WO2022052612A1 - 电子雾化器的自动控温方法及具有该方法的电子雾化器 - Google Patents

电子雾化器的自动控温方法及具有该方法的电子雾化器 Download PDF

Info

Publication number
WO2022052612A1
WO2022052612A1 PCT/CN2021/104879 CN2021104879W WO2022052612A1 WO 2022052612 A1 WO2022052612 A1 WO 2022052612A1 CN 2021104879 W CN2021104879 W CN 2021104879W WO 2022052612 A1 WO2022052612 A1 WO 2022052612A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
working temperature
electronic atomizer
temperature
pwm
Prior art date
Application number
PCT/CN2021/104879
Other languages
English (en)
French (fr)
Inventor
林光榕
郑贤彬
张夕勇
Original Assignee
惠州市新泓威科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市新泓威科技有限公司 filed Critical 惠州市新泓威科技有限公司
Publication of WO2022052612A1 publication Critical patent/WO2022052612A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present invention relates to the technical field of electronic atomizers, and more particularly, the present invention relates to an automatic temperature control method for electronic atomizers and an electronic atomizer having the method.
  • Electronic atomizers generally include a heating assembly and a battery assembly.
  • the battery assembly is used to control the heating assembly and provide power to the heating assembly.
  • the heating assembly includes a heating element, and the heating element can heat the liquid to be atomized to generate vapor mist or aerosol for the user to inhale.
  • the liquid to be nebulized includes e-cigarette liquid or liquid medicine in which the drug is dissolved.
  • the temperature control method is generally that when the user takes a puff, after turning on the start switch, the heating element generally heats the atomization with constant power or constant voltage output, and the heating element works. The temperature continues to rise, and the generated vapor or aerosol is uneven and unstable.
  • the electronic atomizer lacks the liquid to be atomized or the liquid supply is insufficient, the working temperature of the heating element rises sharply, resulting in dry burning and fogging.
  • the inside of the chemical unit is prone to burnt smell and sticky smell, causing a bad experience to the user.
  • the purpose of the present invention is to provide an automatic temperature control method for an electronic atomizer and an electronic atomizer having the method in order to overcome the deficiencies of the above technologies.
  • an automatic temperature control method for an electronic atomizer in the working process of the electronic atomizer being sucked each time, including:
  • the output voltage is adjusted by adjusting the duty cycle of the PWM, so that the heating element of the electronic atomizer is quickly heated to the set value of the working temperature;
  • the real-time working temperature of the heating element is maintained at the set value of the working temperature by adjusting the duty ratio of the PWM.
  • it also includes:
  • the duty cycle of the PWM is reduced to maintain the working temperature of the heating element at the set value of the working temperature.
  • the duty cycle of the PWM is continuously lower than the set value
  • the output voltage of the electronic atomizer is turned off.
  • the duty cycle of the PWM is adjusted in a manner of constant power output.
  • a PID control method is used to adjust the duty cycle of the PWM.
  • the working temperature of the heating element is detected by arranging a temperature sensor in the electronic atomizer.
  • the resistance of the heating element is set as a thermistor with a positive temperature coefficient, and the working temperature of the heating element is obtained by detecting the resistance value of the heating element and converting according to the corresponding relationship between the resistance value of the thermistor and the temperature.
  • the detection time of the resistance value of the heating element is set at the non-energization time of the output voltage pulse cycle.
  • the PID algorithm is performed to adjust the PWM output duty cycle
  • the methods or steps are automatically controlled by presetting a computer program in the microcontroller.
  • an electronic atomizer with an automatic temperature control method comprising an atomization assembly and a battery assembly, the atomization assembly including a heating device for heating the liquid to be atomized A heating element, the battery assembly includes a battery, a control circuit and a start switch, the control circuit includes a microcontroller, a voltage output control unit electrically connected to the microcontroller, and a temperature detection unit, the microcontroller is provided with a PWM A signal generation unit, a parameter storage unit, and a preset computer program for automatic control, the PWM signal generation unit sends the PWM signal to the voltage output control unit, and the voltage output control unit outputs the corresponding PWM voltage to the heating element .
