WO2022049911A1 - 感放射線性樹脂組成物及びパターン形成方法 - Google Patents

感放射線性樹脂組成物及びパターン形成方法 Download PDF

Info

Publication number
WO2022049911A1
WO2022049911A1 PCT/JP2021/027008 JP2021027008W WO2022049911A1 WO 2022049911 A1 WO2022049911 A1 WO 2022049911A1 JP 2021027008 W JP2021027008 W JP 2021027008W WO 2022049911 A1 WO2022049911 A1 WO 2022049911A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
radiation
guest
resin composition
Prior art date
Application number
PCT/JP2021/027008
Other languages
English (en)
French (fr)
Inventor
努 下川
大吾 一戸
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2022546918A priority Critical patent/JPWO2022049911A1/ja
Publication of WO2022049911A1 publication Critical patent/WO2022049911A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a radiation-sensitive resin composition and a pattern forming method.
  • a positive radiation-sensitive pattern-forming material used as a display element forming material, a semiconductor resist, etc. a polymer having a structural unit containing an acid-dissociating group that dissociates with an acid to generate an acidic group, and a radiation-sensitive material.
  • Radiation-sensitive resin compositions containing an acid generator are known (see Patent Documents 1 and 2).
  • each index required for the resist material such as sensitivity, exposure margin, LWR (Line Width Roughness), and film loss amount, is good.
  • the present invention provides a radiation-sensitive resin composition which is excellent in performance related to sensitivity, exposure margin, LWR and film loss, and can form a good positive pattern, and such a radiation-sensitive resin composition. It is an object of the present invention to provide the pattern forming method used.
  • One aspect of the invention made to solve the above problems is a radiation-sensitive resin composition containing a crosslinked polymer crosslinked by an interaction between a compound having a host group and a compound having a guest group, and a solvent. ..
  • Another aspect of the present invention is a pattern forming including a step of forming a coating film on a substrate, a step of exposing the coating film, and a step of developing the substrate after exposure with the radiation-sensitive resin composition. The method.
  • a radiation-sensitive resin composition excellent in sensitivity, exposure margin, LWR, and film loss amount, capable of forming a good positive pattern, and such a radiation-sensitive resin composition It is possible to provide a pattern forming method using an object.
  • FIG. 1 is a diagram schematically showing the embodiment of the second embodiment.
  • FIG. 2 is a diagram schematically showing the embodiment of the fourth embodiment.
  • FIG. 3 is a diagram schematically showing the embodiment of the twelfth embodiment.
  • the radiation-sensitive resin composition according to one embodiment of the present invention contains a crosslinked polymer (A) and a solvent (B).
  • the crosslinked polymer (A) is a mutual of a compound (H) having a host group (hereinafter, also referred to as “host compound”) and a compound (G) having a guest group (hereinafter, also referred to as “guest compound”). It is a polymer having a structure crosslinked by action. Normally, at least a part of the host group of the compound (H) is included in the guest group of the compound (G) (host-guest interaction) to form a crosslinked structure.
  • compound (H) has two or more host groups.
  • compound (G) has two or more guest groups.
  • FIG. 1 schematically shows the crosslinked polymer of Example 2 described later and its form when irradiated with radiation, and is a host compound having two host groups (H-2: bifunctional). Cyclodextrin) and a guest compound (GA: azobenzene) having two guest groups form a crosslinked polymer.
  • crosslinking in the present specification is not limited to forming a three-dimensional network structure, and "crosslinking polymer (A)" is a polymer having no branching.
  • FIG. 2 schematically shows the crosslinked polymer of Example 4 described later and its form when irradiated with radiation, and is a host compound having three host groups (H-3: trifunctional).
  • a crosslinked polymer is formed by a guest compound (G-1: bifunctional adamantyl) having two guest groups (cyclodextrin) and a guest compound (G-1: bifunctional adamantyl).
  • the compound (H) may be a polymer having a structural unit containing a host group.
  • compound (G) may be a polymer having a structural unit containing a guest group (see FIG. 3).
  • FIG. 3 schematically shows the crosslinked polymer of Example 12 described later and the form when it is irradiated with radiation, and is a polymer having a structural unit containing a cyclodextrin structure as a host group ( A crosslinked polymer is formed by H-5) and a polymer (G-8) having a structural unit containing an azobenzene structure as a guest group.
  • the compound (G) preferably has a photoisomerized structure or an acid dissociative structure.
  • the compound (G) is isomerized by irradiating the compound (G) with radiation.
  • the crosslinked polymer (A) the crosslinked structure due to the interaction between the compound (H) and the compound (G), that is, the inclusion structure is solved, and the compound (H) and the compound (G) are separated.
  • the solubility of the irradiated portion will be increased. For example, as shown in FIG.
  • the radiation-sensitive resin composition further contains a radiation-sensitive acid generator.
  • a radiation-sensitive resin composition acid is generated by irradiating the radiation-sensitive acid generator with radiation.
  • the compound (G) in the crosslinked polymer (A) is separated, and the crosslinked structure is dissolved, so that the solubility of the irradiated portion is enhanced.
  • the guest compound (G-1: bifunctional adamantyl) shown in FIG. 2 is a compound represented by the following formula and has an acid dissociative structure as described in detail later.
  • the crosslinked polymer is decomposed by generating an acid from the radiation-sensitive acid generator (PAG) by irradiation with radiation and decomposing the guest compound.
  • the radiation-sensitive resin composition is configured such that the crosslinked polymer (A) is decomposed in the exposed portion, and has a positive radiation-sensitive performance.
  • the radiation-sensitive resin composition is excellent in performance related to sensitivity, exposure margin, LWR, and film loss amount.
  • Compound (H) is a compound having a host group.
  • the number of host groups contained in the compound (H) is preferably 2 or more in one molecule, and as one form, 2 to 5 is more preferable, and 2 to 4 may be further preferable.
  • compound (H) may be a compound having two host groups in one molecule, a compound having three host groups in one molecule, and four hosts in one molecule. It may be a compound having a group.
  • the compound (H) may be a compound having 6 or more host groups in one molecule.
  • the compound (H) one kind or two or more kinds can be used.
  • the host group of the compound (H) is not particularly limited as long as it has a structure capable of encapsulating at least a part of the guest group of the compound (G), and is a cyclodextrin, a cyclodextrin derivative, or Calix [6].
  • Allene Sulfonic Acid, Calix [8] Allene Sulfonic Acid, 12-Crown-4, 18-Crown-6, [6] Paracyclophane, [2,2] Paracyclophane, Kukurubit [6] Uril, Kukurubit [8] Groups derived from uryl and the like can be mentioned.
  • the host group is preferably a group derived from a cyclodextrin derivative, specifically, a monovalent group obtained by removing one hydrogen atom or a hydroxyl group from the cyclodextrin derivative, and one from the cyclodextrin derivative.
  • a group from which the hydroxyl group has been removed is more preferable.
  • the cyclodextrin derivative is one in which the hydrogen atom of at least one hydroxyl group of cyclodextrin is substituted with a substituent.
  • substituent include a monovalent hydrocarbon group having 1 to 12 carbon atoms, an acyl group, -CONHR (R is a methyl group or an ethyl group) and the like. That is, as the cyclodextrin derivative, the hydrogen atom of at least one hydroxyl group of cyclodextrin is a monovalent hydrocarbon group having 1 to 12 carbon atoms, an acyl group and -CONHR (R is a methyl group or an ethyl group). There is preferably one having a structure substituted with at least one group (substituent) selected from the group consisting of).
  • Examples of the monovalent hydrocarbon group having 1 to 12 carbon atoms include a monovalent chain hydrocarbon group having 1 to 12 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 12 carbon atoms, and 6 carbon atoms. 12 monovalent aromatic hydrocarbon groups and the like can be mentioned.
  • Examples of the monovalent chain hydrocarbon group having 1 to 12 carbon atoms include an alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group, an alkenyl group such as an ethenyl group, a propenyl group and a butenyl group, and an ethynyl group.
  • Examples thereof include an alkynyl group such as a propynyl group and a butynyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 12 carbon atoms include a monovalent monovalent alicyclic saturated hydrocarbon group such as a cyclopentyl group and a cyclohexyl group, a cyclopentenyl group, and a cyclohexenyl group.
  • Monovalent monovalent alicyclic unsaturated hydrocarbon group, norbornyl group, adamantyl group and other monovalent polycyclic alicyclic saturated hydrocarbon groups, norbornenyl group and other monovalent polycyclic alicyclic unsaturated group Hydrocarbon groups and the like can be mentioned.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 12 carbon atoms include a phenyl group, a tolyl group, and a naphthyl group.
  • acyl group examples include a formyl group, an acetyl group, a propionyl group, a benzoyl group and the like.
  • acyl group an acyl group having 1 to 8 carbon atoms is preferable.
  • a monovalent hydrocarbon group having 1 to 12 carbon atoms is preferable, and a monovalent hydrocarbon group having 1 to 4 carbon atoms is more preferable.
  • the hydrogen atom of 70% or more, more preferably 80% or more, still more preferably 90% or more of the total hydroxyl groups of the cyclodextrin is substituted with the above substituent.
  • the host group can exhibit excellent interaction (inclusion), especially with the hydrophobic compound (G) or the hydrophobic guest group.
  • the host group preferably has at least one structure selected from the group consisting of an ⁇ -cyclodextrin structure, a ⁇ -cyclodextrin structure, and a ⁇ -cyclodextrin structure.
  • a group represented by the following formula (H) can be mentioned.
  • the group represented by this formula (H) is an example of a group obtained by removing one hydroxyl group from a cyclodextrin derivative.
  • the plurality of Ras are independently hydrogen atoms or the above-mentioned substituents. However, at least one of the plurality of Ra is the above-mentioned substituent. r is 5, 6 or 7. * Represents a binding site.
  • R 10 is an m-valent organic group.
  • RH is a host group.
  • m is an integer from 2 to 5.
  • the m-valent organic group represented by R 10 is (1) m-valent hydrocarbon group, (2) A group having a carbon-carbon group of an m-valent hydrocarbon group or a group consisting of -S-, -O-, -CO-, -NH- or a combination thereof at the terminal. (3) Examples thereof include a group in which the hydrogen atom of these groups (the group of (1) or (2) above) is substituted with a substituent such as a halogen or a hydroxyl group.
  • Examples of the m-valent hydrocarbon group in (1) above include an m-valent chain hydrocarbon group, an m-valent alicyclic hydrocarbon group, an m-valent aromatic hydrocarbon group, and the like. Chain hydrocarbon groups are preferred.
  • the carbon number of the m-valent organic group represented by R10 is preferably 1 or more and 40 or less, and more preferably 2 or more and 30 or less.
  • the compound represented by the above formula (H1) can be synthesized by a known method.
  • the compound represented by the above formula (H1) can be synthesized, for example, by a Michael addition reaction between an ⁇ , ⁇ unsaturated carbonyl compound having a host group ( RH ) and a polyfunctional thiol compound.
  • the ⁇ , ⁇ unsaturated carbonyl compound having a host group is, for example, ⁇ , ⁇ having a hydroxyl group or an amino group. It can be obtained by a method of dehydrating and condensing an unsaturated carbonyl compound (N-hydroxymethyl (meth) acrylamide or the like) and cyclodextrin and substituting the hydrogen atom of the hydroxyl group in the obtained condensate with a substituent or the like. The dehydration condensation can be carried out in a solvent in the presence of an acid catalyst, if necessary.
  • the acid catalyst is not particularly limited, and known catalysts can be widely used, and examples thereof include p-toluenesulfonic acid, aluminum chloride, and hydrochloric acid.
  • the amount of the acid catalyst used can be, for example, 0.01 mol% or more and 20 mol% or less with respect to cyclodextrin.
  • the solvent in the dehydration condensation reaction is not particularly limited, and examples thereof include water, N, N-dimethylformamide, dimethyl sulfoxide, and N-methylpyrrolidone.
  • the reaction temperature and reaction time of dehydration condensation are not limited, and can be carried out under appropriate conditions. From the viewpoint of proceeding with the reaction more rapidly, the reaction temperature is preferably 25 to 100 ° C., and the reaction time is preferably 1 minute to 3 hours.
  • a known method can be adopted as a method for substituting the hydrogen atom of the hydroxyl group in the obtained condensate with a substituent.
  • a known alkylation reaction can be widely adopted.
  • the substitution with a hydrocarbon group can be carried out by a method of reacting an alkyl halide with the above condensate in the presence of sodium hydride or the like.
  • the alkyl halide include methyl iodide, ethyl iodide, and propyl iodide.
  • an acyl group such as an acetyl group for a hydrogen atom of a hydroxyl group existing in a condensate
  • a known acylation reaction can be widely adopted.
  • the substitution with an acetyl group can be carried out by a method of reacting acetyl halide in the presence of sodium hydride with the above condensate.
  • the acetyl halide include acetyl bromide and acetyl iodide.
  • alkyl carbamate formation reaction As a method of substituting the hydrogen atom of the hydroxyl group present in the condensate with -CONHR (R is a methyl group or an ethyl group), for example, a known alkyl carbamate formation reaction can be widely adopted.
  • alkyl isocyanate include methyl isocyanate and ethyl isocyanate.
  • polyfunctional thiol compound examples include butane-1,4-dithiol, 1,4-bis (3-mercaptobutylyloxy) butane, and 1,3,5-tris (2- (3-sulfanylbutanoyloxy) ethyl).
  • -1,3,5-triazinan-2,4,6-trione trimethylolpropane tris (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate) Rate) and the like.
  • the compound represented by the above formula (H1) may be, for example, a compound represented by the following formula (H2).
  • the compound represented by the following formula (H2) is an example of a compound obtained by a Michael addition reaction between an ⁇ , ⁇ unsaturated carbonyl compound having the above-mentioned host group and a polyfunctional thiol compound.
  • R 11 is an m-valent organic group.
  • R 12 is a hydrogen atom or a methyl group.
  • R 13 is an oxygen atom (-O-) or -NH-.
  • RH is a host group.
  • q1 is 0 or 1.
  • q2 is an integer from 0 to 4.
  • m is an integer from 2 to 5.
  • Examples of the m-valent organic group represented by R 11 include the same as the above-mentioned m-valent organic group represented by R 10 .
  • the m-valent organic group represented by R 11 includes an m-valent chain hydrocarbon group, an m-valent chain hydrocarbon group between carbon and carbon, -O-, -CO-, or a combination thereof.
  • a group having a group (-COO-) is preferable.
  • the carbon number of the m-valent organic group represented by R 11 is, for example, preferably 1 or more and 30 or less, more preferably 2 or more and 20 or less, and further preferably 2 or more and 12 or less.
  • q1 is 1, q2 is preferably an integer from 1 to 4. Further, q2 is preferably 1 or 2.
  • the compound (H) may be a polymer (H) having a structural unit (I) containing a host group.
  • a structural unit represented by the following formula (1) can be mentioned.
  • R 1 is a hydrogen atom or a methyl group.
  • R2 is a divalent linking group, for example, a group represented by any of the following formulas (3a) to (3c).
  • RH is the host group.
  • n1 is 0 or 1.
  • n2 is an integer from 0 to 4.
  • R5 is an oxygen atom or -NH-.
  • n3 is an integer from 0 to 12.
  • R 6 is an oxygen atom, -NH- or a carbonyloxy group (-COO-).
  • * represents a binding site with RH .
  • n2 is preferably an integer from 1 to 4. Further, n2 is preferably 1 or 2.
  • the polymer (H) can be obtained by polymerizing a monomer containing the monomer (I) giving the structural unit (I) by a known method.
  • the monomer (I) one kind or two or more kinds can be used.
  • the monomer (I) that gives the structural unit (I) the above-mentioned ⁇ , ⁇ unsaturated carbonyl compound having a host group and other unsaturated compounds having a host group can be used.
  • the monomer (I) can be synthesized according to the methods described in WO2018 / 159791 and WO2017 / 159346.
  • the content ratio of the structural unit (I) in the polymer (H) may be, for example, 1% by mass or more and 80% by mass or less, preferably 2% by mass or more and 50% by mass or less, and 3% by mass or more and 30% by mass or less. Is more preferable, and 5% by mass or more and 20% by mass or less is further preferable.
  • the content ratio of the structural unit (I) By setting the content ratio of the structural unit (I) to the above lower limit or higher, the performance of the radiation-sensitive resin composition based on the structural unit (I) is further improved.
  • the content ratio of the structural unit (I) to the above upper limit or less, a sufficient amount of other structural units can be contained, and other performance can be sufficiently enhanced.
  • the polymer (H) preferably further contains a structural unit (II) having a carboxy group or a phenolic hydroxyl group.
  • a structural unit having a carboxy group is more preferable.
  • Examples of the monomer giving the structural unit (II) include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, and 4-vinylbenzoic acid; Unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid; The unsaturated dicarboxylic acid anhydride; Examples thereof include (meth) acrylic acid esters having a phenolic hydroxyl group such as 4-hydroxyphenyl (meth) acrylate. As these monomers, one kind or two or more kinds can be used.
  • unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, and 4-vinylbenzoic acid
  • Unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid
  • the unsaturated dicarboxylic acid anhydride examples thereof include (meth)
  • the content ratio of the structural unit (II) in the polymer (H) may be, for example, 1% by mass or more and 50% by mass or less, preferably 3% by mass or more and 40% by mass or less, and 5% by mass or more and 30% by mass or less. Is more preferable.
  • the polymer (H) preferably contains a structural unit (III) having a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • a structural unit (III) having a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include an aliphatic hydrocarbon group having 1 to 20 carbon atoms and an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • an aliphatic chain hydrocarbon group is preferable, and specifically, a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, a nonyl group, and the like.
  • Alkenyl groups such as decyl group, dodecyl group, pentadecyl group, octadecyl group, ethenyl group, propenyl group, butenyl group, hexenyl group, octenyl group, decenyl group, octadecenyl group and other alkenyl groups, ethynyl group, propynyl group, butynyl group, Examples thereof include an alkynyl group such as a hexynyl group, an octynyl group, a decynyl group and an octadecynyl group.
  • Examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenyl group, a benzyl group, a tolyl group, a xsilyl group, a naphthyl group, an anthracenyl group and the like.
  • the lower limit of the number of carbon atoms of this monovalent hydrocarbon group 2 is preferable, 3 is more preferable, and 4 is further preferable.
  • the upper limit of the number of carbon atoms 15 is preferable, and 10 is more preferable.
  • Examples of the monomer giving the structural unit (III) include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, hexyl (meth) acrylate, and octyl (meth). Examples thereof include meta) acrylate, benzyl (meth) acrylate, naphthyl (meth) acrylate, styrene, and phenylvinyl ether. As these monomers, one kind or two or more kinds can be used.
  • the content ratio of the structural unit (III) in the polymer (H) may be, for example, 10% by mass or more and 95% by mass or less, preferably 30% by mass or more and 90% by mass or less, and 50% by mass or more and 85% by mass or less. Is more preferable, and 70% by mass or more and 80% by mass or less may be further preferable.
  • the polymer (H) may further contain a structural unit (IV) other than the structural units (I) to (III).
  • Examples of the monomer giving the structural unit (IV) include 2-hydroxyethyl (meth) acrylate, polyethylene glycol methyl ether (meth) acrylate, polypropylene glycol methyl ether (meth) acrylate, polyethylene glycol mono (meth) acrylate, and polypropylene.
  • Glycol mono (meth) acrylate and the like can be mentioned. As these monomers, one kind or two or more kinds can be used.
  • the upper limit of the content ratio of the structural unit (IV) in the polymer (H) is preferably 30% by mass, more preferably 10% by mass, and even more preferably 3% by mass or 1% by mass.
  • the polymer (H) can be obtained, for example, by polymerizing each of the above monomers by a known method such as radical polymerization.
  • the weight average molecular weight (Mw) of the polymer (H) is usually 1,000 to 100,000, preferably 3,000 to 30,000. Mw refers to a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (eluting solvent: tetrahydrofuran).
  • Compound (G) is a compound having a guest group.
