WO2014178361A1 - 光ファイバ母材 - Google Patents

光ファイバ母材 Download PDF

Info

Publication number
WO2014178361A1
WO2014178361A1 PCT/JP2014/061819 JP2014061819W WO2014178361A1 WO 2014178361 A1 WO2014178361 A1 WO 2014178361A1 JP 2014061819 W JP2014061819 W JP 2014061819W WO 2014178361 A1 WO2014178361 A1 WO 2014178361A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber preform
potassium
atomic ppm
concentration
Prior art date
Application number
PCT/JP2014/061819
Other languages
English (en)
French (fr)
Inventor
欣章 田村
春名 徹也
平野 正晃
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2014178361A1 publication Critical patent/WO2014178361A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/11Doped silica-based glasses containing boron or halide containing chlorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/50Doped silica-based glasses containing metals containing alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes

Definitions

  • the present invention relates to an optical fiber preform.
  • An optical fiber made of silica glass and having a core containing an alkali metal element is known (for example, JP2005-37210A, US 2006 / 0130530A, JP2007-504080A, JP2008-536190A, JP2010-501894A, JP2009-541796A, JP2010- 526749A, WO 98/02389, US 5,146,534).
  • the core portion of the optical fiber preform contains an alkali metal element
  • the viscosity of the core portion can be lowered when the optical fiber preform is drawn, and the relaxation of the network structure of the silica glass proceeds. It is said that transmission loss can be reduced.
  • JP 2005-37210A and US 2006 / 0130530A describe a diffusion method as a method of adding an alkali metal element into silica glass.
  • the glass pipe is heated by an external heat source or plasma is generated in the glass pipe while introducing steam obtained by heating the alkali metal or alkali metal salt as a raw material into the glass pipe.
  • the alkali metal element is diffused and added to the inner surface of the glass pipe.
  • the glass pipe After adding the alkali metal element in the vicinity of the inner surface of the glass pipe in this way, the glass pipe is heated to reduce the diameter. After the diameter reduction, a certain thickness of the inner surface of the glass pipe is etched for the purpose of removing transition metal elements such as Ni and Fe which are added simultaneously with the addition of the alkali metal element. Since the alkali metal element diffuses faster than the transition metal element, the alkali metal element can remain even if the transition metal element is removed by etching the glass surface with a certain thickness.
  • the glass pipe After etching, the glass pipe is heated and solidified to produce a rod containing an alkali metal element (core portion of the optical fiber preform).
  • An optical fiber preform is manufactured by applying glass to be a cladding part having a refractive index lower than that of the core part to the outside of the core part. And an optical fiber can be manufactured by drawing this optical fiber preform by a known method.
  • An object of the present invention is to provide an optical fiber preform that can be a low-loss optical fiber.
  • the optical fiber preform of the present invention includes a core portion including a potassium-containing region having a diameter d1 having a potassium concentration of 50 atomic ppm or more and an outer diameter d2 of 4 ⁇ d1 or more and 8 ⁇ d1 or less, And a clad portion having a refractive index smaller than the refractive index.
  • the optical fiber preform of the present invention can be a low-loss optical fiber.
  • FIG. 2 is a graph showing a relationship between a value of d2 / d1 in the optical fiber preform of FIG. 1 and a transmission loss at a wavelength of 1550 nm of an optical fiber obtained by drawing the optical fiber preform.
  • FIG. 2 is a graph showing a relationship between a value of d3 / d1 in the optical fiber preform of FIG. 1 and a transmission loss at a wavelength of 1550 nm of an optical fiber obtained by drawing the optical fiber preform.
  • the present inventor has found that the transmission loss of an optical fiber may not necessarily be reduced in the course of conducting research on a method for manufacturing an optical fiber having a core doped with an alkali metal element by a diffusion method. Then, the inventor has investigated the reason why the transmission loss of the optical fiber does not become low, and completed the present invention.
  • FIG. 1 is a cross-sectional view of an optical fiber preform 1 according to an embodiment of the present invention.
  • the optical fiber preform 1 is made of silica glass, and includes a core portion 10 and a clad portion 20 that surrounds the core portion 10.
  • the refractive index of the core part 10 is higher than the refractive index of the cladding part 20.
  • the core unit 10 includes a first core unit 11 and a second core unit 12 surrounding the first core unit 11.
  • the clad part 20 includes a first clad part (optical clad part) 21 surrounding the second core part 12 and a second clad part (physical clad part) 22 surrounding the first clad part 21.
  • the 1st core part 11 contains potassium element.
  • FIG. 2 is a flowchart for explaining an example of a method for manufacturing the optical fiber preform 1.
  • This method includes a preparation process (step S1), an addition process (step S2), a diameter reduction process (step S3), an etching process (step S4), a solidification process (step S5), and a first stretch grinding process (step S6). ),
  • a quartz glass pipe for diffusing the alkali metal element is prepared.
  • the glass pipe contains 100 atomic ppm of chlorine (Cl) and 6,000 atomic ppm of fluorine, and the concentration of other dopants and impurities is 10 mol% or less.
  • This glass pipe has an outer diameter of 35 mm and an inner diameter of about 20 mm.
  • step S2 potassium is added as an alkali metal element to the inner surface of the quartz glass pipe.
  • Potassium bromide (KBr) is used as a raw material.
  • KBr is heated to 840 ° C. by an external heat source to generate KBr vapor.
  • the outer surface of the glass pipe is brought to a temperature of 2150 ° C. by an oxyhydrogen burner from the outside. So that the glass pipe is heated.
