子を含むプラスミドが導入された形質転換株」を示し、「MT」は「変異型酵素をコードする遺伝子を含むプラスミドが導入された形質転換株」を示す。
(数1)
 生産能向上率=MTの4-アミノ-3-ヒドロキシ安息香酸生産能/WTの4-アミノ-3-ヒドロキシ安息香酸生産能
Figure JPOXMLDOC01-appb-T000008
(5)結果
 表3に示す通り、各変異型酵素を導入した菌株は野生型酵素を導入した菌株よりも4-アミノ-3-ヒドロキシ安息香酸の生産能が向上した。
Figure JPOXMLDOC01-appb-T000009
参考例1 4-アミノ-3-ヒドロキシ安息香酸の定量
 4-アミノ-3-ヒドロキシ安息香酸の定量はHPLCにより行った。HPLC分析に供する反応液を0.1%リン酸にて適宜希釈した後、アクロプレップ96フィルタープレート(0.2μmGHP膜、日本ポール)を用いて不溶物の除去を行なった。
 HPLCの装置は、Chromaster(日立ハイテクサイエンス)を用いた。分析カラムには、L-カラム ODS(4.6mm I.D.×150mm、化学物質評価研究機構)を用い、溶離液Aを0.1M リン酸二水素カリウムの0.1%リン酸溶液、溶離液Bを70%メタノールとし、流速1.0mL/分、カラム温度40℃の条件にてグラジエント溶出を行なった。4-アミノ-3-ヒドロキシ安息香酸の検出にはUV検出器(検出波長280nm)を用いた。標準試料〔4-アミノ-3-ヒドロキシ安息香酸(販売元コードA1194、東京化成工業)〕を用いて濃度検量線を作成し、濃度検量線に基づいて4-アミノ-3-ヒドロキシ安息香酸の定量を行なった。

Claims (13)

  1.  配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列において、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基が下記のアミノ酸である、4-アミノ安息香酸水酸化活性を有するポリペプチド。
    (a)39位又はこれに相当する位置:システイン
    (b)43位又はこれに相当する位置:ロイシン、ヒスチジン
    (c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン
    (d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン
    (e)180位又はこれに相当する位置:アラニン
    (f)266位又はこれに相当する位置:バリン、フェニルアラニン
    (g)346位又はこれに相当する位置:ロイシン
    (h)363位又はこれに相当する位置:バリン、ロイシン
    (i)371位又はこれに相当する位置:フェニルアラニン
  2.  配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列からなり、かつ4-アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基を下記のアミノ酸に置換することを含む、4-アミノ安息香酸水酸化活性を有する変異ポリペプチドの製造方法。
    (a)39位又はこれに相当する位置:システイン
    (b)43位又はこれに相当する位置:ロイシン、ヒスチジン
    (c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン
    (d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン
    (e)180位又はこれに相当する位置:アラニン
    (f)266位又はこれに相当する位置:バリン、フェニルアラニン
    (g)346位又はこれに相当する位置:ロイシン
    (h)363位又はこれに相当する位置:バリン、ロイシン
    (i)371位又はこれに相当する位置:フェニルアラニン
  3.  配列番号2で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列からなり、かつ4-アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の39位、43位、83位、106位、180位、266位、346位、363位若しくは371位、又は39位、43位、83位、106位、180位、266位、346位、363位若しくは371位に相当する位置におけるアミノ酸残基を下記のアミノ酸に置換することを含む、4-アミノ安息香酸水酸化活性の向上方法。
    (a)39位又はこれに相当する位置:システイン
    (b)43位又はこれに相当する位置:ロイシン、ヒスチジン
    (c)83位又はこれに相当する位置:バリン、グリシン、フェニルアラニン
    (d)106位又はこれに相当する位置:アラニン、システイン、イソロイシン、スレオニン
    (e)180位又はこれに相当する位置:アラニン
    (f)266位又はこれに相当する位置:バリン、フェニルアラニン
    (g)346位又はこれに相当する位置:ロイシン
    (h)363位又はこれに相当する位置:バリン、ロイシン
    (i)371位又はこれに相当する位置:フェニルアラニン
  4.  請求項1記載のポリペプチドをコードするポリヌクレオチド。
  5.  請求項4記載のポリヌクレオチドを含むベクター又はDNA断片。
  6.  請求項5記載のベクター又はDNA断片を含有する形質転換細胞。
  7.  大腸菌又はコリネバクテリム属菌である、請求項6記載の形質転換細胞。
  8.  4-アミノ安息香酸類を供給可能な微生物である、請求項6又は7記載の形質転換細胞。
  9.  請求項6~8のいずれか1項記載の形質転換細胞を培養する工程を含む、4-アミノ-3-ヒドロキシ安息香酸類の製造方法。
  10.  4-アミノ-3-ヒドロキシ安息香酸類を培地から回収する工程を含む、請求項9記載の方法。
  11.  培養が4-アミノ安息香酸類の存在下で行われる、請求項9又は10記載の方法。
  12.  4-アミノ-3-ヒドロキシ安息香酸類が、下記の一般式(1):
    Figure JPOXMLDOC01-appb-C000001
     〔式中、Rは水素原子、ヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、エチル基を示し、Rは水素原子又はヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、又はエチル基を示し、X及びXは水素原子又はヒドロキシ基であって少なくとも一方はヒドロキシ基を示す。〕
    で示される4-アミノ-3-ヒドロキシ安息香酸誘導体である、請求項9~11のいずれか1項記載の方法。
  13.  4-アミノ安息香酸類が、下記の一般式(2):
    Figure JPOXMLDOC01-appb-C000002
     〔式中、Rは水素原子、ヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、エチル基を示し、Rは水素原子又はヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、又はエチル基を示す。〕
    で示される4-アミノ安息香酸誘導体である、請求項11又は12記載の方法。
     
