WO2022045231A1 - エステル化合物 - Google Patents

エステル化合物 Download PDF

Info

Publication number
WO2022045231A1
WO2022045231A1 PCT/JP2021/031281 JP2021031281W WO2022045231A1 WO 2022045231 A1 WO2022045231 A1 WO 2022045231A1 JP 2021031281 W JP2021031281 W JP 2021031281W WO 2022045231 A1 WO2022045231 A1 WO 2022045231A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
hydrocarbon group
heteroatom
group
carbon atoms
Prior art date
Application number
PCT/JP2021/031281
Other languages
English (en)
French (fr)
Inventor
航 山田
孝明 矢野
祥太郎 鷹野
貴 木村
実 磯貝
隆志 中野
スニル クリストフ ムルテイ
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to EP21861653.0A priority Critical patent/EP4206182A1/en
Priority to JP2022545692A priority patent/JP7575466B2/ja
Priority to CN202180052872.0A priority patent/CN115989216A/zh
Priority to KR1020237006344A priority patent/KR20230043174A/ko
Priority to US18/022,470 priority patent/US20240025838A1/en
Priority to BR112023003400A priority patent/BR112023003400A2/pt
Publication of WO2022045231A1 publication Critical patent/WO2022045231A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/38Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C229/54Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C229/54Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C229/64Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring the carbon skeleton being further substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/22Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
    • C07C69/28Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety esterified with dihydroxylic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/34Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/75Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of acids with a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/78Benzoic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/84Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
    • C07C69/92Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring with etherified hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/68Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/16Benz[e]indenes; Hydrogenated benz[e]indenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/30Ortho- or ortho- and peri-condensed systems containing three rings containing seven-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/36Ortho- or ortho- and peri-condensed systems containing three rings containing eight-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/60Ring systems containing bridged rings containing three rings containing at least one ring with less than six members
    • C07C2603/66Ring systems containing bridged rings containing three rings containing at least one ring with less than six members containing five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/72Ethanonaphthalenes; Hydrogenated ethanonaphthalenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/76Ring systems containing bridged rings containing three rings containing at least one ring with more than six ring members
    • C07C2603/78Ring systems containing bridged rings containing three rings containing at least one ring with more than six ring members containing seven-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/86Ring systems containing bridged rings containing four rings
    • C07C2603/88Ethanoanthracenes; Hydrogenated ethanoanthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/90Ring systems containing bridged rings containing more than four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/90Ring systems containing bridged rings containing more than four rings
    • C07C2603/91Polycyclopentadienes; Hydrogenated polycyclopentadienes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms

Definitions

  • the present invention relates to a novel ester compound.
  • additive-like uses such as resin additives, cosmetics and external skin preparations, bactericidal composition, antioxidants, and chelating agents.
  • an embodiment used for a Mg compound-supported titanium catalyst used for olefin polymerization is known.
  • olefin polymerization catalyst Ziegler reported in 1953 that ethylene polymerizes even at low pressure by combining titanium tetrachloride and organoaluminum compound, followed by Natta with titanium trichloride and organoaluminum compound containing halogen. It is one of the technologies that have made great progress to date with the discovery of the so-called Ziegler-Natta catalyst, which reported the first propylene polymerization in combination. Among them, it was found that a catalyst containing titanium tetrachloride, a magnesium compound and a Lewis base, which is called a third-generation catalyst, can achieve both high polymerization activity (high productivity) and high stereoregularity in the polymerization of propylene. .. This was an opportunity for propylene polymers (polypropylene) to spread around the world.
  • the Lewis base (hereinafter also referred to as “internal donor”), which is one of the main components of the above-mentioned third-generation catalyst component (hereinafter, also referred to as “solid titanium catalyst component”), greatly affects the catalytic performance. It has been found that various Lewis bases have been developed so far.
  • Examples of the Lewis base used in the Cheegler-Natta catalyst include ethylbenzoate, phthalic acid ester, 1,3-diketone (Patent Document 1), malonic acid ester (Patent Document 2), and succinic acid ester (Patent Document 3).
  • Patent Document 1 2,4-Pentanediol diester
  • Patent Document 5 naphthalenediol diester
  • Patent Document 6 catechol diester
  • Patent Documents 7 to 11 and Non-Patent Documents 1 to 19 have been disclosed for elementary reactions for synthesizing various ester compounds.
  • Japanese Unexamined Patent Publication No. 2005-226706 Special Table 2000-516987 Gazette Special Table 2002-542347 Gazette Special Table 2005-517746 Japanese Patent Publication No. 2011-528888 Japanese Patent Publication No. 2014-500390 Japanese Unexamined Patent Publication No. 2008-247796 International Publication No. 2008/062553 U.S. Patent Application Publication No. 2018/0149973 U.S. Patent Application Publication No. 2002/0162991 Japanese Unexamined Patent Publication No. 2008-037756
  • Propylene polymer has heat resistance and rigidity similar to those of general-purpose engineering plastics, but has the advantage of generating less toxic gas even after combustion treatment because it is composed of almost only carbon and hydrogen.
  • the subject of the present invention is an internal donor suitable for a solid titanium catalyst component capable of producing a propylene polymer having extremely high stereoregularity with high productivity (high activity) when mainly used for a solid titanium catalyst component. To provide the ingredients.
  • an ester compound having a specific cyclic structure is suitable as a Lewis base for, for example, a solid titanium catalyst component, and completed the present invention. ..
  • the present invention relates to, for example, the following [1] to [28].
  • R 1 to R 24 are independently hydrogen atoms, halogen atoms, hydrocarbon groups or heteroatom-containing hydrocarbon groups, respectively.
  • R 1 to R 10 , R 23 and R 24 may be bonded to each other to form a ring, or adjacent substituents may be directly bonded to form a multiple bond.
  • R 11 to R 24 may be bonded to each other to form a ring, or adjacent substituents may be bonded to each other to form a multiple bond.
  • at least one set is bonded to each other to form a ring structure.
  • n2 to n5 each independently represent an integer of 0 to 2.
  • n1 and n6 independently represent an integer of 0 or 1, respectively.
  • L 1 and L 2 are independently hydrocarbon groups or heteroatom-containing hydrocarbon groups, respectively.
  • R 1 to R 24 are independently hydrogen atoms, halogen atoms, hydrocarbon groups or heteroatom-containing hydrocarbon groups, respectively.
  • R 1 to R 10 , R 23 and R 24 may be bonded to each other to form a ring, or adjacent substituents may be directly bonded to form a multiple bond.
  • R 11 to R 24 may be bonded to each other to form a ring, or adjacent substituents may be bonded to each other to form a multiple bond.
  • X and Y are each independently a hydrocarbon group, a heteroatom or a heteroatom-containing hydrocarbon group.
  • n2 to n5 each independently represent an integer of 0 to 2.
  • n1 and n6 independently represent an integer of 0 or 1, respectively.
  • L 1 and L 2 are each independently a hydrocarbon group having 4 or more carbon atoms or a heteroatom-containing hydrocarbon group.
  • [5] The ester compound according to [3] or [4], wherein n1 and n6 are 1, and n2 to n5 are all 0.
  • R 1 and R 2 are independently hydrogen atoms or hydrocarbon groups, and R 4 and R 9 are independently hydrogen atoms, hydrogen groups or hetero atom-containing hydrocarbon groups, respectively.
  • R 11 , R 15 , R 17 and R 21 are each independently a hydrogen atom, a halogen atom, a hydrogen group or a hetero atom-containing hydrocarbon group.
  • R 11 , R 15 , R 17 and R 21 may combine with each other to form a ring.
  • X is a hydrocarbon group, a heteroatom or a heteroatom-containing hydrocarbon group.
  • L 1 and L 2 are each independently a hydrocarbon group having 4 or more carbon atoms or a heteroatom-containing hydrocarbon group.
  • R 1 and R 2 are independently hydrogen atoms or hydrocarbon groups, respectively, and R 4 , R 9 , R 11 , R 12 , R 15 to R 18 , R 21 and R 22 are. , Independently hydrogen atom, hydrocarbon group or heteroatom-containing hydrocarbon group.
  • R 11 , R 12 , R 15 to R 18 , R 21 and R 22 may be bonded to each other to form a ring, or adjacent substituents may be bonded to each other to form a multiple bond.
  • X is a hydrocarbon group, a heteroatom or a heteroatom-containing hydrocarbon group.
  • L 1 and L 2 are each independently a hydrocarbon group having 4 or more carbon atoms or a heteroatom-containing hydrocarbon group.
  • the ester compound according to [1] which is represented by the following general formula (7) or (8).
  • R 4 , R 9 , R 12 , R 15 to R 18 and R 21 are each independently a hydrogen atom, a hydrocarbon group or a hetero atom-containing hydrocarbon group.
  • R 15 to R 18 may be bonded to each other to form a ring, or adjacent substituents may be bonded to each other to form a multiple bond.
  • Y is a hydrocarbon group, a heteroatom or a heteroatom-containing hydrocarbon group.
  • L 1 and L 2 are each independently a hydrocarbon group having 4 or more carbon atoms or a heteroatom-containing hydrocarbon group.
  • R 1 and R 2 are independently hydrogen atoms or hydrocarbon groups, respectively, and R 3 , R 4 , R 9 , R 10 , R 12 , R 15 to R 18 and R 21 are respectively. , Independently hydrogen atom, hydrocarbon group or heteroatom-containing hydrocarbon group. R 15 to R 18 may be bonded to each other to form a ring, or adjacent substituents may be bonded to each other to form a multiple bond.
  • Y is a hydrocarbon group, a heteroatom or a heteroatom-containing hydrocarbon group.
  • L 1 and L 2 are each independently a hydrocarbon group having 4 or more carbon atoms or a heteroatom-containing hydrocarbon group.
  • the ester compound according to [1] which is represented by the following general formula (9).
  • R 1 and R 2 are independent hydrogen atoms or hydrocarbon groups, respectively, and R 4 , R 9 , R 12 and R 15 to R 18 and R 21 are independent hydrogen atoms, respectively.
  • R 15 to R 18 may be bonded to each other to form a ring, or adjacent substituents may be bonded to each other to form a multiple bond.
  • X and Y are each independently a hydrocarbon group, a heteroatom or a heteroatom-containing hydrocarbon group.
  • L 1 and L 2 are each independently a hydrocarbon group having 4 or more carbon atoms or a heteroatom-containing hydrocarbon group.
  • the ester compound according to [1] which is represented by the following general formula (31).
  • R 31 to R 34 are independently hydrogen atoms, halogen atoms, hydrocarbon groups or hetero atom-containing hydrocarbon groups, and R 4 , R 9 , R 21 and R 22 are respectively. It is a hydrogen atom, a hydrocarbon group or a hetero atom-containing hydrocarbon group independently, and R 4 , R 9 , R 21 , R 22 and R 31 to R 34 may be bonded to each other to form a ring.
  • L 1 and L 2 are independently hydrocarbon groups or heteroatom-containing hydrocarbon groups, respectively.
  • X is a hydrocarbon group, a heteroatom or a heteroatom-containing hydrocarbon group.
  • [10] The item according to any one of [4] and [6] to [9], wherein X and Y are divalent groups independently selected from the groups represented by the following general formula group (10). Ester compound.
  • R 1'to R 7' are independently hydrogen atom, hydrocarbon group or hetero atom-containing hydrocarbon group, and R 2'to R 7'are bonded to each other to form a ring. Alternatively, adjacent substituents may be directly bonded to each other to form a multiple bond.
  • R 11] The ester compound according to any one of [4] and [6] to [9], wherein X and Y are divalent groups selected from the groups represented by the following general formula group (11).
  • R 1'to R 5' are independently hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms or heteroatom-containing hydrocarbon groups having 1 to 20 carbon atoms, respectively, and R 2' .
  • ⁇ R 5' may be bonded to each other to form a ring, or adjacent substituents may be directly bonded to each other to form a multiple bond.
  • X is a divalent group represented by the following general formula (13).
  • R 2'and R 3' are independently hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms or heteroatom-containing hydrocarbon groups having 1 to 20 carbon atoms, respectively, and R 2' . And R 3'may combine with each other to form a ring.
  • R 1'to R 7' are independently hydrogen atoms or hydrocarbon groups having 1 to 10 carbon atoms.
  • R 31 to R 34 are independently hydrogen atoms, halogen atoms, hydrocarbon groups having 1 to 20 carbon atoms or heteroatom-containing hydrocarbon groups having 1 to 20 carbon atoms. Ester compound.
  • R 31 to R 34 , R 21 and R 22 are all hydrogen atoms, and R 4 and R 9 are independently hydrogen atoms or hydrocarbon groups having 1 to 6 carbon atoms, respectively, and L 1 and L are L.
  • 2 is the ester compound according to [9], which is independently selected from hydrocarbon groups having 1 to 10 carbon atoms.
  • the ester compound of the present invention can be used, for example, as a resin additive, a cosmetic or external skin preparation, a bactericidal composition, an antioxidant, a chelating agent, and a Ziegler-Natta catalyst.
  • ester compound (A) is represented by the following general formula (1).
  • R 1 to R 24 are independently hydrogen atoms, halogen atoms, hydrocarbon groups or heteroatom-containing hydrocarbon groups, respectively.
  • R 1 to R 10 , R 23 and R 24 may be bonded to each other to form a ring, or adjacent substituents may be directly bonded to form a multiple bond.
  • R 11 to R 24 may be bonded to each other to form a ring, or adjacent substituents may be bonded to each other to form a multiple bond.
  • at least one set is bonded to each other to form a ring structure.
  • n2 to n5 each independently represent an integer of 0 to 2.
  • n1 and n6 independently represent an integer of 0 or 1, respectively.
  • L 1 and L 2 are independently hydrocarbon groups or heteroatom-containing hydrocarbon groups, respectively.
  • any one of n4, n5, and n6 is preferably 1 or 2.
  • any one of n4, n5, and n6 is preferably 1 or 2.
  • ester compound (A) of the present invention compounds represented by the following general formulas (2) to (4) can be mentioned.
  • R 1 to R 24 are independently hydrogen atoms, halogen atoms, hydrocarbon groups or heteroatom-containing hydrocarbon groups, respectively.
  • R 1 to R 10 , R 23 and R 24 may be bonded to each other to form a ring, or adjacent substituents may be directly bonded to form a multiple bond.
  • R 11 to R 24 may be bonded to each other to form a ring, or adjacent substituents may be bonded to each other to form a multiple bond.
  • X and Y are each independently a hydrocarbon group, a heteroatom or a heteroatom-containing hydrocarbon group.
  • n2 to n5 each independently represent an integer of 0 to 2.
  • n1 and n6 independently represent an integer of 0 or 1, respectively.
  • L 1 and L 2 are each independently a hydrocarbon group having 4 or more carbon atoms or a heteroatom-containing hydrocarbon group.
  • ester compound (A) of the present invention compounds represented by the following general formulas (5) to (9) can be mentioned.
  • R 1 and R 2 are independently hydrogen atoms or hydrocarbon groups
  • R 4 and R 9 are independently hydrogen atoms, hydrogen groups or hetero atom-containing hydrocarbon groups, respectively.
  • R 11 , R 15 , R 17 and R 21 are each independently a hydrogen atom, a halogen atom, a hydrogen group or a hetero atom-containing hydrocarbon group.
  • R 11 , R 15 , R 17 and R 21 may combine with each other to form a ring.
  • X is a hydrocarbon group, a heteroatom or a heteroatom-containing hydrocarbon group.
  • L 1 and L 2 are each independently a hydrocarbon group having 4 or more carbon atoms or a heteroatom-containing hydrocarbon group.
  • R 1 and R 2 are independently hydrogen atoms or hydrocarbon groups, respectively, and R 4 , R 9 , R 11 , R 12 , R 15 to R 18 , R 21 and R 22 are Each is independently a hydrogen atom, a hydrocarbon group or a hetero atom-containing hydrocarbon group.
  • R 11 , R 12 , R 15 to R 18 , R 21 and R 22 may be bonded to each other to form a ring, or adjacent substituents may be bonded to each other to form a multiple bond.
  • X is a hydrocarbon group, a heteroatom or a heteroatom-containing hydrocarbon group.
  • L 1 and L 2 are each independently a hydrocarbon group having 4 or more carbon atoms or a heteroatom-containing hydrocarbon group.
  • R 4 , R 9 , R 12 , R 15 to R 18 and R 21 are each independently a hydrogen atom, a hydrocarbon group or a hetero atom-containing hydrocarbon group.
  • R 15 to R 18 may be bonded to each other to form a ring, or adjacent substituents may be bonded to each other to form a multiple bond.
  • Y is a hydrocarbon group, a heteroatom or a heteroatom-containing hydrocarbon group.
  • L 1 and L 2 are each independently a hydrocarbon group having 4 or more carbon atoms or a heteroatom-containing hydrocarbon group.
  • R 1 and R 2 are independently hydrogen atoms or hydrocarbon groups, respectively, and R 3 , R 4 , R 9 , R 10 , R 12 , R 15 to R 18 and R 21 are Each is independently a hydrogen atom, a hydrocarbon group or a hetero atom-containing hydrocarbon group. R 15 to R 18 may be bonded to each other to form a ring, or adjacent substituents may be bonded to each other to form a multiple bond.
  • Y is a hydrocarbon group, a heteroatom or a heteroatom-containing hydrocarbon group.
  • L 1 and L 2 are each independently a hydrocarbon group having 4 or more carbon atoms or a heteroatom-containing hydrocarbon group.
  • R 3 , R 4 , R 9 and R 10 may be substituents independently selected from a hydrogen atom, a halogen atom, a hydrocarbon group, and a halogen-containing hydrocarbon group, respectively. It is more preferably selected from hydrogen atoms, hydrocarbon groups, and halogen-containing hydrocarbon groups, and particularly preferably selected from hydrogen and hydrocarbon groups.
  • the above-mentioned hydrocarbon group is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkyl group having 2 to 20 carbon atoms.
  • Preferred examples are an unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, and a substituted or unsubstituted aryl group having 6 to 20 carbon atoms.
  • the above-mentioned halogen-containing hydrocarbon group includes a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 1 to 20 carbon atoms, and a substituted or unsubstituted alkyl group having 2 to 20 carbon atoms.
  • Substituents are preferred: substituted alkenyl groups, substituted or unsubstituted alkynyl groups with 2 to 20 carbon atoms, substituted or unsubstituted aryl groups with 6 to 20 carbon atoms in which one or more hydrogen atoms are substituted with halogen atoms. This is an example.
