WO2022050190A1 - 光ファイバ母材の製造方法及び光ファイバ母材 - Google Patents

光ファイバ母材の製造方法及び光ファイバ母材 Download PDF

Info

Publication number
WO2022050190A1
WO2022050190A1 PCT/JP2021/031564 JP2021031564W WO2022050190A1 WO 2022050190 A1 WO2022050190 A1 WO 2022050190A1 JP 2021031564 W JP2021031564 W JP 2021031564W WO 2022050190 A1 WO2022050190 A1 WO 2022050190A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
base material
fiber base
glass
core portion
Prior art date
Application number
PCT/JP2021/031564
Other languages
English (en)
French (fr)
Inventor
洋宇 佐久間
雄揮 川口
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN202180052380.1A priority Critical patent/CN115989197A/zh
Priority to US18/019,538 priority patent/US20230322605A1/en
Priority to JP2022546292A priority patent/JPWO2022050190A1/ja
Publication of WO2022050190A1 publication Critical patent/WO2022050190A1/ja
Priority to DKPA202370061A priority patent/DK202370061A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • This disclosure relates to a method for manufacturing an optical fiber base material and an optical fiber base material.
  • the core made of silica-based glass contains an alkali metal element or an alkaline earth metal element, the viscosity of the core is reduced when the optical fiber base material is drawn to manufacture the optical fiber, and the glass is regenerated. The sequence is promoted. Therefore, the transmission loss due to the ray scattering of the optical fiber is reduced. As a result, the transmission loss can be reduced.
  • Patent Document 1 Patent Document 2, and Patent Document 3 describe a method of adding an alkali metal element or an alkaline earth metal element to the core portion of an optical fiber base material by a diffusion method.
  • the method for producing an optical fiber base material of the present disclosure is a method for producing an optical fiber base material made of silica-based glass, which has a core portion and a refractive index lower than the refractive index of the core portion. Includes forming a clad portion that surrounds the core portion.
  • an alkaline element group composed of an alkali metal element and an alkaline earth metal element is added to the inner surface of a glass pipe made of silica-based glass, and after the addition, the glass pipe and the glass pipe are formed. It includes integrating with a glass rod arranged in a glass pipe to form an integrated rod.
  • the optical fiber base material of the present disclosure is an optical fiber base material made of silica-based glass, and has a core portion containing an alkali element group consisting of an alkali metal element and an alkaline earth metal element, and has a lower refractive index than the core portion. It has a refractive index and includes a clad portion that surrounds the core portion.
  • the core portion includes a region having a chlorine mass fraction lower than the chlorine mass fraction on the central axis of the core portion.
  • the mass fraction of the alkaline element group in the core portion has the maximum value other than the central axis.
  • FIG. 1 is a flowchart showing a method for manufacturing an optical fiber according to an embodiment.
  • FIG. 2 is a cross-sectional view of the optical fiber base material according to the embodiment.
  • FIG. 3 is a graph showing the alkali element concentration distribution and the chlorine concentration distribution in the core portion.
  • Patent Document 1 Patent Document 2, and Patent Document 3
  • an alkali metal element or an alkaline earth metal element is added to the inner surface of a glass pipe, and the glass pipe is reduced in diameter, etched, and then solidified.
  • a glass body that becomes the core portion of the optical fiber base material is manufactured.
  • the inside of the glass pipe is hollow, the volume (glass amount) of the glass pipe is smaller than that of a glass cylinder having the same outer diameter. Therefore, productivity is low.
  • An object of the present disclosure is to provide a method for manufacturing an optical fiber base material capable of improving productivity while suppressing transmission loss.
  • the method for manufacturing an optical fiber base material according to an embodiment of the present disclosure is a method for manufacturing an optical fiber base material made of silica-based glass, in which a core portion is formed and a refraction lower than the refractive index of the core portion is performed. It has a rate and includes forming a clad portion that surrounds the core portion.
  • an alkaline element group composed of an alkali metal element and an alkaline earth metal element is added to the inner surface of a glass pipe made of silica-based glass, and after the addition, the glass pipe and the glass pipe are formed. It includes integrating with a glass rod arranged in a glass pipe to form an integrated rod.
  • an alkaline element group is added to the inner surface of a glass pipe, so that transmission loss can be reduced. Further, since the glass pipe and the glass rod arranged in the glass pipe are integrated, the productivity can be improved as compared with the case where the glass pipe is solidified to form a glass body to be a core portion.
  • Forming the core portion may further include reducing the diameter of the glass pipe between adding and integrating. If the diameter of the glass rod used is significantly different from the hole diameter of the glass pipe, a non-circle is likely to occur in the core portion after integration. In this case, the diameter reduction allows the hole diameter of the glass pipe to be close to the diameter of the glass lot, so that non-circle formation in the core portion is suppressed.
  • Forming the core portion may further include etching the inner surface of the glass pipe between adding and integrating. In this case, impurities added to the inner surface of the glass pipe together with the alkaline element group can be removed.
  • the average value of the mass fraction of chlorine in the glass rod may be 20 ppm or more and 2000 ppm or less.
  • the average value of the mass fraction of chlorine in the glass pipe may be 20 ppm or more and 2000 ppm or less.
  • the average value of the mass fraction of fluorine in the glass rod may be 200 ppm or more and 5000 ppm or less.
  • the abnormal portion is a glass crystal formed by, for example, a foreign substance or a compound of an alkaline element group and chlorine or fluorine, and refers to a portion that becomes a defective portion when it becomes an optical fiber later.
  • the average value of the mass fraction of fluorine in the glass pipe may be 200 ppm or more and 5000 ppm or less. In this case, it is possible to suppress the abnormal number of copies of the optical fiber base material.
  • the glass rod includes an outer peripheral surface of the glass rod and has an outer peripheral portion having a thickness of 0.5 mm, and the average value of the mass fraction of chlorine in the outer peripheral portion is the average value of the mass fraction of chlorine in the entire glass rod. May be lower than. In this case, it is possible to suppress the abnormal number of copies of the optical fiber base material.
  • the average value of the mass fraction of chlorine in the outer peripheral portion may be 20 ppm or more and 2000 ppm or less. In this case, it is possible to suppress the abnormal number of copies of the optical fiber base material.
  • Forming the core portion may further include imparting a glass layer having a higher refractive index than the clad portion around the integrated rod.
  • the degree of freedom in designing optical characteristics such as effective cross-sectional area (Aeff) or cutoff wavelength can be increased.
  • the average value of the mass fraction of chlorine in the glass rod may be 100 ppm or more and 2000 ppm or less. In this case, when it is 100 ppm or more, it is possible to suppress an increase in loss due to a glass defect and suppress a transmission loss. If it is higher than 2000 ppm, the frequency of occurrence of base metal abnormality increases and the yield drops.
  • the average mass fraction of the alkaline element group contained in the integrated rod may be 0.2 ppm or more and 300 ppm or less. In this case, transmission loss can be suppressed.
  • the mass fraction of the alkaline element group in the integrated rod may have a maximum value other than the central axis of the integrated rod. This is because the alkaline element group is arranged on the outer peripheral portion of the glass rod immediately after the integration. By having the maximum value other than the central axis, the maximum value can be suppressed to a lower value and defects such as crystallization can be suppressed as compared with the case where the same total amount is added so as to have the maximum mass fraction on the central axis.
  • the core portion may contain any one of sodium, potassium, rubidium, cesium, and calcium as an alkaline element group. In this case, transmission loss can be suppressed.
  • the optical fiber base material according to the embodiment of the present disclosure is an optical fiber base material made of silica-based glass, and has a core portion including an alkali element group composed of an alkali metal element and an alkaline earth metal element, and a core portion. It has a refractive index lower than that of the refractive index, and includes a clad portion that surrounds the core portion.
  • the core portion includes a region having a chlorine mass fraction lower than the chlorine mass fraction on the central axis of the core portion.
  • the mass fraction of the alkaline element group in the core portion has the maximum value other than the central axis.
