WO2022049045A1 - Dispositif de dépôt de couches oled avec une conduite de circulation/aération - Google Patents

Dispositif de dépôt de couches oled avec une conduite de circulation/aération Download PDF

Info

Publication number
WO2022049045A1
WO2022049045A1 PCT/EP2021/073934 EP2021073934W WO2022049045A1 WO 2022049045 A1 WO2022049045 A1 WO 2022049045A1 EP 2021073934 W EP2021073934 W EP 2021073934W WO 2022049045 A1 WO2022049045 A1 WO 2022049045A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor
line
pressure
sensor
valve arrangement
Prior art date
Application number
PCT/EP2021/073934
Other languages
German (de)
English (en)
Inventor
Dinesh Kanna SUBRAMANIAM
Tobias Schäfer
Olaf Martin Wurzinger
Original Assignee
Apeva Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apeva Se filed Critical Apeva Se
Priority to CN202180065927.1A priority Critical patent/CN116324016A/zh
Priority to KR1020237011243A priority patent/KR20230058511A/ko
Publication of WO2022049045A1 publication Critical patent/WO2022049045A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/544Controlling the film thickness or evaporation rate using measurement in the gas phase

Definitions

  • the invention relates to a device for depositing a layer on a substrate or for providing a vapor for depositing such a layer, with an evaporator for evaporating a non-gaseous starting material provided by a metering device, a vapor line that connects the evaporator with a switching valve arrangement flow-connected, by means of which the vapor transported with a carrier gas through the vapor line can be guided either into a process chamber of a coating reactor or past it, with a sensor arranged in the vapor line for determining the concentration or the partial pressure of the vapor transported through the vapor line.
  • the invention also relates to a method for depositing a layer on a substrate, in which a non-gaseous starting material provided with a dosing device is vaporized with an evaporator, the vapor thus generated is passed together with a carrier gas through a vapor line to a switching valve arrangement and is routed from there either into a process chamber of a coating reactor or past it, with the concentration or the partial pressure of the vapor transported through the vapor line being determined using a sensor arranged in the vapor line.
  • a device including a vaporizer for vaporizing an organic, non-gaseous starting material shows the
  • DE 10 2017106 968 A1 describes a sensor with which the vapor pressure or the concentration of a vapor in a vapor line can be measured.
  • a gas supply system for providing a vapor for an OLED coating device is described in DE 10 2020 103822 A1.
  • the prior art also includes US Pat. No. 10,256,126 B2, US Pat. No. 9,856,563 B2 and US Pat CVD reactor is transported. There is a throttle in the pipeline.
  • a non-gaseous starting material is provided with a metering device.
  • the dosing device is set up in such a way that it supplies a mass flow of a powder or a liquid which is essentially uniform over time.
  • the powder or liquid is transported as an aerosol by a carrier gas from the dosing device to the vaporizer. Due to different particle sizes of the powder or other, in particular mechanical, inadequacies of a dosing device, the temporal mass flow of the powder is subject to fluctuations.
  • the mass flow leaving the evaporator is measured with a QCM sensor.
  • the sensor signal of the QCM sensor is not only based on the partial pressure or the concentration of the vapor of the steam line, but also of the total pressure within the steam line.
  • a switching valve arrangement is provided with which the mass flow of vapor provided by the evaporator can be introduced either through a run line directly into a gas inlet element of a coating reactor or can be routed past the coating reactor through a vent line.
  • the mass flow of the vapor can stabilize at a desired value before the actual coating process begins.
  • the switching valve arrangement is switched over in such a way that the vapor no longer flows through the vent line but through the run line into the gas inlet element.
  • the invention is based on the object of specifying measures with which the disadvantages described above are eliminated.
  • the invention is based in particular on the object of specifying measures with which a uniform mass flow of the steam can be ensured at the time of switching even when using a switching valve arrangement.
  • a pressure barrier arranged between the sensor and the switching valve arrangement is provided.
  • the pressure barrier is designed in such a way that when the carrier gas and the vapor transported by the carrier gas flow through the pressure barrier, a slightly higher pressure is set upstream of the pressure barrier than downstream of the pressure barrier. With a total pressure of 150 Pa, the pressure drop across the pressure barrier can be greater than 5 Pa, so that pressure peaks up to 5 Pa can be sufficiently smoothed out.
  • the pressure barrier is formed by an open-cell foam body. It is a solid-foam body and in particular a graphite foam body.
  • the pressure barrier preferably fills the entire free cross section of the vapor line.
  • the steam line can be a DN 40 pipe.
  • the switching valve arrangement has at least two valves. Depending on the valve position, a first valve connects or disconnects the vapor line to/from a run line through which the carrier gas transports the vapor to a gas inlet element of the coating reactor.
  • the switching valve arrangement also has a second valve which, depending on the valve position, connects or disconnects the vapor line to a vent line, with the vent line transporting the vapor transported by the carrier gas past the coating reactor.
  • a discharge line can be provided, into which the vent line and a gas discharge line of the coating reactor open. It is also provided that the pressure barrier can be heated by a heating device.
  • the heating device can be a heating sleeve.
  • the pressure barrier in particular if it is formed from an open-cell graphite foam, is heated by passing an electric current through it.
  • the heating device is equipped with electrodes forms, with which a current can be passed through the pressure barrier.
  • the pressure barrier can preferably be heated to temperatures in the range between 20 and 450° C. with the heating device.
  • a control device can be provided, with which the temperature of the pressure barrier is controlled to a target temperature. This control device can be integrated into a control device for controlling the mass flow of the steam.
  • a temperature of an evaporation surface within the evaporator can be varied with the regulating device for regulating the mass flow of the vapor.
  • the control device can also be able to vary the mass flow of the carrier gas through the metering device. These two manipulated variables are varied in the manner known from the prior art in order to achieve a constant mass flow of the steam through the steam line.