  • the number of guest groups contained in the compound (G) is preferably 2 or more in one molecule, more preferably 2 to 5 and even more preferably 2 to 4 as one form.
  • compound (G) may be a compound having two guest groups in one molecule, a compound having three guest groups in one molecule, and four guests in one molecule. It may be a compound having a group.
  • the compound (G) may be a compound having 6 or more guest groups in one molecule.
  • the compound (G) one kind or two or more kinds can be used.
  • the guest group contained in the compound (G) is not particularly limited as long as it is a group capable of inclusion in at least a part of the host group of the compound (H), but is a substituted or unsubstituted hydrocarbon group having 6 to 30 carbon atoms. Groups containing are preferred.
  • the hydrocarbon group having 6 to 30 carbon atoms is usually a monovalent group.
  • the hydrocarbon group having 6 to 30 carbon atoms include a chain hydrocarbon group having 6 to 30 carbon atoms, an alicyclic hydrocarbon group having 6 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 30 carbon atoms, and the like. Can be mentioned.
  • the hydrocarbon group having 6 to 30 carbon atoms may have a substituent and may not have a substituent, but it is preferable that the hydrocarbon group does not have a substituent.
  • the substituent that the hydrocarbon group may have include an alkoxy group, an acyl group, a halogen atom and the like.
  • the number of carbon atoms of the alkoxy group and the acyl group is, for example, 1 to 12, preferably 1 to 6.
  • the chain hydrocarbon group having 6 to 30 carbon atoms includes an alkyl group such as a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, a pentadecyl group and an octadecyl group, a hexenyl group, an octenyl group, a decenyl group and an octadecenyl group.
  • alkyl group such as a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, a pentadecyl group and an octadecyl group, a hexenyl group, an octenyl group, a decenyl group and an octadecenyl group.
  • Such as an alkenyl group, a hexynyl group, an octynyl group, a decynyl group, an alkynyl group such as an octadecynyl group and the like can be mentioned.
  • Examples of the alicyclic hydrocarbon group having 6 to 30 carbon atoms include a monovalent monocyclic alicyclic saturated hydrocarbon group such as a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclodecyl group, and a cyclododecyl group, and cyclohexenyl.
  • Monovalent monocyclic unsaturated hydrocarbon groups such as groups, cyclooctenyl groups and cyclodecenyl groups, norbornyl groups, isobornyl groups, adamantyl groups, tricyclodecyl groups and tetracyclododecyl groups.
  • Examples thereof include monovalent polycyclic unsaturated hydrocarbon groups such as an alicyclic saturated hydrocarbon group, a norbornenyl group, a tricyclodecenyl group, and a tetracyclododecenyl group.
  • Examples of the aromatic hydrocarbon group having 6 to 30 carbon atoms include a phenyl group, a benzyl group, a tolyl group, a xsilyl group, a naphthyl group, an anthracenyl group and the like.
  • hydrocarbon groups having 6 to 30 carbon atoms an alicyclic hydrocarbon group having 6 to 30 carbon atoms and an aromatic hydrocarbon group having 6 to 30 carbon atoms are preferable.
  • Such hydrocarbon groups can be effectively encapsulated, especially with groups derived from cyclodextrin derivatives.
  • a polycyclic group is preferable, a polycyclic alicyclic saturated hydrocarbon group is more preferable, and an adamantyl group is further preferable.
  • aromatic hydrocarbon group a phenyl group is preferable.
  • the upper limit of the number of carbon atoms of the hydrocarbon group is preferably 20 and more preferably 15.
  • the compound (G) preferably has a photoisomerized structure or an acid dissociative structure.
  • the positive radiation-sensitive performance of the radiation-sensitive resin composition is particularly sufficiently exhibited.
  • the compound (G) having a photoisomerization structure is preferably at least one selected from the group consisting of the following (1) to (4).
  • a compound in which at least one hydrogen atom of azobenzene or stilbene is replaced with a hydrocarbon group having 1 to 12 carbon atoms is preferable.
  • the number of carbon atoms of the hydrocarbon group is preferably 1 to 6, more preferably 1 to 3.
  • the compound of (4) above usually has at least two groups excluding one hydrogen atom in the aromatic ring of the compounds of (1) to (3).
  • the compound (G) having a photoisomerization structure is more preferably at least one selected from the group consisting of the following (1), (2) and (4').
  • (1) Azobenzene (2)
  • Substituted or unsubstituted azobenzene and substituted or unsubstituted stilbene are easily included in the cyclodextrin structure in the case of a trans form, while they are easily released from the cyclodextrin structure when photoisomerized to form a cis form. That is, these compounds or groups derived from these compounds are usually included in the host group of compound (H) in the trans form.
  • H host group of compound (H) in the trans form.
  • (1) azobenzene, (2) stilbene and (3) azobenzene or stilbene having a predetermined substituent has two substituted or unsubstituted phenyl groups as guest groups.
  • the "group consisting of the compounds of (1) to (3) excluding one hydrogen atom" functions as a guest group (group containing a phenyl group).
  • the compound (4) may be a polymer or a compound that is not a polymer. The specific structure of such a compound will be described later.
  • Compound (G) having an acid dissociative structure In the compound (G) having an acid dissociative structure, it is preferable that the compound (G) has a structure in which a plurality of guest groups are dissociated by an acid.
  • Examples of the compound (G) having an acid dissociative structure include compounds having structures represented by the following formulas (4-1) and (4-2). * -COO- RG' (4-1) * -OCO-R G' (4-2)
  • RG' is a guest group which is a tertiary hydrocarbon group. * Represents a binding site.
  • RG' a group represented by the following formula (5) is preferable.
  • R p1 to R p3 are independently alkyl groups having 1 to 4 carbon atoms or alicyclic hydrocarbon groups having 4 to 20 carbon atoms. However, some or all of the hydrogen atoms of the above alkyl group and alicyclic hydrocarbon group may be substituted. Further, R p2 and R p3 may be bonded to each other to form a divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms together with the carbon atom to which each is bonded. R p1 , R p2 and R p3 may be bonded to each other to form a monovalent polycyclic alicyclic hydrocarbon group having 4 to 20 carbon atoms together with the carbon atom to which each is bonded.
  • Examples of the alkyl group having 1 to 4 carbon atoms represented by R p1 to R p3 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a 2-methylpropyl group, and 1-. Examples thereof include a methylpropyl group and a t-butyl group.
  • Examples of the alicyclic hydrocarbon group having 4 to 20 carbon atoms represented by R p1 to R p3 include a polycyclic alicyclic hydrocarbon group having an abridged skeleton such as an adamantane skeleton and a norbornane skeleton; Examples thereof include monocyclic alicyclic hydrocarbon groups having a cycloalkane skeleton such as cyclopentane and cyclohexane. Further, a part or all of hydrogen atoms contained in these groups may be substituted with one or more of linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms, for example.
  • R p1 is an alkyl group having 1 to 4 carbon atoms
  • R p2 and R p3 are bivalent groups having an adamantane skeleton or a cycloalkane skeleton together with carbon atoms to which they are bonded to each other. Is preferably formed. It is also preferable that R p1 , R p2 and R p3 are bonded to each other to form a monovalent group having an adamantane skeleton together with the carbon atom to which each is bonded.
  • the compound (G) having an acid dissociative structure may be a polymer or a compound that is not a polymer.
  • Examples of the compound (G) include a compound represented by the following formula (G1).
  • R15 is a p-valent organic group.
  • RG is a guest group.
  • p is an integer from 2 to 5.
  • Examples of the p-valent organic group represented by R 15 include the same as the above-mentioned m-valent organic group represented by R 10 .
  • the carbon number of the p-valent organic group represented by R15 is, for example, preferably 1 or more and 40 or less, and more preferably 2 or more and 30 or less.
  • the guest group represented by RG are as described above, and "the hydrocarbon group having 1 to 12 carbon atoms or 1 hydrogen atom having at least one hydrogen atom of azobenzene, stilben, or azobenzene or stilben” is as described above. Also included are “a group consisting of a compound substituted with 12 alkoxy groups excluding one hydrogen atom” and "a tertiary hydrocarbon group represented by RG' ".
  • Examples of the compound represented by the above formula (G1) include compounds represented by the following formula (G2) or (G3).
  • R 16 and R 17 are p-valent hydrocarbon groups.
  • RG is a guest group.
  • p is an integer from 2 to 5.
  • the carbon number of the p-valent hydrocarbon group represented by R 16 and R 17 is preferably 1 or more and 30 or less, and more preferably 2 or more and 10 or less.
  • a p-valent hydrocarbon group is preferable, and a p-valent saturated aliphatic hydrocarbon group is more preferable.
  • RG is "azobenzene, stylben, or at least one hydrogen atom possessed by azobenzene or stillben, which is a hydrocarbon group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms.
  • the compound is a group obtained by removing one hydrogen atom of the compound substituted with, such a compound is suitable as an example of the compound (G) having a photoisomerized structure.
  • the compound (G) may be a polymer (G) having a structural unit (i) containing a guest group.
  • a structural unit represented by the following formula (2) can be mentioned.
  • R 3 is a hydrogen atom or a methyl group.
  • R4 is a divalent linking group, for example, a group represented by any of the following formulas (3a) to (3c).
  • RG is the guest group described above.
  • n1 is 0 or 1.
  • n2 is an integer from 0 to 4.
  • R5 is an oxygen atom or -NH-.
  • n3 is an integer from 0 to 12.
  • R6 is an oxygen atom, -NH- or a carbonyloxy group.
  • * represents a binding site with RG .
  • n2 is preferably an integer from 1 to 4. Further, n2 is preferably 1 or 2.
  • RG substitutes at least one hydrogen atom of azobenzene, stilbene, or azobenzene or stilbene with a hydrocarbon group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms.
  • the polymer having such a structural unit (i) is suitable as an example of the polymer (G) having a structural unit having a photoisomerized structure. Is.
  • R 4 is represented by the formula (3a), n1 and n2 in the formula (3a) are 0, and R 5 is an oxygen atom, that is, R 4 is a carbonyloxy group (-COO-). Or when it is represented by the formula (3c) and R 6 is a carbonyloxy group and RG is a tertiary hydrocarbon group ( RG' ).
  • the polymer having such a structural unit (i) is suitable as an example of the polymer (G) having a structural unit having an acid dissociative structure.
  • Examples of the monomer giving the structural unit (i) include cyclohexyl (meth) acrylate, cyclooctyl (meth) acrylate, norbornyl (meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, and ethyl adamantyl (meth) acrylate.
  • the content ratio of the structural unit (i) in the polymer (G) is preferably 10% by mass or more and 95% by mass or less, more preferably 20% by mass or more and 90% by mass or less, and further preferably 30% by mass or more and 80% by mass or less. It is preferable, and in some cases, 40% by mass or more and 70% by mass or less is even more preferable.
  • the polymer (G) preferably further contains a structural unit (ii) having a carboxy group or a phenolic hydroxyl group.
  • a structural unit having a carboxy group is more preferable.
  • Examples of the monomer giving the structural unit (ii) include the same monomers giving the structural unit (II) described above.
  • the content ratio of the structural unit (ii) in the polymer (G) is, for example, preferably 1% by mass or more and 40% by mass or less, and more preferably 3% by mass or more and 30% by mass or less.
  • the polymer (G) preferably contains a structural unit having a monovalent hydrocarbon group having 1 to 5 carbon atoms.
  • the solubility of the polymer (G) becomes preferable, and the characteristics of the LWR and the like become better.
  • Examples of the monomer giving the structural unit (iii) include those having a monovalent hydrocarbon group having 1 to 5 carbon atoms among the above-mentioned monomers giving the structural unit (III).
  • (meth) acrylic acid esters such as methyl (meth) acrylate and ethyl (meth) acrylate are preferable.
  • the content ratio of the structural unit (iii) in the polymer (G) is, for example, preferably 5% by mass or more and 50% by mass or less, and more preferably 10% by mass or more and 40% by mass or less.
  • the polymer (G) may further contain a structural unit (iv) other than the structural unit (i) to (iii).
  • Examples of the monomer giving the structural unit (iv) include the same monomers giving the structural unit (IV) described above.
  • the upper limit of the content ratio of the structural unit (iv) in the polymer (G) is preferably 30% by mass, more preferably 10% by mass, and even more preferably 3% by mass or 1% by mass.
  • the polymer (G) can be obtained, for example, by polymerizing each of the above monomers by a known method such as radical polymerization.
  • the weight average molecular weight (Mw) of the polymer (G) is usually 1,000 to 100,000, preferably 3,000 to 50,000.
  • the crosslinked polymer (A) has a structure formed by being crosslinked by the interaction (host-guest interaction) between the compound (H) and the compound (G). Specifically, at least a part of the guest group of the compound (G) exists in a state of being encapsulated by the host group of the compound (H). That is, the crosslinked polymer (A) is a clathrate compound of the compound (H) and the compound (G). However, the compound (H) and the compound (G) existing in a free state may be contained in the radiation-sensitive resin composition. Further, in the crosslinked polymer (A), a guest group not included in the host group and a host group not included in the guest group may be present.
  • the crosslinked polymer (A) is obtained by mixing the compound (H) and the compound (G) in a solvent.
  • the compound (G) is a cis-trans isomer having a photoisomerization structure, it is usually mixed with the compound (H) in the trans state to form an inclusion compound.
  • the mixing ratio of the compound (H) and the compound (G) is not particularly limited.
  • the mass ratio of compound (H) to compound (G) (compound (H) / compound (G)) may be in the range of 10/90 to 90/10 and in the range of 20/80 to 80/20. It may be in the range of 30/70 to 70/30, and may be in the range of 40/60 to 60/40.
  • the mixing ratio may be adjusted from the amounts of the guest group and the host group.
  • the molar ratio of the host group to the guest group (host group / guest group) is in the range of 10/90 to 90/10, further in the range of 20/80 to 80/20, and in the range of 30/70 to 70/30.
  • the mixing ratio of the compound (H) and the compound (G) may be adjusted so as to be in the range of 40/60 to 60/40.
  • the lower limit of the content of the crosslinked polymer (A) in the solid content of the radiation-sensitive resin composition is preferably 50% by mass, more preferably 70% by mass, further preferably 90% by mass, and 95% by mass. It may be even more preferable. On the other hand, as the upper limit of this content, 99.9% by mass is preferable, and 99.5% by mass is more preferable.
  • the solid content means all components other than the solvent.
  • the solvent (B) used in the radiation-sensitive resin composition is not particularly limited as long as it is a liquid that does not react with each component such as the crosslinked polymer (A) and can dissolve or disperse each component. , Conventionally known solvents can be used.
  • Examples of the solvent (B) include alcohols such as methanol, ethanol, isopropyl alcohol, butanol, and octanol; Esters such as ethyl acetate, butyl acetate, ethyl lactate, ⁇ -butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate; Ethers such as ethylene glycol monobutyl ether, propylene glycol monomethyl ether, ethylene diglycol monomethyl ether, ethylene diglycol ethyl methyl ether; Amides such as dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone can be used.
  • the solvent (B) can be used alone or in combination of two or more.
  • the solid content concentration of the radiation-sensitive resin composition can be, for example, 10% by mass or more and 80% by mass or less.
  • the radiation-sensitive resin composition is a radiation-sensitive acid generator (C) (hereinafter, “acid generator”). It is also preferable to further include (C) ”.
  • Examples of the acid generator (C) include onium salt compounds, sulfoneimide compounds, halogen-containing compounds, diazoketone compounds and the like. Of these, onium salt compounds and sulfonimide compounds are preferable.
  • onium salt compound examples include a sulfonium salt (including a tetrahydrothiophenium salt), an iodonium salt, a phosphonium salt, a diazonium salt, a pyridinium salt and the like.
  • sulfonium salt examples include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium perfluoro-n-octanesulfonate, and triphenylsulfonium 2-bicyclo [2.2.1] hept-.
  • tetrahydrothiophenium salt examples include 1- (4-n-butoxynaphthalene-1-yl) tetrahydrothiophenium trifluoromethanesulfonate and 1- (4-n-butoxynaphthalene-1-yl) tetrahydrothiophenium nona.
  • iodonium salt examples include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, and diphenyliodonium 2-bicyclo [2.2.1] hept-2-yl-.
  • 1,1,2,2-tetrafluoroethanesulfonate diphenyliodonium camphorsulfonate, bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium nonafluoro-n-butane sulfonate, Bis (4-t-butylphenyl) iodonium perfluoro-n-octanesulfonate, bis (4-t-butylphenyl) iodonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2, Examples thereof include 2-tetrafluoroethanesulfonate and bis (4-t-butylphenyl) iodonium camphor sulfonate.
  • sulfoneimide compound examples include N- (trifluoromethylsulfonyloxy) -1,8-naphthalenedicarboimide and N- (kanfasulfonyloxy) naphthyldicarboxyimide.
  • the content of the acid generator (C) in the radiation-sensitive resin composition is preferably 0.1 parts by mass or more and 10 parts by mass or less, preferably 0.2 parts by mass, with respect to 100 parts by mass of the crosslinked polymer (A). More than 3 parts by mass and less than 3 parts are more preferable.
  • the acid diffusion control agent (D) is a component that controls the diffusion phenomenon of the acid generated from the acid generator (C) by exposure in the coating film and suppresses an unfavorable chemical reaction in the non-exposed portion.
  • Examples of the acid diffusion control agent (D) include amine compounds, amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds and the like.
  • amine compounds include mono (cyclo) alkylamines; di (cyclo) alkylamines; tri (cyclo) alkylamines; substituted alkylaniline or derivatives thereof; ethylenediamine, N, N, N', N'-tetra.
  • amide group-containing compound examples include Nt-butoxycarbonyl group-containing amino compounds, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, and the like.
  • examples thereof include benzamide, pyrrolidone, N-methylpyrrolidone, N-acetyl-1-adamantylamine, tris isocyanurate (2-hydroxyethyl) and the like.
  • urea compound examples include urea, methyl urea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tri-n-butylthiourea and the like. Can be mentioned.
  • nitrogen-containing heterocyclic compound examples include imidazoles; pyridines (4-dimethylaminopyridine, etc.); piperazins; pyrazine, pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, 4-hydroxy-N-amyloxycarbonylpiperidine.
  • the acid diffusion control agent (D) a photodisintegrating base that is exposed to exposure and generates a weak acid can also be used. Since the photodisintegrating base functions as a quencher only in the unexposed portion, the contrast of the deprotection reaction can be improved, and as a result, the resolution can be improved.
  • a photodisintegrating base there is an onium salt compound that decomposes by exposure and loses acid diffusion controllability.
  • the onium salt compound include a sulfonium salt compound represented by the following formula (D1), an iodonium salt compound represented by the following formula (D2), and the like.
  • R20 to R24 are independently hydrogen atom, alkyl group, alkoxy group, hydroxyl group, halogen atom or -SO2 - RC .
  • RC is an alkyl group, a cycloalkyl group, an alkoxy group or an aryl group.
  • Z - is an anion represented by OH- , R 25 - COO-, RD -SO 2 -N --- R 25 , R 25 - SO 3- or the following formula (D3).
  • R25 is a linear or branched alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an alkalil group having 7 to 30 carbon atoms. ..
  • a part or all of the hydrogen atoms of the above-mentioned alkyl group, cycloalkyl group, aryl group and alkalil group may be substituted.
  • RD is a linear or branched alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 20 carbon atoms which may have a substituent.
  • a part or all of the hydrogen atom of the alkyl group and the cycloalkyl group may be substituted with a fluorine atom.
  • Z ⁇ is R 25 ⁇ SO 3 ⁇
  • the fluorine atom may not be bonded to the carbon atom to which SO 3 ⁇ is bonded.
  • R26 is a linear or branched alkyl group having 1 to 12 carbon atoms in which a part or all of hydrogen atoms may be substituted with a fluorine atom, or 1 to 12 carbon atoms. It is a linear or branched alkoxy group of. u is an integer from 0 to 2.
  • the content of the acid diffusion control agent (D) in the radiation-sensitive resin composition is preferably 0.01 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the crosslinked polymer (A), preferably 0.02. More preferably, it is at least 1 part by mass and 1 part by mass or less.
  • the acid diffusion inhibitor (D) may be used alone or in combination of two or more.