  • the mass fraction of the alkaline element group in the core portion may have a maximum value other than the central axis in the region within 50% of the radius of the core portion.
  • the mass fraction of the alkaline element group in the core portion may have a maximum value other than the central axis in the region within 30% of the radius of the core portion.
  • optical fiber base material With this optical fiber base material, it is possible to achieve both a small number of abnormal parts and a reduction in glass defect loss by increasing the average chlorine concentration in the core part.
  • FIG. 1 is a flowchart illustrating a method for manufacturing an optical fiber according to the present embodiment.
  • the optical fiber according to this embodiment includes a preparation process S1, an addition process S2, a diameter reduction process S3, an etching process S4, an integration process S5, a drawing grinding process S6, a collapse process S7, an OVD (Outside Vapor Deposition) process S8, and a wire. It is manufactured through the pulling step S9 in order.
  • the optical fiber base material 1 (see FIG. 2) according to the present embodiment has a core portion forming step S10 for forming a core portion 10 (see FIG. 2) made of silica (quartz) glass and a clad portion surrounding the core portion 10. It is manufactured through the clad portion forming step S20 for forming 20 in order. That is, the method for manufacturing the optical fiber base material 1 includes a core portion forming step S10 and a clad portion forming step S20.
  • the core portion forming step S10 includes a preparation step S1, an addition step S2, a diameter reduction step S3, an etching step S4, an integration step S5, and a drawing grinding step S6.
  • the clad portion forming step S20 includes a collapse step S7 and an OVD step S8.
  • the preparation step S1 is a step of preparing a glass pipe and a glass rod for forming the core portion 10.
  • the preparation step S1 is carried out before the addition step S2, but the glass rod may be prepared by the integration step S5. That is, the preparation step S1 may include a glass pipe preparation step performed before the addition step S2 and a glass rod preparation step performed before the integration step S5.
  • the glass pipe is made of silica-based glass.
  • the glass pipe is a glass pipe in which an alkaline element group should be diffused as a dopant.
  • the alkaline element group is a general term for alkali metal elements and alkaline earth metal elements. That is, the alkaline element group consists of an alkali metal element and an alkaline earth metal element.
  • the outer diameter (2d) of the glass pipe is 30 mm or more and 50 mm or less.
  • the inner diameter (2i) of the glass pipe is 10 mm or more and 30 mm or less.
  • the glass rod is made of silica-based glass.
  • the glass rod is synthesized by, for example, a VAD (Vapor Phase Axial Deposition) method. Processing such as stretching and grinding may be performed in order to make the diameter of the glass rod a desired value.
  • VAD Vapor Phase Axial Deposition
  • Processing such as stretching and grinding may be performed in order to make the diameter of the glass rod a desired value.
  • the glass rod is integrated with the glass pipe in the integration step S5 and is used to form the integrated rod.
  • the diameter of the glass rod is 3 mm or more and 15 mm or less.
  • Each of the glass pipe and glass rod contains a certain mass fraction of chlorine and fluorine.
  • the mass fraction of other dopants and impurities contained in each of the glass pipe and the glass rod is 10 ppm or less.
  • the "mass fraction” is the ratio of the mass of the element of interest to the mass of the entire object, and is expressed as (mass of the element of interest) / (total mass).
  • the mass fraction is also referred to as "concentration”.
  • the average chlorine concentration of the glass pipe is 20 ppm or more and 2000 ppm or less.
  • the refractive index of the core portion 10 can be made higher than the refractive index of the clad portion 20.
  • transmission loss can be suppressed.
  • the average fluorine concentration of the glass pipe is 200 ppm or more and 5000 ppm or less. Thereby, the abnormal number of copies of the optical fiber base material 1 can be suppressed.
  • the average chlorine concentration of the glass rod is 20 ppm or more and 2000 ppm or less.
  • the refractive index of the core portion 10 can be made higher than the refractive index of the clad portion 20.
  • transmission loss can be suppressed.
  • the average fluorine concentration of the glass rod is 200 ppm or more and 5000 ppm or less. Thereby, the abnormal number of copies of the optical fiber base material 1 can be suppressed.
  • the glass rod includes the outer peripheral surface of the glass rod and has an outer peripheral portion having a thickness of 0.5 mm.
  • the outer peripheral portion is, for example, a portion of 70% or more and 100% or less or 90% or more and 100% or less of the radius of the glass rod.
  • the average chlorine concentration on the outer circumference is lower than the average chlorine concentration on the entire glass rod.
  • the average chlorine concentration in the outer peripheral portion is 20 ppm or more and 2000 ppm or less.
  • the average concentration is, for example, the concentration represented by the following formula in the case of the average chlorine concentration.
  • Cl (r) represents the local chlorine concentration at the position of the radius r.
  • i represents the inner radius of the glass pipe.
  • d represents the outer radius of the glass pipe.
  • Fluorine is calculated in the same way.
  • the local concentration is measured by an electron probe microanalyzer (EPMA) as a concentration at each position along a straight line passing through a central position on an end face of a glass pipe and a glass rod.
  • EPMA electron probe microanalyzer
  • the conditions for measurement by EPMA are, for example, an acceleration voltage of 20 kV, a probe beam diameter of 0.5 ⁇ m or more and 1 ⁇ m or less, and a measurement interval of 100 nm or less.
  • the addition step S2 is a step of adding an alkaline element group to the inner surface of a glass pipe made of silica-based glass.
  • potassium (K) element is added as a dopant of the alkaline element group
  • potassium bromide (KBr) of 6 g or more and 20 g or less is used as a raw material.
  • KBr potassium bromide
  • one or more of KBr, potassium iodide (KI), rubidium bromide (RbBr), rubidium iodide (RbI) and the like may be used as a raw material.
  • the raw material is heated to a temperature of 700 ° C. or higher and 850 ° C. or lower by the first external heat source to generate raw material steam.
  • the first external heat source is, for example, an electric furnace, which is provided for heating the raw material.
  • the glass pipe is heated from the outside by the second external heat source while introducing the generated raw material vapor into the inside of the glass pipe together with the carrier gas composed of oxygen.
  • the second external heat source is, for example, an oxyhydrogen burner, an induction furnace, or a resistance furnace, and is provided for heating the glass pipe.
  • the flow rate of the carrier gas is 1 SLM (1 liter / min in terms of standard state ( 0 ° C., 1.01 ⁇ 105 Pa)).
  • the glass pipe is heated by moving the second external heat source along the longitudinal direction of the glass pipe.
  • traverse the second external heat source at a speed of 30 mm / min or more and 60 mm / min or less so that the temperature of the outer surface of the glass pipe becomes 1400 ° C or more and 2000 ° C or less, for a total of 8 turns or more and 15 It takes place below the turn.
  • a group of alkaline elements such as K element is diffusely added to the inner surface of the glass pipe.
  • the diameter reduction step S3 is a step of reducing the diameter of the glass pipe to which the alkaline element group is added by the addition step S2.
  • the diameter reduction step S3 is performed between the addition step S2 and the integration step S5.
  • the glass pipe is heated from the outside by the second external heat source while oxygen is flowing inside the glass pipe at 0.5 SLM or more and 1.0 SLM or less.
  • the glass pipe is heated by moving the second external heat source along the longitudinal direction of the glass pipe.
  • the heating of the glass pipe is performed in a total of 6 turns or more and 10 turns or less by traversing the second external heat source so that the outer surface of the glass pipe becomes 1300 ° C. or higher and 2000 ° C. or lower.
  • the diameter of the glass pipe is reduced until the inner diameter (inner diameter) is 1 mm or more and 3 mm or less larger than the diameter of the glass rod to be integrated in the integration step S5.
  • the etching step S4 is a step of etching the inner surface of the glass pipe after the diameter reduction step S3.
  • the etching step S4 is performed between the addition step S2 and the integration step S5.
  • the etching step S4 while introducing a mixed gas of SF 6 (0.2 SLM or more and 0.4 SLM or less) and chlorine (0.5 SLM or more and 1.0 SLM or less) into the inside of the glass pipe, the glass is introduced from the outside by the second external heat source.
  • the pipe is heated for gas phase etching. By doing so, the inner surface of the glass pipe containing a high concentration of impurities added together with the target dopant can be scraped, and the impurities can be removed.
  • the glass pipe is heated by moving the second external heat source along the longitudinal direction of the glass pipe.