  • the burner is traversed at a speed of 40 mm / min and heated for a total of 15 turns to diffusely add potassium metal element to the inner surface of the glass pipe.
  • the maximum value of potassium concentration of this alkali metal-containing pipe is 1000 atomic ppm.
  • step S3 the diameter of the quartz glass pipe containing potassium is reduced.
  • the glass pipe is heated by an external heat source so that the outer surface of the glass pipe becomes 2250 ° C. while oxygen is allowed to flow through the glass pipe at 0.5 SLM.
  • the external heat source is traversed and heated for a total of 6 turns, and the quartz glass pipe containing potassium is reduced in diameter until the inner diameter becomes 5 mm.
  • the inner surface of the quartz glass pipe is etched.
  • vapor phase etching is performed by heating the quartz glass pipe with an external heat source while introducing a mixed gas of SF 6 (0.2 SLM) and chlorine (0.5 SLM) into the quartz glass pipe.
  • the quartz glass pipe is solidified.
  • the absolute pressure in the quartz glass pipe is reduced to 97 kPa or less, and the surface temperature is reduced by an external heat source.
  • the quartz glass pipe is solidified at 2150 ° C.
  • a first rod (outer diameter 25 mm) containing potassium element is obtained by solidification.
  • the first rod has a maximum potassium atom concentration of 600 atomic ppm and a central axis of 550 atomic ppm.
  • the diameter of the region containing 50 atomic ppm or more of potassium is 8 mm.
  • the first core obtained by solidification is stretched to a diameter of 20 mm, and the outer peripheral portion is ground to a diameter of 12 mm to obtain the first core portion 11.
  • the diameter at which the potassium concentration is 50 atomic ppm or more is d1
  • the outer diameter of the region where the potassium concentration is 50 atomic ⁇ ppm or less and the chlorine concentration is 1000 atomic ppm or less is d3
  • the value of d3 / d1 is 1.8. It becomes.
  • the second core part 12 is provided outside the first core part 11 to obtain the second rod.
  • the rod-in which inserts the 1st core part 11 in the inside of the quartz-type glass pipe (2nd core part 12) of 55 mm in internal diameter containing 5,000 atomic ppm of chlorine atoms, heats both with an external heat source, and integrates them.
  • a second rod is created by the collapse method.
  • step S8 the second rod is stretched to a diameter of 24 mm, and the outer peripheral portion is ground to a diameter of 17 mm.
  • a combination of the first core portion 11 and the second core portion 12 is the core portion 10.
  • the value of d2 / d1 is 6.0.
  • the first cladding part 21 is provided outside the core part 10.
  • a rod-in collapse method is used in which the core portion 10 is inserted into a quartz-based glass pipe (first clad portion 21) containing fluorine and both are heated and integrated by an external heat source.
  • the relative relative refractive index difference between the second core portion 12 and the first cladding portion 21 is about 0.34% at the maximum.
  • the rod formed by integrating the core portion 10 and the first cladding portion 21 is stretched to have a predetermined diameter, and then the second cladding portion 22 containing fluorine outside the rod is subjected to the OVD method. And the optical fiber preform 1 is manufactured.
  • the outer diameter of the first cladding portion 21 is 36 mm
  • the outer diameter of the second cladding portion 22 is 140 mm.
  • the relative relative refractive index difference between the second core portion 12 and the second cladding portion 22 is about 0.32% at maximum.
  • the concentration of OH groups outside the first cladding portion 21 can be measured using infrared absorption spectroscopy, and is about 400 mol400ppm.
  • an optical fiber can be obtained by drawing the optical fiber preform 1 manufactured by the above optical fiber preform manufacturing method.
  • the drawing speed is 2,300 m / min and the drawing tension is 0.5N.
  • the potassium concentration (average value) in the core of the obtained optical fiber was about 3 atomic ppm.
  • an optical fiber having a low transmission loss having the following characteristics was obtained.
  • the first rod was stretched to a diameter of 15 mm, and the outer peripheral portion was ground to a diameter of 12 mm to obtain a first core portion.
  • the second stretch grinding step the second rod was stretched to a diameter of 21.5 mm, and the outer peripheral portion was ground to a diameter of 17 mm to obtain a core portion.
  • the d2 / d1 value of the core portion was 9.0.
  • the other steps were the same as above.
  • the magnitude of the transmission loss of the optical fiber differs depending on the composition distribution (particularly potassium concentration distribution) of the optical fiber preform.
  • the present inventor conducted intensive research on the relationship between the composition distribution of the optical fiber preform and the transmission loss of the optical fiber, and obtained the composition distribution of the optical fiber preform to obtain an optical fiber with a low transmission loss. .
  • the core 10 includes a potassium-containing region having a diameter d1 having a potassium concentration of 50 atomic ppm or more, and an outer diameter d2 of 4 ⁇ d1 or more and 8 ⁇ d1 or less. It is preferable that the average potassium concentration of the entire core portion 10 is 5 atomic ppm to 50 atomic ppm. In the core part 10, it is preferable that the chlorine concentration in the potassium-containing region is 1000 atomic ppm or less and the chlorine concentration in the region other than the potassium-containing region is 3000 atomic ppm or more.
  • the value of d3 / d1 is preferably 1.2 to 2 times.
  • the core portion 10 is preferably made of silica glass containing no Ge and has a relative refractive index difference in the range of ⁇ 0.1% to + 1.0% with reference to the refractive index of pure silica glass.
  • FIG. 3 is a conceptual diagram illustrating the refractive index and potassium concentration on one diameter of the optical fiber preform 1.
  • the refractive index of the core part 10 is higher than the refractive index of the cladding part 20.
  • the refractive index of the first core part 11 may be lower than the refractive index of the second core part 12.