  • the radiation-sensitive resin composition may contain a surfactant, an alicyclic skeleton-containing compound, a sensitizer and the like as other optional components.
  • the radiation-sensitive resin composition may contain only one type of each of the above other optional components, or may contain two or more types.
  • the surfactant has the effect of improving the coatability, striation, developability, etc. of the radiation-sensitive resin composition.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, and polyethylene glycol di.
  • nonionic surfactants such as stearate, KP341 (Shinetsu Chemical Industry Co., Ltd.), Polyflow No. 75, No.
  • the alicyclic skeleton-containing compound has the effect of improving the dry etching resistance, pattern shape, adhesiveness to the substrate, etc. of the radiation-sensitive resin composition.
  • Examples of the alicyclic skeleton-containing compound include adamantane derivatives such as 1-adamantanane carboxylic acid, 2-adamantanone, and 1-adamantane carboxylate t-butyl; Deoxycholic acid esters such as t-butyl deoxycholic acid, t-butoxycarbonylmethyl deoxycholic acid, and 2-ethoxyethyl deoxycholic acid; Lithocholic acid esters such as t-butyl lithocholic acid, t-butoxycarbonylmethyl lithocholic acid, 2-ethoxyethyl lithocholic acid; 3- [2-Hydroxy-2,2-bis (trifluoromethyl) ethyl] tetracyclo [4.4.0.1 2,5 .
  • adamantane derivatives such as 1-adamantanane carboxylic acid, 2-adamantanone, and 1-adamantane carboxylate t-butyl
  • Deoxycholic acid esters such as
  • the sensitizer has an action of increasing the amount of acid produced from the acid generator (C), and has an effect of improving the "apparent sensitivity" of the radiation-sensitive resin composition.
  • sensitizer examples include carbazoles, acetophenones, benzophenones, naphthalenes, phenols, biacetyls, eosin, rose bengal, pyrenes, anthracenes, phenothiazines and the like. These sensitizers may be used alone or in combination of two or more.
  • the radiation-sensitive resin composition can be prepared by mixing the compound (H) and the compound (G) in the solvent (B). That is, the crosslinked polymer (A) is formed by the interaction between the compound (H) and the compound (G) by the above mixing, and the radiation-sensitive resin composition containing the crosslinked polymer (A) and the solvent (B) is obtained. can get. Then, if necessary, other components are further mixed to prepare a radiation-sensitive resin composition further containing the other components.
  • the pattern forming method according to the embodiment of the present invention is (1) A step of forming a coating film on a substrate by the radiation-sensitive resin composition according to the embodiment of the present invention. It includes (2) a step of exposing the coating film and (3) a step of developing the coating film after exposure.
  • the radiation-sensitive resin composition is applied onto the substrate and prebaked as necessary to form a coating film.
  • the substrate used in the step (1) include a glass substrate, a silicon wafer, a plastic substrate, and a substrate on which various inorganic films such as silicon nitride are formed on the surface thereof.
  • the plastic substrate include a substrate containing a plastic as a main component, such as polyethylene terephthalate (PET), polybutylene terephthalate, polyether sulfone, polycarbonate, and polyimide.
  • PET polyethylene terephthalate
  • polybutylene terephthalate polybutylene terephthalate
  • polyether sulfone polycarbonate
  • polyimide polyimide
  • an appropriate method such as a spray method, a roll coating method, a rotary coating method (spin coating method), a slit die coating method, a bar coating method, an inkjet method, etc. shall be adopted. Can be done.
  • the prebaking conditions vary depending on the type and content of the components contained in the radiation-sensitive resin composition, but can be, for example, 60 ° C. or higher and 100 ° C. or lower for 20 seconds or longer and 10 minutes or shorter.
  • the average film thickness of the coating film is preferably 0.01 ⁇ m, more preferably 0.05 ⁇ m, as the lower limit after prebaking.
  • the upper limit is preferably 15 ⁇ m, more preferably 10 ⁇ m, and even more preferably 5 ⁇ m.
  • the coating film formed in the step (1) is irradiated with radiation through a mask having a predetermined pattern.
  • the radiation at this time include ultraviolet rays, far ultraviolet rays, X-rays, charged particle beams, and the like.
  • the compound (G) "a compound in which at least one hydrogen atom of azobenzene, stilben, azobenzene or stilben is replaced with a hydrocarbon group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms, and these.
  • a radiation-sensitive resin composition containing at least one selected from the group consisting of "a compound having at least two groups excluding one hydrogen atom of the compound” is used, the radiation is 246 nm and 365 nm. Radiation containing at least one wavelength is preferred.
  • the azobenzene structure is isomerized from a trans form to a cis form at a wavelength of 365 nm (i-line, etc.).
  • the stilbene structure is isomerized from a trans form to a cis form at a wavelength of 246 nm (KrF excimer laser light or the like). Therefore, when the radiation-sensitive resin composition contains the crosslinked polymer (A) composed of the compound (G) having such a photoisomerization structure and the compound (H), the radiation having the above-mentioned wavelength is used. By performing the exposure, the compound (G) is released from the host group of the compound (H), so that the crosslinked structure is dissolved and the solubility of the exposed portion is enhanced.
  • the radiation is not particularly limited, and radiation of other wavelengths can also be used.
  • radiation having an appropriately suitable wavelength may be adopted depending on the type of the acid generator (C) and the like.
  • the amount of radiation exposure is preferably, for example, 10 J / m 2 or more and 100,000 J / m 2 or less.
  • the coating film may be reheated on a hot plate or the like before development.
  • the heating conditions can be, for example, 60 ° C. or higher and 150 ° C. or lower for 20 seconds or longer and 10 minutes or shorter.
  • step (3) the coating film after exposure in step (2) is developed. Specifically, the coating film irradiated with radiation in step (2) is developed with a developing solution to remove the irradiated portion.
  • the developing solution for example, an alkaline developing solution or a developing solution containing an organic solvent can be used.
  • alkaline developer examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, diethylaminoethanol, di-n-propylamine, triethylamine, and methyl.
  • TMAH tetramethylammonium hydroxide
  • pyrrole piperidine
  • 1,8-diazabicyclo [5,4,0] -7-undecene 1,5-diazabicyclo
  • alkali basic compound
  • aqueous solution containing a water-soluble organic solvent such as methanol or ethanol or an appropriate amount of a surfactant added to the alkaline aqueous solution, or an alkaline aqueous solution containing a small amount of other various organic solvents may be used as the developing solution.
  • the content of the organic solvent in the developer containing the organic solvent may be 80% by mass or more, 90% by mass or more, or 100% by mass.
  • the organic solvent include the solvents mentioned as components of the radiation-sensitive resin composition.
  • the developer containing an organic solvent may contain an inorganic solvent such as water or other additives.
  • the developing method for example, an appropriate method such as a liquid filling method, a dipping method, a rocking dipping method, a shower method, and a paddle method can be adopted.
  • the development time can be, for example, 20 seconds or more and 120 seconds or less.
  • the patterned coating film may be rinsed by washing with running water or the like.
  • the coating film can be heated and fired (post-baked) to promote the curing of the coating film.
  • a good positive pattern can be formed by exposure and development utilizing the radiation sensitivity of the radiation sensitive resin composition.
  • the pattern forming method can be used for forming a resist pattern in photolithography. Further, the pattern forming method can also be used for forming various patterns of element members such as an interlayer insulating film, a spacer, a protective film, and a colored pattern for a color filter.
  • the structure of the compound was identified using 1 1 H-NMR measurement (made by Bruker, AVANCE 500 type).
  • the molecular weight of the monomer was measured using a liquid chromatograph mass spectrometer (LC-MS Shimadzu Corporation, LCMS-8045).
  • the molecular weight of the polymer was measured by gel permeation chromatography (GPC) under the following conditions.
  • the molecular weight distribution (Mw / Mn) was calculated from the obtained Mw and Mn.
  • This reaction solution was heated and stirred at 90 ° C. in an oil bath. After stirring for 1 hour, the reaction solution was allowed to cool at room temperature and poured into 500 mL of acetone. The resulting precipitate was filtered off, washed with acetone and dried under reduced pressure to give the product. The product was then dissolved in 500 mL of distilled water and separated and purified using preparative high performance liquid chromatography to separate unreacted ⁇ -cyclodextrin and ⁇ CDAAMMe. ⁇ CDAA mMe was obtained by extracting with an organic solvent from an aqueous solution containing ⁇ CDAAMMe and removing the organic solvent under reduced pressure.
  • reaction solution was poured into 50 mL of isopropyl alcohol.
  • the resulting precipitate was filtered off, washed with distilled water and isopropyl alcohol, and dried under reduced pressure to obtain the desired compound.
  • 1 H-NMR measurement and LC-MS measurement were performed on the obtained compound, and it was confirmed that the compound was the following compound (H-2) of interest having two ⁇ -cyclodextrin structures as host groups in one molecule. did.
  • the start of dropping was set as the start time of the polymerization reaction, and the polymerization reaction was carried out for 6 hours. As a result, a polymer solution containing the polymer (a-1) was obtained.
  • the weight average molecular weight (Mw) of the polymer (a-1) was 8,000.
  • Example 1 50 parts by mass of the bifunctional host compound (H-2) obtained in Synthesis Example 2 and 50 parts by mass of the bifunctional guest compound (G-1) obtained in Synthesis Example 5 are dissolved in propylene glycol monomethyl ether acetate. I let you. This solution was stirred at room temperature for 5 hours to obtain a crosslinked polymer in which a host group and a guest group interacted with each other. To the solution containing this crosslinked polymer, 0.01 part by mass of the surfactant "SH 190" (manufactured by Toray Dow Corning Silicone), as an acid generator (C-1): triphenylsulfonium trifluoromethanesulfonate 0.
  • SH 190 manufactured by Toray Dow Corning Silicone
  • Example 2 50 parts by mass of the bifunctional host compound (H-2) obtained in Synthesis Example 2 and 50 parts by mass of azobenzene (GA) were dissolved in propylene glycol monomethyl ether acetate. This solution was stirred at room temperature for 5 hours to obtain a crosslinked polymer in which a host group and a guest group interacted with each other. 0.01 part by mass of the surfactant "SH 190" (manufactured by Dow Corning Silicone) was added to the solution containing the crosslinked polymer, and the mixture was mixed and stirred at room temperature. After stirring, filtration was performed using a 0.2 ⁇ m filter to obtain the radiation-sensitive resin composition of Example 2.
  • SH 190 manufactured by Dow Corning Silicone
  • Example 3 50 parts by mass of the bifunctional host compound (H-2) obtained in Synthesis Example 2 and 50 parts by mass of the bifunctional guest compound (G-2) obtained in Synthesis Example 6 are dissolved in propylene glycol monomethyl ether acetate. I let you. This solution was stirred at room temperature for 5 hours to obtain a crosslinked polymer in which a host group and a guest group interacted with each other. 0.01 part by mass of the surfactant "SH 190" (manufactured by Dow Corning Silicone) was added to the solution containing the crosslinked polymer, and the mixture was mixed and stirred at room temperature. After stirring, filtration was performed using a 0.2 ⁇ m filter to obtain the radiation-sensitive resin composition of Example 3.
  • SH 190 manufactured by Dow Corning Silicone
  • Example 4 50 parts by mass of the trifunctional host compound (H-3) obtained in Synthesis Example 3 and 75 parts by mass of the bifunctional guest compound (G-1) obtained in Synthesis Example 5 are dissolved in propylene glycol monomethyl ether acetate. I let you. This solution was stirred at room temperature for 5 hours to obtain a crosslinked polymer in which a host group and a guest group interacted with each other. To the solution containing this crosslinked polymer, 0.01 part by mass of the surfactant "SH 190" (manufactured by Toray Dow Corning Silicone), 0.5 part by mass of (C-1) as an acid generator, and acid diffusion. 0.05 part by mass of (D-1) as a control agent was added, and the mixture was mixed and stirred at room temperature. After stirring, filtration was performed using a 0.2 ⁇ m filter to obtain the radiation-sensitive resin composition of Example 4.
  • Example 5 50 parts by mass of the trifunctional host compound (H-3) obtained in Synthesis Example 3 and 75 parts by mass of azobenzene (GA) were dissolved in propylene glycol monomethyl ether acetate. This solution was stirred at room temperature for 5 hours to obtain a crosslinked polymer in which a host group and a guest group interacted and crosslinked. 0.01 part by mass of "SH 190" (manufactured by Dow Corning Silicone) as a surfactant was added to the solution containing the crosslinked polymer, and the mixture was mixed and stirred at room temperature. After stirring, filtration was performed using a 0.2 ⁇ m filter to obtain the radiation-sensitive resin composition of Example 5.
  • SH 190 manufactured by Dow Corning Silicone
  • Example 6 60 parts by mass of the tetrafunctional host compound (H-4) obtained in Synthesis Example 4 and 80 parts by mass of the trifunctional guest compound (G-3) obtained in Synthesis Example 7 were dissolved in propylene glycol monomethyl ether acetate. I let you. This solution was stirred at room temperature for 5 hours to obtain a crosslinked polymer in which a host group and a guest group interacted with each other. To the solution containing this crosslinked polymer, 0.01 part by mass of the surfactant "SH 190" (manufactured by Toray Dow Corning Silicone), 0.5 part by mass of (C-1) as an acid generator, and acid diffusion. 0.05 part by mass of (D-1) as a control agent was added, and the mixture was mixed and stirred at room temperature. After stirring, filtration was performed using a 0.2 ⁇ m filter to obtain the radiation-sensitive resin composition of Example 6.
  • Example 7 40 parts by mass of the tetrafunctional host compound (H-4) obtained in Synthesis Example 4 and 80 parts by mass of stilbene (GS) were dissolved in propylene glycol monomethyl ether acetate. This solution was stirred at room temperature for 5 hours to obtain a crosslinked polymer in which a host group and a guest group interacted and crosslinked. 0.01 part by mass of "SH 190" (manufactured by Dow Corning Silicone) as a surfactant was added to the solution containing the crosslinked polymer, and the mixture was mixed and stirred at room temperature. After stirring, filtration was performed using a 0.2 ⁇ m filter to obtain the radiation-sensitive resin composition of Example 7.
  • SH 190 manufactured by Dow Corning Silicone
  • Example 8 75 parts by mass of the bifunctional host compound (H-2) obtained in Synthesis Example 2 and 50 parts by mass of the trifunctional guest compound (G-4) obtained in Synthesis Example 8 are dissolved in propylene glycol monomethyl ether acetate. I let you. This solution was stirred at room temperature for 5 hours to obtain a crosslinked polymer in which a host group and a guest group interacted with each other. 0.01 part by mass of the surfactant "SH 190" (manufactured by Dow Corning Silicone) was added to the solution containing the crosslinked polymer, and the mixture was mixed and stirred at room temperature. After stirring, filtration was performed using a 0.2 ⁇ m filter to obtain the radiation-sensitive resin composition of Example 8.
  • SH 190 manufactured by Dow Corning Silicone
  • Example 9 80 parts by mass of the bifunctional host compound (H-2) obtained in Synthesis Example 2 and 40 parts by mass of the tetrafunctional guest compound (G-5) obtained in Synthesis Example 9 are dissolved in propylene glycol monomethyl ether acetate. I let you. This solution was stirred for 5 hours at room temperature to obtain a crosslinked polymer in which a host group, a guest and a group interacted with each other. To the solution containing this crosslinked polymer, 0.01 part by mass of the surfactant "SH 190" (manufactured by Toray Dow Corning Silicone), (C-2) as an acid generator: 1- (4-n-butoxy).
  • SH 190 manufactured by Toray Dow Corning Silicone
  • Example 10 50 parts by mass of the bifunctional host compound (H-2) obtained in Synthesis Example 2 and 25 parts by mass of the tetrafunctional guest compound (G-6) obtained in Synthesis Example 10 are dissolved in propylene glycol monomethyl ether acetate. I let you. This solution was stirred at room temperature for 5 hours to obtain a crosslinked polymer in which a host group and a guest group interacted with each other. 0.01 part by mass of the surfactant "SH 190" (manufactured by Dow Corning Silicone) was added to the solution containing the crosslinked polymer, and the mixture was mixed and stirred at room temperature. After stirring, filtration was performed using a 0.2 ⁇ m filter to obtain the radiation-sensitive resin composition of Example 10.
  • SH 190 manufactured by Dow Corning Silicone
  • Example 11 50 parts by mass of the polymer (H-5) having a host group obtained in Synthesis Example 11 and 50 parts by mass of the polymer (G-7) having a guest group obtained in Synthesis Example 12 were added to propylene glycol monomethyl. It was dissolved in ether acetate. This solution was stirred at room temperature for 5 hours to obtain a crosslinked polymer in which a host group and a guest group interacted with each other. To the solution containing this crosslinked polymer, 0.01 part by mass of the surfactant "SH 190" (manufactured by Toray Dow Corning Silicone), 0.5 part by mass of (C-1) as an acid generator, and acid diffusion. 0.05 part by mass of (D-1) as a control agent was added, and the mixture was mixed and stirred at room temperature. After stirring, filtration was performed using a 0.2 ⁇ m filter to obtain the radiation-sensitive resin composition of Example 11.
  • Example 12 50 parts by mass of the polymer (H-5) having a host group obtained in Synthesis Example 11 and 50 parts by mass of the polymer (G-8) having a guest group obtained in Synthesis Example 13 were added to propylene glycol monomethyl. It was dissolved in ether acetate. This solution was stirred at room temperature for 5 hours to obtain a crosslinked polymer in which a host group and a guest group interacted with each other. 0.01 part by mass of the surfactant "SH 190" (manufactured by Dow Corning Silicone) was added to the solution containing the crosslinked polymer, and the mixture was mixed and stirred at room temperature. After stirring, filtration was performed using a 0.2 ⁇ m filter to obtain the radiation-sensitive resin composition of Example 12.
  • the lower antireflection film "ARC66" (manufactured by Brewer Science Co., Ltd.) was applied onto the silicon wafer using a spin coater. Then, by heating at 205 ° C. for 60 seconds, a lower antireflection film having a film thickness of 505 nm was formed. Then, using the spin coater, the radiation-sensitive resin compositions of Examples 1 to 12 and Comparative Examples 1 and 2 were applied, and PB was performed at 90 ° C. for 60 seconds. After that, it was cooled at 23 ° C. for 30 seconds to form a coating film having a film thickness of 100 nm.
  • ARC66 manufactured by Brewer Science Co., Ltd.
  • a KrF (246 nm) exposure apparatus was used for exposure of each of the radiation-sensitive resin compositions of Examples 1, 4, 6, 7, 9, 11 and Comparative Example 1, and Examples 2, 3, 5, and were used.
  • An i-line (365 nm) exposure apparatus was used for the exposure of each of the radiation-sensitive resin compositions of 8, 10, 12 and Comparative Example 2. After the exposure, the mixture was PEBed at 120 ° C. for 60 seconds on a hot plate (CLEANTRACKLithiusProi) and cooled at 23 ° C. for 30 seconds.
  • TMAH tetramethylammonium hydride
  • the optimum exposure amount was defined as the exposure amount such that the line pattern formed by the above “pattern formation” had a 400 nm line / 800 nm pitch, and this optimum exposure amount was defined as the sensitivity (mJ / cm 2 ). When the sensitivity was 100 (mJ / cm 2 ) or less, it was judged to be good.
  • Exposure margin (EL) Optimal exposure range when the line pattern after reduced projection exposure is exposed through a mask such that the line pattern is 400 nm line / 800 nm pitch and the line width of the formed line pattern is within ⁇ 15% of 400 nm.
  • the ratio to the exposure amount was defined as the exposure margin (EL (%)).
  • the EL value was 10 (%) or more, it was judged that the variation in the patterning performance with respect to the change in the exposure amount was small and good.
  • LWR Line Width Roughness
  • each of the radiation-sensitive resin compositions of Examples 1 to 12 gives good results in terms of sensitivity, exposure margin, LWR, and amount of film loss, and is useful as a positive pattern-forming material. I was able to confirm that.
  • the radiation-sensitive resin composition of the present invention can be suitably used as a pattern-forming material such as a resist pattern.
  • H-2 Host compound (bifunctional cyclodextrin)
  • H-3 Host compound (trifunctional cyclodextrin)
  • H-5 Polymer having a host group (cyclodextrin structure)
  • GA Guest compound (azobenzene)
  • G-1 Guest compound (bifunctional adamantyl)
  • G-8 Polymer having a guest group (azobenzene structure)