  • the heating of the glass pipe is performed in a total of 1 turn or more and 5 turns or less by traversing the second external heat source so that the outer surface of the glass pipe becomes 1300 ° C. or higher and 2000 ° C. or lower.
  • the integration step S5 is a step of integrating the glass pipe and the glass rod arranged in the glass pipe after the etching step S4.
  • the glass rod is inserted into the glass pipe and fixed to the center of the glass pipe.
  • a mixed gas of oxygen 0.1 SLM or more and 0.5 SLM or less
  • He 0.5 SLM or more and 1.0 SLM or less
  • the surface temperature is set to 2000 or more and 2300 ° C. or less, and the glass pipe and the glass rod are integrated. As a result, an integrated rod in which the glass pipe and the glass rod are integrated is formed.
  • the diameter of the integrated rod is 20 mm or more and 40 mm or less.
  • the average mass fraction of the alkaline element group contained in the integrated rod is 0.2 ppm or more and 300 ppm or less. As a result, transmission loss can be suppressed.
  • the integrated rod is stretched to have a diameter of 20 mm or more and 25 mm or less, and the outer peripheral portion of the integrated rod is further ground to have a diameter of 15 mm or more and 20 mm or less.
  • a core rod constituting the core portion 10 (see FIG. 2) of the optical fiber base material 1 can be obtained.
  • the core portion forming step S10 may further include a glass layer applying step of applying a glass layer around the integrated rod after the drawing grinding step S6.
  • the glass layer and the integrated rod are collectively used as the core rod constituting the core portion 10 (see FIG. 2) of the optical fiber base material 1.
  • the glass layer is applied by a known method such as an OVD method or a collapse method.
  • the glass layer has a higher refractive index than the clad portion 20 (first clad portion 21 and second clad portion 22; see FIG. 2).
  • the glass layer does not contain alkaline elements.
  • the glass layer contains chlorine.
  • the average chlorine concentration of the glass layer is 100 ppm or more and 2000 ppm or less.
  • the first clad portion 21 (see FIG. 2) is provided on the outside of the core portion 10.
  • a rod-in-collapsing method is used in which the core portion 10 is inserted inside a glass pipe of silica-based glass to which fluorine is added, and the two are heated and integrated by an external heat source.
  • the difference in the refractive index standardized by the refractive index of the pure silica glass between the core portion 10 and the first clad portion 21 is about 0.34% at the maximum.
  • a rod in which the core portion 10 and the first clad portion 21 are integrated is stretched to have a predetermined diameter, and then a second clad portion 22 (see FIG. 2) containing fluorine is attached to the outside of the rod.
  • the optical fiber base material 1 is manufactured by synthesizing by the OVD method.
  • an optical fiber can be obtained by drawing the optical fiber base material 1.
  • the drawing speed is 800 m / min or more and 2300 m / min or less, and the drawing tension is, for example, 0.5 N.
  • FIG. 2 is a cross-sectional view of the optical fiber base material according to the present embodiment.
  • the optical fiber base material 1 includes a core portion 10 including a central axis C and a clad portion 20.
  • the core portion 10 contains an alkaline element group, chlorine, and fluorine. This reduces the viscosity of the core during drawing and promotes the rearrangement of the glass. Therefore, as a result of reducing the transmission loss due to the ray scattering of the optical fiber, the transmission loss can be reduced.
  • the core portion 10 contains any one of sodium, potassium, rubidium, cesium, and calcium as an alkaline element group.
  • the average concentration of the alkaline element group in the core portion 10 is 3 ppm or more and 200 ppm or less.
  • the average concentration of chlorine in the core portion 10 is 30 ppm or more and 2000 ppm or less.
  • the average concentration of fluorine in the core portion 10 is 500 ppm or more and 5000 ppm or less.
  • the clad portion 20 is provided on the outside of the core portion 10 and surrounds the core portion 10.
  • the clad portion 20 has a refractive index lower than that of the core portion 19.
  • the clad portion 20 has a first clad portion 21 and a second clad portion 22.
  • the first clad portion 21 is provided on the outside of the core portion 10 and surrounds the core portion 10.
  • the first clad portion 21 is made of silica-based glass.
  • the first clad portion 21 contains fluorine.
  • the difference in the refractive index standardized by the refractive index of the pure silica glass between the core portion 10 and the first clad portion 21 is about 0.34% at the maximum.
  • the second clad portion 22 is provided on the outside of the first clad portion 21 and surrounds the first clad portion 21.
  • the second clad portion 22 is made of silica-based glass.
  • the second clad portion 22 contains fluorine.
  • the difference in the refractive index standardized by the refractive index of the pure silica glass between the first clad portion 21 and the second clad portion 22 is about 0.05% to 0.2%.
  • FIG. 3 is a graph showing an example of the alkali element concentration distribution and the chlorine concentration distribution in the core portion.
  • the horizontal axis indicates the distance (radial position) of the core portion 10 from the central axis C.
  • the vertical axis shows the alkali element concentration or the chlorine concentration.
  • the lowest part of the chlorine concentration distribution is the boundary between the glass rod and the glass pipe. On the pipe side of the boundary, there is a region to which the alkaline element group is added.
  • the chlorine concentration in the central part of the rod to which the alkaline element group is not added is high, and the other chlorine concentration including the pipe part is lower than that in the central part of the rod for the purpose of suppressing crystallization and glass defects at the same time. It has become a concentration.
  • the concentration of the alkaline element group in the core portion 10 has the maximum value other than the central axis C.
  • the alkaline element group in the core portion 10 is added to the inner surface of the glass pipe in the addition step S2. Therefore, the position of the maximum value is the position corresponding to the inner peripheral portion of the glass pipe used in the integration step S5.
  • the concentration of the alkaline element group in the core portion 10 has a maximum value at a position other than the central axis C in a region within 50% of the radius of the core portion 10.
  • the concentration of the alkaline element group in the core portion 10 may have a maximum value at a position other than the central axis C in a region within 30% of the radius of the core portion 10.
  • Table 1 shows the glass rods used in the integration step S5 for the prototype examples 1 to 8 of the integrated rod (integrated rod immediately after the integration step S5 and before the drawing grinding step S6) manufactured by the above-mentioned manufacturing method. It is a table summarizing the average chlorine concentration of the outer peripheral portion having a thickness of 0.5 mm and the state (abnormal number of copies) after integration.
  • the glass rod comes into contact with the alkaline element group added to the inner peripheral surface of the glass pipe. Therefore, if the chlorine concentration in the outer peripheral portion of the glass rod is high, the occurrence rate of defects (abnormal portions) increases. When the mass fraction of chlorine reaches 2500 ppm, the rate of occurrence of defects increases remarkably, and the number of abnormal copies increases.
  • potassium (K) element is used as a dopant of the alkaline element group in the addition step S2, and the local K concentration added to the inner peripheral surface of the glass pipe is unified to the range of 100 ppm or more and 200 ppm or less. did. Therefore, it is considered that the increase in the abnormal number of copies is not caused by the influence of the K concentration but by the chlorine concentration in the outer peripheral portion of the glass rod.
  • Table 2 is a table summarizing various characteristics of the prototype examples 9 to 13 of the integrated rod manufactured by the above-mentioned manufacturing method.
  • the sizes and compositions other than the integrated rods were made equal to each other. It can be seen that the transmission loss is reduced by increasing the average chlorine concentration of the integrated rod. It is considered that this is because chlorine contained in the integrated rod can repair the structural defect of the glass generated at the time of drawing and reduce the transmission loss due to the defect. Further, in the prototype examples 9 to 13, the average chlorine concentration of the outer peripheral portion having a thickness of 0.5 mm of the glass rod is unified to about 1000 ppm, so that the number of abnormal parts after the integration is suppressed to a small number.
  • Table 3 is a table summarizing various characteristics of the prototype examples 14 to 19 of the integrated rod manufactured by the above-mentioned manufacturing method. It can be seen that when the average fluorine concentration of the glass rod is increased, the base metal abnormality (abnormal number of copies) increases. Therefore, the average fluorine concentration of the glass rod is preferably 7,000 ppm or less, more preferably 5500 ppm or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Glass Compositions (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