PCT/JP2021/031005 2020-09-14 2021-08-24 4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用 WO2022054568A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180062883.7A CN116113703A (zh) 2020-09-14 2021-08-24 具有4-氨基苯甲酸羟基化活性的多肽及其利用
EP21866528.9A EP4212625A1 (en) 2020-09-14 2021-08-24 Polypeptide having 4-aminobenzoic acid hydroxylation activity and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-153992 2020-09-14
JP2020153992A JP7223480B2 (ja) 2020-09-14 2020-09-14 4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用

Publications (1)

Publication Number Publication Date
WO2022054568A1 true WO2022054568A1 (ja) 2022-03-17

Family

ID=80631608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031005 WO2022054568A1 (ja) 2020-09-14 2021-08-24 4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用

Country Status (4)

Country Link
EP (1) EP4212625A1 (ja)
JP (1) JP7223480B2 (ja)
CN (1) CN116113703A (ja)
WO (1) WO2022054568A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3821350B2 (ja) 2000-05-08 2006-09-13 東洋紡績株式会社 アミノヒドロキシ芳香族カルボン酸及び/又はその誘導体の製造方法
JP5445453B2 (ja) 2008-07-09 2014-03-19 味の素株式会社 アミノヒドロキシ安息香酸類の製造方法
JP2014523757A (ja) 2011-06-01 2014-09-18 コーニンクレッカ フィリップス エヌ ヴェ 血流分布測定システム及び方法
JP2015025491A (ja) 2013-07-25 2015-02-05 Jx日鉱日石エネルギー株式会社 伸縮継手
JP2018171849A (ja) 2017-03-31 2018-11-08 株式会社ベリカ 積層体、包装体材料、包装体、および、これらの製造方法
JP2020039330A (ja) * 2018-09-13 2020-03-19 花王株式会社 3−ヒドロキシ−4−アミノ安息香酸類の製造方法
WO2021090925A1 (ja) * 2019-11-08 2021-05-14 花王株式会社 4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3821350B2 (ja) 2000-05-08 2006-09-13 東洋紡績株式会社 アミノヒドロキシ芳香族カルボン酸及び/又はその誘導体の製造方法
JP5445453B2 (ja) 2008-07-09 2014-03-19 味の素株式会社 アミノヒドロキシ安息香酸類の製造方法
JP2014523757A (ja) 2011-06-01 2014-09-18 コーニンクレッカ フィリップス エヌ ヴェ 血流分布測定システム及び方法
JP2015025491A (ja) 2013-07-25 2015-02-05 Jx日鉱日石エネルギー株式会社 伸縮継手
JP2018171849A (ja) 2017-03-31 2018-11-08 株式会社ベリカ 積層体、包装体材料、包装体、および、これらの製造方法
JP2020039330A (ja) * 2018-09-13 2020-03-19 花王株式会社 3−ヒドロキシ−4−アミノ安息香酸類の製造方法
WO2021090925A1 (ja) * 2019-11-08 2021-05-14 花王株式会社 4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"NCBI", Database accession no. WP_010920262.1
BARRIE ENTSCH ET AL., THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 262, no. 13, 1987, pages 6060 - 6068
C.D. SKORY ET AL., MOL GENET GENOMICS, vol. 268, 2002, pages 397 - 406
D.J. BALLANCE ET AL., GENE, vol. 36, 1985, pages 321 - 331
DOMENICO L. GATTI ET AL., BIOCHEMISTRY, vol. 35, no. 2, 1996, pages 567 - 578
GRUBER, F ET AL., CURR GENET, vol. 18, 1990, pages 447 - 451
HIROKI MURASESENI GAKKAISHI, JOURNAL OF FIBER SCIENCE AND TECHNOLOGY, vol. 66, no. 6, 2010
LON J. MATHIAS ET AL., MACROMOLECULES, vol. 18, no. 4, 1985, pages 616 - 622
M.I.G. RONCERO ET AL., GENE, vol. 84, no. 1, 1989, pages 335 - 343
MCKENZIE, T ET AL., PLASMID, vol. 15, no. 2, 1986, pages 93 - 103
NUCLEIC ACIDS R4ESEARCH, vol. 17, 1989, pages 7059 - 7071
SCIENCE, vol. 227, 1985, pages 1435 - 1441
THOMPSON, J.D. ET AL., NUCLEIC ACIDS RES., vol. 22, 1994, pages 4673 - 4680
VAN HARTINGSVELDT W ET AL., MOL GEN GENET, vol. 206, 1987, pages 71 - 75