  • R 1 and R 2 are independent hydrogen atoms or hydrocarbon groups, respectively, and R 4 , R 9 , R 12 , R 15 to R 18 and R 21 are independent hydrogen atoms, respectively. It is a hydrocarbon group or a hetero atom-containing hydrocarbon group. R 15 to R 18 may be bonded to each other to form a ring, or adjacent substituents may be bonded to each other to form a multiple bond.
  • X and Y are each independently a hydrocarbon group, a heteroatom or a heteroatom-containing hydrocarbon group.
  • L 1 and L 2 are each independently a hydrocarbon group having 4 or more carbon atoms or a heteroatom-containing hydrocarbon group.
  • ester compounds represented by the formulas (5), (8) and (9) are preferable, and the compounds represented by the formulas (5) and (9) are more preferable. It is preferably an ester compound represented by the formula (5).
  • ester compound (A) of the present invention a compound represented by the following general formula (31) can be mentioned.
  • R 1 to R 24 are independently hydrogen atoms, halogen atoms, hydrocarbon groups or heteroatom-containing hydrocarbon groups, respectively.
  • hydrocarbon group examples include a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, and a substituted or unsubstituted aryl group. Can be mentioned.
  • heteroatom-containing hydrocarbon group examples include a substituted or unsubstituted heteroatom-containing alkyl group and a substituted or unsubstituted heteroaryl group.
  • hydrocarbon group and the heteroatom-containing hydrocarbon group include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroatom-containing alkyl group, and a heteroaryl group.
  • the number of carbon atoms of these groups is preferably 1 to 20.
  • the lower limit is preferably 2, more preferably 3, and particularly preferably 4. However, the preferable lower limit value in the case of an aryl group is 6.
  • the upper limit is preferably 18, more preferably 15, still more preferably 10, and particularly preferably 6.
  • At least one substituent of R 1 to R 24 is a substituent other than hydrogen. Further, it may be preferable that one or more of the carbon atoms forming the cyclic structure are quaternary carbons. In the above embodiment, for example, when the ester compound of the present invention is used as a component of the catalyst for olefin polymerization, the performance balance may be improved.
  • R 1 to R 10 , R 23 and R 24 may be bonded to each other to form a ring, and R 11 to R 24 may be bonded to each other to form a ring.
  • the site forming the ring may be formed by a single bond or may contain a double bond. Structures containing carbon-carbon double bonds may be preferred. Further, a structure in which the site forming the ring further includes a ring structure may be preferable, and a mode in which the ring structure further includes a double bond, particularly preferably a carbon-carbon double bond may be preferable.
  • the specific structural example of the site forming such a ring is the same as the structural example of X and Y described later. Further, in the present invention, the carbon-carbon double bond includes an aromatic structure.
  • the carbon to which the above-mentioned substituents bonded to each other to form a ring (hereinafter, may be referred to as "B4C") is usually referred to as “another substituent” (hereinafter, “B4S”).
  • B4C another substituent
  • Is bonded for example, when R 3 is directly bonded to R 10 to form a ring, R 4 and R 9 are applicable.
  • the "other substituent” is a hydrocarbon group and / or a heteroatom-containing hydrocarbon group described later.
  • the heteroatom-containing hydrocarbon group an oxygen-containing hydrocarbon group is particularly preferable.
  • the hydrocarbon group is an aliphatic group having 1 to 10 carbon atoms, an alicyclic group, or an aromatic group, and more preferably, an aliphatic group having 1 to 6 carbon atoms.
  • the heteroatom-containing hydrocarbon group which is an alicyclic group or an aromatic group, is more specifically a heteroatom-containing aliphatic group having 1 to 10 carbon atoms, an alicyclic group, or an aromatic group. It is a group, more preferably a heteroatom-containing aliphatic group having 1 to 6 carbon atoms, an alicyclic group, or an aromatic group.
  • the heteroatom is preferably oxygen.
  • the oxygen-containing hydrocarbon group is more preferably an alkoxy group.
  • the positions of such substituents include R 4 and / or R 9 of the above formulas (2), (4), (5), (6) and (9), and the above formula (3). , (4), (7), (8), R 12 and / or R 21 , more preferably R 4 and / or R 9 .
  • the substituent at such a position is a group having the above-mentioned structure, when used as a component of a catalyst for olefin polymerization, in addition to polymerization activity and stereoregularity, the molecular weight of the obtained polymer is controlled by hydrogen. It may be easier.
  • adjacent substituents may be directly bonded to each other to form a multiple bond, for example, a double bond or a triple bond.
  • the aromatic ring structure to which these substituents are bonded is also within the scope of the present invention.
  • the aromatic ring structure represented by the formulas (5) and (7) can be mentioned.
  • the substituent forming the ring is selected from a substituent other than a hydrogen atom and a halogen atom, and is preferably a hydrocarbon group.
  • R 1 to R 24 at least one set is bonded to each other to form a ring structure. Of the rings formed, at least one set is preferably separated from each other by 2 carbons or more, and more preferably by 3 carbons or more.
  • Such a structure is preferably a ring structure containing X or Y in the formulas (2) to (4), and more preferably a ring structure containing X or Y in the formulas (5) to (9). be.
  • the substituents selected from R 3 to R 6 , R 7 to R 10 , and R 11 to R 22 may be bonded to each other to form a ring.
  • the substituent forming the ring does not contain the carbon atom at the bridgehead position.
  • the carbon atom at the bridgehead position refers to a carbon atom that shares two or more rings.
  • R 23 Refers to the carbon atom bonded by, and the carbon atom bonded by R 24 .
  • the structure contained in the formulas (5) to (9) can be mentioned, and as the structure contained in the formula (5), R 11 and R 15 are bonded to each other to form a ring.
  • a structure consisting of the above-mentioned structures, a structure in which R 15 and R 17 are bonded to each other to form a ring, a structure in which R 17 and R 21 are bonded to each other to form a ring, and a structure composed of a combination thereof are particularly preferable.
  • the structure included in the formula (6) includes a structure in which R 11 or R 12 and R 15 or R 16 are bonded to form a ring, and a structure in which R 15 or R 16 is bonded to R 17 or R 18 to form a ring.
  • a structure consisting of the above-mentioned structures, a structure in which R 17 or R 18 and R 21 or R 22 are combined to form a ring, and a structure consisting of a combination thereof are particularly preferable.
  • a structure in which R 15 or R 16 and R 17 or R 18 are bonded to form a ring is particularly preferable.
  • ester compound (A) having a structure in which R 11 and R 15 are bonded to each other to form a ring is shown below.
  • ester compound (A) having a structure in which R 15 and R 17 are bonded to each other to form a ring is shown below.
  • ester compound (A) having a structure in which R 17 and R 21 are bonded to each other to form a ring is shown below.
  • ester compound (A) having a structure in which R 11 or R 12 and R 15 or R 16 are bonded to form a ring is shown below.
  • ester compound (A) having a structure in which R 15 or R 16 and R 17 or R 18 are bonded to form a ring is shown below.
  • ester compound (A) having a structure in which R 17 or R 18 and R 21 or R 22 are bonded to form a ring is shown below.
  • ester compound (A) having a structure in which R 15 or R 16 and R 17 or R 18 are bonded to form a ring is shown below.
  • ester compound (A) having a structure in which R 15 or R 16 and R 17 or R 18 are bonded to form a ring is shown below.
  • R 15 to R 18 are independently hydrogen atom, halogen atom, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 1 to 20 carbon atoms, and 2 carbon atoms.
  • R 3 , R 4 , R 9 and R 10 are preferably substituents independently selected from a hydrogen atom, a halogen atom, a hydrocarbon group, and a halogen-containing hydrocarbon group, respectively, and are hydrogen atoms.
  • a hydrogen group, and a halogen-containing hydrocarbon group are more preferable, and hydrogen and a hydrocarbon group are particularly preferable.
  • Preferred examples of the above hydrocarbon groups are substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having 1 to 20 carbon atoms, and substituted or unsubstituted groups having 2 to 20 carbon atoms.
  • Examples thereof include an alkenyl group of 2 to 20, a substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, and a substituted or unsubstituted aryl group having 6 to 20 carbon atoms.
  • Preferred examples of the above-mentioned halogen-containing hydrocarbon group include a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 1 to 20 carbon atoms, and a cycloalkyl group having 2 to 20 carbon atoms.
  • R 1 to R 24 each independently have a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, and a substituted or unsubstituted cycloalkyl group having 1 to 20 carbon atoms.
  • it is an unsubstituted heteroatom-containing alkyl group or a substituted or unsubstituted heteroaryl group having 2 to 20 carbon atoms.
  • R 1 to R 24 each independently have a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 1 to 10 carbon atoms, and 2 carbon atoms.
  • Substituent or unsubstituted alkenyl group of ⁇ 10 substituted or unsubstituted alkynyl group of 2 to 10 carbon atoms, substituted or unsubstituted aryl group of 6 to 15 carbon atoms, substituted or unsubstituted of 1 to 10 carbon atoms It is a heteroatom-containing alkyl group or a substituted or unsubstituted heteroaryl group having 2 to 10 carbon atoms.
  • R 1 to R 24 each independently have a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 1 to 6 carbon atoms, and 6 carbon atoms. It is a substituted or unsubstituted aryl group having 10 to 10, a substituted or unsubstituted heteroatom-containing alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 10 carbon atoms.
  • R 1 to R 24 are independently hydrogen atoms or substituted or unsubstituted alkyl groups having 1 to 4 carbon atoms. Particularly preferably, R 1 , R 2 , R 23 , and R 24 are all hydrogen atoms, and R 3 to R 22 are each independently a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms. Is.
  • the carbon to which R 1 to R 24 are bonded forms two or more ring structures as shown in the general formula (1). It is preferable that one or more of the ring structures are alicyclic ring structures. That is, it is preferable that at least all the rings do not have an aromatic ring structure.
  • R 31 to R 34 are independently hydrogen atoms, halogen atoms, hydrocarbon groups or heteroatom-containing hydrocarbon groups, respectively.
  • hydrocarbon group examples include a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, and a substituted or unsubstituted aryl group. Can be mentioned.
  • heteroatom-containing hydrocarbon group examples include a substituted or unsubstituted heteroatom-containing alkyl group and a substituted or unsubstituted heteroaryl group.
  • hydrocarbon group and the heteroatom-containing hydrocarbon group include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroatom-containing alkyl group, and a heteroaryl group.
  • the number of carbon atoms of these groups is preferably 1 to 20.
  • the lower limit is preferably 2, more preferably 3, and particularly preferably 4. However, the preferable lower limit value in the case of an aryl group is 6.
  • the upper limit is preferably 18, more preferably 15, still more preferably 10, and particularly preferably 6.
  • R 31 to R 34 are independently hydrogen atom, halogen atom, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 1 to 20 carbon atoms, and 2 carbon atoms.
  • R 31 to R 34 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 10 carbon atoms, substituted or unsubstituted cycloalkyl groups having 1 to 10 carbon atoms, and 2 to 10 carbon atoms, respectively. Containing substituted or unsubstituted alkenyl group, substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, substituted or unsubstituted aryl group having 6 to 15 carbon atoms, substituted or unsubstituted heteroatom having 1 to 10 carbon atoms. It is an alkyl group or a substituted or unsubstituted heteroaryl group having 2 to 10 carbon atoms.
  • R 31 to R 34 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, substituted or unsubstituted cycloalkyl groups having 1 to 6 carbon atoms, and 6 to 10 carbon atoms, respectively. It is a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroatom-containing alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 6 carbon atoms.
  • R 31 to R 34 may have a structure in which rings are formed by being bonded to each other.
  • Particularly preferable R 31 to R 34 are each independently a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and most preferable R 31 to R 34 are all hydrogen atoms.
  • R 31 to R 34 , R 21 , R 22 , R 4 , and R 9 may be bonded to each other to form a ring, or adjacent substituents may be directly bonded to each other to form a multiple bond.
  • R 31 to R 34 , R 21 , R 22 , R 4 , and R 9 may form a ring bonded to each other, and adjacent substituents may be directly bonded to each other to form a multiple bond, for example, a double bond. Or triple bonds may be formed.
  • the aromatic ring structure to which these substituents are bonded is also within the scope of the present invention.
  • an aromatic ring structure in which R 34 , R 21 , and R 22 are bonded can be mentioned.
  • the substituent forming the ring is selected from the substituents other than the hydrogen atom and the halogen atom. It is preferably a hydrocarbon group. It is preferable that R 31 to R 34 , R 21 , and R 22 are bonded to each other to form a ring, and more preferably R 31 and R 32 are bonded to each other to form a ring, and R 32 and R 33 are bonded to each other.
  • ester compound (A) having a structure in which R 31 and R 32 are bonded to each other to form a ring is shown below.
  • ester compound (A) having a structure in which R 32 and R 33 are bonded to each other to form a ring is shown below.
  • ester compound (A) having a structure in which R 33 and R 34 are bonded to each other to form a ring is shown below.
  • ester compound (A) having a structure in which R 21 and R 22 are bonded to each other to form a ring is shown below.
  • ester compound (A) having a structure in which R 34 , R 21 and R 22 are bonded to each other to form a ring is shown below.
  • R 21 , R 22 , R 4 , and R 9 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, and substituted or unsubstituted cycloalkyl groups having 1 to 20 carbon atoms, respectively.
  • it is an unsubstituted heteroatom-containing alkyl group or a substituted or unsubstituted heteroaryl group having 2 to 20 carbon atoms.
  • R 21 , R 22 , R 4 , and R 9 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 10 carbon atoms, substituted or unsubstituted cycloalkyl groups having 1 to 10 carbon atoms, respectively.
  • R 21 , R 22 , R 4 and R 9 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, substituted or unsubstituted cycloalkyl groups having 1 to 6 carbon atoms, respectively.
  • Substituted or unsubstituted alkenyl group with 2 to 6 carbon atoms substituted or unsubstituted alkynyl group with 2 to 6 carbon atoms, substituted or unsubstituted aryl group with 6 to 10 carbon atoms, substituted or substituted with 1 to 6 carbon atoms. It is an unsubstituted heteroatom-containing alkyl group or a substituted or unsubstituted heteroaryl group having 2 to 6 carbon atoms.
  • R 21 , R 22 , R 4 , and R 9 may have a structure in which R 21 and R 22 are bonded to each other to form a ring, and examples thereof include a ring structure in which R 21 and R 22 are bonded to each other.
  • Particularly preferred R 21 , R 22 , R 4 and R 9 are independently hydrogen atoms or substituted or unsubstituted alkyl groups having 1 to 4 carbon atoms, respectively, and the most preferable R 21 , R 22 , R 4 and R 9 are the most preferable.
  • R 9 are all hydrogen atoms.
  • L 1 and L 2 are independently hydrocarbon groups or heteroatom-containing hydrocarbon groups, respectively.
  • hydrocarbon group examples include a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, and a substituted or unsubstituted aryl group. Can be mentioned.
  • heteroatom-containing hydrocarbon group examples include a substituted or unsubstituted heteroatom-containing alkyl group and a substituted or unsubstituted heteroaryl group.
  • hydrocarbon group and the heteroatom-containing hydrocarbon group include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroatom-containing alkyl group, and a heteroaryl group.
  • the number of carbon atoms of these groups is preferably 1 to 20.
  • the lower limit is preferably 2, more preferably 3, and particularly preferably 4. However, the preferable lower limit value in the case of an aryl group is 6.
  • the upper limit is preferably 18, more preferably 15, still more preferably 10, and particularly preferably 6.
  • the above-mentioned preferable range of the number of carbon atoms is selected from 4 or more or 1 to 20. In the latter case, it is more preferably 1 to 10. In the former case, it is more preferably 4 to 20.
  • preferred L 1 and L 2 are independently substituted or unsubstituted alkyl groups having 4 to 20 carbon atoms, substituted or unsubstituted cycloalkyl groups having 4 to 20 carbon atoms, and substituted or substituted alkyl groups having 4 to 20 carbon atoms, respectively.
  • L 1 and L 2 are independently substituted or unsubstituted alkyl groups having 4 to 10 carbon atoms, substituted or unsubstituted aryl groups having 6 to 15 carbon atoms, and substituted or unsubstituted groups having 4 to 10 carbon atoms, respectively.
  • L 1 and L 2 are independently substituted or unsubstituted aryl groups having 6 to 10 carbon atoms and substituted or unsubstituted heteroaryl groups having 4 to 10 carbon atoms, and particularly preferably 6 carbon atoms. It is a substituted or unsubstituted aryl group of ⁇ 10. Particularly preferably, it is an aryl group containing a substituent other than hydrogen. Examples of the substituent other than hydrogen include a hydrocarbon group having 1 to 10 carbon atoms and a heteroatom-containing hydrocarbon group having 1 to 10 carbon atoms. The heteroatom is specifically a group 16 element of the periodic table, and more specifically oxygen.
  • hydrocarbon group examples include a methyl group, an ethyl group, an isopropyl group, an n-butyl group, an s-butyl group, a t-butyl group and the like, which are heteroatom-containing hydrocarbon groups.
  • Specific examples include methoxy group, ethoxy group, isopropoxy group, n-butoxy group, s-butoxy group, t-butoxy group and the like as preferable examples.
  • n2 to n5 represent an integer of 0 to 2
  • n1 and n6 represent an integer of 0 or 1.
  • n2 to n5 are preferably 0 to 2, more preferably 0 or 1, and particularly preferably 0.
  • n1 and n6 are preferably 0 or 1, more preferably 1.
  • X and Y are independently hydrocarbon groups, heteroatoms or heteroatom-containing hydrocarbon groups, respectively, and preferably each of the following general formula groups independently. It is a divalent group selected from the groups shown in 10).
  • R 1'to R 7' are independently hydrogen atom, hydrocarbon group or hetero atom-containing hydrocarbon group, and R 2'to R 7'bond to each other to form a ring.
  • adjacent substituents may be directly bonded to each other to form a multiple bond.
  • R 1'to R 7' are independently hydrogen atoms, substituted or unsubstituted hydrocarbon groups having 1 to 10 carbon atoms, or substituted or unsubstituted heteroatom-containing hydrocarbon groups having 1 to 10 carbon atoms, respectively. Is.