光ファイバ母材の製造方法は、シリカ系ガラスからなる光ファイバ母材の製造方法であって、コア部を形成することと、コア部の屈折率よりも低い屈折率を有し、コア部を取り囲むクラッド部を形成することと、を含み、コア部を形成することは、シリカ系ガラスからなるガラスパイプの内表面に、アルカリ金属元素及びアルカリ土類金属元素からなるアルカリ元素群を添加することと、添加することの後、ガラスパイプと、ガラスパイプ内に配置されたガラスロッドとを一体化し一体化ロッドを形成することと、を含む。

Description

光ファイバ母材の製造方法及び光ファイバ母材
 本出願は、2020年9月3日出願の日本出願第2020-148202号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 本開示は、光ファイバ母材の製造方法及び光ファイバ母材に関する。
 シリカ系ガラスからなるコア部がアルカリ金属元素又はアルカリ土類金属元素を含んでいると、光ファイバ母材を線引して光ファイバを製造する際にコアの粘性が低減されるともにガラスの再配列が促進される。よって、光ファイバのレイリ散乱起因の伝送損失が低減される。その結果、伝送損失を下げることができる。
 特許文献1、特許文献2、及び特許文献3には、拡散法により光ファイバ母材のコア部にアルカリ金属元素又はアルカリ土類金属元素を添加する方法が記載されている。
国際公開第2004/020357号 国際公開第2005/021455号 国際公開第2013/111470号
 本開示の光ファイバ母材の製造方法は、シリカ系ガラスからなる光ファイバ母材の製造方法であって、コア部を形成することと、コア部の屈折率よりも低い屈折率を有し、コア部を取り囲むクラッド部を形成することと、を含む。コア部を形成することは、シリカ系ガラスからなるガラスパイプの内表面に、アルカリ金属元素及びアルカリ土類金属元素からなるアルカリ元素群を添加することと、添加することの後、ガラスパイプと、ガラスパイプ内に配置されたガラスロッドとを一体化し一体化ロッドを形成することと、を含む。
 本開示の光ファイバ母材は、シリカ系ガラスからなる光ファイバ母材であって、アルカリ金属元素及びアルカリ土類金属元素からなるアルカリ元素群を含むコア部と、コア部の屈折率よりも低い屈折率を有し、コア部を取り囲むクラッド部と、を備える。コア部は、コア部の中心軸上における塩素の質量分率よりも低い塩素の質量分率を有する領域を含む。コア部におけるアルカリ元素群の質量分率は、中心軸以外において最大値を有する。
図1は、実施形態に係る光ファイバの製造方法を示すフローチャートである。 図2は、実施形態に係る光ファイバ母材の断面図である。 図3は、コア部におけるアルカリ元素濃度分布及び塩素濃度分布を示すグラフである。
[本開示が解決しようとする課題]
 特許文献1、特許文献2、及び特許文献3に記載の方法では、ガラスパイプの内表面にアルカリ金属元素又はアルカリ土類金属元素を添加し、縮径及びエッチング等を行った後に中実化することにより、光ファイバ母材のコア部となるガラス体を作製している。しかしながら、ガラスパイプの内部は空洞であるため、ガラスパイプの体積(ガラス量)は、同じ外径のガラス円柱体と比べて少ない。よって、生産性が低い。
 本開示は、伝送損失を抑制しながら、生産性を向上可能な光ファイバ母材の製造方法を提供することを目的とする。
[本開示の効果]
 本開示によれば、伝送損失を抑制しながら、生産性を向上可能な光ファイバ母材の製造方法及び光ファイバ母材を提供することができる。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。本開示の一実施形態に係る光ファイバ母材の製造方法は、シリカ系ガラスからなる光ファイバ母材の製造方法であって、コア部を形成することと、コア部の屈折率よりも低い屈折率を有し、コア部を取り囲むクラッド部を形成することと、を含む。コア部を形成することは、シリカ系ガラスからなるガラスパイプの内表面に、アルカリ金属元素及びアルカリ土類金属元素からなるアルカリ元素群を添加することと、添加することの後、ガラスパイプと、ガラスパイプ内に配置されたガラスロッドとを一体化し一体化ロッドを形成することと、を含む。
 この光ファイバ母材の製造方法では、ガラスパイプの内面にアルカリ元素群を添加するので、伝送損失を下げることができる。また、ガラスパイプと、ガラスパイプ内に配置されたガラスロッドとを一体化するので、ガラスパイプを中実化してコア部となるガラス体を形成する場合に比べて、生産性を向上できる。
 コア部を形成することは、添加することと一体化することとの間に、ガラスパイプを縮径することを更に含んでもよい。使用するガラスロッドの直径がガラスパイプの孔径と大きく異なると、一体化後のコア部に非円が生じやすい。この場合、縮径により、ガラスパイプの孔径をガラスロットの直径に近づけることができるので、コア部に非円が生じることが抑制される。
 コア部を形成することは、添加することと一体化することとの間に、ガラスパイプの内表面をエッチングすることを更に含んでもよい。この場合、アルカリ元素群と共にガラスパイプの内面に添加された不純物を除去することができる。
 ガラスロッドにおける塩素の質量分率の平均値は、20ppm以上2000ppm以下であってもよい。
 ガラスパイプにおける塩素の質量分率の平均値は、20ppm以上2000ppm以下であってもよい。
 ガラスロッドにおけるフッ素の質量分率の平均値は、200ppm以上5000ppm以下であってもよい。この場合、光ファイバ母材の異常部数を抑制することができる。ここで異常部とは、例えば異物、あるいはアルカリ元素群と塩素やフッ素との化合物が起因で生じるガラスの結晶であり、後に光ファイバになった際に不良部となる部分を指す。
 ガラスパイプにおけるフッ素の質量分率の平均値は、200ppm以上5000ppm以下であってもよい。この場合、光ファイバ母材の異常部数を抑制することができる。
 ガラスロッドは、ガラスロッドの外周面を含み、厚さ0.5mmの外周部を有し、外周部における塩素の質量分率の平均値は、ガラスロッド全体での塩素の質量分率の平均値よりも低くてもよい。この場合、光ファイバ母材の異常部数を抑制することができる。