Abstract

感度、露光余裕度、LWR及び膜減り量に係る性能に優れ、良好なポジ型パターンを形成することができる感放射線性樹脂組成物、及びこのような感放射線性樹脂組成物を用いたパターン形成方法を提供する。本発明の一態様は、ホスト基を有する化合物とゲスト基を有する化合物との相互作用によって架橋された架橋重合体、及び溶媒を含む感放射線性樹脂組成物である。

Description

感放射線性樹脂組成物及びパターン形成方法
 本発明は、感放射線性樹脂組成物及びパターン形成方法に関する。
 表示素子形成材料、半導体レジスト等として用いられるポジ型の感放射線性を有するパターン形成材料として、酸により解離して酸性基を生じる酸解離性基を含む構造単位を有する重合体と、感放射線性酸発生剤とを含む感放射線性樹脂組成物が知られている(特許文献1、2参照)。
特開2010- 19966号公報 特開2009-223024号公報
 感放射線性樹脂組成物には、感度、露光余裕度、LWR(Line Width Roughness)、膜減り量等、レジスト材料に求められる各指標が良好であることが望ましい。
 本発明は、感度、露光余裕度、LWR及び膜減り量に係る性能に優れ、良好なポジ型パターンを形成することができる感放射線性樹脂組成物、及びこのような感放射線性樹脂組成物を用いたパターン形成方法を提供することを目的とする。
 上記課題を解決するためになされた発明の一態様は、ホスト基を有する化合物とゲスト基を有する化合物との相互作用によって架橋された架橋重合体、及び溶媒を含む感放射線性樹脂組成物である。
 本発明の他の一態様は、当該感放射線性樹脂組成物により、基板上に塗膜を形成する工程、上記塗膜を露光する工程、及び露光後の上記基板を現像する工程を備えるパターン形成方法である。
 本発明によれば、感度、露光余裕度、LWR及び膜減り量に係る性能に優れ、良好なポジ型パターンを形成することができる感放射線性樹脂組成物、及びこのような感放射線性樹脂組成物を用いたパターン形成方法を提供することができる。
図1は、実施例2の形態を模式的に示した図である。 図2は、実施例4の形態を模式的に示した図である。 図3は、実施例12の形態を模式的に示した図である。
 以下、本発明に係る実施形態について詳細に説明する。なお、本発明は、以下に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。
<感放射線性樹脂組成物>
 本発明の一実施形態に係る感放射線性樹脂組成物は、架橋重合体(A)及び溶媒(B)を含む。
 架橋重合体(A)は、ホスト基を有する化合物(H)(以下、「ホスト化合物」ともいう。)とゲスト基を有する化合物(G)(以下、「ゲスト化合物」ともいう。)との相互作用によって架橋された構造を有する重合体である。通常、化合物(H)のホスト基の少なくとも一部が、化合物(G)のゲスト基に包接(包摂)されること(ホスト-ゲスト相互作用)により架橋構造を形成する。通常、化合物(H)は、2個以上のホスト基を有する。通常、化合物(G)は、2個以上のゲスト基を有する。例えば、2個のホスト基を有する化合物(H)と、2個のゲスト基を有する化合物(G)との組み合わせの場合、直線状、すなわち分岐を有さない架橋重合体(A)が形成される(図1参照)。なお、図1は、後述する実施例2の架橋重合体及びそれに放射線を照射したときの形態を模式的に示したものであり、2個のホスト基を有するホスト化合物(H-2:2官能シクロデキストリン)と、2個のゲスト基を有するゲスト化合物(G-A:アゾベンゼン)とにより、架橋重合体が形成されている。このように、本明細書において「架橋」とは、三次元的な網目構造を形成することに限定されるものでは無く、「架橋重合体(A)」は、分岐を有さない重合体であってよい。一方、化合物(G)が3個以上のゲスト基を有するか、化合物(H)が3個以上のホスト基を有する場合、網目状の、すなわち分岐を有する架橋重合体(A)が形成される(図2参照)。なお、図2は、後述する実施例4の架橋重合体及びそれに放射線を照射したときの形態を模式的に示したものであり、3個のホスト基を有するホスト化合物(H-3:3官能シクロデキストリン)と、2個のゲスト基を有するゲスト化合物(G-1:2官能アダマンチル)とにより、架橋重合体が形成されている。また、化合物(H)は、ホスト基を含む構造単位を有する重合体であってよい。同様に、化合物(G)は、ゲスト基を含む構造単位を有する重合体であってよい(図3参照)。なお、図3は、後述する実施例12の架橋重合体及びそれに放射線を照射したときの形態を模式的に示したものであり、ホスト基であるシクロデキストリン構造を含む構造単位を有する重合体(H-5)と、ゲスト基であるアゾベンゼン構造を含む構造単位を有する重合体(G-8)とにより、架橋重合体が形成されている。
 化合物(G)は、光異性化構造又は酸解離性構造を有することが好ましい。化合物(G)が光異性化構造を有する場合、化合物(G)に放射線が照射されることにより、化合物(G)が異性化する。このとき、架橋重合体(A)において、化合物(H)と化合物(G)との相互作用による架橋構造、すなわち包接構造が解かれ、化合物(H)と化合物(G)とに分離し、放射線照射部分の溶解性が高まることとなる。例えば図1に示されるように、化合物(G)(ゲスト化合物)が光異性化構造を有する化合物であるアゾベンゼン(G-A)である場合、放射線の照射によりアゾベンゼン(G-A)がトランス体からシス体へ異性化することで包接構造が解かれ、架橋重合体が分解される。図3の形態も同様である。
 一方、化合物(G)が酸解離性構造を有する場合、当該感放射線性樹脂組成物は、感放射線性酸発生剤をさらに含むことが好ましい。このような感放射線性樹脂組成物においては、感放射線性酸発生剤に放射線が照射されることにより、酸が発生する。この酸により、架橋重合体(A)中の化合物(G)が分離し、架橋構造が解かれることにより放射線照射部分の溶解性が高まることとなる。例えば図2に示されるゲスト化合物(G-1:2官能アダマンチル)は、下記式で表される化合物であり、後に詳述するように、酸解離性構造を有する。このような場合、放射線の照射により感放射線性酸発生剤(PAG)から酸が発生し、ゲスト化合物が分解することで、架橋重合体が分解される。
Figure JPOXMLDOC01-appb-C000004
 このように、当該感放射線性樹脂組成物は、露光部分において架橋重合体(A)が分解するように構成されており、ポジ型の感放射線性能を有する。また、当該感放射線性樹脂組成物は、感度、露光余裕度、LWR及び膜減り量に係る性能に優れる。以下、各成分等について詳説する。
<化合物(H)>
 化合物(H)は、ホスト基を有する化合物である。化合物(H)が有するホスト基の数は一分子中に2以上が好ましく、一形態としては、2から5がより好ましく、2から4がさらに好ましいこともある。例えば、化合物(H)は、一分子中に2個のホスト基を有する化合物であってよく、一分子中に3個のホスト基を有する化合物であってよく、一分子中に4個のホスト基を有する化合物であってよい。化合物(H)は、一分子中に6個以上のホスト基を有する化合物であってよい。化合物(H)は、1種又は2種以上を用いることができる。
 化合物(H)が有するホスト基としては、化合物(G)のゲスト基の少なくとも一部を包接可能な構造を有するものであれば特に限定されず、シクロデキストリン、シクロデキストリン誘導体、カリックス[6]アレーンスルホン酸、カリックス[8]アレーンスルホン酸、12-クラウン-4、18-クラウン-6、[6]パラシクロファン、[2,2]パラシクロファン、ククルビット[6]ウリル、ククルビット[8]ウリル等に由来する基を挙げることができる。
 ホスト基としては、これらの中でも、シクロデキストリン誘導体に由来する基、具体的には、シクロデキストリン誘導体から1個の水素原子又は水酸基が除された1価の基が好ましく、シクロデキストリン誘導体から1個の水酸基が除された基がより好ましい。
 シクロデキストリン誘導体は、シクロデキストリンが有する少なくとも1個の水酸基の水素原子が置換基で置換されたものである。上記置換基としては、炭素数1から12の1価の炭化水素基、アシル基、-CONHR(Rは、メチル基又はエチル基である。)等を挙げることができる。すなわち、シクロデキストリン誘導体としては、シクロデキストリンが有する少なくとも1個の水酸基の水素原子が、炭素数1から12の1価の炭化水素基、アシル基及び-CONHR(Rは、メチル基又はエチル基である。)からなる群より選ばれる少なくとも1種の基(置換基)で置換された構造を有するものが好ましい。
 炭素数1から12の1価の炭化水素基としては、例えば炭素数1から12の1価の鎖状炭化水素基、炭素数3から12の1価の脂環式炭化水素基、炭素数6から12の1価の芳香族炭化水素基等が挙げられる。
 炭素数1から12の1価の鎖状炭化水素基としては、例えばメチル基、エチル基、プロピル基、ブチル基等のアルキル基、エテニル基、プロペニル基、ブテニル基等のアルケニル基、エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
 炭素数3から12の1価の脂環式炭化水素基としては、例えばシクロペンチル基、シクロヘキシル基等の1価の単環の脂環式飽和炭化水素基、シクロペンテニル基、シクロヘキセニル基等の1価の単環の脂環式不飽和炭化水素基、ノルボルニル基、アダマンチル基等の1価の多環の脂環式飽和炭化水素基、ノルボルネニル基等の1価の多環の脂環式不飽和炭化水素基などが挙げられる。
 炭素数6から12の1価の芳香族炭化水素基としては、例えばフェニル基、トリル基、ナフチル基等が挙げられる。
 アシル基としては、ホルミル基、アセチル基、プロピオニル基、ベンゾイル基等が挙げられる。アシル基としては、炭素数1から8のアシル基が好ましい。
 これらの置換基の中でも、炭素数1から12の1価の炭化水素基が好ましく、炭素数1から4の1価の炭化水素基がより好ましい。
 シクロデキストリン誘導体においては、シクロデキストリンが有する全水酸基のうちの70%以上、より好ましくは80%以上、さらに好ましくは90%以上の水酸基の水素原子が上記置換基で置換されていることが好ましい。このような場合、ホスト基が、特に疎水性の化合物(G)又は疎水性のゲスト基に対して優れた相互作用(包接性)を示すことができる。
 ホスト基としては、α-シクロデキストリン構造、β-シクロデキストリン構造及びγ-シクロデキストリン構造からなる群より選ばれる少なくとも1種の構造を有することが好ましい。このようなホスト基を用いることで、化合物(G)に対する良好な包接性等を発揮することができる。
 好適なホスト基としては、下記式(H)で表される基が挙げられる。この式(H)で表される基は、シクロデキストリン誘導体から1個の水酸基が除された基の一例である。
Figure JPOXMLDOC01-appb-C000005
 式(H)中、複数のRは、それぞれ独立して、水素原子又は上記置換基である。但し、複数のRのうちの少なくとも1つは、上記置換基である。rは、5、6又は7である。*は、結合部位を表す。
 好適な化合物(H)の一例としては、下記式(H1)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000006
 式(H1)中、R10は、m価の有機基である。Rは、ホスト基である。mは、2から5の整数である。
 R10で表されるm価の有機基としては、
(1)m価の炭化水素基、
(2)m価の炭化水素基の炭素-炭素間又は末端に-S-、-O-、-CO-、-NH-又はこれらの組み合わせからなる基等を有する基、
(3)これらの基(上記(1)又は(2)の基)の水素原子が、ハロゲン、水酸基等の置換基で置換されてなる基
等を挙げることができる。
 上記(1)のm価の炭化水素基としては、例えばm価の鎖状炭化水素基、m価の脂環式炭化水素基、m価の芳香族炭化水素基等が挙げられ、m価の鎖状炭化水素基が好ましい。上記R10で表されるm価の有機基の炭素数としては、例えば1以上40以下が好ましく、2以上30以下がより好ましい。
 上記式(H1)で表される化合物は公知の方法により合成することができる。上記式(H1)で表される化合物は、例えば、ホスト基(R)を有するα,β不飽和カルボニル化合物と、多官能チオール化合物とのマイケル付加反応等により合成することができる。
 ホスト基(R)がシクロデキストリン誘導体から1個の水酸基が除された1価の基である場合、ホスト基を有するα,β不飽和カルボニル化合物は、例えば水酸基又はアミノ基を有するα,β不飽和カルボニル化合物(N-ヒドロキシメチル(メタ)アクリルアミド等)とシクロデキストリンとを脱水縮合させ、得られた縮合物における水酸基の水素原子を置換基に置換する方法等により得ることができる。脱水縮合は、必要に応じて酸触媒の存在下、溶媒中にて行うことができる。
 上記酸触媒としては特に限定されず、公知の触媒を広く使用でき、例えばp-トルエンスルホン酸、塩化アルミニウム、塩酸等が挙げられる。酸触媒の使用量は、例えば、シクロデキストリンに対して0.01mol%以上20mol%以下とすることができる。
 上記脱水縮合反応における溶媒も特に限定されず、例えば水、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン等が挙げられる。脱水縮合の反応温度及び反応時間も限定されず、適宜の条件で行うことができる。反応をより速やかに進めるという観点から、反応温度は25から100℃、反応時間は1分から3時間であることが好ましい。
 得られた縮合物における水酸基の水素原子を置換基に置換する方法としては、公知の方法を採用することができる。
 縮合物に存在する水酸基の水素原子を、置換基としての炭化水素基に置換する方法は、例えば、公知のアルキル化反応を広く採用することができる。例えば、炭化水素基への置換は、水素化ナトリウムの存在下でハロゲン化アルキルを、上記縮合物に反応させる方法等により行うことができる。ハロゲン化アルキルとしては、ヨウ化メチル、ヨウ化エチル、ヨウ化プロピル等が例示される。
 縮合物に存在する水酸基の水素原子を、アセチル基等のアシル基に置換する方法は、例えば、公知のアシル化反応を広く採用することができる。例えば、アセチル基への置換は、水素化ナトリウムの存在下でハロゲン化アセチルを、上記縮合物に反応させる方法等により行うことができる。ハロゲン化アセチルとしては、臭化アセチル、ヨウ化アセチル等が例示される。
 縮合物に存在する水酸基の水素原子を、-CONHR(Rはメチル基又はエチル基である。)に置換する方法は、例えば、公知のアルキルカルバメート化反応を広く採用することができる。アルキルイソシアネートとしては、メチルイソシアネート、エチルイソシアネート等が例示される。
 多官能チオール化合物としては、ブタン-1,4-ジチオール、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(2-(3-スルファニルブタノイルオキシ)エチル)-1,3,5-トリアジナン-2,4,6-トリオン、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトプロピオナート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)等を挙げることができる。
 上記式(H1)で表される化合物は、例えば下記式(H2)で表される化合物であってよい。下記式(H2)で表される化合物は、上述したホスト基を有するα,β不飽和カルボニル化合物と多官能チオール化合物とのマイケル付加反応により得られる化合物の一例である。
Figure JPOXMLDOC01-appb-C000007
 式(H2)中、R11は、m価の有機基である。R12は、水素原子又はメチル基である。R13は、酸素原子(-O-)又は-NH-である。Rは、ホスト基である。q1は、0又は1である。q2は、0から4の整数である。mは、2から5の整数である。
 R11で表されるm価の有機基としては、上記したR10で表されるm価の有機基と同様のものを挙げることができる。R11で表されるm価の有機基としては、m価の鎖状炭化水素基、又はm価の鎖状炭化水素基の炭素-炭素間に-O-、-CO-若しくはこれらの組み合わせからなる基(-COO-)を有する基が好ましい。R11で表されるm価の有機基の炭素数としては、例えば1以上30以下が好ましく、2以上20以下がより好ましく、2以上12以下がさらに好ましい。q1が1のとき、q2は1から4の整数であることが好ましい。また、q2は、1又は2が好ましい。
 化合物(H)は、ホスト基を含む構造単位(I)を有する重合体(H)であってよい。ホスト基を有する構造単位(I)としては、例えば下記式(1)で表される構造単位を挙げることができる。
Figure JPOXMLDOC01-appb-C000008
 式(1)中、Rは、水素原子又はメチル基である。Rは、2価の連結基であり、例えば下記の式(3a)から(3c)のいずれかで表される基である。Rは、上記ホスト基である。
Figure JPOXMLDOC01-appb-C000009
 式(3a)中、n1は、0又は1である。n2は、0から4の整数である。Rは、酸素原子又は-NH-である。
 式(3c)中、n3は、0から12の整数である。Rは、酸素原子、-NH-又はカルボニルオキシ基(-COO-)である。
 式(3a)から(3c)中、*は、Rとの結合部位を表す。
 式(3a)中、n1が1のとき、n2は1から4の整数であることが好ましい。また、n2は1又は2が好ましい。
 重合体(H)は、構造単位(I)を与える単量体(I)を含む単量体を公知の方法により重合することにより得ることができる。単量体(I)は、1種又は2種以上を用いることができる。構造単位(I)を与える単量体(I)としては、上述したホスト基を有するα,β不飽和カルボニル化合物、及びその他のホスト基を有する不飽和化合物を用いることができる。
 また、単量体(I)は、WO2018/159791号及びWO2017/159346号に記載の方法に準じて合成することができる。
 重合体(H)における構造単位(I)の含有割合としては、例えば1質量%以上80質量%以下であってよく、2質量%以上50質量%以下が好ましく、3質量%以上30質量%以下がより好ましく、5質量%以上20質量%以下がさらに好ましい。構造単位(I)の含有割合を上記下限以上とすることで、構造単位(I)に基づく当該感放射線性樹脂組成物の性能がより向上する。一方、構造単位(I)の含有割合を上記上限以下とすることで、他の構造単位を十分な量含有させることができ、他の性能を十分に高めることができる。
(構造単位(II))
 重合体(H)は、カルボキシ基又はフェノール性水酸基を有する構造単位(II)をさらに含むことが好ましい。重合体(H)が構造単位(II)を含むことで、塗布性、現像性等を改善することなどができる。構造単位(II)としては、カルボキシ基を有する構造単位がより好ましい。
 構造単位(II)を与える単量体としては、例えばアクリル酸、メタクリル酸、クロトン酸、4-ビニル安息香酸等の不飽和モノカルボン酸;
 マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸等の不飽和ジカルボン酸;
 上記不飽和ジカルボン酸の無水物;
 4-ヒドロキシフェニル(メタ)アクリレート等のフェノール性水酸基を有する(メタ)アクリル酸エステル等を挙げることができる。これらの単量体は、1種又は2種以上を用いることができる。
 重合体(H)における構造単位(II)の含有割合としては、例えば1質量%以上50質量%以下であってよく、3質量%以上40質量%以下が好ましく、5質量%以上30質量%以下がより好ましい。
(構造単位(III))
 重合体(H)は、炭素数1から20の1価の炭化水素基を有する構造単位(III)を含むことが好ましい。重合体(H)が構造単位(III)を含むことで、重合体(H)の溶解性が好適化することなどにより、LWR等の特性がより良好になる。
 炭素数1から20の1価の炭化水素基としては、炭素数1から20の脂肪族炭化水素基、及び炭素数6から20の芳香族炭化水素基が挙げられる。
 炭素数1から20の脂肪族炭化水素基としては、脂肪族鎖状炭化水素基が好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、ペンタデシル基、オクタデシル基等のアルキル基、エテニル基、プロペニル基、ブテニル基、ヘキセニル基、オクテニル基、デセニル基、オクタデセニル基等のアルケニル基、エチニル基、プロピニル基、ブチニル基、ヘキシニル基、オクチニル基、デシニル基、オクタデシニル基等のアルキニル基などを挙げることができる。
 炭素数6から20の芳香族炭化水素基としては、フェニル基、ベンジル基、トリル基、キシリル基、ナフチル基、アントラセニル基等を挙げることができる。
 この1価の炭化水素基の炭素数の下限としては、2が好ましく、3がより好ましく、4がさらに好ましい。一方、この炭素数の上限としては、15が好ましく、10がより好ましい。
 構造単位(III)を与える単量体としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ナフチル(メタ)アクリレート、スチレン、フェニルビニルエーテル等を挙げることができる。これらの単量体は、1種又は2種以上を用いることができる。
 重合体(H)における構造単位(III)の含有割合としては、例えば10質量%以上95質量%以下であってよく、30質量%以上90質量%以下が好ましく、50質量%以上85質量%以下がより好ましく、70質量%以上80質量%以下がさらに好ましいこともある。
(構造単位(IV))
 重合体(H)は、構造単位(I)から(III)以外の構造単位(IV)をさらに含んでいてもよい。
 構造単位(IV)を与える単量体としては、例えば2-ヒドロキシエチル(メタ)アクリレート、ポリエチレングリコールメチルエーテル(メタ)アクリレート、ポリプロピレングリコールメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等を挙げることができる。これらの単量体は、1種又は2種以上を用いることができる。
 重合体(H)における構造単位(IV)の含有割合の上限は、30質量%が好ましく、10質量%がより好ましく、3質量%又は1質量%がさらに好ましいこともある。
 重合体(H)は、例えば上記各単量体をラジカル重合等の公知の方法により重合することにより得ることができる。