  • R 1'to R 7' are independently hydrogen atoms or substituted or unsubstituted hydrocarbon groups having 1 to 6 carbon atoms, and the most preferable R 1'to R 7'are all hydrogen atoms. Is. As described above, R 2'to R 7'may be bonded to each other to form a monocyclic or polycyclic ring. Further, R 1'to R 7'can be combined with the above-mentioned R 1 to R 24 to form a ring structure.
  • X and Y are preferably divalent groups selected from the groups shown in the following general formula group (11).
  • R 1'to R 5' are independently hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms or heteroatom-containing hydrocarbon groups having 1 to 20 carbon atoms, respectively, and R 2'to .
  • R 5' may be bonded to each other to form a ring, or adjacent substituents may be directly bonded to each other to form a multiple bond.
  • R 1'to R 5' preferably independently hydrogen atoms or hydrocarbons having 1 to 10 carbon atoms, respectively. It is the basis. It is more preferable that X and Y are divalent groups selected from the groups represented by the following general formula group (12).
  • R 2'to R 5' are independently hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms or heteroatom-containing hydrocarbon groups having 1 to 20 carbon atoms, respectively, and R 2'to .
  • R 5' may combine with each other to form a ring.
  • X and Y are divalent groups represented by the following general formula (13).
  • R 2'and R 3' are independently selected from a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a heteroatom-containing hydrocarbon group having 1 to 20 carbon atoms, respectively, and R 2' . And R 3'may combine with each other to form a ring.
  • R 2'and R 3' are preferably independently hydrogen atoms or carbons, respectively. It is a hydrocarbon group having a number of 1 to 10, and more preferably all hydrogen atoms.
  • R 2'to R 7'are bonded to each other to further form a ring or when adjacent substituents are directly bonded to each other. It may be preferable to form multiple bonds. As the multiple bond, a carbon-carbon double bond is preferable. Further, it is more preferable that the sites of R 2'to R 7'bonding to each other to further form a ring have a structure containing a carbon-carbon double bond. Among the above, it is preferable that R 2'to R 5'are bonded to each other to form a ring, and it is more preferable that the multiple bond contains a substituted or unsubstituted aryl group. An example of such X and Y substituents is shown below.
  • hydrocarbon group examples include a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkynyl group, a substituted or unsubstituted alkenyl group, and a substituted or unsubstituted aryl group. Can be mentioned.
  • heteroatom-containing hydrocarbon group examples include a substituted or unsubstituted heteroatom-containing alkyl group and a substituted or unsubstituted heteroaryl group.
  • hydrocarbon group and the heteroatom-containing hydrocarbon group include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroatom-containing alkyl group, and a heteroaryl group.
  • the number of carbon atoms of these groups is preferably 1 to 20.
  • the lower limit is preferably 2, more preferably 3, and particularly preferably 4.
  • the preferable lower limit value is 6, and the upper limit value is preferably 20, more preferably 15, still more preferably 10, and particularly preferably 6.
  • the upper limit value is preferably 20, more preferably 15, still more preferably 10, and particularly preferably 6.
  • R 1 to R 24 examples of the groups and atoms exemplified in R 1 to R 24 , R 31 to R 34 , L 1 , L 2 , and R 1'to R 7'will be shown.
  • the halogen atom examples include fluorine, chlorine, bromine and iodine.
  • hydrocarbon group various structures such as the following aliphatic, branched aliphatic, alicyclic, and aromatic can be exemplified.
  • Examples of the substituted or unsubstituted alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, neopentyl group and n-. Examples thereof include a hexyl group, a texyl group, a cumyl group, and a trityl group.
  • Examples of the substituted or unsubstituted alkenyl group include a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, an isobutenyl group, a pentenyl group, a hexenyl group and the like.
  • Examples of the substituted or unsubstituted alkynyl group include an ethynyl group, a propynyl group, a butynyl group, a pentynyl group, a hexynyl group, a heptynyl group, an octynyl group and the like.
  • Examples of the substituted or unsubstituted cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantyl group, a cyclopentadienyl group and an indenyl group. , Fluolenyl group and the like.
  • Examples of the substituted or unsubstituted aryl group include a phenyl group, a methylphenyl group, a dimethylphenyl group, a diisopropylphenyl group, a dimethylisopropylphenyl group, a tert-butylphenyl group, a di-tert-butylphenyl group and a naphthyl group.
  • Examples include aromatic hydrocarbon groups such as biphenyl group, terphenyl group, phenanthryl group and anthracenyl group, and heteroatomic substituted aryl groups such as methoxyphenyl group, dimethylaminophenyl group, nitrophenyl group and trifluoromethylphenyl group.
  • Examples of the substituted or unsubstituted heteroatom-containing hydrocarbon group include a heteroatom-containing alkyl group such as a methoxymethyl group, a methoxyethyl group, a benzyloxy group, an ethoxymethyl group and an ethoxyethyl group, a frill group and a pyrrolyl group.
  • a heteroatom-containing alkyl group such as a methoxymethyl group, a methoxyethyl group, a benzyloxy group, an ethoxymethyl group and an ethoxyethyl group, a frill group and a pyrrolyl group.
  • Examples include heteroaryl groups such as groups.
  • the number of carbon atoms contained in the above-mentioned carbon-containing substituent is preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 6, and particularly preferably 1 to 4. be.
  • the number of carbon atoms is preferably 4 to 20, more preferably 4 to 10, and even more preferably 6 to 10.
  • R 1 to R 24 are substituents other than hydrogen atoms, they are preferably selected from the above-mentioned hydrocarbon groups and oxygen-containing hydrocarbon substituents. An alkoxy group is more preferable as the oxygen-containing hydrocarbon group.
  • ester compound (A) Specific examples of the ester compound (A) of the present invention are shown below, but the ester compound (A) of the present invention is not limited thereto.
  • Examples of compounds in which the site where R 1 to R 24 are bonded to form a ring further have a double bond or a ring structure, particularly a ring structure including a double bond, have the following structure. Compounds can be exemplified.
  • the methyl group is expressed as "Me”
  • the ethyl group is expressed as “Et”
  • the propyl group is expressed as “Pr”
  • the butyl group is expressed as "Bu”
  • the phenyl group is expressed as "Ph”.
  • one OCOL group and two OCOL groups bonded to the alicyclic structure may form a cis structure or a trans structure derived from the alicyclic structure.
  • the ester compound having a structure is the main component.
  • the main component means that the content of the compound having a cis structure exceeds 50 mol%, preferably 70 mol% or more.
  • the ester compound (A) of the present invention is suitable as the Lewis base (internal donor) component of the solid titanium catalyst component is unknown at this time, but the present inventors speculate as follows.
  • the ester compound (A) of the present invention has a structure in which rings are linked, and preferably has a crosslinked structure (a structure corresponding to the above X or Y). This requirement constrains the conformation and immobilizes the distance and orientation of two adjacent ester groups attached to the ring.
  • the ester is coordinated to magnesium chloride, the coordination mode of the ester is restricted, and a rigid polymerization environment consisting of titanium atoms, magnesium chloride, and an ester compound is formed.
  • the conformation of the cyclohexane skeleton is restricted by the condensate of the ring structure including the crosslinked structure in the cyclohexane skeleton, resulting in the result. It is considered to have the same effect.
  • the structure having a 6-membered ring structure has been described here, but based on this inference, the structure represented by the formula (1), more preferably represented by the formulas (2) to (4).
  • the ester compound (A) of the present invention has a structure in which rings are connected as described above, it is presumed that the ester compound (A) has appropriate rigidity as a compound and the displacement of the structure is relatively small. Therefore, when it is used as a catalyst for olefin polymerization described later, it can be expected to maintain a stable structure while having an appropriate interaction when the ester group-containing compound (A) is coordinated with the titanium compound or magnesium compound. .. Therefore, it is considered to have a favorable effect on stereospecificity and activity.
  • the alicyclic structure as described above will show various structures such as a chair type and a ship type that are easily displaced in a minute part. From this, it can be expected to produce a polymer having a wide molecular weight distribution.
  • the ester compound (A) of the present invention represented by the above formula (31) has a specific compound ring structure as described above. It also has a peculiar asymmetric structure. Having such a structure has an appropriate rigidity as a compound, so that an active species of olefin polymerization is formed by interaction with a magnesium compound or a titanium compound, and when a polymerization reaction occurs, displacement as a structure or It is considered that there is a possibility that there is little shaking.
  • the ester compound (A) having an asymmetric structure as in the above formula (31) the conformation when interacting with the magnesium compound or the titanium compound is likely to be larger than that of the symmetric compound. , Possibility to form active species with diverse microstructures.
  • the ester compound (A) of the present invention is suitable as a Lewis base (internal donor) component of the solid titanium catalyst component.
  • the method for producing the ester compound (A) of the present invention is not particularly limited, and for example, the corresponding olefin can be obtained through a diolation reaction and a diesterization reaction. It can also be obtained, for example, through a carbonated reaction, a diolation reaction, or a diesterization reaction using a specific polycyclic compound such as anthracenes. More specifically, it can be manufactured as follows.
  • the olefin represented by the following formula (21) can be synthesized, for example, by the Diels-Alder reaction between cyclopentadiene and norbornene (Non-Patent Document 1). Further, the olefin represented by the following general formula (33) can be synthesized, for example, by a Diels-Alder reaction between a substituted indene and a substituted diene (Patent Document 11). The diene can also be used as a raw material from a dimer of the precursor diene (for example, dicyclopentadiene).
  • the product obtained by the Diels-Alder reaction is often a mixture of endo and exo (see formulas (22) and (34) below), but either isomer is applicable to the present invention. be able to. That is, it may be a mixture, only an endo form, or only an exo form. These endo body structures and exo body structures are often reflected even in the target ester compound.
  • a compound for example, triphenylphosphine
  • a compound capable of obtaining an olefin by reacting benzine with diene
  • Cyclic olefins can be obtained by allowing a nickel complex (for example, tetraxtriphenylphosphine nickel) to act as a catalyst and decarbonylating and decarbonating the mixture.
  • a compound having a structure in which the site where R 1 to R 24 are bonded to form a ring further has a double bond or a ring structure, particularly a ring structure including a double bond is, for example, anthracene and vinylene carbonate. It can be synthesized by a Diels-Alder reaction with a carbonate compound, followed by a diolization reaction and a diesterization reaction.
  • Anthracenes are synthesized, for example, by reacting anthracene with an organometallic reactant (eg, an alkyllithium or Grignard reagent) and then performing a reduction (eg, a reaction with tin (II) chloride or sodium hypophosphite). It can be done (see the following formula (14 (1)), Patent Document 9, Non-Patent Documents 15 and 16).
  • organometallic reactant eg, an alkyllithium or Grignard reagent
  • a reduction eg, a reaction with tin (II) chloride or sodium hypophosphite
  • a substitution reaction between a metal reactant (eg lithium or magnesium) and an alkyl halide, a transition metal catalyst (eg nickel or palladium) and an organometallic reactant (eg a boronic acid ester or Grignard reactant) is added to the dihalogen anthracene. It can also be synthesized by performing a coupling reaction using the above (see formulas (14 (2)), (14 (3)), Patent Document 10 and Non-Patent Document 17).
  • dialkoxyanthracene can be obtained by reacting anthraquinone with a reducing agent (for example, zinc) and an electrophile (for example, an alkyl halide or a sulfonic acid ester) (formula (14 (4)), non-patent literature. 18).
  • a reducing agent for example, zinc
  • an electrophile for example, an alkyl halide or a sulfonic acid ester
  • R 25 M represents an organometallic reactant
  • R 25 represents an alkyl group
  • M represents a metal or metal halide.
  • M include Li, MgBr, MgCl, and MgI.
  • R 26 Z represents an electrophile
  • Z represents a halogen atom
  • R 26 represents an alkyl group.
  • Z represents a halogen atom
  • R 27 represents an alkyl group or an aryl group
  • a and A' represent a hydroxyl group or a crosslinked structure in which A and A'are bonded.
  • the structural formula of the boric acid compound and boric acid ester preferably cyclic boric acid ester compound
  • the structure represented by the following formula group (15). Can be mentioned.
  • R 28 Z represents an electrophile
  • Z represents a halogen atom
  • R 28 represents an alkyl group.
  • the diols (formulas (23) and (35)) that are precursors of the ester can be produced from the corresponding olefins (formulas (21) and (33)) as raw materials.
  • a diol (formula (23) and formula (35)) can be directly obtained by reacting an olefin with potassium permanganate (Non-Patent Document 4) or osmium tetroxide (Non-Patent Document 5).
  • Non-Patent Document 6 metachloroperbenzoic acid
  • Non-Patent Document 7 catalyst-butyl peroxide
  • dimethyldioxirane Non-Patent Document 8
  • formic acid and hydrogen peroxide solution Non-Patent Document 9
  • Hydrogen peroxide water and molybdenum catalyst Hydrogen peroxide water and molybdenum catalyst
  • hydrogen peroxide solution and tungsten catalyst (Non-Patent Document 10) to epoxidize the olefin moiety, followed by acid or alkali hydrolysis reaction to diol (formula (23) and formula (formula (23)). 35))
  • a diol compound can also be obtained by hydrolyzing the diene or anthracene compound after cyclic carbonate formation.
  • the details are as follows.
  • the cyclic carbonate (formula (24)), which is a precursor of the diol (formula (23)) can be produced by the Diels-Alder reaction between the corresponding diene and vinylene carbonate (Non-Patent Document 19).
  • diene can also be used as a raw material from a dimer of diene, which is a precursor.
  • the product obtained by the Diels-Alder reaction is often a mixture of the endo form and the exo form, but the present Diels-Alder form can also be applied.
  • a polycyclic aromatic compound such as anthracene can be used instead of diene to obtain a polycyclic carbonate having a specific structure as shown in Examples described later.
  • a diol (formula (23)) can be obtained by hydrolyzing the cyclic carbonate of the formula (24) with an acid or an alkali (Non-Patent Document 19).
  • the ester compound corresponding to the above formula (1) can be synthesized by reacting a diol compound (formula (23)) with an acid chloride in the presence of a base (formula 25).
  • the base is not particularly limited, but for example, sodium hydroxide, potassium hydroxide, or an amine base can be used. Further, it can also be synthesized by a method of synthesizing by reacting a diol and a carboxylic acid in the presence of an acid catalyst, or by using a condensing agent such as DCC (Non-Patent Document 11) (formula (26)).
  • ester compound corresponding to the above formula (31) can be synthesized by reacting the diol compound (formula (35)) with the acid chloride in the presence of a base, as shown in the following formula (37).
  • the base is not particularly limited, but for example, sodium hydroxide, potassium hydroxide, or an amine base can be used.
  • it can be synthesized by reacting a diol and a carboxylic acid in the presence of an acid catalyst, or by using a condensing agent such as DCC (Non-Patent Document 11) (see formula (38)). ..
  • an isomer corresponding to formula (36) can be produced, but the acid chloride or carboxylic acid is subsequently reacted.
  • a compound corresponding to the formula (31) can be obtained.
  • L 1 and L 2 may be the same or different.
  • the diol can also be synthesized by reacting with a carboxylic acid in the presence of an azocarboxylic acid ester and triphenylphosphine (Non-Patent Document 12).
  • the ester compound as described above may be obtained as a mixture of the endo form and the exo form. From a structural point of view, endo bodies tend to be easily generated.
  • the isomer ratio when obtained as a mixture thereof is not particularly limited, but the endo / exo ratio is 100/0 to 50/50, preferably 95/5 to 60/40, and more preferably 90/10.
  • the case of ⁇ 65/35 can be mentioned as a preferable example.
  • the endo body and exo body can also be isolated, respectively. It is also possible to change the isomer ratio by an isomerization reaction using a solid acid catalyst such as zeolite. Of course, it is also possible to combine the isolated compounds in a specific ratio to adjust the desired isomer ratio. Depending on the application to which the ester compound of the present invention is applied, it is expected that either the endo form or the exo form may show a suitable effect, or a specific isomer ratio may show a suitable effect. In such a case, for example, the isomer ratio may be adjusted to 100/0 to 0/100 by the above method.
  • the ester compound (A) of the present invention can be used alone or as an isomer mixture for various purposes.
  • the ester compound (A) of the present invention is suitable as a Lewis base component of the solid titanium catalyst component, but is not limited to this application. Needless to say, it may be applicable to known additive applications such as additives for various resins, cosmetics and external skin preparations, bactericidal compositions, antioxidants, and chelating agents.
  • the following examples exemplify the method for synthesizing the ester compound of the present invention.
  • the compounds of the structural formulas disclosed in the following Examples and Comparative Examples show the structure of the main component of the stereoisomer, and may contain other stereoisomers. Further, in the present invention, the main component means more than 50 mol%, preferably 70 mol% or more.
  • the internal temperature was cooled to 0 ° C., and 47.5 mL of an n-butyllithium hexane solution (1.6 M) was slowly added dropwise. After the dropping, the temperature was gradually raised to room temperature, and the mixture was stirred at room temperature for 12 hours. After the reaction, saturated aqueous ammonium chloride solution was added, and then diethyl ether was added. The organic layer was separated and washed in the order of water and saturated brine. After drying the organic layer with magnesium sulfate, magnesium sulfate was filtered off, and the obtained organic layer was concentrated with a rotary evaporator to obtain 18.64 g of a crude product. The crude product was purified by silica gel column chromatography to obtain 3.89 g (22.8 mmol) of compound 19. The 1 H-NMR data of the obtained compound 19 is shown below.
  • a 1 L three-necked flask containing a fully heated and dried stir bar was equipped with a dropping funnel, a thermometer and a three-way cock. Under a nitrogen atmosphere, 6.00 mL (44.1 mmol, 1 eq) of 2-isopropylphenol was charged, followed by 100 mL of dichloromethane and 0.62 mL (4.41 mmol, 0.1 eq) of diisopropylamine. Next, 8.21 g (46.1 mmol, 1.05 eq) of N-bromosuccinimide (NBS) dissolved in 400 mL of dichloromethane under a nitrogen atmosphere was slowly added dropwise to the reaction solution prepared above under room temperature conditions.
  • NBS N-bromosuccinimide
  • a dropping funnel was attached to the container containing the product of the above reaction, 120 mL of THF was added, and then the mixture was cooled to ⁇ 78 ° C.
  • n BuLi hexane solution 38.3 mL (1.6 M, 61.2 mmol, 1.4 eq) was slowly added dropwise, and after completion of the addition, the mixture was stirred at ⁇ 78 ° C. for 30 minutes.