 外周部における塩素の質量分率の平均値は、20ppm以上2000ppm以下であってもよい。この場合、光ファイバ母材の異常部数を抑制することができる。
 コア部を形成することは、一体化ロッドの周りに、クラッド部よりも高い屈折率を有するガラス層を付与することを更に含んでもよい。この場合、有効断面積(Aeff)又はカットオフ波長などの光学特性を設計する際の自由度を増すことができる。
 ガラスロッドにおける塩素の質量分率の平均値は、100ppm以上2000ppm以下であってもよい。この場合、100ppm以上であることにより、ガラス欠陥によるロス増を抑制することができ、伝送損失を抑制することができる。2000ppmよりも高い場合には母材異常の発生頻度が上がり歩留まりが落ちる。
 一体化ロッドに含まれるアルカリ元素群の平均の質量分率は、0.2ppm以上300ppm以下であってもよい。この場合、伝送損失を抑制することができる。
 一体化ロッドにおけるアルカリ元素群の質量分率は、一体化ロッドの中心軸以外において最大値を有してもよい。これは一体化した直後、ガラスロッドの外周部にアルカリ元素群が配置されているためである。中心軸以外で最大値を有することにより、同じ総量で中心軸で質量分率最大となるように添加した場合に比べて最大値を低く抑え、結晶化などの不良を抑制できる。
 コア部は、アルカリ元素群としてナトリウム、カリウム、ルビジウム、セシウム、及びカルシウムのいずれかを含んでもよい。この場合、伝送損失を抑制することができる。
 本開示の一実施形態に係る光ファイバ母材は、シリカ系ガラスからなる光ファイバ母材であって、アルカリ金属元素及びアルカリ土類金属元素からなるアルカリ元素群を含むコア部と、コア部の屈折率よりも低い屈折率を有し、コア部を取り囲むクラッド部と、を備える。コア部は、コア部の中心軸上における塩素の質量分率よりも低い塩素の質量分率を有する領域を含む。コア部におけるアルカリ元素群の質量分率は、中心軸以外において最大値を有する。コア部におけるアルカリ元素群の質量分率は、コア部の半径の50%以内の領域における中心軸以外において最大値を有してもよい。コア部におけるアルカリ元素群の質量分率は、コア部の半径の30%以内の領域における中心軸以外において最大値を有してもよい。
 この光ファイバ母材では、異常部が少ないこととコア部の平均塩素濃度を高めることによるガラス欠陥ロスの低減を両立することができる。
[本開示の実施形態の詳細]
 本開示の光ファイバ母材の製造方法及び光ファイバ母材の具体例を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 図1は、本実施形態に係る光ファイバの製造方法を説明するフローチャートである。以下の説明では、具体的な条件の一例についても記載している。本実施形態に係る光ファイバは、準備工程S1、添加工程S2、縮径工程S3、エッチング工程S4、一体化工程S5、延伸研削工程S6、コラプス工程S7、OVD(Outside Vapor Deposition)工程S8及び線引工程S9を順に経て製造される。
 本実施形態に係る光ファイバ母材1(図2参照)は、シリカ(石英)系ガラスからなるコア部10(図2参照)を形成するコア部形成工程S10と、コア部10を取り囲むクラッド部20を形成するクラッド部形成工程S20とを順に経て製造される。つまり、光ファイバ母材1の製造方法は、コア部形成工程S10及びクラッド部形成工程S20を含む。コア部形成工程S10は、準備工程S1、添加工程S2、縮径工程S3、エッチング工程S4、一体化工程S5、及び延伸研削工程S6を含む。クラッド部形成工程S20は、コラプス工程S7及びOVD工程S8を含む。
 準備工程S1は、コア部10を形成するためのガラスパイプ及びガラスロッドを準備する工程である。本実施形態では、準備工程S1は添加工程S2の前に実施されるが、ガラスロッドは、一体化工程S5までに準備されればよい。すなわち、準備工程S1は、添加工程S2よりも前に実施されるガラスパイプ準備工程と、一体化工程S5よりも前に実施されるガラスロッド準備工程からなっていてもよい。
 ガラスパイプは、シリカ系ガラスからなる。ガラスパイプは、ドーパントとしてアルカリ元素群を拡散させるべきガラスパイプである。ここで、アルカリ元素群は、アルカリ金属元素及びアルカリ土類金属元素の総称である。つまり、アルカリ元素群は、アルカリ金属元素及びアルカリ土類金属元素からなる。ガラスパイプの外直径(2d)は、30mm以上50mm以下である。ガラスパイプの内直径(2i)は10mm以上30mm以下である。
 ガラスロッドは、シリカ系ガラスからなる。ガラスロッドは、例えばVAD(Vapor Phase Axial Deposition)法によって合成される。ガラスロッドの直径を所望の値にするために延伸、研削等の加工が行われてもよい。ガラスロッドは、一体化工程S5でガラスパイプと一体化され、一体化ロッドを形成するために用いられる。ガラスロッドの直径は、3mm以上15mm以下である。
 ガラスパイプ及びガラスロッドのそれぞれは、ある質量分率の塩素及びフッ素を含む。ガラスパイプ及びガラスロッドのそれぞれに含まれるその他のドーパント及び不純物の質量分率は、10ppm以下である。「質量分率」は、対象物全体の質量に対する注目する元素の質量の割合であり、(注目する元素の質量)/(全体の質量)で示される。以下では、質量分率を「濃度」ともいう。
 ガラスパイプの平均塩素濃度は、20ppm以上2000ppm以下である。これにより、コア部10の屈折率をクラッド部20の屈折率よりも高くすることができる。その結果、伝送損失を抑制することができる。ガラスパイプの平均フッ素濃度は、200ppm以上5000ppm以下である。これにより、光ファイバ母材1の異常部数を抑制することができる。
 ガラスロッドの平均塩素濃度は、20ppm以上2000ppm以下である。これにより、コア部10の屈折率をクラッド部20の屈折率よりも高くすることができる。その結果、伝送損失を抑制することができる。ガラスロッドの平均フッ素濃度は、200ppm以上5000ppm以下である。これにより、光ファイバ母材1の異常部数を抑制することができる。