 重合体(H)の重量平均分子量(Mw)は、通常は1,000から100,000、好ましくは3,000から30,000である。Mwは、ゲルパーミエーションクロマトグラフィー(溶出溶媒:テトラヒドロフラン)で測定したポリスチレン換算の重量平均分子量をいう。
<化合物(G)>
 化合物(G)は、ゲスト基を有する化合物である。化合物(G)が有するゲスト基の数は一分子中に2以上が好ましく、一形態としては、2から5がより好ましく、2から4がさらに好ましいこともある。例えば、化合物(G)は、一分子中に2個のゲスト基を有する化合物であってよく、一分子中に3個のゲスト基を有する化合物であってよく、一分子中に4個のゲスト基を有する化合物であってよい。化合物(G)は、一分子中に6個以上のゲスト基を有する化合物であってよい。化合物(G)は、1種又は2種以上を用いることができる。
 化合物(G)が有するゲスト基としては、少なくとも一部が化合物(H)のホスト基に包接可能な基であれば特に限定されないが、置換又は非置換の炭素数6から30の炭化水素基を含む基が好ましい。
 上記炭素数6から30の炭化水素基は、通常、1価の基である。炭素数6から30の炭化水素基としては、例えば炭素数6から30の鎖状炭化水素基、炭素数6から30の脂環式炭化水素基、炭素数6から30の芳香族炭化水素基等が挙げられる。上記炭素数6から30の炭化水素基は、置換基を有していてもよく、置換基を有していなくてもよいが、置換基を有していないことが好ましい。上記炭化水素基が有していてもよい置換基としては、アルコキシ基、アシル基、ハロゲン原子等が挙げられる。上記アルコキシ基及びアシル基の炭素数としては、例えば1から12であり、1から6が好ましい。
 炭素数6から30の鎖状炭化水素基としては、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、ペンタデシル基、オクタデシル基等のアルキル基、ヘキセニル基、オクテニル基、デセニル基、オクタデセニル基等のアルケニル基、ヘキシニル基、オクチニル基、デシニル基、オクタデシニル基等のアルキニル基等が挙げられる。
 炭素数6から30の脂環式炭化水素基としては、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基、シクロドデシル基等の1価の単環の脂環式飽和炭化水素基、シクロヘキセニル基、シクロオクテニル基、シクロデセニル基等の1価の単環の脂環式不飽和炭化水素基、ノルボルニル基、イソボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の1価の多環の脂環式飽和炭化水素基、ノルボルネニル基、トリシクロデセニル基、テトラシクロドデセニル基等の1価の多環の脂環式不飽和炭化水素基等が挙げられる。
 炭素数6から30の芳香族炭化水素基としては、フェニル基、ベンジル基、トリル基、キシリル基、ナフチル基、アントラセニル基等が挙げられる。
 上記炭素数6から30の炭化水素基の中でも、炭素数6から30の脂環式炭化水素基及び炭素数6から30の芳香族炭化水素基が好ましい。このような炭化水素基は、特にシクロデキストリン誘導体に由来する基に効果的に包接されることができる。上記脂環式炭化水素基としては、多環の基が好ましく、多環の脂環式飽和炭化水素基がより好ましく、アダマンチル基がさらに好ましい。上記芳香族炭化水素基としては、フェニル基が好ましい。上記炭化水素基の炭素数の上限は、20が好ましく、15がより好ましい。
 化合物(G)は、光異性化構造又は酸解離性構造を有することが好ましい。化合物(G)が光異性化構造又は酸解離性構造を有する場合、当該感放射線性樹脂組成物のポジ型の感放射線性能が特に十分に発揮される。
(光異性化構造を有する化合物(G))
 光異性化構造を有する化合物(G)としては、以下の(1)~(4)からなる群より選ばれる少なくとも1種であることが好ましい。
(1)アゾベンゼン
(2)スチルベン
(3)アゾベンゼン又はスチルベンが有する少なくとも1個の水素原子を炭素数1から12の炭化水素基又は炭素数1から12のアルコキシ基で置換した化合物
(4)これらの化合物((1)~(3)の化合物)が有する水素原子を1個除いてなる少なくとも2個の基を有する化合物
 上記(3)の化合物においては、アゾベンゼン又はスチルベンが有する少なくとも1個の水素原子を炭素数1から12の炭化水素基で置換した化合物が好ましい。また、上記炭化水素基の炭素数としては、1から6が好ましく、1から3がより好ましい。
 また、上記(4)の化合物は、通常、(1)~(3)の化合物が有する芳香環中の水素原子を1個除いてなる少なくとも2個の基を有する。
 光異性化構造を有する化合物(G)としては、以下の(1)、(2)及び(4’)からなる群より選ばれる少なくとも1種であることがより好ましい。
(1)アゾベンゼン
(2)スチルベン
(4’)アゾベンゼン又はスチルベンが有する水素原子を1個除いてなる少なくとも2個の基を有する化合物
 置換又は非置換のアゾベンゼン及び置換又は非置換のスチルベンは、トランス体の場合はシクロデキストリン構造に容易に包接される一方、光異性化してシス体になると、シクロデキストリン構造から放出しやすい。すなわちこれらの化合物又はこれらの化合物に由来する基は、通常、トランス体の状態で化合物(H)のホスト基に包接されている。例えば、(1)アゾベンゼン、(2)スチルベン及び(3)の所定の置換基を有するアゾベンゼン又はスチルベンは、ゲスト基として、置換又は非置換の2個のフェニル基を有する。また、(4)の化合物においては、「(1)~(3)の化合物が有する水素原子を1個除いてなる基」がゲスト基(フェニル基を含む基)として機能する。
 (4)の化合物は、重合体であってもよく、重合体ではない化合物であってもよい。このような化合物の具体的構造については後述する。
(酸解離性構造を有する化合物(G))
 酸解離性構造を有する化合物(G)においては、複数のゲスト基の間が酸により解離する構造を有していることが好ましい。酸解離性構造を有する化合物(G)としては、例えば、下記式(4-1)及び(4-2)で表される構造を有する化合物を挙げることができる。
 *-COO-RG’   (4-1)
 *-OCO-RG’   (4-2)
 式(4-1)及び(4-2)中、RG’は、第三級の炭化水素基であるゲスト基である。*は、結合部位を表す。
 RG’としては、下記式(5)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(5)中、Rp1からRp3は、それぞれ独立して、炭素数1から4のアルキル基又は炭素数4から20の脂環式炭化水素基である。但し、上記アルキル基及び脂環式炭化水素基が有する水素原子の一部又は全部は置換されていてもよい。また、Rp2及びRp3は、互いに結合して、それぞれが結合している炭素原子と共に炭素数4から20の2価の脂環式炭化水素基を形成してもよい。Rp1、Rp2及びRp3は、互いに結合して、それぞれが結合している炭素原子と共に炭素数4から20の1価の多環の脂環式炭化水素基を形成してもよい。
 Rp1からRp3で表される炭素数1から4のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等が挙げられる。
 Rp1からRp3で表される炭素数4から20の脂環式炭化水素基としては、例えば
 アダマンタン骨格、ノルボルナン骨格等の有橋式骨格を有する多環の脂環式炭化水素基;
 シクロペンタン、シクロヘキサン等のシクロアルカン骨格を有する単環の脂環式炭化水素基が挙げられる。また、これらの基が有する水素原子の一部又は全部は、例えば炭素数1から10の直鎖状、分岐状又は環状のアルキル基の1種以上で置換されていてもよい。
 これらのうち、Rp1が炭素数1から4のアルキル基であり、Rp2及びRp3が相互に結合してそれぞれが結合している炭素原子とともにアダマンタン骨格又はシクロアルカン骨格を有する2価の基を形成していることが好ましい。また、Rp1、Rp2及びRp3が相互に結合して、それぞれが結合している炭素原子と共にアダマンタン骨格を有する1価の基を形成していることも好ましい。
 酸解離性構造を有する化合物(G)は、重合体であってもよく、重合体ではない化合物であってもよい。
 化合物(G)としては、例えば下記式(G1)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000011
 式(G1)中、R15は、p価の有機基である。Rは、ゲスト基である。pは、2から5の整数である。
 R15で表されるp価の有機基としては、上記したR10で表されるm価の有機基と同様のものを挙げることができる。R15で表されるp価の有機基の炭素数としては、例えば1以上40以下が好ましく、2以上30以下がより好ましい。
 Rで表されるゲスト基の具体例は、上記した通りであり、「アゾベンゼン、スチルベン、又はアゾベンゼン若しくはスチルベンが有する少なくとも1個の水素原子を炭素数1から12の炭化水素基若しくは炭素数1から12のアルコキシ基で置換した化合物が有する水素原子を1個除いてなる基」、及び「上記RG’で表される第三級の炭化水素基」も含まれる。
 上記式(G1)で表される化合物としては、下記式(G2)又は(G3)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000012
 式(G2)及び(G3)中、R16及びR17は、p価の炭化水素基である。Rは、ゲスト基である。pは、2から5の整数である。
 R16及びR17で表されるp価の炭化水素基の炭素数としては、1以上30以下が好ましく、2以上10以下がより好ましい。上記p価の炭化水素基としては、p価の脂肪族炭化水素基が好ましく、p価の飽和脂肪族炭化水素基がより好ましい。
 上記式(G1)~(G3)において、Rが「アゾベンゼン、スチルベン、又はアゾベンゼン若しくはスチルベンが有する少なくとも1個の水素原子を炭素数1から12の炭化水素基若しくは炭素数1から12のアルコキシ基で置換した化合物が有する水素原子を1個除いてなる基」である場合、このような化合物は、光異性化構造を有する化合物(G)の一例として好適である。
 また、上記式(G2)又は(G3)において、Rが第三級の炭化水素基(RG’)である場合、このような化合物は、酸解離性構造を有する化合物(G)の一例として好適である。
 化合物(G)は、ゲスト基を含む構造単位(i)を有する重合体(G)であってよい。ゲスト基を有する構造単位(i)としては、例えば下記式(2)で表される構造単位を挙げることができる。
Figure JPOXMLDOC01-appb-C000013
 式(2)中、Rは、水素原子又はメチル基である。Rは、2価の連結基であり、例えば下記の式(3a)から(3c)のいずれかで表される基である。Rは、上記ゲスト基である。
Figure JPOXMLDOC01-appb-C000014
 式(3a)中、n1は、0又は1である。n2は、0から4の整数である。Rは、酸素原子又は-NH-である。
 式(3c)中、n3は、0から12の整数である。Rは、酸素原子、-NH-又はカルボニルオキシ基である。
 式(3a)から(3c)中、*は、Rとの結合部位を表す。
 式(3a)中、n1が1のとき、n2は1から4の整数であることが好ましい。また、n2は1又は2が好ましい。
 上記式(2)において、Rが、「アゾベンゼン、スチルベン、又はアゾベンゼン若しくはスチルベンが有する少なくとも1個の水素原子を炭素数1から12の炭化水素基若しくは炭素数1から12のアルコキシ基で置換した化合物が有する水素原子を1個除いてなる基」である場合、このような構造単位(i)を有する重合体は、光異性化構造を有する構造単位を有する重合体(G)の一例として好適である。
 また、上記式(2)において、
 Rが、式(3a)で表され、式(3a)中のn1及びn2が0であり、Rが酸素原子である、すなわち、Rがカルボニルオキシ基(-COO-)である、又は式(3c)で表され、Rがカルボニルオキシ基であり、且つ
 Rが、第三級の炭化水素基(RG’)である場合、
 このような構造単位(i)を有する重合体は、酸解離性構造を有する構造単位を有する重合体(G)の一例として好適である。
 構造単位(i)を与える単量体としては、シクロヘキシル(メタ)アクリレート、シクロオクチル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、エチルアダマンチル(メタ)アクリレート、シクロヘキシルアダマンチル(メタ)アクリレート、N-シクロヘキシル(メタ)アクリルアミド、N-シクロオクチル(メタ)アクリルアミド、N-ノルボルニル(メタ)アクリルアミド、N-イソボルニル(メタ)アクリルアミド、N-アダマンチル(メタ)アクリルアミド、シクロヘキシルビニルエーテル、シクロオクチルビニルエーテル、ノルボルニルビニルエーテル、イソボルニルビニルエーテル、アダマンチルビニルエーテル、シクロヘキシルアリルエーテル、シクロオクチルアリルエーテル、ノルボルニルビニルエーテル、イソボルニルビニルエーテル、アダマンチルビニルエーテル、スチレン、ベンジル(メタ)アクリレート、ナフチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、4-(メタクリロイルオキシ)アゾベンゼン、4-(アクリロイルオキシ)アゾベンゼン、4-(メタクリロイルオキシ)スチルベン、4-(アクリロイルオキシ)スチルベン等が挙げられる。
 重合体(G)における構造単位(i)の含有割合としては、10質量%以上95質量%以下が好ましく、20質量%以上90質量%以下がより好ましく、30質量%以上80質量%以下がさらに好ましく、40質量%以上70質量%以下がよりさらに好ましい場合もある。構造単位(i)の含有割合を上記範囲とすることで、ホスト-ゲスト相互作用による十分な架橋構造を形成することなどができる。
(構造単位(ii))
 重合体(G)は、カルボキシ基又はフェノール性水酸基を有する構造単位(ii)をさらに含むことが好ましい。重合体(G)が構造単位(ii)を含むことで、塗布性、現像性、得られるパターンの形状等を改善することなどができる。構造単位(ii)としては、カルボキシ基を有する構造単位がより好ましい。構造単位(ii)を与える単量体としては、上述した構造単位(II)を与える単量体と同様のものが例示される。
 重合体(G)における構造単位(ii)の含有割合としては、例えば1質量%以上40質量%以下が好ましく、3質量%以上30質量%以下がより好ましい。
(構造単位(iii))
 重合体(G)は、炭素数1から5の1価の炭化水素基を有する構造単位を含むことが好ましい。重合体(G)が構造単位(iii)を含むことで、重合体(G)の溶解性が好適化することなどにより、LWR等の特性がより良好になる。
 構造単位(iii)を与える単量体としては、上述した構造単位(III)を与える単量体の中で、炭素数1から5の1価の炭化水素基を有するものなどが例示される。このような単量体の中でも、メチル(メタ)アクリレート、エチル(メタ)アクリレート等の(メタ)アクリル酸エステルが好ましい。
 重合体(G)における構造単位(iii)の含有割合としては、例えば5質量%以上50質量%以下が好ましく、10質量%以上40質量%以下がより好ましい。
(構造単位(iv))
 重合体(G)は、構造単位(i)から(iii)以外の構造単位(iv)をさらに含んでいてもよい。構造単位(iv)を与える単量体としては、上述した構造単位(IV)を与える単量体と同様のものが例示される。
 重合体(G)における構造単位(iv)の含有割合の上限は、30質量%が好ましく、10質量%がより好ましく、3質量%又は1質量%がさらに好ましいこともある。
 重合体(G)は、例えば上記各単量体をラジカル重合等の公知の方法により重合することにより得ることができる。
 重合体(G)の重量平均分子量(Mw)は、通常は1,000から100,000、好ましくは3,000から50,000である。
<架橋重合体(A)>
 架橋重合体(A)は、化合物(H)と化合物(G)との相互作用(ホストゲスト相互作用)によって架橋されてなる構造を有する。具体的には、化合物(G)のゲスト基の少なくとも一部が、化合物(H)のホスト基に包接された状態で存在する。すなわち、架橋重合体(A)は、化合物(H)と化合物(G)との包接化合物である。但し、当該感放射線性樹脂組成物中において、遊離した状態で存在する化合物(H)及び化合物(G)が含まれていてもよい。また、架橋重合体(A)において、ホスト基に包接されていないゲスト基、及びゲスト基を包接していないホスト基が存在していてもよい。
 架橋重合体(A)は、溶媒中で化合物(H)と化合物(G)とを混合することにより得られる。なお、化合物(G)が光異性化構造を有するシス-トランス異性体である場合、通常、トランス体の状態で化合物(H)と混合し、包接化合物を形成する。
 化合物(H)と化合物(G)との混合比としては特に限定されない。例えば、化合物(G)に対する化合物(H)の質量比(化合物(H)/化合物(G))として、10/90から90/10の範囲であってよく、20/80から80/20の範囲であってよく、30/70から70/30の範囲であってよく、40/60から60/40の範囲であってよい。また、ゲスト基とホスト基の量から、混合比を調整してもよい。例えば、ゲスト基に対するホスト基のモル比(ホスト基/ゲスト基)として、10/90から90/10の範囲、さらには20/80から80/20の範囲、30/70から70/30の範囲、又は40/60から60/40の範囲となるように、化合物(H)と化合物(G)との混合比を調整してもよい。
 当該感放射線性樹脂組成物における固形分中の架橋重合体(A)の含有量の下限としては、50質量%が好ましく、70質量%がより好ましく、90質量%がさらに好ましく、95質量%がよりさらに好ましいこともある。一方、この含有量の上限としては、99.9質量%が好ましく、99.5質量%がより好ましい。架橋重合体(A)の含有量を上記範囲とすることで、他の成分との含有比率が好適化され、パターン形成材料に求められる特性がより向上する。なお、固形分とは、溶媒以外の全成分をいう。
<溶媒(B)>
 当該感放射線性樹脂組成物に用いられる溶媒(B)としては、架橋重合体(A)等の各成分と反応せず、各成分を溶解又は分散させることができる液体であれば特に限定されず、従来公知の溶媒を用いることができる。
 溶媒(B)としては、例えば
 メタノール、エタノール、イソプロピルアルコール、ブタノール、オクタノール等のアルコール類;
 酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等のエステル類;
 エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、エチレンジグリコールモノメチルエーテル、エチレンジグリコールエチルメチルエーテル等のエーテル類;
 ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;
 アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類等
を用いることができる。
 溶媒(B)は、1種又は2種以上を混合して用いることができる。
 当該感放射線性樹脂組成物の固形分濃度としては、例えば10質量%以上80質量%以下とすることができる。
<感放射線性酸発生剤(C)>
 架橋重合体(A)を構成する化合物(G)が酸解離性構造を有する化合物である場合、当該感放射線性樹脂組成物は、感放射線性酸発生剤(C)(以下、「酸発生剤(C)」ともいう。)をさらに含むことが好ましい。
 酸発生剤(C)としては、例えばオニウム塩化合物、スルホンイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。これらのうち、オニウム塩化合物及びスルホンイミド化合物が好ましい。
 オニウム塩化合物としては、例えばスルホニウム塩(テトラヒドロチオフェニウム塩を含む)、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。
 スルホニウム塩としては、例えばトリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、トリフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、トリフェニルスルホニウムカンファースルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムカンファースルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムカンファースルホネート、トリフェニルホスホニウム1,1,2,2-テトラフルオロ-6-(1-アダマンタンカルボニロキシ)-ヘキサン-1-スルホネート、トリフェニルスルホニウムノルボルニル-ジフルオロエタンスルホネート等が挙げられる。
 テトラヒドロチオフェニウム塩としては、例えば1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムカンファースルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムカンファースルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムカンファースルホネート等が挙げられる。
 ヨードニウム塩としては、例えばジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムパーフルオロ-n-オクタンスルホネート、ジフェニルヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、ジフェニルヨードニウムカンファースルホネート、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムパーフルオロ-n-オクタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムカンファースルホネート等が挙げられる。
 スルホンイミド化合物としては、例えばN-(トリフルオロメチルスルホニルオキシ)-1,8-ナフタレンジカルボイミド、N-(カンファスルホニルオキシ)ナフチルジカルボキシルイミド等が挙げられる。