  • FIG. 4 is a graph showing the relationship between the value of d2 / d1 in the optical fiber preform 1 and the transmission loss at a wavelength of 1550 nm of the optical fiber obtained by drawing the optical fiber preform 1.
  • the transmission loss of the optical fiber at a wavelength of 1550 nm is small.
  • the transmission loss of the optical fiber is large.
  • the transmission loss of the optical fiber at a wavelength of 1550 nm is as small as 0.165 dB / km or less. More preferably, if the optical fiber preform is in the range of 5 ⁇ d2 / d1 ⁇ 7, the transmission loss of the optical fiber at a wavelength of 1550 nm is further reduced to 0.155 dB / km or less. Also, if the optical fiber preform is in the range of 5 ⁇ d2 / d1 ⁇ 7, even if the value of d2 / d1 of the optical fiber preform varies, the variation in transmission loss of the optical fiber is small. Specifically, when the fluctuation value of d2 / d1 of the optical fiber preform is 1, the fluctuation value of the transmission loss of the optical fiber is 0.02 dB / km or less.
  • FIG. 5 is a graph showing the relationship between the average potassium concentration in the core portion of the optical fiber preform 1 and the transmission loss at a wavelength of 1550 nm of the optical fiber obtained by drawing the optical fiber preform 1.
  • the d2 / d1 of the optical fiber preform was set to 4, 6, and 8 values.
  • the average potassium concentration is a potassium concentration averaged over the entire core portion 10 having the outer diameter d2. In the range of 4 ⁇ d2 / d1 ⁇ 8, when the average potassium concentration in the core portion of the optical fiber preform is 5 atomic ppm to 50 atomic ppm, the transmission loss of the optical fiber at the wavelength of 1550 nm is small.
  • the transmission loss of the optical fiber is large. This is presumably due to the fact that the glass viscosity reducing effect by the potassium element is weakened when the average potassium concentration in the core portion of the optical fiber preform is reduced. Also, the transmission loss of the optical fiber is large when the average potassium concentration in the core portion of the optical fiber preform is more than 50 atomic ppm. This is presumed to be due to the occurrence of scattering loss due to the potassium compound and glass crystals grown using the potassium compound as a nucleus.
  • the chlorine concentration in the potassium-containing region is desirably 1000 atomic ppm or less.
  • the optical fiber preform requires a dehydration step of heating while flowing chlorine gas in the manufacturing method, it is difficult to set the chlorine concentration to 0 atomic ppm.
  • an optical fiber preform in which the chlorine concentration in the core portion is low in the entire region and the chlorine concentration in the entire core portion is 1000 atomic ppm or less is manufactured, and the optical fiber preform is drawn to manufacture an optical fiber.
  • the transmission loss of the optical fiber at a wavelength of 1550 nm was as large as 0.2 dB / km, and an absorption peak derived from a glass defect (a state in which the glass bond was cut) occurred at a wavelength of 630 nm.
  • the chlorine concentration in the second core portion not containing potassium is preferably 3000 atomic ppm or more.
  • FIG. 6 is a graph showing measured values of potassium concentration and chlorine concentration on one diameter of the optical fiber preform 1.
  • FIG. 7 is a graph showing the relationship between the chlorine concentration in the second core portion of the optical fiber preform 1 and the transmission loss at a wavelength of 1550 nm of the optical fiber obtained by drawing the optical fiber preform 1. Since the chlorine contained in the second core part diffuses in the core part in the drawing process, glass defects generated in the glass having a low chlorine concentration in the first core part can be repaired. When the chlorine concentration in the second core portion is less than 3000 atomic ppm, the transmission loss of the optical fiber increases rapidly, so that the chlorine concentration in the second core portion is preferably 3000 atomic ppm or more.
  • the chlorine concentration in the second core portion is 8000 atomic ppm or more because the transmission loss of the optical fiber is 0.155 dB / km or less. Realization of a chlorine concentration higher than 15000 atomic ppm is difficult with the current technology of VAD sooting and chlorine dehydration sintering, but may be possible by future technological development.
  • FIG. 8 is a conceptual diagram illustrating potassium concentration and chlorine concentration on one diameter of the optical fiber preform 1. It is desirable that the chlorine concentration in the first core portion containing potassium is lower than 1000 atomic ppm, and the chlorine concentration in the second core portion is 3000 atomic ppm or more. Let d3 be the outer diameter of the region where the potassium concentration is 50 atomic ppm or less and the chlorine concentration is 1000 atomic ppm or less.
  • FIG. 9 is a graph showing the relationship between the d3 / d1 value in the optical fiber preform 1 and the transmission loss at a wavelength of 1550 nm of the optical fiber obtained by drawing the optical fiber preform 1.
  • the d3 / d1 value of the optical fiber preform is 1.2 to 2
  • the transmission loss of the optical fiber is small.
  • the value of d3 / d1 of the optical fiber preform is 1.2 or less
  • the potassium concentration distribution is distributed to the vicinity of the interface with the second core portion.
  • a KCl phase separation occurs at the interface due to the applied heat, the interface structure becomes incorrect due to the growth of crystals and the like, and the transmission loss of the optical fiber increases.
  • the d3 / d1 value of the optical fiber preform is 2.5 times or more, the transmission loss of the optical fiber, which is estimated to be caused by insufficient diffusion of potassium and chlorine in the drawing process, A sudden increase occurred.
  • the core portion of the optical fiber preform is preferably made of silica glass containing no Ge and has a relative refractive index difference in the range of ⁇ 0.1% to + 1.0% based on the refractive index of pure silica glass.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