 ガラスロッドは、ガラスロッドの外周面を含み、厚さ0.5mmの外周部を有している。外周部は、例えば、ガラスロッドの半径の70%以上100%以下や90%以上100%以下の部分である。外周部の平均塩素濃度は、ガラスロッド全体での平均塩素濃度よりも低い。外周部の平均塩素濃度は、20ppm以上2000ppm以下である。
 ここで、平均濃度とは、例えば、平均塩素濃度であれば、以下の式で表される濃度とする。
Figure JPOXMLDOC01-appb-M000001
 上記式において、Cl(r)は、半径rの位置での局所的な塩素濃度を表す。iはガラスパイプの内半径を表す。dはガラスパイプの外半径を表す。フッ素についても同様の考え方で計算する。ガラスロッドの場合は、iを0とし、dをガラスロッドの半径とすることで、上記式により平均の塩素濃度及びフッ素濃度を計算する。局所的な濃度は、ガラスパイプ及びガラスロッドのある端面において、中心位置を通る直線に沿った各位置における濃度として、電子線マイクロアナライザ(EPMA: Electron Probe Micro Analyzer)によって測定される。EPMAによる測定の条件は、例えば、加速電圧が20kVであり、プローブビーム径が0.5μm以上1μm以下であり、測定間隔が100nm以下である。
 添加工程S2は、シリカ系ガラスからなるガラスパイプの内表面にアルカリ元素群を添加する工程である。アルカリ元素群のドーパントとしてカリウム(K)元素を添加する場合、原料として、例えば、6g以上20g以下の臭化カリウム(KBr)を用いる。添加したいアルカリ元素群の種類によって、KBr、ヨウ化カリウム(KI)、臭化ルビジウム(RbBr)及びヨウ化ルビジウム(RbI)等の中から1つあるいは複数を原料として用いてもよい。
 添加工程S2では、第1外部熱源によって原料を温度700℃以上850℃以下に加熱して、原料蒸気を発生させる。第1外部熱源は、例えば、電気炉であり、原料を加熱するために設けられている。発生させた原料蒸気を酸素からなるキャリアガスと共にガラスパイプの内部に導入しながら、第2外部熱源によってガラスパイプを外部から加熱する。第2外部熱源は、例えば、酸水素バーナ、誘導炉、又は抵抗炉であり、ガラスパイプを加熱するために設けられている。キャリアガスの流量は、1SLM(標準状態(0℃、1.01×10Pa)に換算して1リットル/min)とされる。
 添加工程S2では、第2外部熱源をガラスパイプの長手方向に沿って移動させることにより、ガラスパイプが加熱される。ガラスパイプの加熱は、ガラスパイプの外表面の温度が1400℃以上2000℃以下となるように、第2外部熱源を30mm/min以上60mm/min以下の速さでトラバースさせて合計8ターン以上15ターン以下で行われる。これにより、K元素等のアルカリ元素群をガラスパイプの内表面に拡散添加させる。
 縮径工程S3は、添加工程S2によりアルカリ元素群が添加されたガラスパイプを縮径する工程である。縮径工程S3は、添加工程S2と一体化工程S5との間に行われる。このとき、ガラスパイプの内部に酸素を0.5SLM以上1.0SLM以下流しながら、ガラスパイプを第2外部熱源によって外部から加熱する。縮径工程S3では、第2外部熱源をガラスパイプの長手方向に沿って移動させることにより、ガラスパイプが加熱される。ガラスパイプの加熱は、ガラスパイプの外表面が1300℃以上2000℃以下となるように、第2外部熱源をトラバースさせて合計6ターン以上10ターン以下で行われる。ガラスパイプは、内径(内直径)が一体化工程S5で一体化されるガラスロッドの直径よりも1mm以上3mm以下程度大きくなるまで縮径される。
 エッチング工程S4は、縮径工程S3後にガラスパイプの内表面をエッチングする工程である。エッチング工程S4は、添加工程S2と一体化工程S5との間に行われる。エッチング工程S4では、SF(0.2SLM以上0.4SLM以下)及び塩素(0.5SLM以上1.0SLM以下)の混合ガスをガラスパイプの内部に導入しながら、第2外部熱源によって外部からガラスパイプを加熱して気相エッチングを行う。このようにすることで、目的のドーパントと共に添加された不純物を高濃度に含むガラスパイプの内表面を削ることができ、この不純物を除去することができる。エッチング工程S4では、第2外部熱源をガラスパイプの長手方向に沿って移動させることにより、ガラスパイプが加熱される。ガラスパイプの加熱は、ガラスパイプの外表面が1300℃以上2000℃以下となるように、第2外部熱源をトラバースさせて合計1ターン以上5ターン以下で行われる。
 一体化工程S5は、エッチング工程S4後、ガラスパイプと、ガラスパイプ内に配置されたガラスロッドとを一体化する工程である。一体化工程S5では、まず、ガラスロッドをガラスパイプ内に挿入し、ガラスパイプの中心に固定する。続いて、酸素(0.1SLM以上0.5SLM以下)及びHe(0.5SLM以上1.0SLM以下)の混合ガスをガラスパイプの内部に導入し、ガラスパイプ内の絶対圧を97kPa以下に減圧しながら、表面温度を2000以上2300℃以下として、ガラスパイプとガラスロッドとを一体化する。これにより、ガラスパイプとガラスロッドとが一体化されてなる一体化ロッドが形成される。一体化ロッドの直径は、20mm以上40mm以下である。一体化ロッドに含まれるアルカリ元素群の平均の質量分率は、0.2ppm以上300ppm以下である。これにより、伝送損失を抑制することができる。
 延伸研削工程S6では、一体化ロッドを延伸して直径20mm以上25mm以下とし、更に一体化ロッドの外周部を研削して直径15mm以上20mm以下とする。これにより、光ファイバ母材1のコア部10(図2参照)を構成するコアロッドが得られる。
 変形例として、コア部形成工程S10は、延伸研削工程S6後の一体化ロッドの周りにガラス層を付与するガラス層付与工程を更に含んでもよい。この場合、光ファイバ母材1のコア部10(図2参照)を構成するコアロッドとして、ガラス層及び一体化ロッドがまとめて用いられる。ガラス層は、例えばOVD法又はコラプス法といった公知の方法で付与される。
 ガラス層は、クラッド部20(第1クラッド部21及び第2クラッド部22;図2参照)よりも高い屈折率を有する。ガラス層は、アルカリ元素群を含まない。ガラス層は、塩素を含む。ガラス層の平均塩素濃度は、100ppm以上2000ppm以下である。