  • the working temperature of the heating element can be controlled accurately and stably, so that the electronic atomizer can quickly generate a uniform, stable and constant temperature vapor or aerosol, and at the same time, the heating element can be quickly turned off when the liquid supply is insufficient. Cut off the voltage output to prevent the electronic atomizer from drying out and improve the user experience.
  • Fig. 1 is the structural block diagram of the control circuit of the electronic atomizer of the present invention
  • Fig. 2 is the variation curve diagram of the PWM duty ratio of the automatic temperature control method of the electronic atomizer of the present invention
  • Fig. 3 is the heating temperature change curve diagram of the automatic temperature control method of the electronic atomizer of the present invention.
  • the electronic atomizer with the automatic temperature control method according to the embodiment of the present invention is used to heat the liquid to be atomized so as to generate atomized vapor or aerosol for the user to inhale.
  • the electronic atomizer of this embodiment includes a heating assembly and a battery assembly (not shown in the figure), wherein, the heating assembly is provided with a heating element 1 for heating the liquid to be atomized, and the heating element 1 has a positive
  • the temperature coefficient thermistor the battery assembly is provided with a battery 2, a control circuit and a start switch 3, and the control circuit includes a microcontroller 4, a voltage output control unit 5 electrically connected to the microcontroller 4, and a temperature detection unit (not shown in the figure). Show).
  • the temperature detection unit of this embodiment includes a resistance value detection unit 6 and a temperature conversion unit 41 provided in the microcontroller 4 .
  • the microcontroller 4 is also provided with a PWM signal generating unit 42, a parameter storage unit 43, and a computer program is preset for automatic control, the PWM signal generating unit 42 outputs a PWM signal to the voltage output control unit 5, and the voltage output control unit 5 according to the data.
  • the PWM voltage is output to the heating element 1
  • the resistance value detection unit 6 is used to detect the resistance value of the heating element 1
  • the temperature conversion unit 41 converts the detected resistance value into a real-time working temperature.
  • the start switch 3 in this embodiment is a microphone head, which can trigger the switch when the airflow generated by suction is detected.
  • the resistance of the heating element 1 is set as a thermistor with a positive temperature coefficient.
  • the temperature conversion unit 41 converts the detected resistance value to obtain the real-time working temperature of the heating element 1 .
  • the resistance value detection time of the heating element 1 is set at the non-energizing time of the pulse cycle of outputting the PWM voltage.
  • An automatic temperature control method for an electronic atomizer according to an embodiment of the present invention in the working process of the electronic atomizer being sucked each time, includes:
  • the output voltage is adjusted by adjusting the duty cycle of the PWM, so that the heating element of the electronic atomizer is quickly heated to the set value of the working temperature;
  • the real-time working temperature of the heating element is maintained at the set value of the working temperature by adjusting the duty cycle of the PWM;
  • the duty cycle of the PWM is reduced to maintain the working temperature of the heating element at the set value of the working temperature.
  • the duty cycle of the PWM is continuously lower than the set value
  • the output voltage of the electronic atomizer is turned off.
  • the first stage t1 is the rapid heating stage.
  • the start switch 3 senses the suctioned airflow and opens the control circuit, so that the voltage output control unit 5 outputs a voltage to the heating element 1 to heat Element 1 starts working.
  • the temperature of the heating element 1 is relatively low.
  • the user can inhale the vapor or aerosol, so that the heating element of the electronic atomizer can be rapidly heated from the initial temperature T0 to the working temperature.
  • T1 in this embodiment, the heating element 1 is heated by a method of high power and constant power output.
  • the output needs to be higher at this time.
  • the battery voltage of the electronic atomizer is relatively fixed.