 低損失の光ファイバとなることができる光ファイバ母材を提供する。光ファイバ母材は、カリウム濃度が50atomic ppm以上である直径d1のカリウム含有領域を含み外直径d2が4×d1以上8×d1以下であるコア部と、コア部を囲みコア部の屈折率より小さい屈折率を有するクラッド部と、を備える。

Description

光ファイバ母材
 本発明は、光ファイバ母材に関するものである。
 シリカガラスからなり、アルカリ金属元素を含むコアを備える光ファイバが知られている(例えば、JP2005-37210A、US 2006/0130530A、JP2007-504080A、JP2008-536190A、JP2010-501894A、JP2009-541796A、JP2010-526749A、WO98/02389、US 5,146,534を参照)。光ファイバ母材のコア部がアルカリ金属元素を含むと、光ファイバ母材を線引きするときに、コア部の粘性を下げることができ、シリカガラスのネットワーク構造の緩和が進行するため、光ファイバの伝送損失を低減することが可能であると言われている。
 JP2005-37210A、及びUS 2006/0130530Aは、アルカリ金属元素をシリカガラス中に添加する方法として拡散法を記載している。拡散法は、原料となるアルカリ金属またはアルカリ金属塩などを加熱して得られる蒸気をガラスパイプ内に導入しながら、ガラスパイプを外部熱源により加熱したり、ガラスパイプ内にプラズマを発生させたりすることで、アルカリ金属元素をガラスパイプの内表面に拡散添加する方法である。
 このようにしてアルカリ金属元素をガラスパイプの内表面近傍に添加した後、このガラスパイプを加熱して縮径させる。縮径後、アルカリ金属元素の添加の際に同時に添加されてしまうNiやFeなどの遷移金属元素を除去する目的で、ガラスパイプの内表面の或る厚みをエッチングする。アルカリ金属元素は遷移金属元素よりも拡散が速いため、ガラス表面を或る厚みでエッチングして遷移金属元素を除去してもアルカリ金属元素を残留させることが可能である。
 エッチング後、ガラスパイプを加熱して中実化することで、アルカリ金属元素を含むロッド(光ファイバ母材のコア部)を製造する。このコア部の外側にコア部よりも屈折率の低いクラッド部となるガラスを付与することで光ファイバ母材を製造する。そして、この光ファイバ母材を公知の方法で線引きすることで光ファイバを製造することができる。
 本発明は、低損失の光ファイバとなることができる光ファイバ母材を提供することを目的とする。
 本発明の光ファイバ母材は、カリウム濃度が50atomic ppm以上である直径d1のカリウム含有領域を含み外直径d2が4×d1以上8×d1以下であるコア部と、コア部を囲みコア部の屈折率より小さい屈折率を有するクラッド部とを備える。
 本発明の光ファイバ母材は、低損失の光ファイバとなることができる。
本発明の実施形態である光ファイバ母材の断面図である。
本発明の光ファイバ母材を製造する方法の一例を説明するフローチャートである。
図1の光ファイバ母材の一つの直径上における屈折率及びカリウム濃度を説明する概念図である。
図1の光ファイバ母材におけるd2/d1の値と、この光ファイバ母材を線引きして得られる光ファイバの波長1550nmにおける伝送損失との関係を示すグラフである。
図1の光ファイバ母材のコア部の平均カリウム濃度と、この光ファイバ母材を線引きして得られる光ファイバの波長1550nmにおける伝送損失との関係を示すグラフである。
図1の光ファイバ母材の一つの直径上におけるカリウム濃度及び塩素濃度の測定値を示すグラフである。
図1の光ファイバ母材の第2コア部の塩素濃度と、この光ファイバ母材を線引きして得られる光ファイバの波長1550nmにおける伝送損失との関係を示すグラフである。
図1の光ファイバ母材の一つの直径上におけるカリウム濃度及び塩素濃度を説明する概念図である。
図1の光ファイバ母材におけるd3/d1の値と、この光ファイバ母材を線引きして得られる光ファイバの波長1550nmにおける伝送損失との関係を示すグラフである。
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 本発明者は、拡散法によりアルカリ金属元素を添加したコアを有する光ファイバの製造方法について研究を行う過程で、光ファイバの伝送損失が必ずしも低くならない場合があることを見出した。そして、本発明者は、光ファイバの伝送損失が低くならない原因を究明して、本発明を完成した。
 図1は、本発明の実施形態である光ファイバ母材1の断面図である。光ファイバ母材1は、シリカガラスからなり、コア部10と、コア部10を取り囲むクラッド部20とを備える。コア部10の屈折率は、クラッド部20の屈折率より高い。コア部10は、第1コア部11と、第1コア部11を取り囲む第2コア部12とを含む。クラッド部20は、第2コア部12を取り囲む第1クラッド部(光学クラッド部)21と、第1クラッド部21を取り囲む第2クラッド部(物理クラッド部)22とを含む。第1コア部11はカリウム元素を含む。
 図2は、光ファイバ母材1を製造する方法の一例を説明するフローチャートである。この方法は、準備工程(ステップS1),添加工程(ステップS2),縮径工程(ステップS3),エッチング工程(ステップS4),中実化工程(ステップS5),第1延伸研削工程(ステップS6),第1ロッドインコラプス工程(ステップS7),第2延伸研削工程(ステップS8),第2ロッドインコラプス工程(ステップS9)及びOVD工程(ステップS10)を順に行って、光ファイバ母材1を製造する。なお、以下では製造条件の一例についても説明する。
 準備工程(ステップS1)では、アルカリ金属元素を拡散させるべき石英系ガラスパイプを準備する。このガラスパイプは、100atomic ppmの塩素(Cl)及び6,000atomic ppmのフッ素を含み、その他のドーパント及び不純物の濃度が10mol ppm以下である。このガラスパイプの外径は直径35mmであり、内径は直径20mm程度である。
 添加工程(ステップS2)では、アルカリ金属元素としてカリウムを石英系ガラスパイプの内表面に添加する。原料として臭化カリウム(KBr)を用いる。外部熱源でKBrを温度840℃に加熱してKBr蒸気を発生させる。酸素を1SLM(標準状態に換算して1リットル/min)の流量で導入したキャリアガスと共にKBr蒸気をガラスパイプに導入しながら、外部から酸水素バーナによってガラスパイプの外表面が温度2150℃となるようにガラスパイプを加熱する。このとき、40mm/minの速さでバーナをトラバースさせて合計15ターン加熱し、カリウム金属元素をガラスパイプの内表面に拡散添加させる。このアルカリ金属含有パイプのカリウム濃度の最大値は1000atomic ppmである。