  • 10.0 mL (61.0 mmol, 1.4 eq) of trifluoromethanesulfonic anhydride (Tf 2 O) was slowly added dropwise under -78 ° C conditions, and after the addition was completed, 30 at -78 ° C.
  • a 1 L three-necked flask containing a sufficiently heated and dried stirrer is equipped with a reflux tube, a flat stopper and a three-way cock, and is loaded with 22.2 g (146 mmol, 5 equivalents) of cesium fluoride and 290 mL of acetonitrile under a nitrogen atmosphere. I entered. Subsequently, 12.3 mL (146 mmol, 5 eq) of cyclopentadiene obtained by thermally decomposing dicyclopentadiene immediately before was added to the reaction solution, and immediately thereafter, 9.93 g (29.2 mmol, 1 eq) of compound 23 was added. added. After changing the flat stopper to a thermometer, it was heated to 40 ° C.
  • a 500 mL three-necked flask with a stir bar was equipped with a dropping funnel, a thermometer and a three-way cock. Under a nitrogen atmosphere, 120 mL of t BuOH, 35 mL of water, and 5.32 g (1 equivalent) of a mixed solution of compound 24 obtained in ⁇ Synthesis of compound 24> were charged, and the reaction solution was cooled to 0 ° C. 1.45 g (36.2 mmol, 1.25 equivalent) of NaOH and 6.86 g (43.4 mmol, 1.5 equivalent) of KMnO 4 were dissolved in 130 mL of water and slowly added dropwise to the reaction solution. After completion of the dropping, the mixture was further stirred at 0 ° C.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock. 5.31 g (24.3 mmol, 1 eq) of compound 25 and about 10 mL of pyridine were added under a nitrogen atmosphere, and the tap was replaced with a dropping funnel. After cooling the reaction solution to 0 ° C., 7.0 mL (60.3 mmol, 2.5 eq) of benzoyl chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred overnight.
  • a 500 mL three-necked flask with a stir bar was equipped with a dropping funnel, a thermometer and a three-way cock. Under a nitrogen atmosphere, 70 mL of t BuOH, 20 mL of water, and 3.39 g (17 mmol, 1 equivalent) of compound 28 mixed with a small amount of hexane obtained by ⁇ Synthesis of compound 28> were charged, and the reaction solution was brought to 0 ° C. Cooled. 0.85 g (21.3 mmol, 1.25 equivalent) of NaOH and 4.03 g (25.5 mmol, 1.5 equivalent) of KMnO 4 were dissolved in 80 mL of water and slowly added dropwise to the reaction solution.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 2.19 g (11.5 mmol, 1 eq) of compound 29 and about 10 mL of pyridine were added under a nitrogen atmosphere, and the tap was replaced with a dropping funnel.
  • 2.94 mL (25.3 mmol, 2.2 eq) of benzoyl chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred for 3 hours.
  • a 500 mL three-necked flask with a stir bar was equipped with a dropping funnel, a thermometer and a three-way cock. Under a nitrogen atmosphere, 135 mL of tBuOH , 40 mL of water and 5.58 g (32.8 mmol, 1 eq) of compound 33 were charged, and the reaction solution was cooled to 0 ° C. 1.64 g (41.0 mmol, 1.25 equivalent) of NaOH and 7.78 g (49.2 mmol, 1.5 equivalent) of KMnO 4 were dissolved in 150 mL of water and slowly added dropwise to the reaction solution. After completion of the dropping, the mixture was further stirred at 0 ° C.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock. 5.29 g (25.9 mmol, 1 eq) of compound 34 and about 10 mL of pyridine were added under a nitrogen atmosphere, and the tap was replaced with a dropping funnel. After cooling the reaction solution to 0 ° C., 6.60 mL (57.0 mmol, 2.2 eq) of benzoyl chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred for 4 hours.
  • a 500 mL three-necked flask with a stir bar was equipped with a dropping funnel, a thermometer and a three-way cock. Under a nitrogen atmosphere, 110 mL of tBuOH , 35 mL of water, and 5.00 g (26.0 mmol, 1 eq) of 1,4-Dihydro-1,4-methanoanthracene were charged, and the reaction solution was cooled to 0 ° C. 1.30 g (32.5 mmol, 1.25 equivalent) of NaOH and 6.16 g (39.0 mmol, 1.5 equivalent) of KMnO 4 were dissolved in 120 mL of water and slowly added dropwise to the reaction solution.
  • the 1 H-NMR data of the obtained compound 36 is shown below.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 2.57 g (11.4 mmol, 1 eq) of compound 36 and about 10 mL of pyridine were added under a nitrogen atmosphere, and the tap was replaced with a dropping funnel.
  • 2.90 mL (25.1 mmol, 2.2 eq) of benzoyl chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred overnight.
  • the solution was cooled to 0 ° C., 10 mL of methanol was added, and the mixture was stirred for 1 hour. After adding about 20 mL of water and about 30 mL of dichloromethane, the mixture was extracted 3 times with dichloromethane, the collected organic layer was washed twice with saturated aqueous ammonium chloride solution, dried over sodium sulfate, and concentrated with a rotary evaporator.
  • a 500 mL three-necked flask with a stir bar was equipped with a dropping funnel, a thermometer and a three-way cock. Under a nitrogen atmosphere, 150 mL of t BuOH, 50 mL of water, and 4.33 g (30.0 mmol, 1 equivalent) of 1,4-epoxy-1,4-dihydronaphthalene were charged, and the reaction solution was cooled to 0 ° C. 1.50 g (37.5 mmol, 1.25 equivalent) of NaOH and 7.11 g (45.0 mmol, 1.5 equivalent) of KMnO 4 were dissolved in 150 mL of water and slowly added dropwise to the reaction solution. After completion of the dropping, the mixture was further stirred under the condition of 0 ° C.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock. 3.10 g (17.4 mmol, 1 eq) of compound 38 and about 10 mL of pyridine were added under a nitrogen atmosphere, and the tap was replaced with a dropping funnel. After cooling the reaction solution to 0 ° C., 4.50 mL (38.3 mmol, 2.2 eq) of benzoyl chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred overnight.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 2.13 g (12.1 mmol, 1 eq) of compound 5 and about 10 mL of pyridine were added under a nitrogen atmosphere, and the tap was replaced with a dropping funnel.
  • 3.42 mL (26.8 mmol, 2.2 eq) of o-tor oil chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred overnight.
  • the solution was cooled to 0 ° C., 10 mL of methanol was added, and the mixture was stirred for 30 minutes. After adding about 20 mL of water and about 30 mL of dichloromethane, the mixture was extracted 3 times with dichloromethane, the collected organic layer was washed twice with saturated aqueous ammonium chloride solution, dried over sodium sulfate, and concentrated with a rotary evaporator.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 2.15 g (12.2 mmol, 1 eq) of compound 5 and about 10 mL of pyridine were added under a nitrogen atmosphere, and the tap was replaced with a dropping funnel.
  • 3.54 mL (26.8 mmol, 2.2 eq) of m-torr oil chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred overnight.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock. Under a nitrogen atmosphere, 2.23 g (12.6 mmol, 1 eq) of compound 5 and about 10 mL of pyridine were added, and the tap was replaced with a dropping funnel. After cooling the reaction solution to 0 ° C., 4.20 mL (28.4 mmol, 2.3 eq) of 3,5-dimethylbenzoyl chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred overnight.
  • the solution was cooled to 0 ° C., 10 mL of methanol was added, and the mixture was stirred for 1 hour. After adding about 20 mL of water and about 30 mL of dichloromethane, the mixture was extracted 3 times with dichloromethane, the collected organic layer was washed twice with saturated aqueous ammonium chloride solution, dried over sodium sulfate, and concentrated with a rotary evaporator.
  • the 1 H-NMR data of the obtained compound 42 is shown below.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 2.26 g (12.8 mmol, 1 eq) of compound 5 and about 10 mL of pyridine were added under a nitrogen atmosphere.
  • 5.00 g (29.3 mmol, 2.3 eq) of 4-methoxybenzoyl chloride was slowly charged.
  • the temperature was raised to room temperature and the mixture was stirred overnight.
  • the solution was cooled to 0 ° C., 10 mL of methanol was added, and the mixture was stirred for 1 hour.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 2.26 g (12.8 mmol, 1 eq) of compound 5 and about 10 mL of pyridine were added under a nitrogen atmosphere, and the tap was replaced with a dropping funnel.
  • 3.81 mL (27.9 mmol, 2.2 eq) of 3-methoxybenzoyl chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred overnight.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 1.78 g (10.1 mmol, 1 eq) of compound 5 and about 10 mL of pyridine were added under a nitrogen atmosphere, and the tap was replaced with a dropping funnel.
  • 3.30 mL (22.3 mmol, 2.2 eq) of 3- (trifluoromethyl) benzoyl chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred overnight.
  • the solution was cooled to 0 ° C., 10 mL of methanol was added, and the mixture was stirred for 1 hour. After adding about 20 mL of water and about 30 mL of dichloromethane, the mixture was extracted 3 times with dichloromethane, the collected organic layer was washed twice with saturated aqueous ammonium chloride solution, dried over sodium sulfate, and concentrated with a rotary evaporator.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 2.06 g (11.7 mmol, 1 eq) of compound 5 and about 10 mL of pyridine were added under a nitrogen atmosphere, and the tap was replaced with a dropping funnel.
  • 1.80 mL (25.3 mmol, 2.2 eq) of 1-naphthoyl chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred overnight.
  • the solution was cooled to 0 ° C., 10 mL of methanol was added, and the mixture was stirred for 1 hour. After adding about 20 mL of water and about 30 mL of dichloromethane, the mixture was extracted 3 times with dichloromethane, the collected organic layer was washed twice with saturated aqueous ammonium chloride solution, dried over sodium sulfate, and concentrated with a rotary evaporator.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 2.03 g (11.5 mmol, 1 eq) of compound 5 and about 10 mL of pyridine were added under a nitrogen atmosphere.
  • 4.80 g (25.2 mmol, 2.2 eq) of 2-naphthoyl chloride was slowly charged. After the charging was completed, the temperature was raised to room temperature and the mixture was stirred overnight.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 2.15 g (12.2 mmol, 1 eq) of compound 5 and about 10 mL of pyridine were added under a nitrogen atmosphere, and the tap was replaced with a dropping funnel.
  • 4.00 mL (26.8 mmol, 2.2 eq) of 2-ethylbenzoyl chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred overnight.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 2.19 g (12.4 mmol, 1 eq) of compound 5 and about 10 mL of pyridine were added under a nitrogen atmosphere, and the tap was replaced with a dropping funnel.
  • 4.50 g (26.7 mmol, 2.2 eq) of 2,3-dimethylbenzoyl chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred overnight.
  • the solution was cooled to 0 ° C., 10 mL of methanol was added, and the mixture was stirred for 1 hour. After adding about 20 mL of water and about 30 mL of dichloromethane, the mixture was extracted 3 times with dichloromethane, the collected organic layer was washed twice with saturated aqueous ammonium chloride solution, dried over sodium sulfate, and concentrated with a rotary evaporator.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 2.80 g (15.9 mmol, 1 eq) of compound 5 and about 10 mL of pyridine were added under a nitrogen atmosphere, and the tap was replaced with a dropping funnel.
  • 4.38 mL (32.3 mmol, 2 eq) of cyclohexanecarbonyl chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred overnight.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock. Under a nitrogen atmosphere, 3.22 g (18.3 mmol, 1 eq) of compound 5 and about 10 mL of pyridine were added, and the tap was replaced with a dropping funnel. After cooling the reaction solution to 0 ° C., 4.25 mL (40.3 mmol, 2.2 eq) of isobutyryl chloride was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred overnight.
  • the organic layer was separated and washed in the order of water and saturated brine. After drying the organic layer with magnesium sulfate, magnesium sulfate was filtered off, and the obtained organic layer was concentrated with a rotary evaporator to obtain 15.42 g of a crude product.
  • the crude product was purified by silica gel column chromatography to obtain 4.9 g of compound 63 as a mixture with impurities.
  • the filtrate was washed with hexane and then dissolved in 100 mL of dichloromethane. After washing twice with 100 mL of 1N hydrochloric acid and once with 100 mL each of saturated aqueous sodium hydrogen carbonate solution and saturated brine, the obtained organic layer was dried over magnesium sulfate.
  • a 300 mL three-necked flask containing a sufficiently heated and dried stirrer was equipped with a flat stopper, a thermometer and a three-way cock. Under a nitrogen atmosphere, 3.08 g of 3-isopropylbenzoic acid (18.8 mmol) and 60 mL of dichloromethane were added, and 2 drops of DMF were added. After cooling the reaction solution to 0 ° C., 2.57 mL of oxalyl chloride (30 mmol) was slowly added dropwise. After completion of the dropping, the temperature was raised to room temperature, and the mixture was stirred at room temperature for 3 hours. The volatile compound in the reaction system was removed under reduced pressure to obtain compound 91. No further purification was performed, and it was used for ⁇ synthesis of compound 92>.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 1.6 g of compound 5 and 10 mL of dehydrated pyridine were added under a nitrogen atmosphere.
  • 20 mL of the dichloromethane solution of compound 91 synthesized in ⁇ Synthesis of compound 91> was slowly added to the pyridine solution of compound 5, and the mixture was stirred overnight.
  • the solution was cooled to 0 ° C., 20 mL of methanol was added, and the mixture was stirred for 1 hour.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 2.13 g of compound 5 (12.1 mmol) and 10 mL of dehydrated pyridine were added under a nitrogen atmosphere.
  • 20 mL of a dichloromethane solution of compound 93 synthesized in ⁇ Synthesis of compound 93> was slowly added to the pyridine solution of compound 5, and the mixture was stirred overnight.
  • the solution was cooled to 0 ° C., 20 mL of methanol was added, and the mixture was stirred for 1 hour.
  • a 500 mL three-necked flask containing a stir bar was equipped with a dropping funnel, a thermometer and a three-way cock. Under a nitrogen atmosphere, 60 mL of a mixed solution of tert-butyl alcohol and acetone, 20 mL of water, and 2.51 g (11.4 mmol) of compound 95 were added, and the reaction solution was cooled to 0 ° C. 0.57 g (14.3 mmol) of sodium hydroxide and 2.70 g (17.1 mmol) of potassium permanganate were dissolved in 60 mL of water, and the mixture was slowly added dropwise to the reaction solution prepared above. After completion of the dropping, the mixture was further stirred under the condition of 0 ° C.
  • a 100 mL three-necked flask containing a fully heated and dried stir bar was equipped with a pan, a thermometer and a three-way cock.
  • 2.18 g (8.6 mmol) of compound 96 and 10 mL of dehydrated pyridine were added under a nitrogen atmosphere, and the tap was replaced with a dropping funnel.
  • 2.20 mL (18.9 mmol) of benzoyl chloride was slowly added dropwise.
  • the temperature was raised to room temperature, and the mixture was stirred overnight.
  • the solution was cooled to 0 ° C., 10 mL of methanol was added, and the mixture was stirred for 30 minutes.
  • NMO 4-methylmorpholine N-oxide
  • the filtrate was collected by vacuum filtration and adjusted with 1N sulfuric acid so that the pH of the filtrate was 7.
  • the organic solvent was removed from the filtrate at an outside temperature of 40 ° C. under reduced pressure, and the remaining aqueous solution was adjusted again with 1N sulfuric acid so that the pH became 3.
  • Excess sodium chloride and 500 mL of ethyl acetate were added, stirred, filtered under reduced pressure, and the undissolved sodium chloride was filtered off.
  • the organic layer and the aqueous layer were separated by liquid separation, and the recovered aqueous layer was extracted 3 times with 400 mL of ethyl acetate.
  • the organic layer was collected, dried and filtered over sodium sulfate, and then concentrated on a rotary evaporator.
  • the cells were washed with water and saturated aqueous ammonium chloride solution, the organic layer was dried over magnesium sulfate, and then concentrated with a rotary evaporator.
  • the 1 H-NMR data of the obtained compound 106 is shown below.
  • the cells were washed in the order of water, saturated aqueous ammonium chloride solution, and saturated brine, and the organic layer was dried over magnesium sulfate and then concentrated with a rotary evaporator.
  • the 1 H-NMR data of the obtained compound 111 is shown below.
  • the filtrate was collected by vacuum filtration and adjusted with 1N sulfuric acid so that the pH of the filtrate was 7.
  • the organic solvent was removed from the filtrate at an outside temperature of 40 ° C. under reduced pressure, and the remaining aqueous solution was adjusted again with 1N sulfuric acid so that the pH became 3.
  • Excess sodium chloride and 600 mL of ethyl acetate were added, stirred, filtered under reduced pressure, and the undissolved sodium chloride was filtered off.
  • the organic layer and the aqueous layer were separated by liquid separation, and the recovered aqueous layer was extracted 3 times with 600 mL of ethyl acetate.
  • the organic layer was collected, dried and filtered over sodium sulfate, and then concentrated on a rotary evaporator.
  • Example A54 ⁇ Preparation of solid titanium catalyst component [ ⁇ 1]> After sufficiently replacing a 1 L glass container with nitrogen, 85.8 g of anhydrous magnesium chloride, 321 g of decane and 352 g of 2-ethylhexyl alcohol were added, and the mixture was heated and reacted at 130 ° C. for 3 hours to prepare a uniform solution. 241 g of this solution and 6.43 g of ethyl benzoate were added to a glass container, and the mixture was stirred and mixed at 50 ° C. for 1 hour.
  • the solid titanium catalyst component [ ⁇ 1] prepared by the above operation was stored as a decanter slurry, and a part of the solid titanium catalyst component [ ⁇ 1] was dried for the purpose of examining the catalyst composition.
  • the composition of the solid titanium catalyst component [ ⁇ 1] thus obtained was 0.28% by mass of titanium, 1.7% by mass of magnesium, and 0.12% by mass of 2-ethylhexyl alcohol residue.
  • Amount of decan-soluble (insoluble) component In a glass measuring container, about 3 g of propylene polymer (measured to the unit of 10-4 g. This weight was expressed as b (g) in the following formula), 500 mL of decane, and soluble in decane. A small amount of heat-stabilizing agent was charged, and the temperature was raised to 150 ° C. in 2 hours while stirring with a stirrer under a nitrogen atmosphere to dissolve the propylene polymer. Slowly cooled to. The liquid containing the precipitate of the obtained propylene polymer was filtered under reduced pressure with a glass filter of 25G-4 standard manufactured by Iwata Glass Co., Ltd.