  • the partial pressure or the concentration of the vapor in the vapor line is determined with a sensor, in particular a QCM sensor.
  • a pressure sensor can be provided with which the gas pressure within the vapor line can be determined.
  • the pressure inside the evaporator can be in a range between 1 and 80 mbar. However, the pressure range is preferably in a range between 2 and 40 mbar. The pressure within the evaporator is particularly preferably not more than 10 mbar. A typical pressure is in the range between 3 and 4 mbar. A pressure in the range between 0.1 and 10 mbar can drop above the preferably heated pressure barrier. The pressure drop is preferably in the range between 1 and 5 mbar or 1 and 3 mbar. A typical pressure is in the range between 1 and 2.5 mbar. Two measuring probes are provided, each of which is preferably arranged in a dead volume upstream of the pressure barrier. It is a QCM sensor and pressure gauge. Brief description of the drawings
  • FIG. 1 shows schematically the elements of a device of a first embodiment for depositing a layer on a substrate
  • FIG. 3 schematically shows the time profile of a measured value of a mass flow Q of a vapor through the vapor line 3 determined by a sensor 5 when the total pressure Ptot changes for a short time as a result of a switchover of the switchover valve arrangement 4,
  • FIG. 4 shows a second exemplary embodiment in a representation according to FIG.
  • a coating reactor 7 has a pressure-tight housing in which a gas inlet element 16 is located. Similar to a shower head, the gas inlet element 16 can have a multiplicity of gas outlet openings which are arranged on a gas outlet surface and open into a process chamber 6 whose floor is formed by a susceptor 18 . A substrate 9 to be coated can be placed on the susceptor 18 . While the gas inlet element 16 is at an elevated temperature, which is above the condensation temperature of a vapor that is fed into the gas inlet element 16 with the device shown in Figure 1, the susceptor 18 is cooled to a temperature below the condensation temperature of the vapor, so that the vapor can condense on the surface of the substrate 9.
  • a mass flow of a carrier gas for example an inert gas or nitrogen
  • a mass flow controller 10 which is fed into a metering device 2 through a carrier gas supply line 11 .
  • the dosing device 2 contains means known in principle from the prior art in order to generate a flow of powder into the carrier gas flow that is as constant as possible over time.
  • An aerosol generated in this way is transported to an evaporator 1 .
  • the mass flow of the aerosol is subject to temporal fluctuations due to the non-uniform particle size of the powder and other mechanical imperfections.
  • evaporation surfaces not shown, which add heat of evaporation to the aerosol, with which the aerosol particles can be evaporated.
  • the temperature of the evaporation surfaces can be varied by means of a control device 9, with which the mass flow of the carrier gas flowing through the mass flow controller 10 is also controlled. The above-mentioned fluctuations in the aerosol flow over time can be compensated for with these two control parameters.
  • the steam generated in the evaporator 1 is transported through a steam line 3 to a switching valve arrangement 4 .
  • the partial pressure of the vapor or the concentration of the vapor within the vapor line 3 is determined using a QCM sensor 5 in the manner known from the prior art.
  • the total gas pressure within the steam line 3 can be determined with a pressure gauge 12 .
  • the switching valve arrangement 4 is able to selectively feed the gas flow emerging from the vapor line 3 either into a run line 15 or into a vent line 17 .
  • the switching valve arrangement 4 has at least a first valve 13 and a second valve 14. Is that first valve 13 is opened and the second valve 14 is closed, the vapor transported by the carrier gas is fed into the run line, which opens into the gas inlet element 16. If, on the other hand, the first valve 13 is closed and the second valve 14 is opened, the vapor transported by the carrier gas is routed into the vent line 17 past the coating reactor 7 .
  • the gas flow emerging from the coating reactor 7 leads into a discharge line 20 into which the vent line 17 can also lead.
  • FIG. 3 shows the time profile of the total pressure Ptot when the valves 13, 14 are switched over at the times t1 and t2.
  • Q shows the measured value of the QCM sensor 5, which reports an increased concentration or an increased partial pressure at times T1, T2, which does not correspond to reality.
  • a pressure barrier 8 is located between the QCM sensor 5 and the switching valve arrangement 4 within the vapor line 3 .
  • the pressure barrier 8 is formed by an open-pore graphite foam which can be heated with a heating device 19 .
  • the heating device 19 can be a heating sleeve or electrodes with which a current can be conducted through the graphite foam.
  • the foam can be 100 ppi foam.
  • the foam body can have a thickness of 30 to 5 mm, preferably 40 mm, measured in the direction of flow.
  • the pressure barrier 8 can be heated to temperatures of up to 450° C. with the heating device 19 .
  • the two exemplary embodiments illustrated in FIGS. 1 and 4 differ essentially in the type of evaporation surfaces of the evaporator or in an intermediate store 21 in which a quantified quantity of the powder produced by the metering device 2 can be temporarily stored.
  • the quantities quantified are brought into the evaporator 1 through a feed line 22 .
  • the measured value Q supplied by the sensor 5 changes in a representation according to FIG. 3.
  • the peaks at the times t1 and t2 shown in FIG. 3 disappear.
  • the pressure difference at the pressure barrier 8 corresponds approximately to the value AP (FIG. 3), which indicates the value of the pressure peak.
  • a device which is characterized by a pressure barrier 8 arranged between the sensor 5 and the switching valve arrangement 4.
  • a device or a method which is characterized in that the switchover valve arrangement 4 has a first valve 13 which, when open, connects the steam line 3 to a run line 15 to a gas inlet element 16 of the coating reactor 7, and in that the switchover valve arrangement 4 a second valve 14 which, when open, connects the steam line 3 to a vent line 17 .
  • a device or a method characterized by a control device 9, with which a temperature of evaporation surfaces of the evaporator 1 and the mass flow of the carrier gas through a mass flow controller 10 are dependent on a first measured value measured with the sensor 5 and a measured value with a pressure gauge 12 measured in the steam line 3 second measured value can be varied in such a way that a temporally constant mass flow of the steam passes through the pressure barrier 8 .
  • a device or a method which are characterized in that the sensor 5 is a QCM sensor, the starting material is an organic starting material and an OLED layer is deposited in the coating reactor 7 on a substrate 9 lying on a susceptor 18 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