 縮径工程(ステップS3)では、カリウムを含む石英系ガラスパイプを縮径する。このとき、ガラスパイプの内部に酸素を0.5SLM流しながら、外部熱源によってガラスパイプの外表面が2250℃となるようにガラスパイプを加熱する。外部熱源をトラバースさせて合計6ターン加熱し、カリウムを含む石英ガラスパイプを内直径が5mmになるまで縮径する。
 エッチング工程(ステップS4)では、石英系ガラスパイプの内面をエッチングする。このとき、SF(0.2SLM)及び塩素(0.5SLM)の混合ガスを石英ガラスパイプの内部に導入しながら、外部熱源で石英ガラスパイプを加熱して気相エッチングを行う。このようにすることで、アルカリ金属元素と共に添加された不純物を高濃度に含むパイプ内面を削ることができ、この不純物を除去することができる。
 中実化工程(ステップS5)では、石英系ガラスパイプを中実化する。中実化工程では、酸素(0.1SLM)及びHe(1SLM)の混合ガスを石英ガラスパイプの内部に導入しながら、石英ガラスパイプ内の絶対圧を97kPa以下に減圧し、外部熱源によって表面温度を2150℃として石英ガラスパイプを中実化する。中実化により、カリウム元素を含む第1ロッド(外径25mm)を得る。第1ロッドのカリウム原子濃度は最大値で600atomic ppm、中心軸上で550atomic ppmである。カリウムを50atomic ppm以上含む領域の直径は8mmである。
 第1延伸研削工程(ステップS6)では、中実化により得られた第1ロッドを延伸して直径20mmとし、更に外周部を研削して直径12mmとして、第1コア部11を得る。この結果、カリウム濃度が50atomic ppm以上である直径をd1とし、カリウム濃度が50atomic ppm以下かつ塩素濃度が1000atomic ppm以下である領域の外直径をd3としたとき、d3/d1の値は1.8となる。
 第1ロッドインコラプス工程(ステップS7)では、第1コア部11の外側に第2コア部12を設けて第2ロッドを得る。このとき、塩素原子を5,000atomic ppm含む内径55mmの石英系ガラスパイプ(第2コア部12)の内部に第1コア部11を挿入して、外部熱源によって両者を加熱し一体化するロッドインコラプス法により第2ロッドを作成する。
 第2延伸研削工程(ステップS8)では、第2ロッドを延伸して直径24mmとし、更に外周部を研削して直径17mmとする。第1コア部11と第2コア部12とをあわせたものがコア部10となる。コア部10の外直径をd2としたとき、d2/d1の値は6.0となる。
 第2ロッドインコラプス工程(ステップS9)では、コア部10の外側に第1クラッド部21を設ける。このとき、フッ素を含む石英系ガラスパイプ(第1クラッド部21)の内部にコア部10を挿入して、外部熱源によって両者を加熱し一体化するロッドインコラプス法を用いる。第2コア部12と第1クラッド部21との相対比屈折率差は最大で0.34%程度である。このロッドインコラプス法による合成の結果、コア部10及びその近傍の第1クラッド部21の水分量は十分に低く抑制することが可能である。
 OVD工程(ステップS10)では、コア部10及び第1クラッド部21が一体化されてなるロッドを延伸して所定径とした後、そのロッドの外側にフッ素を含む第2クラッド部22をOVD法により合成して、光ファイバ母材1を製造する。得られた光ファイバ母材1において、第1クラッド部21の外直径は36mmであり、第2クラッド部22の外直径は140mmである。第2コア部12と第2クラッド部22との相対比屈折率差は最大で0.32%程度である。また、第1クラッド部21の外部におけるOH基の濃度は、赤外吸収分光を用いて測定することができ、400mol ppm程度である。
 続く線引き工程では、以上の光ファイバ母材製造方法により製造された光ファイバ母材1を線引きすることで光ファイバを得ることができる。線引き速度は2,300m/minであり、線引き張力は0.5Nである。
 以上までの説明で述べた諸条件で光ファイバ母材1を製造し更に光ファイバを製造したところ、得られた光ファイバのコア中のカリウム濃度(平均値)は3atomic ppm程度であった。また、この以下の諸特性を有する低伝送損失の光ファイバが得られた。
Figure JPOXMLDOC01-appb-T000001
 比較例として、第1延伸研削工程では第1ロッドを延伸して直径15mmとし、更に外周部を研削して直径12mmとして、第1コア部を得た。また、第2延伸研削工程では、第2ロッドを延伸して直径21.5mmとし、更に外周部を研削して直径17mmとして、コア部を得た。コア部のd2/d1の値は9.0であった。他の工程は上記と同じであった。このようにして製造した比較例の光ファイバ母材を線引きして光ファイバを製造したところ、その光ファイバの伝送損失(波長1550nm)は0.195dB/kmであった。
 以上のことから、光ファイバ母材の組成分布(特にカリウム濃度分布)によって光ファイバの伝送損失の大きさが異なることが分かる。本発明者は、光ファイバ母材の組成分布と光ファイバの伝送損失との間の関係について鋭意研究を行って、低伝送損失の光ファイバを得るための光ファイバ母材の組成分布を求めた。
 光ファイバ母材1において、コア部10は、カリウム濃度が50atomic ppm以上である直径d1のカリウム含有領域を含み、外直径d2が4×d1以上8×d1以下である。コア部10の全体の平均カリウム濃度が5atomic ppm以上50atomic ppm以下であるのが好適である。コア部10において、カリウム含有領域の塩素濃度が1000atomic ppm以下であって、カリウム含有領域以外の領域の塩素濃度が3000atomic ppm以上であるのが好適である。このとき、カリウム濃度が50atomic ppm以下かつ塩素濃度が1000atomic ppm以下である領域の外直径をd3としたとき、d3/d1の値が1.2~2倍であるのが好適である。また、コア部10は、Geを含まないシリカガラスからなり、純シリカガラスの屈折率を基準として-0.1%から+1.0%の範囲の比屈折率差を有するのが好適である。
 図3は、光ファイバ母材1の一つの直径上における屈折率及びカリウム濃度を説明する概念図である。コア部10の屈折率は、クラッド部20の屈折率より高い。第1コア部11の屈折率は、第2コア部12の屈折率より低くてもよい。第1コア部11のうちカリウム濃度が50atomic ppm以上であるカリウム含有領域の直径をd1とし、コア部10の外直径をd2とする。