 ロッドインコラプス工程S7では、コア部10の外側に第1クラッド部21(図2参照)を設ける。このとき、フッ素が添加されたシリカ系ガラスのガラスパイプの内部にコア部10を挿入して、外部熱源によって両者を加熱し一体化するロッドインコラプス法を用いる。コア部10と第1クラッド部21との純シリカガラスの屈折率で規格化した屈折率の差は最大で0.34%程度である。このロッドインコラプス法による第1クラッド部21の付加の結果、コア部10及びその近傍の第1クラッド部21の水分量を十分に低く抑制することが可能である。
 OVD工程S8では、コア部10及び第1クラッド部21が一体化されてなるロッドを延伸して所定径とした後、そのロッドの外側にフッ素を含む第2クラッド部22(図2参照)をOVD法により合成して、光ファイバ母材1を製造する。
 線引工程S9では、光ファイバ母材1を線引することで光ファイバを得ることができる。線引き速度は800m/min以上2300m/min以下であり、線引き張力は、例えば0.5Nである。
 図2は、本実施形態に係る光ファイバ母材の断面図である。図2に示されるように、光ファイバ母材1は、中心軸Cを含むコア部10と、クラッド部20とを備える。コア部10は、アルカリ元素群、塩素、及びフッ素を含んでいる。これにより、線引時にコアの粘性が低減されるとともに、ガラスの再配列が促進される。よって、光ファイバのレイリ散乱起因の伝送損失が低減される結果、伝送損失を下げることができる。コア部10は、アルカリ元素群として、ナトリウム、カリウム、ルビジウム、セシウム、及びカルシウムのいずれかを含む。コア部10におけるアルカリ元素群の平均濃度は、3ppm以上200ppm以下である。コア部10における塩素の平均濃度は、30ppm以上2000ppm以下である。コア部10におけるフッ素の平均濃度は、500ppm以上5000ppm以下である。
 クラッド部20は、コア部10の外側に設けられ、コア部10を取り囲んでいる。クラッド部20は、コア部19の屈折率よりも低い屈折率を有する。クラッド部20は、第1クラッド部21と、第2クラッド部22とを有する。第1クラッド部21は、コア部10の外側に設けられ、コア部10を取り囲んでいる。第1クラッド部21は、シリカ系ガラスからなる。第1クラッド部21は、フッ素を含んでいる。コア部10と第1クラッド部21との純シリカガラスの屈折率で規格化した屈折率の差は最大で0.34%程度である。
 第2クラッド部22は、第1クラッド部21の外側に設けられ、第1クラッド部21を取り囲んでいる。第2クラッド部22は、シリカ系ガラスからなる。第2クラッド部22は、フッ素を含んでいる。第1クラッド部21と第2クラッド部22との純シリカガラスの屈折率で規格化した屈折率の差は、0.05%から0.2%程度である。
 図3は、コア部におけるアルカリ元素濃度分布及び塩素濃度分布の一例を示すグラフである。横軸は、コア部10の中心軸Cからの距離(径方向位置)を示す。縦軸は、アルカリ元素濃度又は塩素濃度を示す。塩素濃度分布の最も低い部分が、ガラスロッドとガラスパイプの境界である。その境界のパイプ側にはアルカリ元素群が添加された領域が存在する。また、結晶化の抑制とガラス欠陥の抑制の両立を目的に、アルカリ元素群が添加されていないロッド中心部の塩素濃度は高く、パイプ部を含めたその他の塩素濃度はロッド中心部よりも低い濃度になっている。
 コア部10におけるアルカリ元素群の濃度は、中心軸C以外において最大値を有する。コア部10におけるアルカリ元素群は、添加工程S2でガラスパイプの内面に添加されたものである。よって、最大値の位置は、一体化工程S5で用いられたガラスパイプの内周部に対応する位置である。コア部10におけるアルカリ元素群の濃度は、コア部10の半径の50%以内の領域における中心軸C以外の位置に最大値を有する。コア部10におけるアルカリ元素群の濃度は、コア部10の半径の30%以内の領域における中心軸C以外の位置に最大値を有していてもよい。
 表1は、上述の製造方法により製造した一体化ロッド(一体化工程S5の直後で延伸研削工程S6前の一体化ロッド)の試作例1から8について、一体化工程S5で用いられたガラスロッドにおける厚さ0.5mmの外周部の平均塩素濃度と、一体化後の状態(異常部数)をまとめた表である。一体化工程S5において、ガラスロッドは、ガラスパイプの内周面に添加されたアルカリ元素群と接触する。このため、ガラスロッドの外周部の塩素濃度が高いと、不良(異常部)の発生率が上昇する。塩素の質量分率が2500ppmになると、不良の発生率の上昇が顕著になり、異常部数が増える。
Figure JPOXMLDOC01-appb-T000002
 試作例1から8では、添加工程S2において、アルカリ元素群のドーパントとしてカリウム(K)元素を用い、ガラスパイプの内周面に添加された局所的なK濃度を100ppm以上200ppm以下の範囲に統一した。このため、異常部数の増加は、K濃度の影響に起因するものではなく、ガラスロッドの外周部の塩素濃度に起因するものと考えられる。
 表2は、上述の製造方法により製造した一体化ロッドの試作例9から13について、諸特性をまとめた表である。試作例9から13では、一体化ロッド以外の大きさ及び組成を互いに同等にした。一体化ロッドの平均塩素濃度を上げると、伝送損失が低減することがわかる。これは、一体化ロッドに含まれる塩素が線引時に生じるガラスの構造欠陥を修復し、欠陥起因の伝送損失を低減できるからと考えられる。また、試作例9から13では、ガラスロッドの厚さ0.5mmの外周部の平均塩素濃度を約1000ppmに統一させたことにより、一体化後の異常部数も少ない個数に抑制されている。
Figure JPOXMLDOC01-appb-T000003
 表3は、上述の製造方法により製造した一体化ロッドの試作例14から19について、諸特性をまとめた表である。ガラスロッドの平均フッ素濃度を増加させると、母材異常(異常部数)が増加することがわかる。よって、ガラスロッドの平均フッ素濃度は、7000ppm以下が好ましく、5500ppm以下がより好ましい。
Figure JPOXMLDOC01-appb-T000004
1…光ファイバ母材
10…コア部
20…クラッド部
21…第1クラッド部
22…第2クラッド部
C…中心軸