Also Published As

Publication number Publication date
CN116113703A (zh) 2023-05-12
EP4212625A1 (en) 2023-07-19
JP7223480B2 (ja) 2023-02-16
JP2022047939A (ja) 2022-03-25

Similar Documents

Publication Publication Date Title
JP7197313B2 (ja) 3-ヒドロキシ-4-アミノ安息香酸類の製造方法
US7700319B2 (en) Production of 3-hydroxypropionic acid using beta-alanine/pyruvate aminotransferase
CN111019878B (zh) L-苏氨酸产量提高的重组大肠杆菌及其构建方法与应用
EP3144385B1 (en) Microorganism with improved l-threonine productivity, and method for producing l-threonine by using same
US20220348974A1 (en) Biotin synthases for efficient production of biotin
JP7488649B2 (ja) 4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用
WO2021090925A1 (ja) 4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用
JP2021073914A (ja) 4−アミノ安息香酸水酸化活性を有するポリペプチド及びその利用
JP7223480B2 (ja) 4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用
WO2021241219A1 (ja) 没食子酸合成酵素
WO2020090940A1 (ja) ベンジルイソキノリンアルカロイド(bia)産生用の組換え宿主細胞及びベンジルイソキノリンアルカロイド(bia)の新規製造方法
EP1344828B1 (en) Novel fructosyl amino acid oxidase
CN110607335B (zh) 一种烟酰胺腺嘌呤二核苷酸类化合物生物合成方法
JP4824035B2 (ja) 新規遺伝子
JP2021101626A (ja) 4−アミノ安息香酸水酸化活性を有するポリペプチド及びその利用
CN114806913B (zh) 具有线粒体定位还原tca途径的高产琥珀酸酵母工程菌株及其构建方法和应用
JP2024014569A (ja) 4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用
JP7475866B2 (ja) 2,5-ピリジンジカルボン酸類生産能を有する形質転換細胞
JP5414368B2 (ja) ジヒドロダイゼインをラセミ化する酵素
JP7492817B2 (ja) モノアシルグリセロールリパーゼ変異体及びその製造方法
WO2022210228A1 (ja) 改変型α-イソプロピルマレートシンターゼ
WO2023112933A1 (ja) 新規プロモーター
US20220380745A1 (en) Recombinant mutant microorganism and method for producing cadaverine by using same microorganism
JP2024505616A (ja) 常時発現用新規プロモーター変異体およびその用途
KR20230058876A (ko) 7-Keto-LCA에서 우르소데옥시콜산으로의 전환율을 증진시키는 루미노코쿠스 나버스 균주 유래 7-beta-HSDH의 변이체 및 이를 이용한 우르소데옥시콜산 생산방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866528

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021866528

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021866528

Country of ref document: EP

Effective date: 20230414