  • the PWM signal generation unit 42 is adjusted to a higher PWM duty cycle to PWM modulate the battery voltage and output (as shown in Figure 2 t1
  • the PWM duty cycle curve of the stage) the voltage output control unit 5 outputs a higher PWM voltage to the heating element 1 accordingly, and the heating element 1 can thus rapidly heat up until the set value of the working temperature (as shown in the temperature rise curve of the t1 stage in Figure 3 ).
  • the specific examples are as follows: when the user inhales a puff of mist or aerosol, the microcontroller 4 outputs the constant power at the set constant power.
  • the required PWM duty cycle is calculated by the method to be an amplitude of about 80%.
  • the PWM signal generating unit 42 generates a PWM signal with the duty cycle.
  • the voltage output control unit 5 outputs the PWM voltage to the heating element 1 accordingly.
  • the second stage t2 is the stage of maintaining the set working temperature.
  • the PWM duty cycle is immediately reduced by the PWM signal generating unit 42 to reduce the output voltage (as shown in FIG. 2 ).
  • the PWM duty cycle curve that rapidly drops at the beginning of the t2 phase is shown), reduce the output power to the heating element 1 to avoid the real-time operating temperature continue to rise sharply, and then compare the real-time operating temperature with the operating temperature set value T1, and heat the heating element 1.
  • the operating temperature of element 1 is maintained at the operating temperature set value T1 (as shown in the curve of constant temperature maintenance in phase t2 in Figure 3).
  • a relatively stable PWM control signal can be output to the voltage output control unit 5 by adjusting the PWM duty cycle of the PWM signal generating unit 42, and the voltage output control unit 5 can output a relatively stable PWM voltage to the heating element 1 (as shown in FIG. 2 ). It shows a relatively stable PWM duty cycle curve in the t2 stage), so as to adjust the working temperature and maintain the working temperature of the heating element 1 at the set value of the working temperature.
  • the micro-controller 4 calculates the required PWM duty cycle to be about 46% in the set constant temperature output mode, and within about 50 milliseconds, the PWM signal generating unit 42 reduces the duty cycle of the PWM signal from 85% to 46% , the voltage output control unit 5 outputs the corresponding PWM voltage to the heating element 1 accordingly, and the heating temperature of the heating element 1, that is, the real-time working temperature, stops rising rapidly.
  • Anti-dry burning stage t3 is a special working stage, which does not occur under normal circumstances, and only occurs when the heating element 1 lacks the liquid to be atomized and is about to cause dry burning. When the heating element 1 lacks the liquid to be atomized or the liquid supply is insufficient, the heating element 1 is about to dry out, resulting in a rapid increase in its working temperature.
  • the PWM duty cycle When the PWM duty cycle is lower than the set duty cycle, it indicates that the output power has dropped to a very low level and cannot continue to prevent the continued upward trend of the operating temperature, and the dry-burning state has occurred, so continue to reduce the PWM duty cycle, It is no longer necessary to continue to reduce the output power. At this time, the output voltage of the electronic atomizer is turned off to prevent the further occurrence of dry burning. In order to avoid the misjudgment caused by an occasional drop in the duty cycle, it is necessary to detect that the duty cycle of the PWM is continuously lower than the set duty cycle for the set number of times before turning off the output voltage of the electronic atomizer.
  • the specific examples are as follows: when the heating element 1 is about to dry-burn, its real-time operating temperature must have a tendency to rise rapidly. In order to suppress the rise of the real-time operating temperature, the PWM signal generates a The unit 42 lowers the duty cycle of the PWM signal from about 42%, the duty cycle of the PWM is lower than the set duty cycle of 40%, and the duty cycle of the PWM continuously decreases within a period of 200 milliseconds, and When the set duty cycle is continuously lower than 40% for a set number of times, such as 10 times, the microcontroller 4 determines that the heating element 1 has dried out, and the voltage output control unit 5 turns off the output voltage.
  • the PID control method is used to adjust the duty ratio of the PWM.
  • the working temperature of the heating element can also be detected by arranging a temperature sensor (not shown in the figure) in the electronic atomizer.
  • the PID algorithm is performed to adjust the PWM output duty cycle