  • Mobile phase medium o-dichlorobenzene Flow rate: 1.0 mL / min Measurement temperature: 140 ° C
  • Calibration curve preparation method Sample concentration using standard polystyrene sample: 0.1% (w / w) Sample solution volume: 0.4 mL
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mz Z average molecular weight
  • Mw molecular weight distribution
  • Tm Melting point of the polymer
  • Tm melting point
  • Tc crystallization temperature
  • ⁇ H heat of fusion
  • the sample was heated to 200 ° C. at 10 ° C./min for the second time.
  • the peak temperature was adopted as the melting point (Tm) and the calorific value was adopted as the heat of fusion ( ⁇ H).
  • the final melting point (Tmf) of the polymer in the present invention was measured by a differential scanning calorimeter (DSC) with a DSC220C device manufactured by Seiko Instruments. Samples 3-10 mg were sealed in an aluminum pan and heated from room temperature to 240 ° C. at 80 ° C./min. The sample was held at 240 ° C. for 1 minute and then cooled to 0 ° C. at 80 ° C./min. After holding at 0 ° C. for 1 minute, the sample was heated to 150 ° C. at 80 ° C./min and held for 5 minutes. Finally, the sample is heated to 180 ° C. at 1.35 ° C./min, and the intersection of the tangent of the inflection on the high temperature side of the peak obtained in this final heating test and the baseline is adopted as the final melting point (Tmf). did.
  • DSC differential scanning calorimeter
  • Tmf can be considered as one parameter for evaluating the ease of crystallization of the polymer in the ultra-high molecular weight region, which is said to be difficult to crystallize, the crystal structure, and the like. More specifically, it can be considered that the higher the value of Tmf, the stronger the ultra-high molecular weight polymer component and the easier it is to form crystals with high heat resistance.
  • the thick line represents the front side of the paper surface
  • the dotted line represents the back side of the paper surface
  • the compound 201 corresponds to the diol compound derived from the endo body represented by the above formula (34).
  • the internal temperature was cooled to 0 ° C., and 30 grams of potassium permanganate, 600 ml of water, and 6.60 grams of sodium hydroxide were added to another 1 L beaker to prepare an alkaline aqueous solution of potassium permanganate.
  • a dropping funnel was attached to the 2 liter flask of the above, the prepared potassium permanganate alkaline aqueous solution was charged into the dropping funnel, and the potassium permanganate alkaline aqueous solution was slowly dropped so that the internal temperature did not exceed 5 ° C. After completion, the mixture was stirred at an internal temperature of 0 ° C. for 1 hour.
  • a saturated aqueous sodium pyrosulfite solution was prepared in another flask, slowly added dropwise to the previous reaction solution, and added dropwise until a white precipitate was formed. After the addition, the mixture was added dropwise at room temperature. The temperature was raised to the maximum to precipitate a white solid. After recovering the organic layer of the supernatant, extraction operation was performed twice from the aqueous layer with ethyl acetate. The organic layers were added, washed with water and saturated saline, and organic. The layer was dried over magnesium sulfate. The organic layer was then concentrated to give 27.41 grams of crude product. The resulting crude product was purified by silica gel column chromatography to a purpose of 22.71 grams.
  • a product (isomer mixture) was obtained.
  • the obtained product was purified again on a silica gel column to separate the isomers, and 10.9 g of compound 201 and 2.9 g of compound 202 were isolated.
  • the 1 H-NMR data of the obtained compounds 201 and 202 are shown below.
  • Example B2 ⁇ Preparation of solid titanium catalyst component [ ⁇ 1]> After sufficiently replacing a 1 L glass container with nitrogen, 85.8 g of anhydrous magnesium chloride, 321 g of decane and 352 g of 2-ethylhexyl alcohol were added, and the mixture was heated and reacted at 130 ° C. for 3 hours to prepare a uniform solution. 241 g of this solution and 6.43 g of ethyl benzoate were added to a glass container, and the mixture was stirred and mixed at 50 ° C. for 1 hour.
  • the entire amount of the uniform solution was added dropwise to 100 ml of titanium tetrachloride kept at -20 ° C for 45 minutes under stirring at a stirring rotation speed of 350 rpm. did.
  • the temperature of the mixed solution was raised to 80 ° C. over 3.8 hours, and when the temperature reached 80 ° C., 0.91 g of the compound 203 was added to the mixed solution.
  • the temperature was raised to 120 ° C. over 40 minutes again, and the temperature was kept at the same temperature for 35 minutes under stirring.
  • the solid part was collected by hot filtration, the solid part was resuspended in 100 ml of titanium tetrachloride, and then the heating reaction was carried out again at 120 ° C. for 35 minutes. After completion of the reaction, the solid part was collected again by hot filtration and washed thoroughly with decane at 100 ° C. and decane at room temperature until no free titanium compound was detected in the washing liquid.
  • the solid titanium catalyst component [ ⁇ 1] prepared by the above operation was stored as a decanter slurry.
  • the novel ester compound according to the present invention is a compound useful for producing resin additives, cosmetics and external preparations for skin, bactericidal compositions, antioxidants, chelating agents, and Ziegler-Natta catalysts.
  • it can be used as a catalyst component for a Ziegler-Natta catalyst, and a catalyst that gives excellent stereoregularity and productivity when polypropylene is polymerized can be produced, which is extremely valuable industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Pyrane Compounds (AREA)

Abstract

本発明のエステル化合物は下記式(1)で表される〔式中、R1~R24は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基またはヘテロ原子含有炭化水素基である。R1~R10、R23およびR24は互いに結合して環を形成してもよく、隣接する置換基が直接結合した多重結合を形成してもよい。R11~R24は互いに結合して環を形成してもよく、隣接する置換基が互いに結合して多重結合を形成してもよい。R1~R24において少なくとも1組は互いに結合して環構造を形成する。n2~n5は、それぞれ独立に0~2の整数を表す。n1およびn6は、それぞれ独立に0または1の整数を表す。L1およびL2は、それぞれ独立に炭化水素基またはヘテロ原子含有炭化水素基である。〕。

Description

エステル化合物
 本発明は新規のエステル化合物に関する。
 エステル化合物に関する従来技術として、樹脂添加剤、化粧料や皮膚外用剤、殺菌剤組成物、酸化防止剤、キレート剤等の添加剤的な用途に関する開示が多くある。その用途の一つとして、オレフィン重合に用いられるMg化合物担持型チタン触媒に用いる態様が知られている。
 オレフィン重合用触媒は、1953年にチーグラーが四塩化チタンと有機アルミニウム化合物とを組合せることでエチレンが低圧でも重合することを報告し、続いてナッタが三塩化チタンとハロゲン含有有機アルミニウム化合物との組合せで、初のプロピレン重合を報告した、所謂、チーグラー・ナッタ触媒の発見を契機に、現在まで、大きな発展を遂げた技術の一つである。その中で、第三世代触媒と呼ばれる四塩化チタンとマグネシウム化合物とルイス塩基とを含む触媒により、プロピレンの重合において高い重合活性(高生産性)と高立体規則性を両立できることが見出された。このことが、プロピレン重合体(ポリプロピレン)が世界中で広がる一つの機会となった。
 また、上記の第三世代触媒成分(以後「固体状チタン触媒成分」ともいう。)の主要成分の一つであるルイス塩基(以後「内部ドナー」ともいう。)が触媒性能に大きく影響を与えることが見出され、これまで様々なルイス塩基が開発されている。
 チーグラー・ナッタ触媒に用いられるルイス塩基としては、例えば、エチルベンゾエート、フタル酸エステル、1,3‐ジケトン(特許文献1)、マロン酸エステル(特許文献2)、コハク酸エステル(特許文献3)、2,4-ペンタンジオールジエステル(特許文献4)、ナフタレンジオールジエステル(特許文献5)、カテコールジエステル(特許文献6)等が報告され、現在でも企業を中心に精力的に研究開発が行われている分野である。
 また、各種のエステル化合物を合成するための素反応については、数多くの手法が開示されている(例えば、特許文献7~11、非特許文献1~19)。
特開2005-226076号公報 特表2000-516987号公報 特表2002-542347号公報 特表2005-517746号公報 特表2011-529888号公報 特表2014-500390号公報 特開2008-247796号公報 国際公開第2008/062553号 米国特許出願公開第2018/0149973号明細書 米国特許出願公開第2002/0162991号明細書 特開2008-037756号公報
Journal of the American Chemical Society,1952,74,1027-1029 Journal of Organic Chemistry,1971,36,3979-3987 Organic Letters,2004,6,1589-1592 Journal of the American Chemical Society,1957,79,2822-2824 Organic Synthesis 1991,70,47-53 Organic Synthesis 1997,75,153-160 Catalysis Letters 2012,142,124-130 Organic Synthesis 1997,74,91-100 第4版実験化学講座の20.有機合成IIアルコール・アミンp39 Journal of Organic Chemistry 1959,24,54-55 Angewandte Chemie International Edition,1978,17,522-524 Bulletin of the Chemical Society of Japan,1967,40,2380-2382 Organic Synthesis,1952,32,41 Macromolecules,2017,50,580-586 Journal of Organic Chemistry,1980,45,2301-2304 Journal of Organic Chemistry,2009,74,405-407 Journal of Organic Chemistry,1988,53,2120-2122 Journal of Organic Chemistry,1963,28,2572-2577 European Journal of Organic Chemistry,2017,24,3501-3504
 プロピレン重合体は、汎用のエンジニアリングプラスチックに近い耐熱性と剛性を有する一方で、ほぼ炭素と水素のみの構成であるため、燃焼処理しても有毒ガスの発生が少ない利点を有する。
 昨今の成形技術の進歩から、従来以上に高い立体規則性のプロピレン重合体を用いれば、より高い物性(剛性、耐熱性など)を発現できる可能性がある。そのため、市場からはより高い立体規則性のプロピレン重合体が求められている。また、省資源および環境保護の観点から、高い生産性のプロピレン重合体の製造方法も求められている。
 よって、本発明の課題は、主として固体状チタン触媒成分に用いた際に、極めて高い立体規則性のプロピレン重合体を高い生産性(高活性)で製造できる固体状チタン触媒成分に好適な内部ドナー成分を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、特定の環状構造を有するエステル化合物が、例えば固体状チタン触媒成分のルイス塩基として好適であることを見出し、本発明を完成させた。本発明は、例えば以下の[1]~[28]に関する。
 [1] 下記一般式(1)で表されるエステル化合物。
Figure JPOXMLDOC01-appb-C000012
〔式(1)中、R1~R24は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基またはヘテロ原子含有炭化水素基である。R1~R10、R23およびR24は互いに結合して環を形成してもよく、隣接する置換基が直接結合した多重結合を形成してもよい。R11~R24は互いに結合して環を形成してもよく、隣接する置換基が互いに結合して多重結合を形成してもよい。R1~R24において少なくとも1組は互いに結合して環構造を形成する。n2~n5は、それぞれ独立に0~2の整数を表す。n1およびn6は、それぞれ独立に0または1の整数を表す。L1およびL2は、それぞれ独立に炭化水素基またはヘテロ原子含有炭化水素基である。〕
 [2] L1およびL2は、それぞれ独立に炭素数1~20の炭化水素基またはヘテロ原子含有炭化水素基である、[1]に記載のエステル化合物。
 [3] L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である、[1]に記載のエステル化合物。
 [4] 下記一般式(2)~(4)のいずれかで表される、[1]に記載のエステル化合物。
Figure JPOXMLDOC01-appb-C000013
〔式(2)~(4)中、R1~R24は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基またはヘテロ原子含有炭化水素基である。R1~R10、R23およびR24は互いに結合して環を形成してもよく、隣接する置換基が直接結合した多重結合を形成してもよい。R11~R24は互いに結合して環を形成してもよく、隣接する置換基が互いに結合して多重結合を形成してもよい。XおよびYは、それぞれ独立に炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。n2~n5は、それぞれ独立に0~2の整数を表す。n1およびn6は、それぞれ独立に0または1の整数を表す。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。〕
 [5] n1およびn6が1であり、n2~n5がすべて0である、[3]または[4]に記載のエステル化合物。
 [6] 下記一般式(5)または(6)で表される、[1]に記載のエステル化合物。
Figure JPOXMLDOC01-appb-C000014
〔式(5)中、R1およびR2は、それぞれ独立に水素原子または炭化水素基であり、R4およびR9は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基であり、R11、R15、R17およびR21は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基またはヘテロ原子含有炭化水素基である。R11、R15、R17およびR21は互いに結合して環を形成してもよい。Xは炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。〕
Figure JPOXMLDOC01-appb-C000015
〔式(6)中、R1およびR2は、それぞれ独立に水素原子または炭化水素基であり、R4、R9、R11、R12、R15~R18、R21およびR22は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基である。R11、R12、R15~R18、R21およびR22は互いに結合して環を形成してもよく、隣接する置換基が互いに結合した多重結合を形成してもよい。Xは炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。〕
 [7] 下記一般式(7)または(8)で表される、[1]に記載のエステル化合物。
Figure JPOXMLDOC01-appb-C000016