La présente invention concerne un dispositif et un procédé de dépôt d'une couche sur un substrat (9) ou pour fournir une vapeur pour déposer une telle couche, comprenant : un vaporisateur (1) pour vaporiser un matériau de départ non gazeux fourni par un dispositif de dosage (2) ; une conduite de vapeur (3) qui relie fluidiquement le vaporisateur (1) à un ensemble de vanne de commutation (4) au moyen de laquelle la vapeur transportée avec un gaz vecteur par la conduite de vapeur (3) peut être guidée comme requis dans une chambre de traitement (6) d'un réacteur de revêtement (7) ou peut contourner ladite chambre de traitement ; et un capteur (5) disposé dans la conduite de vapeur (3) pour déterminer la concentration ou la pression partielle de la vapeur transportée par la conduite de vapeur (3). Afin d'éviter que des signaux erronés soient générés pendant la commutation depuis un capteur QCM utilisé en tant que capteur, une barrière de pression qui est de préférence formée à partir d'une mousse de graphite est située entre le capteur (5) et l'ensemble de vanne de commutation (4).
PCT/EP2021/073934 2020-09-01 2021-08-31 Dispositif de dépôt de couches oled avec une conduite de circulation/aération WO2022049045A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180065927.1A CN116324016A (zh) 2020-09-01 2021-08-31 用于沉积oled层的具有运行管路/出口管路的装置
KR1020237011243A KR20230058511A (ko) 2020-09-01 2021-08-31 런/벤트 라인을 갖는 oled 층들을 증착시키기 위한 디바이스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020122800.7 2020-09-01
DE102020122800.7A DE102020122800A1 (de) 2020-09-01 2020-09-01 Vorrichtung zum Abscheiden von OLED-Schichten mit einer Run-/Vent-Leitung