 当該感放射線性樹脂組成物における酸発生剤(C)の含有量としては、架橋重合体(A)100質量部に対して、0.1質量部以上10質量部以下が好ましく、0.2質量部以上3質量部以下がより好ましい。
<酸拡散制御剤(D)>
 当該感放射線性樹脂組成物が、特に感放射線性酸発生剤(C)を含む場合、酸拡散制御剤(D)をさらに含むことが好ましい。酸拡散制御剤(D)は、露光により酸発生剤(C)から生じる酸の、塗膜中における拡散現象を制御し、非露光部における好ましくない化学反応を抑制する効果を奏する成分である。
 酸拡散制御剤(D)としては、例えばアミン化合物、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。
 アミン化合物としては、例えばモノ(シクロ)アルキルアミン類;ジ(シクロ)アルキルアミン類;トリ(シクロ)アルキルアミン類;置換アルキルアニリン又はその誘導体;エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルアミン、2,2-ビス(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2-(4-アミノフェニル)-2-(3-ヒドロキシフェニル)プロパン、2-(4-アミノフェニル)-2-(4-ヒドロキシフェニル)プロパン、1,4-ビス(1-(4-アミノフェニル)-1-メチルエチル)ベンゼン、1,3-ビス(1-(4-アミノフェニル)-1-メチルエチル)ベンゼン、ビス(2-ジメチルアミノエチル)エーテル、ビス(2-ジエチルアミノエチル)エーテル、1-(2-ヒドロキシエチル)-2-イミダゾリジノン、2-キノキサリノール、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、N,N,N’,N’’N’’-ペンタメチルジエチレントリアミン、トリエタノールアミン等が挙げられる。
 アミド基含有化合物としては、例えばN-t-ブトキシカルボニル基含有アミノ化合物、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン、N-アセチル-1-アダマンチルアミン、イソシアヌル酸トリス(2-ヒドロキシエチル)等が挙げられる。
 ウレア化合物としては、例えば尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリ-n-ブチルチオウレア等が挙げられる。
 含窒素複素環化合物としては、例えばイミダゾール類;ピリジン類(4-ジメチルアミノピリジン等);ピペラジン類;ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、4-ヒドロキシ-N-アミロキシカルボニルピペリジン、ピペリジンエタノール、3-ピペリジノ-1,2-プロパンジオール、モルホリン、4-メチルモルホリン、1-(4-モルホリニル)エタノール、4-アセチルモルホリン、3-(N-モルホリノ)-1,2-プロパンジオール、1,4-ジメチルピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン等が挙げられる。
 また、酸拡散制御剤(D)として、露光により感光し弱酸を発生する光崩壊性塩基を用いることもできる。光崩壊性塩基は、非露光部のみにおいてクエンチャーとして機能するため、脱保護反応のコントラストが向上し、結果として解像度を向上させることができる。光崩壊性塩基の一例として、露光により分解して酸拡散制御性を失うオニウム塩化合物が挙げられる。オニウム塩化合物としては、例えば下記式(D1)で示されるスルホニウム塩化合物、下記式(D2)で表されるヨードニウム塩化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 上記式(D1)及び式(D2)中、R20からR24はそれぞれ独立して、水素原子、アルキル基、アルコキシ基、水酸基、ハロゲン原子又は-SO-Rである。Rは、アルキル基、シクロアルキル基、アルコキシ基又はアリール基である。Zは、OH、R25-COO、R-SO-N-R25、R25-SO 又は下記式(D3)で示されるアニオンである。R25は炭素数1から10の直鎖状若しくは分岐状のアルキル基、炭素数3から20のシクロアルキル基、炭素数6から30のアリール基、又は炭素数7から30のアルカリール基である。上記アルキル基、シクロアルキル基、アリール基及びアルカリール基の水素原子の一部又は全部は置換されていてもよい。Rは、炭素数1から10の直鎖状若しくは分岐状のアルキル基、又は置換基を有してもいてもよい炭素数3から20のシクロアルキル基である。上記アルキル基及びシクロアルキル基の水素原子の一部又は全部はフッ素原子で置換されていてもよい。但し、ZがR25-SO の場合、SO が結合する炭素原子にフッ素原子が結合する場合はない。
Figure JPOXMLDOC01-appb-C000016
 上記式(D3)中、R26は、水素原子の一部又は全部がフッ素原子で置換されていてもよい炭素数1から12の直鎖状若しくは分岐状のアルキル基、又は炭素数1から12の直鎖状若しくは分岐状のアルコキシ基である。uは0から2の整数である。
 当該感放射線性樹脂組成物における酸拡散制御剤(D)の含有量としては、架橋重合体(A)100質量部に対して、0.01質量部以上3質量部以下が好ましく、0.02質量部以上1質量部以下がより好ましい。酸拡散抑制剤(D)は、単独で使用してもよく2種以上を併用してもよい。
<その他の成分>
 当該感放射線性樹脂組成物は、その他の任意成分として、界面活性剤、脂環式骨格含有化合物、増感剤等を含有できる。なお、当該感放射線性樹脂組成物は、上記その他の任意成分をそれぞれ1種のみ含有してもよいし、2種以上を含有してもよい。
 界面活性剤は、当該感放射線性樹脂組成物の塗布性、ストリエーション、現像性等を改良する効果を奏する。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤の他、以下商品名でKP341(信越化学工業社)、ポリフローNo.75、同No.95(以上、共栄社化学社)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ社)、メガファックF171、同F173(以上、大日本インキ化学工業社)、フロラードFC430、同FC431(以上、住友スリーエム社)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子工業社)等が挙げられる。
 脂環式骨格含有化合物は、当該感放射線性樹脂組成物のドライエッチング耐性、パターン形状、基板との接着性等を改善する効果を奏する。
 脂環式骨格含有化合物としては、例えば
 1-アダマンタンカルボン酸、2-アダマンタノン、1-アダマンタンカルボン酸t-ブチル等のアダマンタン誘導体類;
 デオキシコール酸t-ブチル、デオキシコール酸t-ブトキシカルボニルメチル、デオキシコール酸2-エトキシエチル等のデオキシコール酸エステル類;
 リトコール酸t-ブチル、リトコール酸t-ブトキシカルボニルメチル、リトコール酸2-エトキシエチル等のリトコール酸エステル類;
 3-〔2-ヒドロキシ-2,2-ビス(トリフルオロメチル)エチル〕テトラシクロ[4.4.0.12,5.17,10]ドデカン、2-ヒドロキシ-9-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナン等が挙げられる。これらの脂環式骨格含有化合物は単独で使用してもよく2種以上を併用してもよい。
 増感剤は、酸発生剤(C)からの酸の生成量を増加する作用を示すものであり、当該感放射線性樹脂組成物の「みかけの感度」を向上させる効果を奏する。
 増感剤としては、例えばカルバゾール類、アセトフェノン類、ベンゾフェノン類、ナフタレン類、フェノール類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等が挙げられる。これらの増感剤は、単独で使用してもよく2種以上を併用してもよい。
<感放射線性樹脂組成物の調製方法>
 当該感放射線性樹脂組成物は、溶媒(B)中で化合物(H)と化合物(G)とを混合することにより調製することができる。すなわち、上記混合により化合物(H)と化合物(G)との相互作用によって架橋重合体(A)が形成され、架橋重合体(A)と溶媒(B)とを含む感放射線性樹脂組成物が得られる。その後、必要に応じさらにその他の成分を混合させることで、その他の成分をさらに含む感放射線性樹脂組成物が調製される。
<パターン形成方法>
 本発明の一実施形態に係るパターン形成方法は、
(1)本発明の一実施形態に係る感放射線性樹脂組成物により、基板上に塗膜を形成する工程、
(2)上記塗膜を露光する工程、及び
(3)露光後の上記塗膜を現像する工程
 を備える。
[工程(1)]
 工程(1)では、当該感放射線性樹脂組成物を基板上に塗布し、必要に応じてプレベークを行うことにより塗膜を形成する。工程(1)で使用する基板としては、例えばガラス基板、シリコンウエハー、プラスチック基板、及びこれらの表面に窒化珪素等の各種無機膜が形成された基板が挙げられる。プラスチック基板としては、例えばポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリイミド等のプラスチックを主成分とする基板などが挙げられる。基板には、反射防止膜等の下層膜が設けられていてもよい。
 当該感放射線性樹脂組成物の塗布方法としては、例えばスプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法、バー塗布法、インクジェット法等の適宜の方法を採用することができる。
 プレベークの条件としては、当該感放射線性樹脂組成物の含有成分の種類、含有量等によっても異なるが、例えば60℃以上100℃以下で20秒間以上10分間以下程度とすることができる。
 上記塗膜の平均膜厚は、プレベーク後の下限として、0.01μmが好ましく、0.05μmがより好ましい。また、この上限としては、15μmが好ましく、10μmがより好ましく、5μmがさらに好ましい。
[工程(2)]
 工程(2)では、例えば、工程(1)で形成した塗膜に所定のパターンを有するマスクを介して放射線を照射する。このときの放射線としては、例えば紫外線、遠紫外線、X線、荷電粒子線等が挙げられる。
 特に、化合物(G)として、「アゾベンゼン、スチルベン、アゾベンゼン又はスチルベンが有する少なくとも1個の水素原子を炭素数1から12の炭化水素基又は炭素数1から12のアルコキシ基で置換した化合物、及びこれらの化合物が有する水素原子を1個除いてなる少なくとも2個の基を有する化合物」からなる群より選ばれる少なくとも1種を含む感放射線性樹脂組成物を用いる場合、放射線としては、246nm及び365nmの少なくとも一方の波長を含む放射線が好ましい。アゾベンゼン構造は365nmの波長(i線等)で、トランス体からシス体へ異性化する。また、スチルベン構造は246nmの波長(KrFエキシマレーザー光等)で、トランス体からシス体へ異性化する。従って、感放射線性樹脂組成物が、このような光異性化構造を有する化合物(G)と、化合物(H)とから構成される架橋重合体(A)を含む場合、上記の波長の放射線で露光を行うことによって、化合物(G)が化合物(H)のホスト基から放出されることで架橋構造が解け、露光部分の溶解性が高まる。
 なお、その他の組成の感放射線性樹脂組成物の場合は、放射線は特に限定されず、その他の波長の放射線も使用することができる。例えば、酸発生剤(C)の種類等に応じて適宜好適な波長の放射線を採用すればよい。
 放射線の露光量としては、例えば10J/m以上100,000J/m以下が好ましい。
 露光後、現像前に塗膜をホットプレート等で再度加熱してもよい。加熱条件としては、例えば60℃以上150℃以下で20秒間以上10分間以下程度とすることができる。
[工程(3)]
 工程(3)では、工程(2)で露光した後の上記塗膜を現像する。具体的には、工程(2)で放射線が照射された塗膜に対し、現像液により現像を行って放射線の照射部分を除去する。
 現像液としては、例えば、アルカリ現像液又は有機溶媒を含む現像液を用いることができる。
 アルカリ現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジエチルアミノエタノール、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、1,8-ジアザビシクロ〔5,4,0〕-7-ウンデセン、1,5-ジアザビシクロ〔4,3,0〕-5-ノナンなどのアルカリ(塩基性化合物)の水溶液等が挙げられる。上記アルカリの水溶液にメタノール、エタノール等の水溶性有機溶媒や界面活性剤を適当量添加した水溶液、その他の各種有機溶媒を少量含むアルカリ水溶液を現像液として用いてもよい。
 有機溶媒を含む現像液における有機溶媒の含有量としては、80質量%以上であってよく、90質量%以上であってもよく、100質量%であってもよい。この有機溶媒としては、当該感放射線性樹脂組成物の成分として挙げた各溶媒等を挙げることができる。有機溶媒を含む現像液には、水等の無機溶媒その他の添加剤が含有されていてもよい。
 現像方法としては、例えば液盛り法、ディッピング法、揺動浸漬法、シャワー法、パドル法等の適宜の方法を採用することができる。現像時間としては、例えば20秒以上120秒以下とすることができる。
 現像後、パターニングされた塗膜に対して流水洗浄等によるリンス処理を行ってもよい。
 その後、必要に応じて塗膜を加熱・焼成処理(ポストベーク処理)することによって塗膜の硬化を促進する処理を行うこともできる。
 当該パターン形成方法によれば、当該感放射線性樹脂組成物の感放射線性を利用した露光及び現像によって、良好なポジ型のパターンを形成することができる。当該パターン形成方法は、フォトリソグラフィーにおけるレジストパターンの形成に用いることができる。また、当該パターン形成方法は、層間絶縁膜、スペーサー、保護膜、カラーフィルタ用着色パターン等の素子部材の各種パターン等の形成にも用いることができる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。
 化合物の構造同定は、H-NMR測定(ブルカー製、AVANCE500型)を用いて行った。単量体の分子量の測定は、液体クロマトグラフ質量分析計(LC-MS 島津製作所製、LCMS-8045)を用いて行った。
 重合体の分子量(重量平均分子量(Mw)及び数平均分子量(Mn))は下記条件によるゲルパーミエーションクロマトグラフィー(GPC)により測定した。また、分子量分布(Mw/Mn)は得られたMw及びMnより算出した。
 装置:GPC-101(昭和電工製)
 カラム:GPC-KF-801、GPC-KF-802、GPC-KF-803及びGPC-KF-804を結合
 移動相:テトラヒドロフラン
 カラム温度:40℃
 流速:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
 以上の分析を行い、目的の化合物が得られていることを確認した。
 また、以下の各重合体の合成例においては、使用した各単量体の質量比が、得られた重合体における対応する構造単位の含有割合(質量比)と実質的に等しいものであった。
[合成例1]メトキシ化アクリルアミドメチルα-シクロデキストリン(MeO-αCDAAmMe:H-1)の合成
 まず、WO2017/159346号に記載に従いアクリルアミドメチルα-シクロデキストリン(αCDAAmMe)の合成を行った。具体的には、以下の手順で行った。
 300mL丸底フラスコに、α-シクロデキストリン(αCD)20mmol、N-ヒドロキシメチルアクリルアミド20mmol及びp-トルエンスルホン酸一水和物190mgを秤量し、N,N-ジメチルホルムアミド(DMF)50mLを加えて反応液を調製した。この反応液をオイルバスで90℃に加熱撹拌した。1時間撹拌後、反応液を室温で放冷し、アセトン500mLに注ぎこんだ。生じた沈殿物をろ別した後、アセトンで洗浄し、減圧乾燥することで生成物を得た。
 次いで、該生成物を蒸留水500mLに溶解し、分取型高圧液体クロマトグラフィーを用いて分離精製を行い、未反応のα-シクロデキストリンとαCDAAmMeとを分離した。αCDAAmMeを含む水溶液から有機溶媒で抽出し、有機溶媒を減圧除去することで、αCDAAmMeを得た。
 次いで、300mL丸底フラスコに、得られたαCDAAmMeをN,N-ジメチルホルムアミド(DMF)に溶解させ、次いで水素化ナトリウムを加え、1時間撹拌した。ヨウ化メチルを滴下ロートより滴下し、1時間反応させた。αCDAAmMeの水酸基をメトキシ化した。
 その後、DMFを減圧下で除去し、希塩酸及び水で処理し、有機溶媒での抽出を繰り返すことで精製を行った。メトキシ化されたアクリルアミドメチルα-シクロデキストリン(MeO-αCDAAmMe)を得た。得られた化合物について、H-NMR測定及びLC-MS測定を行い、目的物の下記MeO-αCDAAmMe(化合物(H-1))であることを確認した。
Figure JPOXMLDOC01-appb-C000017
[合成例2]2官能ホスト化合物(H-2)の合成
 300mL丸底フラスコに、合成例1で得られた化合物(H-1)10mmol、及びブタン-1,4-ジチオール4mmolを秤量し、プロピレングリコールモノメチルエーテルアセテート(PGMEA)30mLを加えて反応液を調製した。反応液にエチレンジアミン4mmolをゆっくり加えた後、50℃で5時間撹拌した。撹拌終了後、酢酸エチル200mL、及び1M塩酸100mLを加えて水相を除去し、次いで、水で3回洗浄した。その後、反応液をイソプロピルアルコール50mLに注ぎこんだ。生じた沈殿物をろ別した後、蒸留水及びイソプロピルアルコールで洗浄し、減圧乾燥することで目的の化合物を得た。
 得られた化合物について、H-NMR測定及びLC-MS測定を行い、ホスト基であるα-シクロデキストリン構造を一分子中に2個有する目的の下記化合物(H-2)であることを確認した。
Figure JPOXMLDOC01-appb-C000018
[合成例3]3官能ホスト化合物(H-3)の合成
 300mL丸底フラスコに、合成例1で得られた化合物(H-1)10mmol、及びトリメチロールプロパントリス(3-メルカプトプロピオナート)3mmolを秤量し、プロピレングリコールモノメチルエーテルアセテート(PGMEA)50mLを加えて反応液を調製した。反応液にエチレンジアミン3mmolをゆっくり加えた後、50℃で5時間撹拌した。撹拌終了後、酢酸エチル200mL、及び1M塩酸100mLを加えて水相を除去し、次いで、水で3回洗浄した。その後、反応液をイソプロピルアルコール50mLに注ぎこんだ。生じた沈殿物をろ別した後、蒸留水及びイソプロピルアルコールで洗浄し、減圧乾燥することで目的の化合物を得た。
 得られた化合物について、H-NMR測定及びLC-MS測定を行い、ホスト基であるα-シクロデキストリン構造を一分子中に3個有する目的の下記化合物(H-3)であることを確認した。
Figure JPOXMLDOC01-appb-C000019
[合成例4]4官能ホスト化合物(H-4)の合成
 300mL丸底フラスコに、合成例1で得られた化合物(H-1)13mmol、及びペンタエリスリトールテトラキス(3-メルカプトブチレート)3mmolを秤量し、プロピレングリコールモノメチルエーテルアセテート(PGMEA)50mLを加えて反応液を調製した。反応液にエチレンジアミン3mmolをゆっくり加えた後、50℃で5時間撹拌した。撹拌終了後、酢酸エチル200mL、及び1M塩酸100mLを加えて水相を除去し、次いで、水で3回洗浄した。その後、反応液をイソプロピルアルコール50mLに注ぎこんだ。生じた沈殿物をろ別した後、蒸留水及びイソプロピルアルコールで洗浄し、減圧乾燥することで目的の化合物を得た。
 得られた化合物について、H-NMR測定及びLC-MS測定を行い、ホスト基であるα-シクロデキストリン構造を一分子中に4個有する目的の下記化合物(H-4)であることを確認した。
Figure JPOXMLDOC01-appb-C000020
[合成例5]2官能ゲスト化合物(G-1)の合成
 300mL丸底フラスコに、2-エチル-2-アダマンタノール50mmolを秤量し、塩化メチレン100mLを加えて反応液を調製した。この反応液を氷浴中で、冷却しながら、グルタルジクロリド25mmolを30分かけて少しずつ加えた。その後、室温で1時間撹拌した。その後、反応液を希塩酸及び水酸化ナトリウム水溶液で処理し、蒸留水で洗浄した。得られた有機相を乾燥し、その後有機溶媒を除去することで、目的物の化合物を得た。
 得られた化合物について、H-NMR測定及びLC-MS測定を行い、ゲスト基であるアダマンチル基を一分子中に2個有する目的の下記化合物(G-1)であることを確認した。
Figure JPOXMLDOC01-appb-C000021
[合成例6]2官能ゲスト化合物(G-2)の合成
 300mL丸底フラスコに、4-ヒドロキシアゾベンゼン50mmolを秤量し、塩化メチレン100mLを加えて反応液を調製した。この反応液を氷浴中で、冷却しながら、グルタルジクロリド25mmolを30分かけて少しずつ加えた。その後、室温で1時間撹拌した。その後、反応液を希塩酸及び水酸化ナトリウム水溶液で処理し、蒸留水で洗浄した。得られた有機相を乾燥し、その後有機溶媒を除去することで、目的物の化合物を得た。
 得られた化合物について、H-NMR測定及びLC-MS測定を行い、ゲスト基であるアゾベンゼン構造を一分子中に2個有する目的の下記化合物(G-2)であることを確認した。
Figure JPOXMLDOC01-appb-C000022
[合成例7]3官能ゲスト化合物(G-3)の合成
 300mL丸底フラスコに、1,2,3-プロパントリオール25mmolを秤量し、塩化メチレン100mLを加えて反応液を調製した。この反応液を氷浴中で、冷却しながら、1-アダマンタンカルボニルクロリド75mmolを30分かけて少しずつ加えた。その後、室温で1時間撹拌した。その後、反応液を希塩酸及び水酸化ナトリウム水溶液で処理し、蒸留水で洗浄した。得られた有機相を乾燥し、その後有機溶媒を除去することで、目的の化合物を得た。
 得られた化合物について、H-NMR測定及びLC-MS測定を行い、ゲスト基であるアダマンチル基を一分子中に3個有する目的の下記化合物(G-3)であることを確認した。