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

一种电子雾化器的自动控温方法及具有该方法的电子雾化器,其中自动控温方法,在电子雾化器每次被抽吸的工作过程中,包括:第一阶段、通过调节PWM的占空比来调节输出电压,使电子雾化器的加热元件(1)快速加热升温到工作温度设定值;第二阶段、在达到工作温度设定值后,通过调节PWM的占空比,将加热元件(1)的实时工作温度维持在工作温度设定值。该方法有益之处在于,可准确稳定地控制加热元件(1)的工作温度,使电子雾化器可以快速产生均匀、稳定和恒温的汽雾或气溶胶,同时在加热元件(1)供液不足时快速关断电压输出,防止电子雾化器发生干烧,提升用户使用体验。

Description

电子雾化器的自动控温方法及具有该方法的电子雾化器 技术领域
本发明涉及电子雾化器的技术领域,更具体的说,本发明涉及一种电子雾化器的自动控温方法及具有该方法的电子雾化器。
背景技术
电子雾化器一般包括加热组件和电池组件,电池组件用于控制加热组件及提供电源给加热组件。加热组件包括加热元件,加热元件可将待雾化的液体进行加热产生汽雾或气溶胶,供使用者吸食。待雾化的液体包括电子烟烟液或溶解了药物的药液。
现有大部分的电子雾化器,其温度控制方法一般是,当用户每抽吸一口时,打开启动开关后,加热元件一般以恒功率或恒电压输出的方式加热雾化,加热元件的工作温度持续上升,产生的汽雾或气溶胶不均匀、不稳定,另外,当电子雾化器缺乏待雾化的液体或供液不足时,加热元件的工作温度急剧上升,导致发生干烧,雾化单元内部容易产生焦味、糊味,给用户造成不良的使用体验。
技术问题
本发明的目的在于为克服上述技术的不足而提供一种电子雾化器的自动控温方法及具有该方法的电子雾化器。
技术解决方案
本发明的技术方案是这样实现的:一种电子雾化器的自动控温方法,在电子雾化器每次被抽吸的工作过程中,包括:
第一阶段、通过调节PWM的占空比来调节输出电压,使电子雾化器的加热元件快速加热升温到工作温度设定值;
第二阶段、在达到工作温度设定值后,通过调节PWM的占空比,将加热元件的实时工作温度维持在工作温度设定值。
优选地,还包括:
防干烧阶段、在加热元件缺乏待雾化的液体时,通过降低PWM的占空比以将加热元件的工作温度维持在工作温度设定值,当PWM的占空比连续低于设定的占空比达到设定的次数时,关闭电子雾化器的输出电压。
优选地,在所述第一阶段,以恒功率输出的方式调节PWM的占空比。
优选地,根据检测到的实时温度与工作温度设定值的差值,采用PID控制方式调节PWM的占空比。
优选地,通过在电子雾化器内设置温度传感器检测加热元件的工作温度。
优选地,将加热元件的电阻设定为正温度系数的热敏电阻,通过检测加热元件的电阻值,并根据热敏电阻的阻值与温度的对应关系转换获得加热元件的工作温度。
优选地,将所述加热元件的电阻值检测时间设定在输出电压脉冲循环的非通电时间。
优选地,还包括具体操作步骤如下:
(1)抽吸开始;
(2)以恒功率输出的方式调节PWM的占空比,以便快速升温;
(3)检测加热元件阻值并转换为实时工作温度;
(4)实时工作温度与工作温度设定值进行比较;
(5)达到工作温度设定值后,立即降低PWM占空比避免实时工作温度大幅上升;
(6)根据实时工作温度与工作温度设定值的差值进行PID算法调整PWM输出占空比;
(7)将加热元件的实时工作温度稳定在工作温度设定值;
(8)PWM输出占空比连续低于设定的占空比是否达到设定的次数,如果否,则进入下一步;如果是,则判断为干烧状态,进入步骤(10);
(9)判断抽吸是否结束,如果否,则返回步骤(6);如果是,则进入下一步;
(10)关闭电压输出。
优选地,所述方法或步骤均通过在所述微控制器内预设计算机程序进行自动控制。
本发明的另一技术解决方案是,一种具有自动控温方法的电子雾化器,用于前述方法,包括雾化组件和电池组件,所述雾化组件包括用于加热待雾化液体的加热元件,所述电池组件包括电池、控制电路和启动开关,所述控制电路包括微控制器、与微控制器电连接的电压输出控制单元、温度检测单元,所述微控制器内设有PWM信号发生单元、参数存储单元,以及预设有计算机程序进行自动控制,所述PWM信号发生单元将PWM信号发送给电压输出控制单元,所述电压输出控制单元输出相应的PWM电压给所述加热元件。