〔式(7)中、R4、R9、R12、R15~R18およびR21は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基である。R15~R18は互いに結合して環を形成してもよく、隣接する置換基が互いに結合した多重結合を形成してもよい。Yは炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。〕
Figure JPOXMLDOC01-appb-C000017
〔式(8)中、R1およびR2は、それぞれ独立に水素原子または炭化水素基であり、R3、R4、R9、R10、R12、R15~R18およびR21は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基である。R15~R18は互いに結合して環を形成してもよく、隣接する置換基が互いに結合した多重結合を形成してもよい。Yは炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。〕
 [8] 下記一般式(9)で表される、[1]に記載のエステル化合物。
Figure JPOXMLDOC01-appb-C000018
〔式(9)中、R1およびR2は、それぞれ独立に水素原子または炭化水素基であり、R4、R9、R12、R15~R18およびR21は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基である。R15~R18は互いに結合して環を形成してもよく、隣接する置換基が互いに結合した多重結合を形成してもよい。XおよびYは、それぞれ独立に炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。〕
 [9] 下記一般式(31)で表される、[1]に記載のエステル化合物。
Figure JPOXMLDOC01-appb-C000019
[式(31)中、R31~R34は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基またはヘテロ原子含有炭化水素基であり、R4、R9、R21およびR22は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基であり、R4、R9、R21、R22、およびR31~R34は、互いに結合して環を形成してもよい。L1およびL2は、それぞれ独立に炭化水素基またはヘテロ原子含有炭化水素基である。Xは、炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。]
 [10] XおよびYが、それぞれ独立に下記一般式群(10)に示す基から選ばれる二価の基である、[4]および[6]~[9]のいずれか1項に記載のエステル化合物。
Figure JPOXMLDOC01-appb-C000020
[群(10)中、R1'~R7'は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基であり、R2'~R7'は互いに結合して環を形成してもよく、隣接する置換基同士が直接結合して多重結合を形成してもよい。]
 [11] XおよびYが、下記一般式群(11)に示す基から選ばれる二価の基である、[4]および[6]~[9]のいずれか1項に記載のエステル化合物。
Figure JPOXMLDOC01-appb-C000021
[群(11)中、R1'~R5'は、それぞれ独立に水素原子、炭素数1~20の炭化水素基または炭素数1~20のヘテロ原子含有炭化水素基であり、R2'~R5'は互いに結合して環を形成してもよく、隣接する置換基同士が直接結合して多重結合を形成してもよい。]
 [12] Xが、下記一般式(13)に示す二価の基である、[9]に記載のエステル化合物。
Figure JPOXMLDOC01-appb-C000022
[式(13)中、R2'およびR3'は、それぞれ独立に水素原子、炭素数1~20の炭化水素基または炭素数1~20のヘテロ原子含有炭化水素基であり、R2'およびR3'は互いに結合して環を形成してもよい。]
 [13] R1'~R7'が、それぞれ独立に水素原子または炭素数1~10の炭化水素基である、[10]に記載のエステル化合物。
 [14] R1'~R5'が、それぞれ独立に水素原子または炭素数1~10の炭化水素基である、[11]に記載のエステル化合物。
 [15] R2'およびR3'が、それぞれ独立に水素原子または炭素数1~10の炭化水素基である、[12]に記載のエステル化合物。
 [16] R2'およびR3'がすべて水素原子である、[12]に記載のエステル化合物。
 [17] R1~R24が、それぞれ独立に水素原子、炭素数1~20の炭化水素基または炭素数1~20のヘテロ原子含有炭化水素基である、[1]~[16]のいずれか1項に記載のエステル化合物。
 [18] R1~R24が、それぞれ独立に水素原子、炭素数1~10の炭化水素基または炭素数1~10のヘテロ原子含有炭化水素基である、[1]~[16]のいずれか1項に記載のエステル化合物。
 [19] R31~R34が、それぞれ独立に水素原子、ハロゲン原子、炭素数1~20の炭化水素基または炭素数1~20のヘテロ原子含有炭化水素基である、[9]に記載のエステル化合物。
 [20] R31~R34が、それぞれ独立に水素原子、炭素数1~10の炭化水素基または炭素数1~10のヘテロ原子含有炭化水素基である、[9]に記載のエステル化合物。
 [21] R31~R34がすべて水素原子であり、R4、R9、R21およびR22が、それぞれ独立に水素原子、炭素数1~6の炭化水素基または炭素数1~6のヘテロ原子含有炭化水素基であり、L1およびL2が、それぞれ独立に炭素数1~10の炭化水素基または炭素数1~10のヘテロ原子含有炭化水素基である、[9]に記載のエステル化合物。
 [22] R31~R34、R21およびR22がすべて水素原子であり、R4およびR9が、それぞれ独立に水素原子または炭素数1~6の炭化水素基であり、L1およびL2が、それぞれ独立に炭素数1~10の炭化水素基から選ばれる、[9]に記載のエステル化合物。
 [23] R1およびR2が水素原子である、[1]~[8]のいずれか1項に記載のエステル化合物。
 [24] R1、R2、R23、R24がすべて水素原子であり、R3~R22が、それぞれ独立に水素原子、または炭素数1~4の置換もしくは未置換のアルキル基である、[1]~[8]のいずれか1項に記載のエステル化合物。
 [25] L1およびL2が、それぞれ独立に炭素数4~20の炭化水素基またはヘテロ原子含有炭化水素基である、[1]~[8]のいずれか1項に記載のエステル化合物。
 [26] L1およびL2が、それぞれ独立に炭素数4~10の炭化水素基またはヘテロ原子含有炭化水素基である、[1]~[8]のいずれか1項に記載のエステル化合物。
 [27]  前記R4および/またはR9が、炭化水素基またはヘテロ原子含有炭化水素基である、[4]、[6]または[8]に記載のエステル化合物。
 [28]  前記R4および/またはR9が、炭化水素基または酸素原子含有炭化水素基である、[4]、[6]または[8]に記載のエステル化合物。
 本発明のエステル化合物は、例えば、樹脂添加剤、化粧料や皮膚外用剤、殺菌組成物、酸化防止剤、キレート剤、チーグラー・ナッタ触媒に用いることができる。
 以下、本発明に係るエステル化合物についてさらに詳細に説明する。
 本発明に係るエステル化合物(以下「エステル化合物(A)」ともいう。)は下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000023
 式(1)中、R1~R24は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基またはヘテロ原子含有炭化水素基である。R1~R10、R23およびR24は互いに結合して環を形成してもよく、隣接する置換基が直接結合した多重結合を形成してもよい。R11~R24は互いに結合して環を形成してもよく、隣接する置換基が互いに結合して多重結合を形成してもよい。R1~R24において少なくとも1組は互いに結合して環構造を形成する。n2~n5は、それぞれ独立に0~2の整数を表す。n1およびn6は、それぞれ独立に0または1の整数を表す。L1およびL2は、それぞれ独立に炭化水素基またはヘテロ原子含有炭化水素基である。上記の中で、n4、n5、およびn6の何れかが1または2であることが好ましい。特に、R11~R24の任意の2個以上が結合して芳香族環構造を形成する場合、n4、n5、およびn6の何れかが1または2であることが好ましい。
 本発明のエステル化合物(A)の好ましい態様の一例として、下記一般式(2)~(4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000024
 式(2)~(4)中、R1~R24は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基またはヘテロ原子含有炭化水素基である。R1~R10、R23およびR24は互いに結合して環を形成してもよく、隣接する置換基が直接結合した多重結合を形成してもよい。R11~R24は互いに結合して環を形成してもよく、隣接する置換基が互いに結合して多重結合を形成してもよい。XおよびYは、それぞれ独立に炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。n2~n5は、それぞれ独立に0~2の整数を表す。n1およびn6は、それぞれ独立に0または1の整数を表す。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。
 また、本発明のエステル化合物(A)のより好ましい態様の一例として、下記一般式(5)~(9)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 式(5)中、R1およびR2は、それぞれ独立に水素原子または炭化水素基であり、R4およびR9は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基であり、R11、R15、R17およびR21は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基またはヘテロ原子含有炭化水素基である。R11、R15、R17およびR21は互いに結合して環を形成してもよい。Xは炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。
Figure JPOXMLDOC01-appb-C000026
 式(6)中、R1およびR2は、それぞれ独立に水素原子または炭化水素基であり、R4、R9、R11、R12、R15~R18、R21およびR22は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基である。R11、R12、R15~R18、R21およびR22は互いに結合して環を形成してもよく、隣接する置換基が互いに結合した多重結合を形成してもよい。Xは炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。
Figure JPOXMLDOC01-appb-C000027
 式(7)中、R4、R9、R12、R15~R18およびR21は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基である。R15~R18は互いに結合して環を形成してもよく、隣接する置換基が互いに結合した多重結合を形成してもよい。Yは炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。
Figure JPOXMLDOC01-appb-C000028
 式(8)中、R1およびR2は、それぞれ独立に水素原子または炭化水素基であり、R3、R4、R9、R10、R12、R15~R18およびR21は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基である。R15~R18は互いに結合して環を形成してもよく、隣接する置換基が互いに結合した多重結合を形成してもよい。Yは炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。
 式(8)の構造の場合、R3、R4、R9およびR10は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基、およびハロゲン含有炭化水素基から選ばれる置換基であることが好ましく、水素原子、炭化水素基、およびハロゲン含有炭化水素基から選ばれることがより好ましく、水素および炭化水素基から選ばれることが特に好ましい。上記の炭化水素基とは、より詳細には、炭素数1~20の置換もしくは未置換のアルキル基、炭素数1~20の置換もしくは未置換のシクロアルキル基、炭素数2~20の置換もしくは未置換のアルケニル基、炭素数2~20の置換もしくは未置換のアルキニル基、炭素数6~20の置換もしくは未置換のアリール基が好ましい例である。また、上記のハロゲン含有炭化水素基とは、炭素数1~20の置換もしくは未置換のアルキル基、炭素数1~20の置換もしくは未置換のシクロアルキル基、炭素数2~20の置換もしくは未置換のアルケニル基、炭素数2~20の置換もしくは未置換のアルキニル基、炭素数6~20の置換もしくは未置換のアリール基における1個以上の水素原子がハロゲン原子で置換された置換基が好ましい例である。
Figure JPOXMLDOC01-appb-C000029
 式(9)中、R1およびR2は、それぞれ独立に水素原子または炭化水素基であり、R4、R9、R12、R15~R18およびR21は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基である。R15~R18は互いに結合して環を形成してもよく、隣接する置換基が互いに結合した多重結合を形成してもよい。XおよびYは、それぞれ独立に炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。
 これらのエステル化合物の内、好ましくは式(5)、(8)および(9)で表されるエステル化合物であり、より好ましくは式(5)および(9)で表される化合物であり、最も好ましくは式(5)で表されるエステル化合物である。
 また、本発明のエステル化合物(A)のより好ましい態様の一例として、下記一般式(31)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000030
 上記式(31)中の置換基の構造の詳細な説明は後述する。
 <R1~R24
 上記式(1)等において、R1~R24は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基またはヘテロ原子含有炭化水素基である。
 前記炭化水素基としては、例えば、置換もしくは未置換のアルキル基、置換もしくは未置換のシクロアルキル基、置換もしくは未置換のアルケニル基、置換もしくは未置換のアルキニル基、置換もしくは未置換のアリール基を挙げることができる。
 前記ヘテロ原子含有炭化水素基としては、例えば、置換もしくは未置換のヘテロ原子含有アルキル基、置換もしくは未置換のヘテロアリール基を挙げることができる。
 前記炭化水素基および前記ヘテロ原子含有炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ原子含有アルキル基、ヘテロアリール基などが挙げられる。これらの基の炭素原子数は1~20であることが好ましい。下限値は、好ましくは2、より好ましくは3、特に好ましくは4である。ただし、アリール基の場合の好ましい下限値は6である。一方、上限値は、好ましくは18、より好ましくは15、さらに好ましくは10、特に好ましくは6である。ヘテロアリール基の場合、5員環以上の環構造を一つ以上有することが好ましく、5~7員環構造を一つ以上有することがより好ましく、5員環または6員環構造を一つ以上有することがさらに好ましい。
 前記R1~R24の少なくとも1つの置換基は、水素以外の置換基であることが、好ましいことがある。さらには環状構造を形成する炭素原子の1つ以上が、4級炭素であることが好ましい場合がある。上記の様な態様であれば、例えば本発明のエステル化合物をオレフィン重合用触媒の成分として用いた場合に、性能バランスが向上することがある。
 上記の通り、R1~R10、R23およびR24は互いに結合して環を形成してもよく、また、R11~R24は互いに結合して環を形成してもよい。また、前記の環を形成する部位は単結合で形成されていてもよいし、二重結合を含んでいてもよい。炭素-炭素二重結合を含む構造が好ましい場合がある。また、前記の環を形成する部位が更に環構造を含む構造が好ましい場合があり、さらにその環構造に二重結合、特に好ましくは炭素-炭素二重結合が含まれる態様が好ましい場合がある。この様な環を形成する部位の具体的な構造の例は、後述するX、Yの構造例と同じである。また、本発明において、前記の炭素-炭素二重結合は、芳香族構造を含む。
 上記の互いに結合して環を形成する置換基が結合する炭素(以後「B4C」と言うことがある。)には、通常、「他の置換基」(以後「B4S」と言うことがある。)が結合している(例えば、R3がR10と直接結合して環を形成する場合、R4やR9が該当する。)。本発明においては、前記「他の置換基」が、後述する炭化水素基および/またはヘテロ原子含有炭化水素基であることが好ましい場合がある。前記のヘテロ原子含有炭化水素基として、特には酸素含有炭化水素基が好ましい。前記炭化水素基は、より具体的には、炭素原子数1~10の脂肪族基、脂環族基、芳香族基であり、より好ましくは、炭素原子数が1~6の脂肪族基、脂環族基、芳香族基である、また、前記のヘテロ原子含有炭化水素基は、より具体的には、炭素原子数1~10のヘテロ原子含有脂肪族基、脂環族基、芳香族基であり、より好ましくは炭素数1~6のヘテロ原子含有脂肪族基、脂環族基、芳香族基である。前記のヘテロ原子は、酸素であることが好ましい。前記酸素含有炭化水素基はアルコキシ基がさらに好ましい。この様な置換基の位置として、より詳細には、前記式(2)、(4)、(5)、(6)、(9)のR4および/またはR9や、前記式(3)、(4)、(7)、(8)のR12および/またはR21を挙げることができ、より好ましくは前記のR4および/またはR9である。この様な位置の置換基が前記の様な構造の基であると、オレフィン重合用触媒の成分として用いた場合、重合活性、立体規則性の他、得られる重合体の分子量を水素で制御し易くなることがある。
 また、R1~R24において、隣り合う置換基同士が直接結合して多重結合、例えば二重結合や三重結合を形成してもよい。さらに、これらの置換基が結合した芳香族環構造も本発明の範囲内である。例えば、式(5)および(7)で表される芳香族環構造を挙げることができる。
 R1等が環構造を形成する場合には、環を形成する置換基は水素原子およびハロゲン原子以外の置換基から選ばれ、好ましくは炭化水素基である。R1~R24において少なくとも1組は互いに結合して環構造を形成する。形成される環の内、少なくとも一組は環を形成する置換基どうしが2炭素以上離れていることが好ましく、3炭素以上離れていることがより好ましい。このような構造としては、好ましくは式(2)~(4)中のXまたはYを含む環構造であり、より好ましくは式(5)~(9)中のXまたはYを含む環構造である。
 隣接位の置換基が結合して環を形成する場合にはR3~R6、R7~R10、R11~R22から選ばれる置換基どうしが互いに結合して環を形成することが好ましい。この時、合成上の観点から環を形成する置換基は橋頭位の炭素原子を含まないことが好ましい。橋頭位の炭素原子とは2つ以上の環を共有する炭素原子を指し、例えば式(2)の場合、XとR4が結合した炭素原子、XとR9が結合した炭素原子、R23が結合した炭素原子、R24が結合した炭素原子を指す。このような構造として、好ましくは式(5)~(9)に含まれる構造を挙げることができ、式(5)に含まれる構造としては、R11とR15が互いに結合して環を形成した構造、R15とR17が互いに結合して環を形成した構造、R17とR21が互いに結合して環を形成した構造、およびこれらの組み合わせから成る構造が特に好ましい。式(6)に含まれる構造としては、R11またはR12とR15またはR16が結合して環を形成した構造、R15またはR16とR17またはR18が結合して環を形成した構造、R17またはR18とR21またはR22が結合して環を形成した構造、およびこれらの組み合わせから成る構造が特に好ましい。式(7)~(9)に含まれる構造としてはR15またはR16とR17またはR18が結合して環を形成した構造が特に好ましい。
 式(5)中、R11とR15が互いに結合して環を形成した構造を有するエステル化合物(A)の一例を以下に示す。   
Figure JPOXMLDOC01-appb-C000031
 式(5)中、R15とR17が互いに結合して環を形成した構造を有するエステル化合物(A)の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000032
 式(5)中、R17とR21が互いに結合して環を形成した構造を有するエステル化合物(A)の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000033
 式(6)中、R11またはR12とR15またはR16が結合して環を形成した構造を有するエステル化合物(A)の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000034
 式(6)中、R15またはR16とR17またはR18が結合して環を形成した構造を有するエステル化合物(A)の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000035
 式(6)中、R17またはR18とR21またはR22が結合して環を形成した構造を有するエステル化合物(A)の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000036
 式(6)中、R11またはR12とR15またはR16が結合して環を形成した構造と、R17またはR18とR21またはR22が結合して環を形成した構造とを共に有するエステル化合物(A)の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000037
 式(7)中、R15またはR16とR17またはR18が結合して環を形成した構造を有するエステル化合物(A)の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000038
 式(8)中、R15またはR16とR17またはR18が結合して環を形成した構造を有するエステル化合物(A)の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000039
 式(9)中、R15またはR16とR17またはR18が結合して環を形成した構造を有するエステル化合物(A)の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000040