Figure JPOXMLDOC01-appb-C000023
[合成例8]3官能ゲスト化合物(G-4)の合成
 300mL丸底フラスコに、1,2,3-プロパントリオール25mmolを秤量し、塩化メチレン100mLを加えて反応液を調製した。この反応液を氷浴中で、冷却しながら、4-フェニルアゾベンゼイルクロリド75mmolを30分かけて少しずつ加えた。その後、室温で1時間撹拌した。その後、反応液を希塩酸及び水酸化ナトリウム水溶液で処理し、蒸留水で洗浄した。得られた有機相を乾燥し、その後有機溶媒を除去することで、目的の化合物を得た。
 得られた化合物について、H-NMR測定及びLC-MS測定を行い、ゲスト基であるアゾベンゼン構造を一分子中に3個有する目的の下記化合物(G-4)であることを確認した。
Figure JPOXMLDOC01-appb-C000024
[合成例9]4官能ゲスト化合物(G-5)の合成
 300mL丸底フラスコに、ペンタエリトリトール25mmolを秤量し、酢酸エチル100mLを加えて反応液を調製した。この反応液を氷浴中で、冷却しながら、1-アダマンタンカルボニルクロリド90mmolを30分かけて少しずつ加えた。その後、室温で1時間撹拌した。その後、反応液を希塩酸及び水酸化ナトリウム水溶液で処理し、蒸留水で洗浄した。得られた有機相を乾燥し、その後有機溶媒を除去することで、目的の化合物を得た。
 得られた化合物について、H-NMR測定及びLC-MS測定を行い、ゲスト基であるアダマンチル基を一分子中に4個有する目的の下記化合物(G-5)であることを確認した。
Figure JPOXMLDOC01-appb-C000025
[合成例10]4官能ゲスト化合物(G-6)の合成
 300mL丸底フラスコに、ペンタエリトリトール25mmolを秤量し、酢酸エチル100mLを加えて反応液を調製した。この反応液を氷浴中で、冷却しながら、4-フェニルアゾベンゼイルクロリド90mmolを30分かけて少しずつ加えた。その後、室温で1時間撹拌した。その後、反応液を希塩酸及び水酸化ナトリウム水溶液で処理し、蒸留水で洗浄した。得られた有機相を乾燥し、その後有機溶媒を除去することで、目的の化合物を得た。
 得られた化合物について、H-NMR測定及びLC-MS測定を行い、ゲスト基であるアゾベンゼン構造を一分子中に4個有する目的の下記化合物(G-6)であることを確認した。
Figure JPOXMLDOC01-appb-C000026
[合成例11]
 MeO-αCDAAmMe/n-ブチルアクリレート(BA)/アクリル酸(AA)/スチレン(ST)共重合体(ホスト基を有する重合体(H-5))の合成
 冷却管及び撹拌機を備えたフラスコに、アゾビスイソブチロニトリル(AIBN)8質量部及びプロピレングリコールモノメチルエーテルアセテート(PGMEA)200質量部を仕込んだ。次いで、合成例1で得られたMeO-αCDAAmMe(化合物(H-1))10質量部、n-ブチルアクリレート70質量部、アクリル酸15質量部、及びスチレン5質量部を仕込み、窒素置換した。その後、緩やかに撹拌しつつ、溶液の温度を90℃に上昇させ、この温度を5時間保持して重合した。これにより、下記式で表される構造単位を有する重合体(H-5)を含有する重合体溶液を得た。重合体(H-5)の重量平均分子量(Mw)は5,000で、分子量分布(Mw/Mn)は2.1であった。
Figure JPOXMLDOC01-appb-C000027
[合成例12]
 エチルアダマンチルアクリレート/メチルアクリレート/ベンジルアクリレート/アクリル酸共重合体(ゲスト基を有する重合体(G-7))の合成
 冷却管及び撹拌機を備えたフラスコに、アゾビスイソブチロニトリル(AIBN)8質量部及びプロピレングリコールモノメチルエーテルアセテート(PGMEA)200質量部を仕込んだ。次いで、エチルアダマンチルアクリレート50質量部、メチルアクリレート30質量部、ベンジルアクリレート15質量部、及びアクリル酸5質量部を仕込み、窒素置換した。その後、緩やかに撹拌しつつ、溶液の温度を90℃に上昇させ、この温度を5時間保持して重合した。これにより、下記式で表される構造単位を有する重合体(G-7)を含有する重合体溶液を得た。重合体(G-7)の重量平均分子量(Mw)は9,000で、分子量分布(Mw/Mn)は2.1であった。
Figure JPOXMLDOC01-appb-C000028
[合成例13]
 4-アクリロイルオキシアゾベンゼン/メチルアクリレート/アクリル酸共重合体(ゲスト基を有する重合体(G-8))の合成
 冷却管及び撹拌機を備えたフラスコに、アゾビスイソブチロニトリル(AIBN)8質量部及びプロピレングリコールモノメチルエーテルアセテート(PGMEA)200質量部を仕込んだ。次いで、4-アタクリロイルオキシアゾベンゼン50質量部、メチルアクリレート30質量部、及びアクリル酸20質量部を仕込み、窒素置換した。その後、緩やかに撹拌しつつ、溶液の温度を90℃に上昇させ、この温度を5時間保持して重合した。これにより、下記式で表される構造単位を有する重合体(G-8)を含有する重合体溶液を得た。重合体(G-8)の重量平均分子量(Mw)は8,000で、分子量分布(Mw/Mn)は2.2であった。
Figure JPOXMLDOC01-appb-C000029
[比較合成例1]重合体(a-1)の合成
 メチルシクロペンチルメタアクリレート48質量部、エチルアダマンチルメタクリレート50質量部、及びメタアクリル酸2質量部を2-ブタノン200gに溶解し、AIBN(単量体化合物の総量に対し5モル%)を添加して単量体溶液を調製した。の2-ブタノン100gを入れた1,000mLの三口フラスコを30分窒素パージした後、撹拌しながら80℃に加熱し、調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。これにより、重合体(a-1)を含有する重合体溶液を得た。重合体(a-1)の重量平均分子量(Mw)は、8,000であった。
[比較合成例2]重合体(a-2)の合成
 冷却管及び撹拌機を備えたフラスコに、重合開始剤としての2,2’-アゾビスイソブチロニトリル5質量部及びプロピレングリコールモノメチルエーテルアセテート250質量部を仕込み、引き続き、メタクリル酸1-n-ブトキシエチル55質量部、メタクリル酸2-ヒドロキシエチルエステル30質量部、メタクリル酸10質量部、及びスチレン5質量部を仕込んで、窒素置換した。その後、緩やかに撹拌しつつ溶液の温度を70℃に上昇させ、この温度を5時間保持して重合した。これにより、重合体(a-2)を含有する重合体溶液を得た。重合体(a-2)の重量平均分子量(Mw)は、13,000であった。
 実施例及び比較例で用いた各成分を以下に示す。
ホスト化合物及びゲスト化合物
(H-2)合成例2で得られた2官能ホスト化合物(2官能シクロデキストリン)
(H-3)合成例3で得られた3官能ホスト化合物(3官能シクロデキストリン)
(H-4)合成例4で得られた4官能ホスト化合物(4官能シクロデキストリン)
(G-1)合成例5で得られた2官能ゲスト化合物(2官能アダマンチル)
(G-2)合成例6で得られた2官能ゲスト化合物(2官能アゾベンゼン)
(G-3)合成例7で得られた3官能ゲスト化合物(3官能アダマンチル)
(G-4)合成例8で得られた3官能ゲスト化合物(3官能アゾベンゼン)
(G-5)合成例9で得られた4官能ゲスト化合物(4官能アダマンチル)
(G-6)合成例10で得られた4官能ゲスト化合物(4官能アゾベンゼン)
(H-5)合成例11で得られたホスト基(シクロデキストリン構造)を有する重合体
(G-7)合成例12で得られたゲスト基(アダマンチル基)を有する重合体
(G-8)合成例13で得られたゲスト基(アゾベンゼン構造)を有する重合体
(G-A)アゾベンゼン(ゲスト化合物:トランス体)
(G-S)スチルベン(ゲスト化合物:トランス体)
酸発生剤
(C-1)トリフェニルスルホニウムトリフルオロメタンスルホネート
(C-2)1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート
酸拡散制御剤
(D-1)4-ジメチルアミノピリジン
比較重合体
(a-1)比較合成例1で得られたメチルシクロペンチルメタアクリレート/エチルアダマンチルメタアクリレート/メタアクリル酸の共重合体
(a-2)比較合成例2で得られたメタクリル酸1-n-ブトキシエチル/メタクリル酸2-ヒドロキシエチルエステル/メタクリル酸/スチレンの共重合体
[実施例1]
 合成例2で得られた2官能ホスト化合物(H-2)50質量部と、合成例5で得られた2官能ゲスト化合物(G-1)50質量部とを、プロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液を5時間室温で撹拌し、ホスト基とゲスト基とが相互作用し架橋した架橋重合体を得た。この架橋重合体を含む溶液に、界面活性剤「SH 190」(東レ・ダウコーニング・シリコーン製)0.01質量部、酸発生剤としての(C-1):トリフェニルスルホニウムトリフルオロメタンスルホネート0.5質量部、及び酸拡散制御剤としての(D-1):4-ジメチルアミノピリジン0.05質量部を加え、室温で混合撹拌した。撹拌後、0.2μmのフィルターを用いてろ過を行い、実施例1の感放射線性樹脂組成物を得た。
[実施例2]
 合成例2で得られた2官能ホスト化合物(H-2)50質量部と、アゾベンゼン(G-A)50質量部とを、プロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液を5時間室温で撹拌し、ホスト基とゲスト基とが相互作用し架橋した架橋重合体を得た。この架橋重合体を含む溶液に、界面活性剤「SH 190」(東レ・ダウコーニング・シリコーン製)0.01質量部を加え、室温で混合撹拌した。撹拌後、0.2μmのフィルターを用いてろ過を行い、実施例2の感放射線性樹脂組成物を得た。
[実施例3]
 合成例2で得られた2官能ホスト化合物(H-2)50質量部と、合成例6で得られた2官能ゲスト化合物(G-2)50質量部とを、プロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液を5時間室温で撹拌し、ホスト基とゲスト基とが相互作用し架橋した架橋重合体を得た。この架橋重合体を含む溶液に、界面活性剤「SH 190」(東レ・ダウコーニング・シリコーン製)0.01質量部を加え、室温で混合撹拌した。撹拌後、0.2μmのフィルターを用いてろ過を行い、実施例3の感放射線性樹脂組成物を得た。
[実施例4]
 合成例3で得られた3官能ホスト化合物(H-3)50質量部と、合成例5で得られた2官能ゲスト化合物(G-1)75質量部とを、プロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液を5時間室温で撹拌し、ホスト基とゲスト基とが相互作用し架橋した架橋重合体を得た。この架橋重合体を含む溶液に、界面活性剤「SH 190」(東レ・ダウコーニング・シリコーン製)0.01質量部、酸発生剤としての(C-1)0.5質量部、及び酸拡散制御剤としての(D-1)0.05質量部を加え、室温で混合撹拌した。撹拌後、0.2μmのフィルターを用いてろ過を行い、実施例4の感放射線性樹脂組成物を得た。
[実施例5]
 合成例3で得られた3官能ホスト化合物(H-3)50質量部と、アゾベンゼン(G-A)75質量部とを、プロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液を、5時間室温で撹拌し、ホスト基とゲスト基とが相互作用し架橋した架橋重合体を得た。この架橋重合体を含む溶液に、界面活性剤として「SH 190」(東レ・ダウコーニング・シリコーン製)0.01質量部を加え室温で混合撹拌した。撹拌後、0.2μmのフィルターを用いてろ過を行い、実施例5の感放射線性樹脂組成物を得た。
[実施例6]
 合成例4で得られた4官能ホスト化合物(H-4)60質量部と、合成例7で得られた3官能ゲスト化合物(G-3)80質量部とを、プロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液を5時間室温で撹拌し、ホスト基とゲスト基とが相互作用し架橋した架橋重合体を得た。この架橋重合体を含む溶液に、界面活性剤「SH 190」(東レ・ダウコーニング・シリコーン製)0.01質量部、酸発生剤としての(C-1)0.5質量部、及び酸拡散制御剤としての(D-1)0.05質量部を加え、室温で混合撹拌した。撹拌後、0.2μmのフィルターを用いてろ過を行い、実施例6の感放射線性樹脂組成物を得た。
[実施例7]
 合成例4で得られた4官能ホスト化合物(H-4)40質量部と、スチルベン(G-S)80質量部とを、プロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液を、5時間室温で撹拌し、ホスト基とゲスト基とが相互作用し架橋した架橋重合体を得た。この架橋重合体を含む溶液に、界面活性剤として「SH 190」(東レ・ダウコーニング・シリコーン製)0.01質量部を加え室温で混合撹拌した。撹拌後、0.2μmのフィルターを用いてろ過を行い、実施例7の感放射線性樹脂組成物を得た。
[実施例8]
 合成例2で得られた2官能ホスト化合物(H-2)75質量部と、合成例8で得られた3官能ゲスト化合物(G-4)50質量部とを、プロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液を5時間室温で撹拌し、ホスト基とゲスト基とが相互作用し架橋した架橋重合体を得た。この架橋重合体を含む溶液に、界面活性剤「SH 190」(東レ・ダウコーニング・シリコーン製)0.01質量部を加え、室温で混合撹拌した。撹拌後、0.2μmのフィルターを用いてろ過を行い、実施例8の感放射線性樹脂組成物を得た。
[実施例9]
 合成例2で得られた2官能ホスト化合物(H-2)80質量部と、合成例9で得られた4官能ゲスト化合物(G-5)40質量部とを、プロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液を5時間室温で撹拌し、ホスト基とゲストと基が相互作用し架橋した架橋重合体を得た。この架橋重合体を含む溶液に、界面活性剤「SH 190」(東レ・ダウコーニング・シリコーン製)0.01質量部、酸発生剤としての(C-2):1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート0.5質量部、及び酸拡散制御剤としての(D-1)0.05質量部加え、室温で混合撹拌した。撹拌後、0.2μmのフィルターを用いてろ過を行い、実施例9の感放射線性樹脂組成物を得た。
[実施例10]
 合成例2で得られた2官能ホスト化合物(H-2)50質量部と、合成例10で得られた4官能ゲスト化合物(G-6)25質量部とを、プロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液を5時間室温で撹拌し、ホスト基とゲスト基とが相互作用し架橋した架橋重合体を得た。この架橋重合体を含む溶液に、界面活性剤「SH 190」(東レ・ダウコーニング・シリコーン製)0.01質量部を加え、室温で混合撹拌した。撹拌後、0.2μmのフィルターを用いてろ過を行い、実施例10の感放射線性樹脂組成物を得た。
[実施例11]
 合成例11で得られたホスト基を有する重合体(H-5)50質量部と、合成例12で得られたゲスト基を有する重合体(G-7)50質量部とを、プロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液を5時間室温で撹拌し、ホスト基とゲスト基とが相互作用し架橋した架橋重合体を得た。この架橋重合体を含む溶液に、界面活性剤「SH 190」(東レ・ダウコーニング・シリコーン製)0.01質量部、酸発生剤としての(C-1)0.5質量部、及び酸拡散制御剤としての(D-1)0.05質量部を加え、室温で混合撹拌した。撹拌後、0.2μmのフィルターを用いてろ過を行い、実施例11の感放射線性樹脂組成物を得た。
[実施例12]
 合成例11で得られたホスト基を有する重合体(H-5)50質量部と、合成例13で得られたゲスト基を有する重合体(G-8)50質量部とを、プロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液を5時間室温で撹拌し、ホスト基とゲスト基とが相互作用し架橋した架橋重合体を得た。この架橋重合体を含む溶液に、界面活性剤「SH 190」(東レ・ダウコーニング・シリコーン製)0.01質量部を加え、室温で混合撹拌した。撹拌後、0.2μmのフィルターを用いてろ過を行い、実施例12の感放射線性樹脂組成物を得た。
[比較例1]
 比較合成例1で得られた重合体(a-1)100質量部を、プロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液に、界面活性剤「SH 190」(東レ・ダウコーニング・シリコーン製)0.01質量部、酸発生剤としての(C-1)0.5質量部、及び酸拡散制御剤としての(D-1)0.05質量部を加え、室温で混合撹拌した。撹拌後、0.2μmのフィルターを用いてろ過を行い、比較例1の感放射線性樹脂組成物を得た。
[比較例2]
 比較合成例2で得られた重合体(a-2)100質量部を、プロピレングリコールモノメチルエーテルアセテートに溶解させた。この溶液に、界面活性剤「SH 190」(東レ・ダウコーニング・シリコーン製)0.01質量部、酸発生剤としての(C-2)0.5質量部、及び酸拡散制御剤としての(D-1)0.05質量部加え、室温で混合撹拌した。撹拌後、0.2μmのフィルターを用いてろ過を行い、比較例2の感放射線性樹脂組成物を得た。
<パターンの形成>
 シリコンウェハ上に、下層反射防止膜「ARC66」(ブルワーサイエンス社製)をスピンコーターを使用して塗布した。その後、205℃で60秒間加熱することにより膜厚505nmの下層反射防止膜を形成した。次いで、上記スピンコーターを使用して、実施例1から12及び比較例1、2の各感放射線性樹脂組成物を塗布し、90℃で60秒間PBを行った。その後23℃で30秒間冷却し、膜厚100nmの塗布膜を形成した。次いで、露光装置を使用し、ベストフォーカスの条件で、所定サイズのラインアンドスペースを有するフォトマスクを介して露光した。なお、実施例1、4、6、7、9、11及び比較例1の各感放射線性樹脂組成物の露光には、KrF(246nm)露光装置を使用し、実施例2、3、5、8、10、12及び比較例2の各感放射線性樹脂組成物の露光には、i線(365nm)露光装置を使用した。
 露光後、ホットプレート(CLEANTRACKLithiusProi)にて、120℃で60秒間PEBし、23℃で30秒間冷却した。その後、2.38%テトラメチルアンモニウムハイドライド(TMAH)水溶液を現像液に用いて40秒間パドル現像し、純水で7秒間リンスした。その後、2000rpm、15秒間振り切りでスピンドライすることにより、400nmライン/800nmピッチのレジストパターンを形成した。なお、測長には走査型電子顕微鏡(日立ハイテクノロジーズ社製「CG4000」)を用いた。
<評価>
 上記のように形成したレジストパターンについて、以下の各評価を行った。結果を表1に示す。
[感度]
 上記「パターンの形成」により形成されるラインパターンが400nmライン/800nmピッチとなるような露光量を最適露光量とし、この最適露光量を感度(mJ/cm)とした。感度が100(mJ/cm)以下である場合、良好であると判断した。
[露光余裕度(EL)]
 縮小投影露光後のラインパターンが400nmライン/800nmピッチとなるようなマスクを介して露光し、形成されるラインパターンのライン幅が400nmの±15%以内となる場合の露光量の範囲の、最適露光量に対する割合を露光余裕度(EL(%))とした。ELの値が10(%)以上である場合、露光量変化に対するパターニング性能の変量が小さく良好であると判断した。
[LWR(Line Width Roughness)]
 上記最適露光量にて解像した400nmライン/800nmピッチのラインパターンを、走査型電子顕微鏡(日立ハイテクノロジーズ製「CG4000」)を用い、パターン上部から観察した。そして、ライン幅を任意のポイントで計50点測定し、その測定ばらつきを3シグマとして算出した値をLWR(nm)とした。LWRの値が50(nm)以下である場合を良好と判断した。
[膜減り量]
 膜厚80nmの下層反射防止膜「ARC29A」(ブルワー・サイエンス社製)を形成した8インチシリコンウェハ上に、実施例及び比較例の各感放射線性樹脂組成物によって、初期膜厚120nmの膜を形成し、90℃で60秒間PBを行った。次に、この膜を、露光装置を使用し、ベストフォーカスの条件で、所定サイズのラインアンドスペースを有するフォトマスクを介して露光した。なお、実施例1、4、6、7、9、11及び比較例1の各感放射線性樹脂組成物の露光には、KrF露光装置を使用し、実施例2、3、5、8、10、12及び比較例2の各感放射線性樹脂組成物の露光には、i線露光装置を使用した。
 露光後、120℃で60秒間PEBを行った。その後、2.38質量%TMAH水溶液を現像液に用いて40秒間パドル現像し、純水7秒間リンスした。その後、2000rpm、15秒間振り切りでスピンドライすることにより、乾燥を行った。一連のプロセス完了後、残存するレジスト膜の膜厚を測定し、初期膜厚から残存膜厚を引いた値を膜減り量(nm)とした。なお、膜厚測定には光干渉式膜厚測定装置「ラムダエース」(大日本スクリーン製造社製)を用いた。測定された膜減り量が、80nm未満の場合を良好、80nm以上の場合を不良と判断した。
Figure JPOXMLDOC01-appb-T000030
 表1に示されるように、実施例1から12の各感放射線性樹脂組成物は、感度、露光余裕度、LWR及び膜減り量に関し良好な結果となり、ポジ型のパターン形成材料として有用であることが確認できた。
 本発明の感放射線性樹脂組成物は、レジストパターン等のパターン形成材料として好適に用いることができる。
 H-2:ホスト化合物(2官能シクロデキストリン)
 H-3:ホスト化合物(3官能シクロデキストリン)
 H-5:ホスト基(シクロデキストリン構造)を有する重合体
 G-A:ゲスト化合物(アゾベンゼン)
 G-1:ゲスト化合物(2官能アダマンチル)
 G-8:ゲスト基(アゾベンゼン構造)を有する重合体