有益效果
使用本发明的自动控温方法,可准确稳定地控制加热元件的工作温度,使电子雾化器可以快速产生均匀、稳定和恒温的汽雾或气溶胶,同时在加热元件供液不足时快速关断电压输出,防止电子雾化器发生干烧,提升用户使用体验。
附图说明
图1是本发明电子雾化器的控制电路的结构框图;
图2是本发明电子雾化器的自动控温方法的PWM占空比的变化曲线图;
图3是本发明电子雾化器的自动控温方法的加热温度变化曲线图;
图4是本发明电子雾化器的自动控温方法的具体操作步骤的流程图。
本发明的最佳实施方式
实施例:
本发明实施例的具有自动控温方法的电子雾化器,用于加热待雾化的液体以便产生雾化蒸汽或气溶胶,供用户进行抽吸。
如图1所示,本实施例的电子雾化器包括加热组件和电池组件(图中未示),其中,加热组件设有用于加热待雾化液体的加热元件1,加热元件1为具有正温度系数的热敏电阻,电池组件设有电池2、控制电路和启动开关3,控制电路包括微控制器4、与微控制器4电连接的电压输出控制单元5、温度检测单元(图中未示)。本实施例的温度检测单元包括阻值检测单元6和微控制器4内设有的温度转换单元41。微控制器4内还设有PWM信号发生单元42、参数存储单元43,以及预设有计算机程序进行自动控制,PWM信号发生单元42输出PWM信号给电压输出控制单元5,电压输出控制单元5据此输出PWM电压给加热元件1,阻值检测单元6用于检测加热元件1的电阻阻值,温度转换单元41将检测到的电阻阻值换算为实时工作温度。本实施例的启动开关3为一咪头,可检测到抽吸产生的气流时触发开关。
本实施例的电子雾化器,将加热元件1的电阻设定为正温度系数的热敏电阻,在抽吸的工作过程中,通过阻值检测单元6检测加热元件1的电阻值,并根据热敏电阻的阻值与温度的对应关系,温度转换单元41将检测到的电阻阻值转换获得加热元件1的实时工作温度。本实施例中,为保证电阻阻值检测的准确性,将加热元件1的电阻值检测时间设定在输出PWM电压的脉冲循环的非通电时间进行。
本发明实施例的一种电子雾化器的自动控温方法,在电子雾化器每次被抽吸的工作过程中,包括:
第一阶段、通过调节PWM的占空比来调节输出电压,使电子雾化器的加热元件快速加热升温到工作温度设定值;
第二阶段、在达到工作温度设定值后,通过调节PWM的占空比,将加热元件的实时工作温度维持在工作温度设定值;
防干烧阶段、在加热元件缺乏待雾化的液体时,通过降低PWM的占空比以将加热元件的工作温度维持在工作温度设定值,当PWM的占空比连续低于设定的占空比达到设定的次数时,关闭电子雾化器的输出电压。
如图2、图3所示,上述方法中:
第一阶段t1:本阶段t1即快速升温阶段,电子雾化器被抽吸时,启动开关3感应到抽吸的气流而打开控制电路,使电压输出控制单元5输出电压给加热元件1,加热元件1开始工作。此时,加热元件1温度较低,为尽快让待雾化的液体进行雾化使用户抽吸到汽雾或气溶胶,使电子雾化器的加热元件从初始温度T0快速加热升温到工作温度设定值T1,本实施例采取以较大功率且恒功率输出的方式使加热元件1进行加热,根据功率计算公式P=U²/R,为得到较大恒功率P,此时需要输出较高的稳定电压U,而电子雾化器的电池电压是较为固定的,本实施例通过PWM信号发生单元42调节到较高的PWM占空比对电池电压进行PWM调制输出(如图2所示t1阶段的PWM占空比曲线),电压输出控制单元5据此输出较高的PWM电压给加热元件1,加热元件1因此可快速升温直到工作温度设定值(如图3中t1阶段温度上升曲线)。为更清楚地了解该方法t1阶段的升温过程,如图2、图3所示,具体举例说明如下:用户每抽吸一口汽雾或气溶胶时,微控制器4以设定的恒功率输出方式计算出所需的PWM占空比为约80%的幅度,PWM信号发生单元42即产生具有该占空比的PWM信号,电压输出控制单元5据此输出PWM电压给加热元件1,加热元件1的加热温度即实时工作温度从环境温度T0=15℃在400毫秒内加热升温到工作温度设定值T1=225℃,此时相对应的加热元件1的阻值为1.25Ω。