 好ましいR15~R18は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の置換もしくは未置換のアルキル基、炭素数1~20の置換もしくは未置換のシクロアルキル基、炭素数2~20の置換もしくは未置換のアルケニル基、炭素数2~20の置換もしくは未置換のアルキニル基、炭素数6~20の置換もしくは未置換のアリール基、炭素数1~20の置換もしくは未置換のヘテロ原子含有アルキル基、または、炭素数2~20の置換もしくは未置換のヘテロアリール基である。また、上記のR3、R4、R9およびR10は、それぞれ独立に、水素原子、ハロゲン原子、炭化水素基、およびハロゲン含有炭化水素基から選ばれる置換基であることが好ましく、水素原子、炭化水素基、およびハロゲン含有炭化水素基から選ばれることがより好ましく、水素および炭化水素基から選ばれることが特に好ましい。上記の炭化水素基の好ましい例としては、炭素数1~20の置換もしくは未置換のアルキル基、炭素数1~20の置換もしくは未置換のシクロアルキル基、炭素数2~20の置換もしくは未置換のアルケニル基、炭素数2~20の置換もしくは未置換のアルキニル基、炭素数6~20の置換もしくは未置換のアリール基が挙げられる。また、上記のハロゲン含有炭化水素基の好ましい例としては、炭素数1~20の置換もしくは未置換のアルキル基、炭素数1~20の置換もしくは未置換のシクロアルキル基、炭素数2~20の置換もしくは未置換のアルケニル基、炭素数2~20の置換もしくは未置換のアルキニル基、炭素数6~20の置換もしくは未置換のアリール基における1個以上の水素原子がハロゲン原子で置換された置換基が挙げられる。
 また、好ましくは、R1~R24は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の置換もしくは未置換のアルキル基、炭素数1~20の置換もしくは未置換のシクロアルキル基、炭素数2~20の置換もしくは未置換のアルケニル基、炭素数2~20の置換もしくは未置換のアルキニル基、炭素数6~20の置換もしくは未置換のアリール基、炭素数1~20の置換もしくは未置換のヘテロ原子含有アルキル基、または、炭素数2~20の置換もしくは未置換のヘテロアリール基である。
 より好ましくは、R1~R24は、それぞれ独立に、水素原子、炭素数1~10の置換もしくは未置換のアルキル基、炭素数1~10の置換もしくは未置換のシクロアルキル基、炭素数2~10の置換もしくは未置換のアルケニル基、炭素数2~10の置換もしくは未置換のアルキニル基、炭素数6~15の置換もしくは未置換のアリール基、炭素数1~10の置換もしくは未置換のヘテロ原子含有アルキル基、または、炭素数2~10の置換もしくは未置換のヘテロアリール基である。
 さらに好ましくは、R1~R24は、それぞれ独立に、水素原子、炭素数1~6の置換もしくは未置換のアルキル基、炭素数1~6の置換もしくは未置換のシクロアルキル基、炭素数6~10の置換もしくは未置換のアリール基、炭素数1~6の置換もしくは未置換のヘテロ原子含有アルキル基、または、炭素数3~10の置換もしくは未置換のヘテロアリール基である。
 さらにより好ましくは、R1~R24は、それぞれ独立に、水素原子、または、炭素数1~4の置換もしくは未置換のアルキル基である。
 特に好ましくは、R1、R2、R23、R24がすべて水素原子であり、R3~R22が、それぞれ独立に水素原子、または、炭素数1~4の置換もしくは未置換のアルキル基である。
 なお、R1~R24が結合する炭素は、前記一般式(1)が示す通り、2個以上の環構造を形成する。この環構造の1個以上は脂環式の環状構造であることが好ましい。すなわち、少なくとも全ての環が芳香族環構造ではないことが好ましい。
 <R31~R34
 上記式(31)において、R31~R34は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基またはヘテロ原子含有炭化水素基である。
 前記炭化水素基としては、例えば、置換もしくは未置換のアルキル基、置換もしくは未置換のシクロアルキル基、置換もしくは未置換のアルケニル基、置換もしくは未置換のアルキニル基、置換もしくは未置換のアリール基を挙げることができる。
 前記ヘテロ原子含有炭化水素基としては、例えば、置換もしくは未置換のヘテロ原子含有アルキル基、置換もしくは未置換のヘテロアリール基を挙げることができる。
 前記炭化水素基および前記ヘテロ原子含有炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ原子含有アルキル基、ヘテロアリール基などが挙げられる。これらの基の炭素原子数は1~20であることが好ましい。下限値は、好ましくは2、より好ましくは3、特に好ましくは4である。ただし、アリール基の場合の好ましい下限値は6である。一方、上限値は、好ましくは18、より好ましくは15、さらに好ましくは10、特に好ましくは6である。ヘテロアリール基の場合、5員環以上の環構造を一つ以上有することが好ましく、5~7員環構造を一つ以上有することがより好ましく、5員環または6員環構造を一つ以上有することがさらに好ましい。
 好ましいR31~R34は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の置換もしくは未置換のアルキル基、炭素数1~20の置換もしくは未置換のシクロアルキル基、炭素数2~20の置換もしくは未置換のアルケニル基、炭素数2~20の置換もしくは未置換のアルキニル基、炭素数6~20の置換もしくは未置換のアリール基、炭素数1~20の置換もしくは未置換のヘテロ原子含有アルキル基、または、炭素数2~20の置換もしくは未置換のヘテロアリール基である。
 より好ましいR31~R34は、それぞれ独立に水素原子、炭素数1~10の置換もしくは未置換のアルキル基、炭素数1~10の置換もしくは未置換のシクロアルキル基、炭素数2~10の置換もしくは未置換のアルケニル基、炭素数2~10の置換もしくは未置換のアルキニル基、炭素数6~15の置換もしくは未置換のアリール基、炭素数1~10の置換もしくは未置換のヘテロ原子含有アルキル基、または、炭素数2~10の置換もしくは未置換のヘテロアリール基である。
 さらに好ましいR31~R34は、それぞれ独立に水素原子、炭素数1~6の置換もしくは未置換のアルキル基、炭素数1~6の置換もしくは未置換のシクロアルキル基、炭素数6~10の置換もしくは未置換のアリール基、炭素数1~6の置換もしくは未置換のヘテロ原子含有アルキル基、または、炭素数3~6の置換もしくは未置換のヘテロアリール基である。
 R31~R34は、互いに結合して環を形成した構造であってもよい。
 特に好ましいR31~R34は、それぞれ独立に水素原子、または、炭素数1~4の置換もしくは未置換のアルキル基であり、最も好ましいR31~R34は、すべて水素原子である。R31~R34、R21、R22、R4、R9は、互いに結合して環を形成してもよく、隣接する置換基同士が直接結合して多重結合を形成してもよい。
 以下、上記式(31)で表されるエステル化合物の構造について詳細に説明する。
 上記の通り、R31~R34、R21、R22、R4、R9は互いに結合した環を形成してもよく、隣り合う置換基同士が直接結合して多重結合、例えば二重結合や三重結合を形成してもよい。さらに、これらの置換基が結合した芳香族環構造も本発明の範囲内である。例えば、R34、R21、R22が結合した芳香族環構造を挙げることができる。
 R31~R34、R21、R22、R4、R9が互いに結合し環構造を形成する場合には、環を形成する置換基は水素原子およびハロゲン原子以外の置換基から選ばれ、好ましくは炭化水素基である。R31~R34、R21、R22が互いに結合して環を形成することが好ましく、より好ましくはR31とR32が互いに結合し環を形成した構造、R32とR33が互いに結合し環を形成した構造、R33とR34が互いに結合し環を形成した構造、R21とR22が互いに結合し環を形成した構造、R34、R21、R22が互いに結合した構造、およびこれらの組み合わせから選ばれる構造である。
 R31とR32が互いに結合して環を形成した構造を有するエステル化合物(A)の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000041
 R32とR33が互いに結合して環を形成した構造を有するエステル化合物(A)の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000042
 R33とR34が互いに結合して環を形成した構造を有するエステル化合物(A)の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000043
 R21とR22が互いに結合して環を形成した構造を有するエステル化合物(A)の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000044
 R34、R21、R22が互いに結合して環を形成した構造を有するエステル化合物(A)の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000045
 また、好ましいR21、R22、R4、R9は、それぞれ独立に水素原子、炭素数1~20の置換もしくは未置換のアルキル基、炭素数1~20の置換もしくは未置換のシクロアルキル基、炭素数2~20の置換もしくは未置換のアルケニル基、炭素数2~20の置換もしくは未置換のアルキニル基、炭素数6~20の置換もしくは未置換のアリール基、炭素数1~20の置換もしくは未置換のヘテロ原子含有アルキル基、または、炭素数2~20の置換もしくは未置換のヘテロアリール基である。
 より好ましいR21、R22、R4、R9は、それぞれ独立に水素原子、炭素数1~10の置換もしくは未置換のアルキル基、炭素数1~10の置換もしくは未置換のシクロアルキル基、炭素数2~10の置換もしくは未置換のアルケニル基、炭素数2~10の置換もしくは未置換のアルキニル基、炭素数6~15の置換もしくは未置換のアリール基、炭素数1~10の置換もしくは未置換のヘテロ原子含有アルキル基、または、炭素数2~10の置換もしくは未置換のヘテロアリール基である。
 さらに好ましいR21、R22、R4、R9は、それぞれ独立に水素原子、炭素数1~6の置換もしくは未置換のアルキル基、炭素数1~6の置換もしくは未置換のシクロアルキル基、炭素数2~6の置換もしくは未置換のアルケニル基、炭素数2~6の置換もしくは未置換のアルキニル基、炭素数6~10の置換もしくは未置換のアリール基、炭素数1~6の置換もしくは未置換のヘテロ原子含有アルキル基、または、炭素数2~6の置換もしくは未置換のヘテロアリール基である。
 R21、R22、R4、R9は、互いに結合して環を形成した構造であってもよく、例えば、R21とR22とが互いに結合した環構造を挙げることができる。
 特に好ましいR21、R22、R4、R9は、それぞれ独立に水素原子、または、炭素数1~4の置換もしくは未置換のアルキル基であり、最も好ましいR21、R22、R4、R9は、すべて水素原子である。
 <L1およびL2
 上記式(1)等において、L1およびL2は、それぞれ独立に炭化水素基またはヘテロ原子含有炭化水素基である。
 前記炭化水素基としては、例えば、置換もしくは未置換のアルキル基、置換もしくは未置換のシクロアルキル基、置換もしくは未置換のアルケニル基、置換もしくは未置換のアルキニル基、置換もしくは未置換のアリール基を挙げることができる。
 前記ヘテロ原子含有炭化水素基としては、例えば、置換もしくは未置換のヘテロ原子含有アルキル基、置換もしくは未置換のヘテロアリール基を挙げることができる。
 前記炭化水素基および前記ヘテロ原子含有炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ原子含有アルキル基、ヘテロアリール基などが挙げられる。これらの基の炭素原子数は、1~20であることが好ましい。下限値は、好ましくは2、より好ましくは3、特に好ましくは4である。ただし、アリール基の場合の好ましい下限値は6である。一方、上限値は、好ましくは18、より好ましくは15、さらに好ましくは10、特に好ましくは6である。ヘテロアリール基の場合、5員環以上の環構造を一つ以上有することが好ましく、5~7員環構造を一つ以上有することがより好ましく、5員環または6員環構造を一つ以上有することがさらに好ましい。
 上記の好ましい炭素原子数の範囲としては、4以上、または1~20から選ばれる。後者の場合、より好ましくは1~10である。前者の場合、より好ましくは4~20である。
 前者において好ましいL1およびL2は、それぞれ独立に炭素数4~20の置換もしくは未置換のアルキル基、炭素数4~20の置換もしくは未置換のシクロアルキル基、炭素数4~20の置換もしくは未置換のアルケニル基、炭素数4~20の置換もしくは未置換のアルキニル基、炭素数6~20の置換もしくは未置換のアリール基、炭素数4~20の置換もしくは未置換のヘテロ原子含有アルキル基、または、炭素数4~20の置換もしくは未置換のヘテロアリール基である。
 より好ましいL1およびL2は、それぞれ独立に炭素数4~10の置換もしくは未置換のアルキル基、炭素数6~15の置換もしくは未置換のアリール基、炭素数4~10の置換もしくは未置換のヘテロ原子含有アルキル基、または、炭素数4~15の置換もしくは未置換のヘテロアリール基である。
 さらに好ましいL1およびL2は、それぞれ独立に炭素数6~10の置換もしくは未置換のアリール基および炭素数4~10の置換もしくは未置換のヘテロアリール基であり、特に好ましくは、炭素数6~10の置換もしくは未置換のアリール基である。殊に好ましくは水素以外の置換基含有アリール基である。前記の水素以外の置換基としては、炭素原子数が1~10の炭化水素基や、炭素原子数が1~10のヘテロ原子含有炭化水素基である。前記ヘテロ原子として具体的には周期表の16族元素であり、さらに具体的には酸素である。また、前記の炭化水素基の具体例としては、メチル基、エチル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基等を挙げることができ、ヘテロ原子含有炭化水素基の具体例としては、メトキシ基、エトキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、t-ブトキシ基等を好ましい例として挙げることができる。      
 <n1~n6>
 上記式(1)等において、n2~n5は0~2の整数を表し、n1およびn6は0または1の整数を表す。
 n2~n5は、好ましくは0~2であり、より好ましくは0または1であり、特に好ましくは0である。
 n1およびn6は、好ましくは0または1であり、より好ましくは1である。
 <XおよびY>
 上記式(2)~(9)および(31)において、XおよびYは、それぞれ独立に炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基であり、好ましくは、それぞれ独立に下記一般式群(10)に示す基から選ばれる二価の基である。
Figure JPOXMLDOC01-appb-C000046
 群(10)中、R1'~R7'は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基であり、R2'~R7'は互いに結合して環を形成してもよく、隣接する置換基同士が直接結合して多重結合を形成してもよい。
 好ましいR1'~R7'は、それぞれ独立に水素原子、炭素数1~10の置換もしくは未置換の炭化水素基、または、炭素数1~10の置換もしくは未置換のヘテロ原子含有炭化水素基である。
 より好ましいR1'~R7'は、それぞれ独立に水素原子、または、炭素数1~6の置換もしくは未置換の炭化水素基であり、最も好ましいR1'~R7'は、すべて水素原子である。
 前記の通り、R2'~R7'は互いに結合して単環または多環を形成していてもよい。また、R1'~R7'は、前記のR1~R24と結合して環構造を形成することができる。
 XおよびYは、下記一般式群(11)に示す基から選ばれる二価の基であることが好ましい。
Figure JPOXMLDOC01-appb-C000047
 群(11)中、R1'~R5'は、それぞれ独立に水素原子、炭素数1~20の炭化水素基または炭素数1~20のヘテロ原子含有炭化水素基であり、R2'~R5'は互いに結合して環を形成してもよく、隣接する置換基同士が直接結合して多重結合を形成してもよい。
 XおよびYが一般式群(11)に示す基から選ばれる二価の基である場合、R1'~R5'は、好ましくは、それぞれ独立に水素原子または炭素数1~10の炭化水素基である。
 XおよびYは、下記一般式群(12)に示す基から選ばれる二価の基であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000048
 式(12)中、R2'~R5'は、それぞれ独立に水素原子、炭素数1~20の炭化水素基または炭素数1~20のヘテロ原子含有炭化水素基であり、R2'~R5'は互いに結合して環を形成してもよい。
 XおよびYは、下記一般式(13)に示す二価の基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000049
 式(13)中、R2'およびR3'は、それぞれ独立に水素原子、炭素数1~20の炭化水素基または炭素数1~20のヘテロ原子含有炭化水素基から選ばれ、R2'とR3'は互いに結合して環を形成してもよい。
 式(31)で表されるエステル化合物(A)において、Xが式(13)に示す二価の基である場合、R2'およびR3'は、好ましくは、それぞれ独立に水素原子または炭素数1~10の炭化水素基であり、より好ましくは、すべて水素原子である。
 前述の通り、式(10)、(11)、(12)中、R2'~R7'は互いに結合してさらに環を形成することが好ましい場合や、隣接する置換基同士が直接結合して多重結合を形成することが好ましい場合がある。前記の多重結合としては、炭素-炭素二重結合が好ましい。また、前記のR2'~R7'は互いに結合してさらに環を形成する部位が炭素-炭素二重結合を含む構造であることがさらに好ましい。上記の中でもR2'~R5'が互いに結合して環を形成することが好ましく、多重結合に置換もしくは未置換のアリール基を含むことがより好ましい。このようなXおよびYの置換基の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000050
 前記炭化水素基としては、例えば、置換もしくは未置換のアルキル基、置換もしくは未置換のシクロアルキル基、置換もしくは未置換のアルキニル基、置換もしくは未置換のアルケニル基、置換もしくは未置換のアリール基を挙げることができる。
 前記ヘテロ原子含有炭化水素基としては、例えば、置換もしくは未置換のヘテロ原子含有アルキル基、置換もしくは未置換のヘテロアリール基を挙げることができる。
 前記炭化水素基および前記ヘテロ原子含有炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ原子含有アルキル基、ヘテロアリール基などが挙げられる。これらの基の炭素原子数は、1~20であることが好ましい。下限値は、好ましくは2、より好ましくは3、特に好ましくは4である。ただし、アリール基の場合の好ましい下限値は6であり、上限値は、好ましくは20、より好ましくは15、さらに好ましくは10、特に好ましくは6である。ヘテロアリール基の場合、5員環以上の環構造を一つ以上有することが好ましく、5~7員環構造を一つ以上有することがより好ましく、5員環または6員環構造を一つ以上有することがさらに好ましい。
 以下、R1~R24、R31~R34、L1、L2、R1'~R7'において例示した基や原子のより具体的な例を示す。
 前記ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素が挙げられる。炭化水素基としては、下記のような脂肪族、分岐脂肪族、脂環族、芳香族などの種々の構造を例示できる。
 前記置換もしくは未置換のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、n-ヘキシル基、テキシル基、クミル基、トリチル基などが挙げられる。
 前記置換もしくは未置換のアルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基などが挙げられる。
 前記置換もしくは未置換のアルキニル基としては、例えば、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、ヘプチニル基、オクチニル基などが挙げられる。
 前記置換もしくは未置換のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基、シクロオクチル基、アダマンチル基、シクロペンタジエニル基、インデニル基、フルオレニル基などが挙げられる。
 前記置換もしくは未置換のアリール基としては、例えば、フェニル基、メチルフェニル基、ジメチルフェニル基、ジイソプロピルフェニル基、ジメチルイソプロピルフェニル基、tert-ブチルフェニル基、ジ-tert-ブチルフェニル基、ナフチル基、ビフェニル基、ターフェニル基、フェナントリル基、アントラセニル基などの芳香族炭化水素基や、メトキシフェニル基、ジメチルアミノフェニル基、ニトロフェニル基、トリフルオロメチルフェニル基などのヘテロ原子置換アリール基が挙げられる。
 前記置換もしくは未置換のヘテロ原子含有炭化水素基としては、例えば、メトキシメチル基、メトキシエチル基、ベンジルオキシ基、エトキシメチル基、エトキシエチル基などのヘテロ原子含有アルキル基や、フリル基、ピロリル基、チエニル基、ピラゾリル基、ピリジル基、カルバゾリル基、イミダゾリル基、ジメチルフリル基、N-メチルピロリル基、N-フェニルピロリル基、ジフェニルピロリル基、チアゾリル基、キノリル基、ベンゾフリル基、トリアゾリル基、テトラゾリル基などのヘテロアリール基が挙げられる。上記のような炭素を含む置換基に含まれる炭素原子数は、前記の通り1~20であることが好ましく、より好ましくは1~10、さらに好ましくは1~6、特に好ましくは1~4である。前記の置換基がアリール基構造を有する場合の炭素原子数は、好ましくは4~20、より好ましくは4~10、さらに好ましくは6~10である。R1~R24は水素原子以外の置換基である場合、上記の炭化水素基および酸素含有炭化水素置換基から選ばれることが好ましい。前記酸素含有炭化水素基としてはアルコキシ基がさらに好ましい。この様な構造であると、オレフィン重合用触媒の内部ドナーとして用いた場合、分子量分布がより広いオレフィン重合体が得られる等の効果が発現する場合がある。
 <エステル化合物(A)の具体例>
 以下に、本発明のエステル化合物(A)の具体例を示すが、本発明のエステル化合物(A)はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
                                                                              
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
                                                                                            
 前記R1~R24が結合して環を形成する部位が、更に二重結合や環構造、特に二重結合を含む環構造を有する構造である化合物の例としては、以下のような構造の化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
 なお、上記の構造式の中でメチル基は「Me」、エチル基は「Et」、プロピル基は「Pr」、ブチル基は「Bu」、フェニル基は「Ph」と表示し、[n]は「normal」、[i]は「iso」、「t」は「tertially」を示している。
 また、本発明のエステル化合物(A)は、脂環式構造に結合するOCOL1基とOCOL2基が、その脂環式構造に由来するシス構造またはトランス構造を形成する場合があるが、シス構造のエステル化合物が主成分であることが好ましい。ここで主成分とはシス構造の化合物の含有率が50モル%を超えること、好ましくは70モル%以上であることを指す。