Claims (15)

  1.  ホスト基を有する化合物とゲスト基を有する化合物との相互作用によって架橋された架橋重合体、及び
     溶媒
     を含む感放射線性樹脂組成物。
  2.  上記ホスト基が、α-シクロデキストリン構造、β-シクロデキストリン構造及びγ-シクロデキストリン構造からなる群より選ばれる少なくとも1種の構造を有する基である請求項1に記載の感放射線性樹脂組成物。
  3.  上記ゲスト基が、置換又は非置換の炭素数6から30の炭化水素基を含む請求項1又は請求項2に記載の感放射線性樹脂組成物。
  4.  上記ゲスト基を有する化合物が、光異性化構造又は酸解離性構造を有する請求項1、請求項2又は請求項3に記載の感放射線性樹脂組成物。
  5.  上記ゲスト基を有する化合物が、上記光異性化構造を有する化合物であって、アゾベンゼン、スチルベン、アゾベンゼン又はスチルベンが有する少なくとも1個の水素原子を炭素数1から12の炭化水素基又は炭素数1から12のアルコキシ基で置換した化合物、及びこれらの化合物が有する水素原子を1個除いてなる少なくとも2個の基を有する化合物からなる群より選ばれる少なくとも1種である請求項4に記載の感放射線性樹脂組成物。
  6.  感放射線性酸発生剤をさらに含む請求項1から請求項5のいずれか1項に記載の感放射線性樹脂組成物。
  7.  上記ホスト基を有する化合物が一分子中に2個の上記ホスト基を有し、
     上記ゲスト基を有する化合物が一分子中に2個から4個の上記ゲスト基を有する請求項1から請求項6のいずれか1項に記載の感放射線性樹脂組成物。
  8.  上記ホスト基を有する化合物が一分子中に3個の上記ホスト基を有し、
     上記ゲスト基を有する化合物が一分子中に2個から4個の上記ゲスト基を有する請求項1から請求項6のいずれか1項に記載の感放射線性樹脂組成物。
  9.  上記ホスト基を有する化合物が一分子中に4個の上記ホスト基を有し、
     上記ゲスト基を有する化合物が一分子中に2個から4個の上記ゲスト基を有する請求項1から請求項6のいずれか1項に記載の感放射線性樹脂組成物。
  10.  上記ホスト基を有する化合物が、上記ホスト基を含む構造単位を有する重合体であり、
     上記ゲスト基を有する化合物が、上記ゲスト基を含む構造単位を有する重合体である請求項1から請求項6のいずれか1項に記載の感放射線性樹脂組成物。
  11.  上記ホスト基を含む構造単位が下記式(1)で表される構造単位であり、
     上記ゲスト基を含む構造単位が下記式(2)で表される構造単位である請求項10に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
     式(1)中、Rは、水素原子又はメチル基である。Rは、式(3a)から(3c)のいずれかで表される基である。Rは、上記ホスト基である。
     式(2)中、Rは、水素原子又はメチル基である。Rは、式(3a)から(3c)のいずれかで表される基である。Rは、上記ゲスト基である。
    Figure JPOXMLDOC01-appb-C000003
     式(3a)中、n1は、0又は1である。n2は、0から4の整数である。Rは、酸素原子又は-NH-である。
     式(3c)中、n3は、0から12の整数である。Rは、酸素原子、-NH-又はカルボニルオキシ基である。
     式(3a)から(3c)中、*は、R又はRとの結合部位を表す。
  12.  ポジ型である請求項1から請求項11のいずれか1項に記載の感放射線性樹脂組成物。
  13.  請求項1から請求項12のいずれか1項に記載の感放射線性樹脂組成物により、基板上に塗膜を形成する工程、
     上記塗膜を露光する工程、及び
     露光後の上記基板を現像する工程
     を備えるパターン形成方法。
  14.  上記露光する工程を、246nm及び365nmの少なくとも一方の波長を含む放射線により行う請求項13に記載のパターン形成方法。
  15.  上記現像する工程を、アルカリ現像液又は有機溶媒を含む現像液を用いて行う請求項13又は請求項14に記載のパターン形成方法。
PCT/JP2021/027008 2020-09-01 2021-07-19 感放射線性樹脂組成物及びパターン形成方法 WO2022049911A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546918A JPWO2022049911A1 (ja) 2020-09-01 2021-07-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020147165 2020-09-01
JP2020-147165 2020-09-01

Publications (1)

Publication Number Publication Date
WO2022049911A1 true WO2022049911A1 (ja) 2022-03-10

Family

ID=80491937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027008 WO2022049911A1 (ja) 2020-09-01 2021-07-19 感放射線性樹脂組成物及びパターン形成方法

Country Status (2)

Country Link
JP (1) JPWO2022049911A1 (ja)
WO (1) WO2022049911A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180245A (ja) * 1985-02-06 1986-08-12 Canon Inc Ps版
JPH07114178A (ja) * 1993-08-21 1995-05-02 Konica Corp 感光性平版印刷版及び製版方法
JP2005306917A (ja) * 2004-04-16 2005-11-04 Jsr Corp フッ素含有シクロデキストリン誘導体、ポリロタキサンおよび感放射線性樹脂組成物
WO2006049046A1 (ja) * 2004-11-01 2006-05-11 Nissan Chemical Industries, Ltd. シクロデキストリン化合物を含有するリソグラフィー用下層膜形成組成物
JP2008291208A (ja) * 2007-04-27 2008-12-04 Fujifilm Corp 感光性樹脂組成物、感光性樹脂転写フイルム及びフォトスペーサーの製造方法、並びに液晶表示装置用基板及び液晶表示装置
WO2012036069A1 (ja) * 2010-09-14 2012-03-22 国立大学法人大阪大学 分子認識に基づいた物質材料の選択的接着法および自己組織化法
WO2016035491A1 (ja) * 2014-09-02 2016-03-10 学校法人関西大学 ハイパーブランチポリマー及びその製造方法、並びに組成物
WO2017159346A1 (ja) * 2016-03-18 2017-09-21 国立大学法人大阪大学 高分子材料及びその製造方法、並びに重合性単量体組成物
WO2018207934A1 (ja) * 2017-05-11 2018-11-15 国立大学法人大阪大学 重合用組成物及びその重合体並びに重合体の製造方法
JP2019184784A (ja) * 2018-04-09 2019-10-24 株式会社サムスン日本研究所 ポジ型感光性組成物、及び、感光性組成物の製造方法
JP2019204719A (ja) * 2018-05-24 2019-11-28 株式会社豊田自動織機 自己修復性負極
WO2021149432A1 (ja) * 2020-01-20 2021-07-29 Jsr株式会社 パターン形成方法、感放射線性組成物及び包摂化合物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180245A (ja) * 1985-02-06 1986-08-12 Canon Inc Ps版
JPH07114178A (ja) * 1993-08-21 1995-05-02 Konica Corp 感光性平版印刷版及び製版方法
JP2005306917A (ja) * 2004-04-16 2005-11-04 Jsr Corp フッ素含有シクロデキストリン誘導体、ポリロタキサンおよび感放射線性樹脂組成物
WO2006049046A1 (ja) * 2004-11-01 2006-05-11 Nissan Chemical Industries, Ltd. シクロデキストリン化合物を含有するリソグラフィー用下層膜形成組成物
JP2008291208A (ja) * 2007-04-27 2008-12-04 Fujifilm Corp 感光性樹脂組成物、感光性樹脂転写フイルム及びフォトスペーサーの製造方法、並びに液晶表示装置用基板及び液晶表示装置
WO2012036069A1 (ja) * 2010-09-14 2012-03-22 国立大学法人大阪大学 分子認識に基づいた物質材料の選択的接着法および自己組織化法
WO2016035491A1 (ja) * 2014-09-02 2016-03-10 学校法人関西大学 ハイパーブランチポリマー及びその製造方法、並びに組成物
WO2017159346A1 (ja) * 2016-03-18 2017-09-21 国立大学法人大阪大学 高分子材料及びその製造方法、並びに重合性単量体組成物
WO2018207934A1 (ja) * 2017-05-11 2018-11-15 国立大学法人大阪大学 重合用組成物及びその重合体並びに重合体の製造方法
JP2019184784A (ja) * 2018-04-09 2019-10-24 株式会社サムスン日本研究所 ポジ型感光性組成物、及び、感光性組成物の製造方法
JP2019204719A (ja) * 2018-05-24 2019-11-28 株式会社豊田自動織機 自己修復性負極
WO2021149432A1 (ja) * 2020-01-20 2021-07-29 Jsr株式会社 パターン形成方法、感放射線性組成物及び包摂化合物

Also Published As

Publication number Publication date
JPWO2022049911A1 (ja) 2022-03-10

Similar Documents

Publication Publication Date Title
WO2018070327A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP5724798B2 (ja) 感放射線性樹脂組成物及びそれにより形成されるレジスト被膜
JP5660037B2 (ja) 感放射線性樹脂組成物
TW200903582A (en) Method for forming resist pattern and resin composition for insolubilizing formed resist patterns using therefor
JP5685919B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2015046021A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2011122336A1 (ja) 感放射線性樹脂組成物およびパターン形成方法
JP6264144B2 (ja) 重合体、感放射線性樹脂組成物及びレジストパターン形成方法
TW201837066A (zh) 圖案形成方法、電子器件的製造方法
KR20120040712A (ko) 감방사선성 수지 조성물 및 화합물
JP2017181697A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6561731B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤及び化合物
JP7472917B2 (ja) パターン形成方法、感放射線性組成物及び包摂化合物
TWI712858B (zh) 感放射線性樹脂組成物、抗蝕劑圖案形成方法及酸擴散抑制劑
WO2021220648A1 (ja) 感放射線性樹脂組成物及びそれを用いたレジストパターンの形成方法、並びに、スルホン酸塩化合物及びそれを含む感放射線性酸発生剤
KR20110013315A (ko) 감방사선성 수지 조성물 및 그것에 이용되는 화합물
JP6668825B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP5540818B2 (ja) 感放射線性樹脂組成物及び重合体
WO2017122697A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤及び化合物
JP3997590B2 (ja) 感放射線性樹脂組成物
JP2017156650A (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
WO2022049911A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
JP6668831B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP5299031B2 (ja) 感放射線性樹脂組成物
JP6202000B2 (ja) フォトレジスト組成物及びレジストパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863969

Country of ref document: EP

Kind code of ref document: A1