第二阶段t2:本阶段t2即维持设定的工作温度阶段,当实时工作温度达到工作温度设定值T1后,立即通过PWM信号发生单元42降低PWM占空比以便降低输出电压(如图2所示t2阶段开始时快速下降的PWM占空比曲线)、减小输出功率给加热元件1,避免实时工作温度继续大幅上升,尔后将实时工作温度与工作温度设定值T1进行比较,将加热元件1的工作温度维持在工作温度设定值T1(如图3中t2阶段中温度恒定维持的曲线)。为此,可通过调节PWM信号发生单元42的PWM占空比输出较为稳定的PWM控制信号给电压输出控制单元5,电压输出控制单元5输出较为稳定的PWM电压给加热元件1(如图2所示t2阶段较为稳定的PWM占空比曲线),从而调节工作温度并将加热元件1的工作温度维持在工作温度设定值。为更清楚地了解该方法t2阶段的维持设定的工作温度过程,如图2、图3所示,具体举例说明如下:当实时工作温度达到工作温度设定值T1=225℃后,微控制器4以设定的恒温输出方式计算出所需的PWM占空比为约46%的幅度,约在50毫秒内,PWM信号发生单元42即将PWM信号的占空比从85%下降到46%,电压输出控制单元5据此输出相应的PWM电压给加热元件1,加热元件1的加热温度即实时工作温度即停止快速上升。然后再继续吸烟的过程中,微控制器4将实时工作温度与工作温度设定值T1进行比较,将加热元件1的工作温度维持在工作温度设定值T1=225℃。用户每抽吸一口汽雾或气溶胶的时间约为2000~3000毫秒。
防干烧阶段t3:此阶段t3为特殊情况的工作阶段,正常情况下不会发生,只有在加热元件1缺乏待雾化的液体即将发生干烧时发生。加热元件1缺乏待雾化的液体或供液不足时,加热元件1即将发生干烧,导致其工作温度必然有快速上升的趋势,此时,为避免其工作温度的快速上升,则需要快速降低输出功率,根据功率计算公式P=U²/R,即需要快速降低电压输出控制单元的输出电压U,而输出电压U通过PWM的占空比来调节,因此需要不断降低PWM的占空比。当PWM的占空比低于设定的占空比时,则表明输出功率已经降到很低也不能继续阻止工作温度的继续上升趋势,干烧状态已经发生,因此继续降低PWM占空比、继续降低输出功率已无必要,此时关闭电子雾化器的输出电压,防止干烧的进一步发生。为避免偶发一次占空比下降造成的误判,此时需要检测PWM的占空比连续低于设定的占空比达到设定的次数时,才关闭电子雾化器的输出电压。如图2、图3所示,具体举例说明如下:加热元件1即将发生干烧时,导致其实时工作温度必然有快速上升的趋势,微控制器4为抑制实时工作温度的上升,PWM信号发生单元42即将PWM信号的占空比从约42%往下下调,PWM的占空比低于设定的占空比40%,且在200毫秒的时间内,PWM的占空比连续下降,且连续低于设定的占空比40%达到设定的次数例如10次时,则微控制器4判断加热元件1已发生干烧,电压输出控制单元5关闭输出电压。
为使温度控制更加精准,根据检测到的实时温度与工作温度设定值的差值,
本实施例中采用PID控制方式调节PWM的占空比。
在其他实施例中,也可以通过在电子雾化器内设置温度传感器(图中未示)检测加热元件的工作温度。
如图4所示,本实施例电子雾化器的自动控温方法,具体操作步骤如下:
(1)抽吸开始;
(2)以恒功率输出的方式调节PWM的占空比,以便快速升温;
(3)检测加热元件阻值并转换为实时工作温度;
(4)实时工作温度与工作温度设定值进行比较;
(5)达到工作温度设定值后,立即降低PWM占空比避免实时工作温度大幅上升;
(6)根据实时工作温度与工作温度设定值的差值进行PID算法调整PWM输出占空比;
(7)将加热元件的实时工作温度稳定在工作温度设定值;
(8)PWM输出占空比连续低于设定的占空比是否达到设定的次数,如果否,则进入下一步;如果是,则判断为干烧状态,进入步骤(10);
(9)判断抽吸是否结束,如果否,则返回步骤(6);如果是,则进入下一步;
(10)关闭电压输出。
上述方法或步骤均通过在微控制器内预设计算机程序进行自动控制。
工业实用性
以上所述仅为本发明的较佳实施例,凡依本发明权利要求范围所做的均等变化与修饰,皆应属本发明权利要求的涵盖范围。