Claims (17)

  1.  シリカ系ガラスからなる光ファイバ母材の製造方法であって、
     コア部を形成することと、
     前記コア部の屈折率よりも低い屈折率を有し、前記コア部を取り囲むクラッド部を形成することと、を含み、
     前記コア部を形成することは、
     シリカ系ガラスからなるガラスパイプの内表面に、アルカリ金属元素及びアルカリ土類金属元素からなるアルカリ元素群を添加することと、
     前記添加することの後、前記ガラスパイプと、前記ガラスパイプ内に配置されたガラスロッドとを一体化し一体化ロッドを形成することと、を含む、
     光ファイバ母材の製造方法。
  2.  前記コア部を形成することは、前記添加することと前記一体化することとの間に、前記ガラスパイプを縮径することを更に含む、
     請求項1に記載の光ファイバ母材の製造方法。
  3.  前記コア部を形成することは、前記添加することと前記一体化することとの間に、前記ガラスパイプの内表面をエッチングすることを更に含む、
     請求項1または請求項2に記載の光ファイバ母材の製造方法。
  4.  前記ガラスロッドにおける塩素の質量分率の平均値は、20ppm以上2000ppm以下である、
     請求項1から請求項3のいずれか一項に記載の光ファイバ母材の製造方法。
  5.  前記ガラスパイプにおける塩素の質量分率の平均値は、20ppm以上2000ppm以下である、
     請求項1から請求項4のいずれか一項に記載の光ファイバ母材の製造方法。
  6.  前記ガラスロッドにおけるフッ素の質量分率の平均値は、200ppm以上5000ppm以下である、
     請求項1から請求項5のいずれか一項に記載の光ファイバ母材の製造方法。
  7.  前記ガラスパイプにおけるフッ素の質量分率の平均値は、200ppm以上5000ppm以下である、
     請求項1から請求項6のいずれか一項に記載の光ファイバ母材の製造方法。
  8.  前記ガラスロッドは、前記ガラスロッドの外周面を含み、厚さ0.5mmの外周部を有し、
     前記外周部における塩素の質量分率の平均値は、前記ガラスロッド全体での塩素の質量分率の平均値よりも低い、
     請求項1から請求項7のいずれか一項に記載の光ファイバ母材の製造方法。
  9.  前記外周部における塩素の質量分率の平均値は、20ppm以上2000ppm以下である、
     請求項8に記載の光ファイバ母材の製造方法。
  10.  前記コア部を形成することは、前記一体化ロッドの周りに、前記クラッド部よりも高い屈折率を有するガラス層を付与することを更に含む、
     請求項1から請求項9のいずれか一項に記載の光ファイバ母材の製造方法。
  11.  前記ガラス層における塩素の質量分率の平均値は、100ppm以上2000ppm以下である、
     請求項10に記載の光ファイバ母材の製造方法。
  12.  前記一体化ロッドに含まれる前記アルカリ元素群の平均の質量分率は、0.2ppm以上300ppm以下である、
     請求項1から請求項11のいずれか一項に記載の光ファイバ母材の製造方法。
  13.  前記一体化ロッドにおける前記アルカリ元素群の質量分率は、前記一体化ロッドの中心軸以外において最大値を有する、
     請求項1から請求項12のいずれか一項に記載の光ファイバ母材の製造方法。
  14.  前記コア部は、前記アルカリ元素群としてナトリウム、カリウム、ルビジウム、セシウム、及びカルシウムのいずれかを含む、
     請求項1から請求項13のいずれか一項に記載の光ファイバ母材の製造方法。
  15.  シリカ系ガラスからなる光ファイバ母材であって、
     アルカリ金属元素及びアルカリ土類金属元素からなるアルカリ元素群を含むコア部と、
     前記コア部の屈折率よりも低い屈折率を有し、前記コア部を取り囲むクラッド部と、を備え、
     前記コア部は、前記コア部の中心軸上における塩素の質量分率よりも低い塩素の質量分率を有する領域を含み、
     前記コア部における前記アルカリ元素群の質量分率は、前記中心軸以外において最大値を有する、
     光ファイバ母材。
  16.  前記コア部における前記アルカリ元素群の質量分率は、前記コア部の半径の50%以内の領域における前記中心軸以外において最大値を有する、
     請求項15に記載の光ファイバ母材。
  17.  前記コア部における前記アルカリ元素群の質量分率は、前記コア部の半径の30%以内の領域における前記中心軸以外において最大値を有する、
     請求項15に記載の光ファイバ母材。
PCT/JP2021/031564 2020-09-03 2021-08-27 光ファイバ母材の製造方法及び光ファイバ母材 WO2022050190A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180052380.1A CN115989197A (zh) 2020-09-03 2021-08-27 光纤母材的制造方法和光纤母材
US18/019,538 US20230322605A1 (en) 2020-09-03 2021-08-27 Production method for optical fiber base material, and optical fiber base material
JP2022546292A JPWO2022050190A1 (ja) 2020-09-03 2021-08-27
DKPA202370061A DK202370061A1 (en) 2020-09-03 2023-02-02 Production method for optical fiber base material, and optical fiber base material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020148202 2020-09-03
JP2020-148202 2020-09-03

Publications (1)

Publication Number Publication Date
WO2022050190A1 true WO2022050190A1 (ja) 2022-03-10

Family

ID=80491753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031564 WO2022050190A1 (ja) 2020-09-03 2021-08-27 光ファイバ母材の製造方法及び光ファイバ母材

Country Status (5)

Country Link
US (1) US20230322605A1 (ja)
JP (1) JPWO2022050190A1 (ja)
CN (1) CN115989197A (ja)
DK (1) DK202370061A1 (ja)
WO (1) WO2022050190A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537210A (ja) * 2002-08-28 2005-12-08 コーニング インコーポレイテッド 低損失光ファイバおよびその製造方法
WO2013111470A1 (ja) * 2012-01-25 2013-08-01 住友電気工業株式会社 光ファイバ母材製造方法、光ファイバ母材、及び、光ファイバ
JP2015157726A (ja) * 2014-02-24 2015-09-03 住友電気工業株式会社 光ファイバ及び光ファイバ母材製造方法
US20150316712A1 (en) * 2003-08-29 2015-11-05 Corning Incorporated Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
WO2016021576A1 (ja) * 2014-08-06 2016-02-11 古河電気工業株式会社 光ファイバ母材および光ファイバの製造方法
WO2017164025A1 (ja) * 2016-03-25 2017-09-28 住友電気工業株式会社 光ファイバ
JP2019019013A (ja) * 2017-07-12 2019-02-07 住友電気工業株式会社 光ファイバ母材
WO2020027063A1 (ja) * 2018-07-31 2020-02-06 住友電気工業株式会社 光ファイバ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537210A (ja) * 2002-08-28 2005-12-08 コーニング インコーポレイテッド 低損失光ファイバおよびその製造方法
US20150316712A1 (en) * 2003-08-29 2015-11-05 Corning Incorporated Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
WO2013111470A1 (ja) * 2012-01-25 2013-08-01 住友電気工業株式会社 光ファイバ母材製造方法、光ファイバ母材、及び、光ファイバ
JP2015157726A (ja) * 2014-02-24 2015-09-03 住友電気工業株式会社 光ファイバ及び光ファイバ母材製造方法
WO2016021576A1 (ja) * 2014-08-06 2016-02-11 古河電気工業株式会社 光ファイバ母材および光ファイバの製造方法
WO2017164025A1 (ja) * 2016-03-25 2017-09-28 住友電気工業株式会社 光ファイバ
JP2019019013A (ja) * 2017-07-12 2019-02-07 住友電気工業株式会社 光ファイバ母材
WO2020027063A1 (ja) * 2018-07-31 2020-02-06 住友電気工業株式会社 光ファイバ

Also Published As

Publication number Publication date
US20230322605A1 (en) 2023-10-12
CN115989197A (zh) 2023-04-18
JPWO2022050190A1 (ja) 2022-03-10
DK202370061A1 (en) 2023-02-17

Similar Documents

Publication Publication Date Title
US10550030B2 (en) Optical fiber
JP7119531B2 (ja) 光ファイバ
US10155687B2 (en) Optical fiber preform
WO2015079987A1 (ja) 光ファイバ及び光ファイバ母材
WO2013105459A1 (ja) 光ファイバ母材製造方法及び光ファイバ
JP2005060157A (ja) 光ファイバ母材の製造方法、光ファイバの製造方法及び光ファイバ
JP6551109B2 (ja) 光ファイバ
US11345627B2 (en) Method of manufacturing optical fiber preform and optical fiber preform
US20120198891A1 (en) Method for producing optical fiber preform
JP7380546B2 (ja) 光ファイバ
US10723650B2 (en) Optical fiber preform
JP2012162410A (ja) 光ファイバ母材製造方法
WO2023157505A1 (ja) 光ファイバ
WO2014178361A1 (ja) 光ファイバ母材
JP2020012933A (ja) 光ファイバ
WO2019044833A1 (ja) 光ファイバ母材の製造方法、及び、光ファイバの製造方法
WO2022050190A1 (ja) 光ファイバ母材の製造方法及び光ファイバ母材
JPWO2018110234A1 (ja) 光ファイバ母材製造方法、光ファイバ母材、および光ファイバ
WO2022004415A1 (ja) 光ファイバ母材の製造方法及び光ファイバ母材
JP2013136485A (ja) 光ファイバ母材製造方法
WO2024190234A1 (ja) マルチコア光ファイバ
JP6136164B2 (ja) 光ファイバおよびその製造方法
WO2021085236A1 (ja) 光ファイバ
US20180282200A1 (en) Method of manufacturing coupled-core multi-core fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546292

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA202370061

Country of ref document: DK

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864248

Country of ref document: EP

Kind code of ref document: A1