 図4は、光ファイバ母材1におけるd2/d1の値と、光ファイバ母材1を線引きして得られる光ファイバの波長1550nmにおける伝送損失との関係を示すグラフである。4≦d2/d1≦8の範囲では、波長1550nmにおける光ファイバの伝送損失が小さい。しかし、d2/d1<4の範囲及びd2/d1>8の範囲では、光ファイバの伝送損失が大きい。d2/d1<4の範囲では、カリウムを含む光ファイバ母材を線引きする過程において、そのカリウムが光ファイバのクラッド部まで拡散してしまい、カリウム元素によるガラス粘性低減効果が薄れることから、光ファイバの伝送損失が大きくなると推測される。一方、d2/d1>8の範囲では、線引き工程中のカリウムの拡散が不十分となって、コア部外周においてカリウム元素によるガラス粘性低減効果が弱くなることから、光ファイバの伝送損失が大きくなると推測される。
 光ファイバ母材において4≦d2/d1≦8の範囲であれば、波長1550nmにおける光ファイバの伝送損失は0.165dB/km以下と小さくなる。より好ましくは、光ファイバ母材において5≦d2/d1≦7の範囲であれば、波長1550nmにおける光ファイバの伝送損失は0.155dB/km以下と更に小さくなる。また、光ファイバ母材において5≦d2/d1≦7の範囲であれば、光ファイバ母材のd2/d1の値が変動したとしても、光ファイバの伝送損失の変動が小さい。具体的には、光ファイバ母材のd2/d1の変動値が1であるとき、光ファイバの伝送損失の変動値は0.02dB/km以下である。
 図5は、光ファイバ母材1のコア部の平均カリウム濃度と、光ファイバ母材1を線引きして得られる光ファイバの波長1550nmにおける伝送損失との関係を示すグラフである。光ファイバ母材のd2/d1を4,6,8の各値とした。平均カリウム濃度は、外径d2のコア部10の全体で平均化したカリウム濃度である。4≦d2/d1≦8の範囲において、光ファイバ母材のコア部における平均カリウム濃度が5atomic ppm以上50atomic ppm以下であるとき、光ファイバの波長1550nmにおける伝送損失は小さい。
 光ファイバ母材のコア部における平均カリウム濃度が5atomic ppm未満である場合、光ファイバの伝送損失が大きい。これは、光ファイバ母材のコア部における平均カリウム濃度が薄くなるとカリウム元素によるガラス粘性低減効果が弱まることに因ると推測される。また、光ファイバ母材のコア部における平均カリウム濃度が50atomic ppm超である場合にも、光ファイバの伝送損失が大きい。これは、カリウム化合物やそれを核として成長するガラス結晶等による散乱損失が起こることに因ると推測される。
 カリウム含有領域において塩素濃度が1,000atomic ppm以上である場合、光ファイバ母材の加熱加工工程において、KClがガラス中で凝集する分相が発生し、コア部のシリカガラスが白く濁ったり、KCl分相を核としたガラスの結晶化が発生したりする。これにより、光ファイバは光を散乱し伝送損失が悪くなる。それ故、カリウム含有領域において塩素濃度は1000atomic ppm以下であることが望ましい。また、光ファイバ母材は、その製法において塩素ガスを流しながら加熱する脱水工程が必要であるので、塩素濃度を0atomic ppmとすることは困難である。
 一方、コア部中の塩素濃度が全域で低くコア部全体の塩素濃度が1000atomic ppm以下である光ファイバ母材を製造し、この光ファイバ母材を線引きして光ファイバを製造した。この場合、その光ファイバの波長1550nmにおける伝送損失が0.2dB/kmと大きくなるとともに、波長630nmにガラス欠陥(ガラス結合が切断した状態)に由来する吸収ピークが発生した。ガラス中に塩素を添加することで塩素がガラス欠陥部に反応して欠陥を補修することができるので、カリウムを含まない第2コア部の塩素濃度は3000atomic ppm以上であるのが好ましい。図6は、光ファイバ母材1の一つの直径上におけるカリウム濃度及び塩素濃度の測定値を示すグラフである。
 図7は、光ファイバ母材1の第2コア部の塩素濃度と、光ファイバ母材1を線引きして得られる光ファイバの波長1550nmにおける伝送損失との関係を示すグラフである。第2コア部が含む塩素は線引き工程においてコア部中を拡散するので、第1コア部の塩素濃度が低いガラス中に発生したガラス欠陥も補修することができる。第2コア部の塩素濃度が3000atomic ppm未満である場合には光ファイバの伝送損失が急激に増加することから、第2コア部の塩素濃度は3000atomic ppm以上であることが好適である。更に、第2コア部の塩素濃度が8000atomic ppm以上である場合、光ファイバの伝送損失が0.155dB/km以下となることから、より好ましい。なお、15000atomic ppmより高い塩素濃度の実現は、現在の技術のVADすす付け及び塩素脱水焼結法では困難であるが、今後の技術開発により可能となる可能性がある。
 図8は、光ファイバ母材1の一つの直径上におけるカリウム濃度及び塩素濃度を説明する概念図である。カリウムを含む第1コア部の塩素濃度は1000atomic ppmより低く、第2コア部の塩素濃度は3000atomic ppm以上であることが望ましい。カリウム濃度が50atomic ppm以下かつ塩素濃度が1000atomic ppm以下である領域の外直径をd3とする。
 図9は、光ファイバ母材1におけるd3/d1の値と、光ファイバ母材1を線引きして得られる光ファイバの波長1550nmにおける伝送損失との関係を示すグラフである。光ファイバ母材のd3/d1の値が1.2~2であれば、光ファイバの伝送損失が小さい。光ファイバ母材のd3/d1の値が1.2以下である場合、カリウム濃度分布が第2コア部との界面近くまで分布することとなる。この場合、光ファイバ母材の製造工程において、加えられる熱により界面にKCl分相が発生し、結晶等の成長による界面構造不正となり、光ファイバの伝送損失が増加する。一方、光ファイバ母材のd3/d1の値が2.5倍以上である場合、線引き工程においてカリウム及び塩素の拡散が不十分であることが原因であると推測される光ファイバの伝送損失の急激な増加が発生した。
 光ファイバ母材のコア部は、Geを含まないシリカガラスからなり、純シリカガラスの屈折率を基準として-0.1%から+1.0%の範囲の比屈折率差を有するのが好ましい。このようにすることにより、光ファイバは、Geによる散乱損失が低減され、0.165dB/kmという低い伝送損失を達成することができる。