Claims (10)

  1. 一种电子雾化器的自动控温方法,其特征在于,在电子雾化器每次被抽吸的工作过程中,包括:
    第一阶段、通过调节PWM的占空比来调节输出电压,使电子雾化器的加热元件快速加热升温到工作温度设定值;
    第二阶段、在达到工作温度设定值后,通过调节PWM的占空比,将加热元件的实时工作温度维持在工作温度设定值。
  2. 根据权利要求1所述的电子雾化器的自动控温方法,其特征在于,还包括:
    防干烧阶段、在加热元件缺乏待雾化的液体时,通过降低PWM的占空比以将加热元件的工作温度维持在工作温度设定值,当PWM的占空比连续低于设定的占空比达到设定的次数时,关闭电子雾化器的输出电压。
  3. 根据权利要求1或2所述的电子雾化器的自动控温方法,其特征在于,在所述第一阶段,以恒功率输出的方式调节PWM的占空比。
  4. 根据权利要求1或2所述的电子雾化器的自动控温方法,其特征在于,根据检测到的实时温度与工作温度设定值的差值,采用PID控制方式调节PWM的占空比。
  5. 根据权利要求1或2所述的电子雾化器的自动控温方法,其特征在于,通过在电子雾化器内设置温度传感器检测加热元件的工作温度。
  6. 根据权利要求1或2所述的电子雾化器的自动控温方法,其特征在于,将加热元件的电阻设定为正温度系数的热敏电阻,通过检测加热元件的电阻值,并根据热敏电阻的阻值与温度的对应关系转换获得加热元件的工作温度。
  7. 根据权利要求6所述的电子雾化器的自动控温方法,其特征在于,将所述加热元件的电阻值检测时间设定在输出电压脉冲循环的非通电时间。
  8. 根据权利要求2所述的电子雾化器的自动控温方法,其特征在于,还包括具体操作步骤如下:
    (1)抽吸开始;
    (2)以恒功率输出的方式调节PWM的占空比,以便快速升温;
    (3)检测加热元件阻值并转换为实时工作温度;
    (4)实时工作温度与工作温度设定值进行比较;
    (5)达到工作温度设定值后,立即降低PWM占空比避免实时工作温度大幅上升;
    (6)根据实时工作温度与工作温度设定值的差值进行PID算法调整PWM输出占空比;
    (7)将加热元件的实时工作温度稳定在工作温度设定值;
    (8)PWM输出占空比连续低于设定的占空比是否达到设定的次数,如果否,则进入下一步;如果是,则判断为干烧状态,进入步骤(10);
    (9)判断抽吸是否结束,如果否,则返回步骤(6);如果是,则进入下一步;
    (10)关闭电压输出。
  9. 根据权利要求1-8任一项所述的电子雾化器的自动控温方法,其特征在于,所述方法或步骤均通过在所述微控制器内预设计算机程序进行自动控制。
  10. 一种具有自动控温方法的电子雾化器,其特征在于,用于实现权利要求1-9任一项所述方法,包括雾化组件和电池组件,所述雾化组件包括用于加热待雾化液体的加热元件,所述电池组件包括电池、控制电路和启动开关,所述控制电路包括微控制器、与微控制器电连接的电压输出控制单元、温度检测单元,所述微控制器内设有PWM信号发生单元、参数存储单元,以及预设有计算机程序进行自动控制,所述PWM信号发生单元将PWM信号发送给电压输出控制单元,所述电压输出控制单元输出相应的PWM电压给所述加热元件。
PCT/CN2021/104879 2020-09-11 2021-07-07 电子雾化器的自动控温方法及具有该方法的电子雾化器 WO2022052612A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010952847.5A CN112189907A (zh) 2020-09-11 2020-09-11 电子雾化器的自动控温方法及具有该方法的电子雾化器
CN202010952847.5 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022052612A1 true WO2022052612A1 (zh) 2022-03-17

Family

ID=74014725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104879 WO2022052612A1 (zh) 2020-09-11 2021-07-07 电子雾化器的自动控温方法及具有该方法的电子雾化器

Country Status (2)

Country Link
CN (1) CN112189907A (zh)
WO (1) WO2022052612A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116649637A (zh) * 2023-06-30 2023-08-29 广东智安芯科技有限公司 基于微控制器实现的负载恒功率输出系统及电子烟