Publications (1)

Publication Number Publication Date
WO2022049045A1 true WO2022049045A1 (fr) 2022-03-10

Family

ID=77726475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/073934 WO2022049045A1 (fr) 2020-09-01 2021-08-31 Dispositif de dépôt de couches oled avec une conduite de circulation/aération

Country Status (5)

Country Link
KR (1) KR20230058511A (fr)
CN (1) CN116324016A (fr)
DE (1) DE102020122800A1 (fr)
TW (1) TW202221161A (fr)
WO (1) WO2022049045A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161619A (zh) * 2022-09-08 2022-10-11 拓荆科技(上海)有限公司 阀门及气相沉积设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640221A (en) * 1985-10-30 1987-02-03 International Business Machines Corporation Vacuum deposition system with improved mass flow control
US5288325A (en) 1991-03-29 1994-02-22 Nec Corporation Chemical vapor deposition apparatus
US20050238806A1 (en) * 2002-06-07 2005-10-27 Katsunori Yanashima Method for forming organic thin film
WO2012175128A1 (fr) * 2011-06-22 2012-12-27 Aixtron Se Système de dépôt en phase vapeur et tête d'alimentation
US8679369B2 (en) * 2005-09-06 2014-03-25 Tohoku University Film-forming material and method for predicting film-forming material
DE102014102484A1 (de) 2014-02-26 2015-08-27 Aixtron Se Verwendung eines QCM-Sensors zur Bestimmung der Dampfkonzentration beim OVPD-Verfahren beziehungsweise in einem OVPD-Beschichtungssystem
DE102014109194A1 (de) * 2014-07-01 2016-01-07 Aixtron Se Vorrichtung und Verfahren zum Erzeugen eines Dampfes für eine CVD- oder PVD-Einrichtung
US9856563B2 (en) 2012-08-22 2018-01-02 Uchicago Argonne, Llc Micro-balance sensor integrated with atomic layer deposition chamber
DE102017106968A1 (de) 2017-03-31 2018-10-04 Aixtron Se Vorrichtung und Verfahren zur Bestimmung der Konzentration eines Dampfes
US10256126B2 (en) 2016-09-22 2019-04-09 Globalfoundries Inc. Gas flow process control system and method using crystal microbalance(s)
DE102020103822A1 (de) 2020-02-13 2021-08-19 Apeva Se Vorrichtung zum Verdampfen eines organischen Pulvers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011051260A1 (de) 2011-06-22 2012-12-27 Aixtron Se Verfahren und Vorrichtung zum Abscheiden von OLEDs
DE102011051261A1 (de) 2011-06-22 2012-12-27 Aixtron Se Verfahren und Vorrichtung zum Abscheiden von OLEDs insbesondere Verdampfungsvorrichtung dazu
JP6559423B2 (ja) 2011-08-05 2019-08-14 スリーエム イノベイティブ プロパティズ カンパニー 蒸気を処理するためのシステム及び方法
DE102017123682A1 (de) 2017-03-31 2018-11-22 Aixtron Se Verfahren zur Bestimmung des Partialdrucks oder einer Konzentration eines Dampfes
DE102017123233A1 (de) 2017-10-06 2019-04-11 Aixtron Se Vorrichtung und Verfahren zur Erzeugung eines in einem Trägergas transportierten Dampfes