Claims (5)

  1.  カリウム濃度が50atomic ppm以上である直径d1のカリウム含有領域を含み、外直径d2が4×d1以上8×d1以下であるコア部と、
     前記コア部を囲み前記コア部の屈折率より小さい屈折率を有するクラッド部と、
    を備える光ファイバ母材。
  2.  前記コア部の全体の平均カリウム濃度が5atomic ppm以上50atomic ppm以下である
    請求項1に記載の光ファイバ母材。
  3.  前記コア部において、前記カリウム含有領域の塩素濃度が1000atomic ppm以下であって、前記カリウム含有領域以外の領域の塩素濃度が3000atomic ppm以上である
    請求項1に記載の光ファイバ母材。
  4.  前記コア部において、カリウム濃度が50atomic ppm以下かつ塩素濃度が1000atomic ppm以下である領域の外直径をd3としたとき、d3/d1の値が1.2~2である
    請求項3に記載の光ファイバ母材。
  5.  前記コア部が、Geを含まないシリカガラスからなり、純シリカガラスの屈折率を基準として-0.1%から+1.0%の範囲の比屈折率差を有する
    請求項1~4の何れか1項に記載の光ファイバ母材。
PCT/JP2014/061819 2013-04-30 2014-04-28 光ファイバ母材 WO2014178361A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-095541 2013-04-30
JP2013095541A JP2014214079A (ja) 2013-04-30 2013-04-30 光ファイバ母材