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112189907A (zh) * 2020-09-11 2021-01-08 惠州市新泓威科技有限公司 电子雾化器的自动控温方法及具有该方法的电子雾化器
CN112107035A (zh) * 2020-09-11 2020-12-22 惠州市新泓威科技有限公司 恒温控制的电子雾化器
WO2022193161A1 (zh) * 2021-03-17 2022-09-22 深圳麦克韦尔科技有限公司 气溶胶产生装置、干烧检测方法及计算机程序产品
CN113854638A (zh) * 2021-06-18 2021-12-31 北京温致科技有限公司 电子雾化器
CN113519918A (zh) * 2021-06-25 2021-10-22 深圳麦时科技有限公司 气溶胶形成装置及其抽吸检测方法、计算机存储介质
CN113933204A (zh) * 2021-10-14 2022-01-14 深圳市艾溹技术研究有限公司 电子雾化器及其烟雾水分含量测定方法
CN114340054B (zh) * 2021-12-28 2024-01-30 江苏精微特电子股份有限公司 一种ptc加热板及其控制方法
CN116763009A (zh) 2022-03-11 2023-09-19 深圳市合元科技有限公司 电子雾化装置及电子雾化装置的控制方法
CN114838506B (zh) * 2022-05-06 2024-06-14 珠海格力电器股份有限公司 一种防冻及防干烧装置、热水器及其控制方法
CN117717196A (zh) * 2022-09-19 2024-03-19 深圳市合元科技有限公司 电子雾化装置及其控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041654A (ja) * 1998-08-04 2000-02-15 Japan Tobacco Inc 電気式香味生成物品加熱制御装置
CN109247621A (zh) * 2018-09-07 2019-01-22 深圳市丽福科技有限责任公司 基于电子烟的加热温度控制方法及装置、电子烟设备
CN109805451A (zh) * 2018-12-29 2019-05-28 惠州市新泓威科技有限公司 恒功率防干烧电子烟及其控制方法
CN110313643A (zh) * 2019-07-03 2019-10-11 深圳瀚星翔科技有限公司 电子烟及电子烟加热的控制方法
CN110584204A (zh) * 2019-07-30 2019-12-20 深圳麦克韦尔科技有限公司 电子雾化装置的加热控制方法、控制装置及电子雾化装置
CN110946338A (zh) * 2019-12-18 2020-04-03 惠州市沛格斯科技有限公司 电子烟具的加热方法、装置、存储介质及电子烟具
CN111436670A (zh) * 2020-04-24 2020-07-24 云南中烟工业有限责任公司 一种智能加热不燃烧电子烟及其使用方法
CN111513365A (zh) * 2020-04-02 2020-08-11 深圳麦时科技有限公司 加热式气溶胶产生装置及方法
CN112189907A (zh) * 2020-09-11 2021-01-08 惠州市新泓威科技有限公司 电子雾化器的自动控温方法及具有该方法的电子雾化器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041654A (ja) * 1998-08-04 2000-02-15 Japan Tobacco Inc 電気式香味生成物品加熱制御装置
CN109247621A (zh) * 2018-09-07 2019-01-22 深圳市丽福科技有限责任公司 基于电子烟的加热温度控制方法及装置、电子烟设备
CN109805451A (zh) * 2018-12-29 2019-05-28 惠州市新泓威科技有限公司 恒功率防干烧电子烟及其控制方法
CN110313643A (zh) * 2019-07-03 2019-10-11 深圳瀚星翔科技有限公司 电子烟及电子烟加热的控制方法
CN110584204A (zh) * 2019-07-30 2019-12-20 深圳麦克韦尔科技有限公司 电子雾化装置的加热控制方法、控制装置及电子雾化装置
CN110946338A (zh) * 2019-12-18 2020-04-03 惠州市沛格斯科技有限公司 电子烟具的加热方法、装置、存储介质及电子烟具
CN111513365A (zh) * 2020-04-02 2020-08-11 深圳麦时科技有限公司 加热式气溶胶产生装置及方法
CN111436670A (zh) * 2020-04-24 2020-07-24 云南中烟工业有限责任公司 一种智能加热不燃烧电子烟及其使用方法
CN112189907A (zh) * 2020-09-11 2021-01-08 惠州市新泓威科技有限公司 电子雾化器的自动控温方法及具有该方法的电子雾化器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116649637A (zh) * 2023-06-30 2023-08-29 广东智安芯科技有限公司 基于微控制器实现的负载恒功率输出系统及电子烟

Also Published As

Publication number Publication date
CN112189907A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2022052612A1 (zh) 电子雾化器的自动控温方法及具有该方法的电子雾化器
WO2022052611A1 (zh) 恒温控制的电子雾化器
US9603386B2 (en) Method and device for heating control of an electronic cigarette
WO2020134428A1 (zh) 恒功率防干烧电子烟及其控制方法
CN104950953A (zh) 一种电子烟及其温度控制方法
US20170095001A1 (en) Electronic Cigarette and Control Method Therefor
WO2020038322A1 (zh) 电子烟的温度控制方法、电子烟及计算机存储介质
WO2016155003A1 (zh) 一种电子烟控制电路以及电子烟雾化控制方法
WO2020038183A1 (zh) 具有模拟气压传感器的电子烟及其控制方法
CN113519918A (zh) 气溶胶形成装置及其抽吸检测方法、计算机存储介质
WO2020199634A1 (zh) 可控制摄入剂量的雾化装置及其控制方法
WO2020038184A1 (zh) 具有双气压传感器的电子烟及其控制方法
WO2021184964A1 (zh) 通过触控压力传感器控制启动和调节功率的电子烟及其控制方法
WO2021093778A1 (zh) 气溶胶产生装置及其控制方法
JP7344323B2 (ja) 霧化器の動作を制御するための装置及び霧化作業方法
WO2016050247A1 (en) Electronic nicotine delivery system
CN106102487A (zh) 一种电子烟及其烟雾量控制方法
WO2022028098A1 (zh) 烘烤烟具的自动控温方法及其烘烤烟具
WO2019218893A1 (zh) 电子烟控制方法、电子烟及计算机存储介质
WO2019113836A1 (zh) 气溶胶发生装置及其控制方法、应用于气溶胶发生装置的微处理器
WO2022028091A1 (zh) 加热温度可控制的烘烤烟具
WO2020248475A1 (zh) 一种烟草制品的加热不燃烧装置、方法及系统
CN213663687U (zh) 恒温控制的电子雾化器
CN112841748B (zh) 一种用于电子烟的控制方法及电子烟
WO2021213465A1 (zh) 气溶胶生成装置及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC DATED 28.06.2023 (EPO FORM 1205A)

122 Ep: pct application non-entry in european phase

Ref document number: 21865668

Country of ref document: EP

Kind code of ref document: A1