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640221A (en) * 1985-10-30 1987-02-03 International Business Machines Corporation Vacuum deposition system with improved mass flow control
US5288325A (en) 1991-03-29 1994-02-22 Nec Corporation Chemical vapor deposition apparatus
US20050238806A1 (en) * 2002-06-07 2005-10-27 Katsunori Yanashima Method for forming organic thin film
US8679369B2 (en) * 2005-09-06 2014-03-25 Tohoku University Film-forming material and method for predicting film-forming material
WO2012175128A1 (fr) * 2011-06-22 2012-12-27 Aixtron Se Système de dépôt en phase vapeur et tête d'alimentation
US9856563B2 (en) 2012-08-22 2018-01-02 Uchicago Argonne, Llc Micro-balance sensor integrated with atomic layer deposition chamber
DE102014102484A1 (de) 2014-02-26 2015-08-27 Aixtron Se Verwendung eines QCM-Sensors zur Bestimmung der Dampfkonzentration beim OVPD-Verfahren beziehungsweise in einem OVPD-Beschichtungssystem
DE102014109194A1 (de) * 2014-07-01 2016-01-07 Aixtron Se Vorrichtung und Verfahren zum Erzeugen eines Dampfes für eine CVD- oder PVD-Einrichtung
US10256126B2 (en) 2016-09-22 2019-04-09 Globalfoundries Inc. Gas flow process control system and method using crystal microbalance(s)
DE102017106968A1 (de) 2017-03-31 2018-10-04 Aixtron Se Vorrichtung und Verfahren zur Bestimmung der Konzentration eines Dampfes
DE102020103822A1 (de) 2020-02-13 2021-08-19 Apeva Se Vorrichtung zum Verdampfen eines organischen Pulvers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161619A (zh) * 2022-09-08 2022-10-11 拓荆科技(上海)有限公司 阀门及气相沉积设备

Also Published As

Publication number Publication date
DE102020122800A1 (de) 2022-03-03
TW202221161A (zh) 2022-06-01
CN116324016A (zh) 2023-06-23
KR20230058511A (ko) 2023-05-03

Similar Documents

Publication Publication Date Title
EP3111205B1 (fr) Dispositif et procédé pour la determination de la concentration d'une vapeur avec un capteur de corps oscillant
DE3878328T2 (de) Vorrichtung zur verdampfungsregelung.
DE69312436T2 (de) Verdampfung von flüssigen Reaktionspartnern für CVD
WO2016000958A1 (fr) Dispositif et procédé de génération de vapeur dans un dispositif cvd ou pvd
EP1255876A2 (fr) Procede de production de revetement par condensation
DE102011051261A1 (de) Verfahren und Vorrichtung zum Abscheiden von OLEDs insbesondere Verdampfungsvorrichtung dazu
DE102014105294A1 (de) Vorrichtung und Verfahren zur Abgasreinigung an einem CVD-Reaktor
WO2022049045A1 (fr) Dispositif de dépôt de couches oled avec une conduite de circulation/aération
DE102011051931A1 (de) Vorrichtung und Verfahren zum Bestimmen des Dampfdrucks eines in einem Trägergasstrom verdampften Ausgangsstoffes
DE102017105333A1 (de) Verfahren und Vorrichtung zur thermischen Behandlung eines Substrates
DE10057491A1 (de) Vorrichtung und Verfahren zum Zuführen eines in die Gasform gebrachten flüssigen Ausgangsstoffes in einen CVD-Reaktor
EP3209809B1 (fr) Conduite d'arrivée de gaz thermo-régulée comprenant des courants de gaz de dilution injectés à plusieurs endroits
WO2019068609A1 (fr) Dispositif et procédé pour produire une vapeur transportée dans un gaz porteur
DE102020103822A1 (de) Vorrichtung zum Verdampfen eines organischen Pulvers
DE69208306T2 (de) Flüssigkeitsverdampfungsventil
WO2018224454A1 (fr) Procédé pour le dépôt de delo
EP1358364B1 (fr) Procede et dispositif permettant de delivrer de maniere dosee de petits debits volumetriques de liquide
WO2018172211A1 (fr) Dispositif et procédé pour abaisser la pression partielle de h2o dans un dispositif de revêtement par dépôt en phase vapeur organique
WO2021078644A1 (fr) Procédé pour faire fonctionner un capteur à microbalance à cristal de quartz
WO2001055478A2 (fr) Procede et dispositif pour faire deposer sur un substrat un percurseur sous forme liquide
DE10392487T5 (de) Automatisches Ventilsteuersystem für ein mit Plasma arbeitendes chemisches Gasphasenabscheidungssystem sowie chemisches Gasphasenabscheidungssystem zur Abscheidung eines Mehrschichtfilms im Nanomaßstab
DE102020123764A1 (de) Verfahren zum Erzeugen eines zeitlich konstanten Dampfflusses sowie Verfahren zum Einstellen eines Arbeitspunktes einer Vorrichtung zum Erzeugen eines Dampfes
DE102013109696B3 (de) Beschichtungsverfahren und Beschichtungsvorrichtung
WO2018178036A2 (fr) Procédé de détermination de la pression partielle ou d'une concentration d'une vapeur
EP3409812A1 (fr) Système d'alimentation en gaz et procédé d'alimentation en gaz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21769437

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20237011243

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21769437

Country of ref document: EP

Kind code of ref document: A1