Publications (1)

Publication Number Publication Date
WO2014178361A1 true WO2014178361A1 (ja) 2014-11-06

Family

ID=51843488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061819 WO2014178361A1 (ja) 2013-04-30 2014-04-28 光ファイバ母材

Country Status (2)

Country Link
JP (1) JP2014214079A (ja)
WO (1) WO2014178361A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3040749A1 (en) * 2014-11-20 2016-07-06 Sumitomo Electric Industries, Ltd. Optical fiber having an alkali metal doped silica glass core
GB2543956A (en) * 2015-10-15 2017-05-03 Sumitomo Electric Industries Optical fiber
JP2017173718A (ja) * 2016-03-25 2017-09-28 住友電気工業株式会社 光ファイバ
EP3246736A4 (en) * 2015-01-14 2018-02-07 Sumitomo Electric Industries, Ltd. Optical fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3677556A4 (en) 2017-08-31 2021-05-26 Sumitomo Electric Industries, Ltd. METHOD FOR MANUFACTURING A GLASS FIBER STARTING MATERIAL AND METHOD FOR MANUFACTURING A GLASS FIBER

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541796A (ja) * 2006-06-21 2009-11-26 コーニング インコーポレイテッド アルカリ金属酸化物を含有する光ファイバ
JP2012229150A (ja) * 2011-04-15 2012-11-22 Sumitomo Electric Ind Ltd 光ファイバおよび光ファイバ母材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541796A (ja) * 2006-06-21 2009-11-26 コーニング インコーポレイテッド アルカリ金属酸化物を含有する光ファイバ
JP2012229150A (ja) * 2011-04-15 2012-11-22 Sumitomo Electric Ind Ltd 光ファイバおよび光ファイバ母材

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3040749A1 (en) * 2014-11-20 2016-07-06 Sumitomo Electric Industries, Ltd. Optical fiber having an alkali metal doped silica glass core
US9575245B2 (en) 2014-11-20 2017-02-21 Sumitomo Electric Industries, Ltd. Optical fiber
EP3246736A4 (en) * 2015-01-14 2018-02-07 Sumitomo Electric Industries, Ltd. Optical fiber
US9910216B2 (en) 2015-01-14 2018-03-06 Sumitomo Electric Industries, Ltd. Optical fiber
GB2543956A (en) * 2015-10-15 2017-05-03 Sumitomo Electric Industries Optical fiber
CN106908897A (zh) * 2015-10-15 2017-06-30 住友电气工业株式会社 光学纤维
US9817184B2 (en) 2015-10-15 2017-11-14 Sumitomo Electric Industries, Ltd. Optical fiber
GB2543956B (en) * 2015-10-15 2021-07-07 Sumitomo Electric Industries Optical fiber
JP2017173718A (ja) * 2016-03-25 2017-09-28 住友電気工業株式会社 光ファイバ
CN108700704A (zh) * 2016-03-25 2018-10-23 住友电气工业株式会社 光纤
EP3435126A4 (en) * 2016-03-25 2019-03-27 Sumitomo Electric Industries, Ltd. OPTICAL FIBER
CN108700704B (zh) * 2016-03-25 2020-01-10 住友电气工业株式会社 光纤

Also Published As

Publication number Publication date
JP2014214079A (ja) 2014-11-17

Similar Documents

Publication Publication Date Title
JP6213262B2 (ja) 光ファイバ母材および光ファイバ母材製造方法
JP6187644B2 (ja) 光ファイバ
JP5974455B2 (ja) 光ファイバ母材、光ファイバ製造方法および光ファイバ
US10031282B2 (en) Optical fiber
JP6011549B2 (ja) 光ファイバ母材製造方法
JP6337509B2 (ja) 光ファイバ母材製造方法
JP6551109B2 (ja) 光ファイバ
JP5545236B2 (ja) 光ファイバ母材製造方法
WO2014178361A1 (ja) 光ファイバ母材
WO2015079987A1 (ja) 光ファイバ及び光ファイバ母材
JP6613604B2 (ja) 光ファイバ母材
JP7380546B2 (ja) 光ファイバ
WO2017164025A1 (ja) 光ファイバ
JP6579107B2 (ja) 光ファイバ母材製造方法および光ファイバ母材
JP7013697B2 (ja) 光ファイバ母材
WO2019044833A1 (ja) 光ファイバ母材の製造方法、及び、光ファイバの製造方法
WO2023286608A1 (ja) 光ファイバ及び光ファイバ母材
WO2022004415A1 (ja) 光ファイバ母材の製造方法及び光ファイバ母材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791446

Country of ref document: EP

Kind code of ref document: A1