 本発明のエステル化合物(A)が固体状チタン触媒成分のルイス塩基(内部ドナー)成分として好適な理由は現時点では不明であるが、本発明者らは以下の様に推測している。
 本発明のエステル化合物(A)は、環が連結した構造を持ち、好ましくは架橋構造(上記XまたはYに該当する構造)を併せ持つ。この要件によって立体配座が制約され、環に結合した二つの隣接するエステル基の距離と向きが固定化される。その結果、塩化マグネシウムにエステルが配位した際にエステルの配位様式が制限され、チタン原子、塩化マグネシウム、エステル化合物からなる剛直な重合環境が形成されると推察している。そのような環境下で重合が進行すると、ポリマー鎖の向きとプロピレンの挿入方向が高度に制御され、高立体規則性重合に適した触媒が形成されると考えている。エステルが架橋構造を含む環に結合した骨格(例えば、式(5)、(6)および(9))はエステル部位の距離と向きが制約されるため、チーグラー触媒用内部ドナーとしてより優れた骨格である。また、エステル部位がシクロヘキサン骨格に直接結合した骨格(例えば式(8))であっても、シクロヘキサン骨格に架橋構造を含む環構造が縮環することでシクロヘキサン骨格の立体配座が制約され、結果的に同様の効果を有すると考えられる。以上述べたように、ここでは6員環構造を有する構造について説明したが、この推察に基づけば、式(1)で表される構造、より好ましくは式(2)~(4)で表される多環構造を有するエステル化合物であれば、具体的に例示した化合物以外であっても同様の効果を期待できるものであり、5員環から10員環構造であっても同様の効果が発現することは明らかである。
 本発明のエステル化合物(A)は、上記の通り環が連結した構造を有することから、化合物として適度な剛性を有し、構造の変位が比較的少ないと推定される。そのため、後述するオレフィン重合用触媒に用いた場合、チタン化合物やマグネシウム化合物にエステル基含有化合物(A)が配位した際に、適度な相互作用を持ちつつ、安定した構造を保つことが期待できる。それゆえ、立体特異性や活性に好適な影響を与えると考えられる。一方、上記の様な脂環族構造は、例えば微小部位的には椅子型、船型の変位し易い多様な構造を示すであろう。このことから、分子量分布が広い分子量分布の重合体を製造することが期待できる。
 また、上記式(31)で表される本発明のエステル化合物(A)は、上記の通り、特定の複環式構造を有している。また特異な非対称の構造も有している。このような構造を有することで、化合物として適度な剛性を有するので、マグネシウム化合物やチタン化合物との相互作用でオレフィン重合の活性種を形成して、重合反応が起こる際に、構造としての変位やゆれが少ない可能性が有ると考えられる。一方で、上記式(31)の様な非対称構造のエステル化合物(A)の場合、マグネシウム化合物やチタン化合物と相互作用する場合のコンホメーションが対称型の化合物に比して多いであろうことから、多様なミクロ構造の活性種を形成できる可能性がある。この点は、分子量分布の広い重合体や立体規則性の高い重合体を含む態様を得るのに有利となる可能性があると考えられる。また、好ましくはアリール構造を含む特異な非対称構造を有していることから、マグネシウム化合物やチタン化合物と強固な配位構造をとることができているのかもしれない。
 以上のような観点から、本発明のエステル化合物(A)は、固体状チタン触媒成分のルイス塩基(内部ドナー)成分として好適であると推測される。
 <エステル化合物(A)の製造方法>
 本発明のエステル化合物(A)の製造方法は特に限定されず、例えば、対応するオレフィンをジオール化反応、ジエステル化反応を経て得ることができる。また、例えば、アントラセン類の様な特定の多環化合物を用いたカーボネート化反応、ジオール化反応、ジエステル化反応を経て得ることもできる。より具体的には、以下の様にして製造することができる。
 ≪オレフィンの合成≫
 下記式(21)に示すオレフィンは、例えばシクロペンタジエンとノルボルネンのディールスアルダー反応によって合成することができる(非特許文献1)。また、下記一般式(33)に示すオレフィンは、例えば、置換インデンと置換ジエンのディールスアルダー反応によって合成することができる(特許文献11)。ジエンは前駆体であるジエンの二量体(例えばジシクロペンタジエン)を原料にして用いることもできる。また、ディールスアルダー反応によって得られる生成物は、しばしばendo体とexo体の混合物となる(下記式(22)および(34)参照)が、本発明にはどちらの異性体であっても適用することができる。すなわち、混合物であっても、endo体のみであっても、exo体のみであってもよい。これらのendo体構造、exo体構造は、目的物であるエステル化合物にまで反映される場合が多い。
 また、ベンザインとジエンとを反応させることでオレフィンを得ることができ(非特許文献2,3,14)、脂環式ジカルボン酸無水物を配位子となりうる化合物(例えばトリフェニルホスフィン)の存在下でニッケル錯体(例えばテトラキストリフェニルホスフィンニッケル)を触媒として作用させ、脱カルボニル、脱炭酸させることで環状オレフィンを得ることができる。(特許文献7,8)
 ≪アントラセン類の合成≫
 また、前記R1~R24が結合して環を形成する部位が、更に二重結合や環構造、特に二重結合を含む環構造を有する構造である化合物は、例えば、アントラセン類を炭酸ビニレンとのディールスアルダー反応でカーボネート化合物とした後、ジオール化反応、ジエステル化反応を経て、合成することができる。
 アントラセン類は、例えば、アントラキノンに有機金属反応剤(例えばアルキルリチウムやGrignard反応剤)を反応させた後に還元(例えば塩化スズ(II)や次亜リン酸ナトリウムを用いた反応)を行うことで合成できる(下記式(14(1))、特許文献9、非特許文献15、16参照)。
 また、ジハロゲンアントラセンに対して、金属反応剤(例えばリチウムやマグネシウム)とハロゲン化アルキルによる置換反応、遷移金属触媒(例えばニッケルやパラジウム)と有機金属反応剤(例えばボロン酸エステルやGrignard反応剤)を用いてカップリング反応を行うことでも合成できる(式(14(2))、(14(3))、特許文献10、非特許文献17参照)。他にもアントラキノンに還元剤(例えば亜鉛)と求電子剤(例えばハロゲン化アルキルやスルホン酸エステル)を反応させることでジアルコキシアントラセンを得ることができる(式(14(4))、非特許文献18参照)。
Figure JPOXMLDOC01-appb-C000108
 式(14(1))中、R25Mは有機金属反応剤を表し、R25はアルキル基を表し、Mは金属または金属ハロゲン化物を表す。Mの一例としてLi, MgBr, MgCl, MgIが挙げられる。
Figure JPOXMLDOC01-appb-C000109
 式(14(2))中、R26Zは求電子剤を表し、Zはハロゲン原子を表し、R26はアルキル基を表す。
Figure JPOXMLDOC01-appb-C000110
 式(14(3))中、Zはハロゲン原子を表し、R27はアルキル基またはアリール基を表し、AとA’は水酸基またはAとA’が結合した架橋構造を表す。上記のR27、AおよびA’を含む構造のホウ素含有化合物であるホウ酸化合物、ホウ酸エステル(好ましくは、環状ホウ酸エステル化合物)の構造式の一例として下記式群(15)で表す構造を挙げることができる。  
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
 式14(4)中、R28Zは求電子剤を表し、Zはハロゲン原子を表し、R28はアルキル基を表す。
 ≪ジオールの合成≫
 エステルの前駆体であるジオール体(式(23)および式(35))は、対応するオレフィン(式(21)および式(33))を原料にして製造することができる。例えば、オレフィンと過マンガン酸カリウム(非特許文献4)または四酸化オスミウム(非特許文献5)との反応により直接ジオール体(式(23)および式(35))を得ることができる。
 別法として、メタクロロ過安息香酸(非特許文献6);tert-ブチルペルオキシド(非特許文献7);ジメチルジオキシラン(非特許文献8);ギ酸と過酸化水素水(非特許文献9);過酸化水素水とモリブデン触媒;または、過酸化水素水とタングステン触媒(非特許文献10)を用いることによってオレフィン部位をエポキシ化し、続く酸またはアルカリ加水分解反応によってジオール体(式(23)および式(35))を得ることができる。
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
 また、前記のジエンや、アントラセン化合物を環状カーボネート化した後に加水分解することでジオール化合物を得ることもできる。詳細には以下の通りである。
 ジオール体(式(23))の前駆体である環状カーボネート(式(24))は、対応するジエンと炭酸ビニレンのディールスアルダー反応によって製造することができる(非特許文献19)。上記と同様にジエンは前駆体であるジエンの二量体を原料にして用いることもできる。また、ディールスアルダー反応によって得られる生成物は、しばしばendo体とexo体の混合物となるが、本ディールスアルダー性体であっても適用することができる。この反応は、ジエンの代わりにアントラセンなどの多環芳香族化合物を用いて、後述する実施例に示したような特定構造の多環式カーボネートを得ることもできる。
 式(24)の環状カーボネートを酸またはアルカリで加水分解することでジオール体(式(23))を得ることができる(非特許文献19)。
Figure JPOXMLDOC01-appb-C000115
 ≪エステルの合成≫
 上記式(1)に対応するエステル体は、ジオール体(式(23))と酸クロライドを塩基存在下反応させることで合成することができる(式25)。塩基としては特に限定されないが、例えば水酸化ナトリウム、水酸化カリウム、アミン塩基を用いることができる。また、ジオール体とカルボン酸を酸触媒存在下反応させることで合成する方法や、DCC(非特許文献11)などの縮合剤を使用して合成することもできる(式(26))。ジオール体(式(3’))に1等量の酸クロライドまたはカルボン酸を反応させた場合、式(24)に相当する異性体が生成し得るが、続いて酸クロライドまたはカルボン酸を反応させれば式(1)に相当する化合物を得ることができる。この時、L1とL2は同一であっても異なっていてもよい。また、ジオール体を、アゾカルボン酸エステルおよびトリフェニルホスフィンの存在下、カルボン酸と反応させることで合成することもできる(非特許文献12)。
 また、上記式(31)に対応するエステル体は、下記式(37)に示すように、ジオール体(式(35))と酸クロライドを塩基存在下反応させることで合成することができる。塩基としては特に限定されないが、例えば水酸化ナトリウム、水酸化カリウム、アミン塩基を用いることができる。また、ジオール体とカルボン酸を酸触媒の存在下で反応させることで合成する方法や、DCC(非特許文献11)などの縮合剤を使用して合成することもできる(式(38)参照)。ジオール体(式(35))に1等量の酸クロライドまたはカルボン酸を反応させた場合、式(36)に相当する異性体が生成し得るが、続いて酸クロライドまたはカルボン酸を反応させれば式(31)に相当する化合物を得ることができる。この時、L1とL2は同一であっても異なっていてもよい。また、ジオール体を、アゾカルボン酸エステルおよびトリフェニルホスフィンの存在下、カルボン酸と反応させることで合成することもできる(非特許文献12)。
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
 上記の様なエステル化合物の合成方法では、前記した通り、endo体とexo体との混合物として得られる場合がある。構造的な観点からは、endo体が生成し易い傾向がある。これらの混合物として得られる場合の異性体比率に特に制限は無いが、endo体/exo体比が、100/0~50/50、好ましくは95/5~60/40、さらに好ましくは90/10~65/35となる場合を好ましい例として挙げることができる。
 これらendo体とexo体は、公知のシリカゲルを用いたカラムクロマトグラフィー法で分離できる場合が多いので、endo体とexo体をそれぞれ単離することもできる。また、ゼオライトなどの固体酸触媒を用いた異性化反応で、異性体比率を変化させることも可能である。また、単離したそれぞれの化合物を特定の比率で組み合わせて、所望とする異性体比率に調整することも勿論可能である。本発明のエステル化合物を適用する用途によっては、endo体およびexo体の何れかが好適な効果を示す場合や、特定の異性体比率で好適な効果を示す場合があることが予想されるが、そのような場合は、例えば上記の様な方法で異性体比率を100/0~0/100に調整して用いればよい。
 本発明のエステル化合物(A)は、上記の通り、各種用途にこれらendo体とexo体を単独で用いることも異性体混合物として用いることもできる。
 本発明のエステル化合物(A)は、前記した通り、固体状チタン触媒成分のルイス塩基成分として好適であるが、この用途に制限されるものではない。各種樹脂への添加剤、化粧料や皮膚外用剤、殺菌組成物、酸化防止剤、キレート剤等、公知の添加剤用途に適用できる可能性が有るのは言うまでもない。
 下記の実施例において本発明のエステル化合物の合成法を例示する。なお、下記実施例および比較例に開示した構造式の化合物は立体異性体の主成分の構造を示しており、他の立体異性体を含む場合がある。また、本発明において、主成分とは50モル%を超えること、好ましくは70モル%以上のことを指す。
 (化合物の融解挙動測定方法)
 得られたエステル化合物が固体の場合、株式会社日立ハイテクサイエンス製 DSC7020型示差走査熱量計を用い、アルミパンに適量の試料を入れ、下記の条件で融解挙動を測定した。
 開始温度:25℃、
 終了温度:300℃、
 昇温速度:10℃/分
 融点と考えられるピーク温度を観測した。異性体混合物の影響や、高温での分解が起こる化合物等に起因すると考えられるピーク温度を特定し難い場合は、吸熱が終了した温度を融解完了温度とした。
 (異性体組成の決定方法)
 常法のシリカカラムクロマトグラフィーにより異性体を分離した。単離した異性体のNMR分析と混合物のNMR分析での結果から、異性体に特有のケミカルシフトを特定し、その吸収強度比によって異性体比率を特定した。
 (1H NMRによる構造解析方法)
 日本電子(株)製JNM-EX270型核磁気共鳴装置を用い、溶媒は重水素化クロロホルムとし、少量のテトラメチルシランを加えた。測定温度は室温、観測核は1H(270MHz)、シーケンスはシングルパルス、45°パルス、繰り返し時間は5.5秒以上、積算回数は16~64回以上の条件とした。基準のケミカルシフトは、テトラメチルシランの水素を0ppmとした。有機酸化合物由来の1Hなどのピークは、常法によりアサインした。
 [実施例A1]
 <化合物1の合成>
 下記に示す化合物1を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000118
 1Lの3口フラスコにendo体テトラシクロドデセン8.62g(53.8mmol)、tert-ブチルアルコール240mL、および水50mLを添加し、攪拌させながら内温を0℃まで冷却した。別のフラスコに過マンガン酸カリウム12.0g、水250mL、および水酸化ナトリウム2.68gを添加して攪拌し、過マンガン酸カリウム水溶液を調製した。先に調製したテトラシクロドデセン溶液に過マンガン酸カリウム水溶液をゆっくり滴下し、内温が5℃を超えないように滴下した。滴下後、0℃で1時間攪拌を継続した。飽和ピロ亜硫酸ナトリウム水溶液を調製し、反応液にゆっくり滴下し、白色の沈殿物が生成するまで滴下した。生成した沈殿物を濾過によって除去し、ろ液を酢酸エチルで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮し、化合物1の粗生成物7.24gを得た。得られた化合物1はこれ以上の精製を行わず、次の<化合物2の合成>に使用した。
 <化合物2の合成>
 下記に示す化合物2を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000119
 窒素雰囲気下、100mLの3口フラスコに化合物1を5g(25.7mmol)、脱水ピリジンを31mL添加して攪拌した。氷浴で冷却し、塩化ベンゾイル6.3mLをゆっくり添加した。添加後、室温まで昇温して終夜攪拌した。再び氷浴で冷却し、メタノール5mLを添加した。反応液にクロロホルムと水を添加して有機層を分離した。有機層を水で3回、飽和塩化アンモニウム水溶液、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮して粗生成物10.37gを得た。シリカゲルカラムクロマトグラフィーで精製し、化合物2を6.67g(16.6mmol、白色固体)得た。得られた化合物2の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ0.97-1.28 (m, 3H), 1.32-1.70 (m, 4H), 1.90 (br s, 2H), 2.15 (d, J=10.2 Hz, 1H), 2.39 (br s, 2H), 2.53 (br s, 2H), 5.53-5.59 (m, 2H), 7.19-7.33 (m, 4H), 7.40-7.49 (m, 2H), 7.80-7.92 (m, 4H).
 得られた化合物2の融解完了温度は141℃であった。
 [実施例A2]
 <化合物3の合成>
 下記に示す化合物3を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000120
 1Lの3口フラスコに、exo体テトラシクロドデセン10.18g(63.5mmol)、tert-ブチルアルコール240mL、および水60mLを添加し、攪拌させながら内温を0℃まで冷却した。別のフラスコに過マンガン酸カリウム13.81g、水300mL、および水酸化ナトリウム3.00gを添加して攪拌し、過マンガン酸カリウム水溶液を調製した。先に調製したテトラシクロドデセン溶液に過マンガン酸カリウム水溶液をゆっくり滴下し、内温が5℃を超えないように滴下した。滴下後、0℃で1時間攪拌を継続した。飽和ピロ亜硫酸ナトリウム水溶液を調製し、反応液にゆっくり滴下し、白色の沈殿物が生成するまで滴下した。生成した沈殿物を濾過によって除去し、ろ液を酢酸エチルで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮し、化合物3の粗生成物3.42g(17.6mmol)を得た。得られた化合物3はこれ以上の精製を行わず、次の<化合物4の合成>に使用した。
 <化合物4の合成>
 下記に示す化合物4を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000121
 窒素雰囲気下、200mLの3口フラスコに化合物3を4.0g(20.6mmol)、脱水ピリジンを4.2mL、および脱水クロロホルム100mLを添加して攪拌した。氷浴で冷却し、塩化ベンゾイル4.9mLをゆっくり添加した。添加後、室温まで昇温して終夜攪拌した。再び氷浴で冷却し、メタノール5mLを添加した。反応液にクロロホルムと水を添加し有機層を分離した。有機層を水で3回、飽和塩化アンモニウム水溶液、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮して粗生成物11.3gを得た。シリカゲルカラムクロマトグラフィーで精製し、化合物4を4.44g(11.0mmol、白色固体)得た。得られた化合物4の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ0.96 (d, J=10.6 Hz 1H), 1.13-1.22 (m, 2H), 1.43-1.60 (m, 5H), 1.77-2.05 (m, 2H), 2.23 (br s, 2H), 2.41 (br s, 2H), 4.99-5.01 (m, 2H), 7.21-7.29 (m, 4H), 7.42-7.49 (m, 2H), 7.81-7.87 (m, 4H).
 得られた化合物4の融解完了温度は163℃であった。
 [実施例A3]
 <化合物5の合成>
 下記に示す化合物5を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000122
 2Lの3口フラスコにベンゾノルボルナジエン15.53g(110.8mmol)、tert-ブチルアルコール425mL、および水105mLを添加し、攪拌させながら内温を0℃まで冷却した。別のフラスコに過マンガン酸カリウム23.7g、水527mL、および水酸化ナトリウム5.07gを添加して攪拌し、過マンガン酸カリウム水溶液を調製した。先に調製したベンゾノルボルナジエン溶液に過マンガン酸カリウム水溶液をゆっくり滴下し、内温が5℃を超えないように滴下した。滴下後、0℃で1時間攪拌を継続した。飽和ピロ亜硫酸ナトリウム水溶液を調製し、反応液にゆっくり滴下し、白色の沈殿物が生成するまで滴下した。生成した沈殿物を濾過によって除去し、ろ液を酢酸エチルで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮し、化合物5を8.19g得た。得られた化合物5の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.89-1.97 (m, 1H), 2.20-2.27 (m, 1H), 2.74-2.82 (m, 2H), 3.20-3.25 (m, 2H), 3.80-3.87 (m, 2H), 7.06-7.13 (m, 2H), 7.15-7.22 (m, 2H).
 <化合物6の合成>
 下記に示す化合物6を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000123
 窒素雰囲気下、300mLの3口フラスコに化合物5を9.57g(54.3mmol)、および脱水ピリジンを70mL添加して攪拌した。氷浴で冷却し、塩化ベンゾイル13.4mLをゆっくり添加した。添加後、室温まで昇温して終夜攪拌した。再び氷浴で冷却し、メタノール5mLを添加した。ビーカーに水200mLを加えて攪拌させながら反応液を添加し、生じた析出物を濾過した。析出物をヘキサンで洗浄し、次いでエタノールで再結晶操作を行い16.36gの固体を得た。シリカゲルカラムクロマトグラフィーによって少量の残留ピリジンを除去し、化合物6を15.48g(40.3mmol、白色固体)得た。得られた化合物6の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.12-2.20 (m, 1H), 2.57-2.64 (m, 1H), 3.57 (br s, 2H), 5.18 (d, J=1.6 Hz, 2H), 7.12-7.22 (m, 2H), 7.24-7.37(m, 6H), 7.44-7.53 (m, 4H), 7.87-7.96 (m, 2H).
 得られた化合物6の融解完了温度は139℃であった。
 [実施例A4]
 <化合物7の合成>
 下記に示す化合物7を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000124
 窒素雰囲気下、1Lの3口フラスコに脱水トルエン200mL、1-ブロモ-2-ヨードベンゼン6.36mL、および2,5-ジメチルフラン10.5mLを加え、攪拌させながら-20℃まで冷却した。n-ブチルリチウムヘキサン溶液(1.6M)47mLをゆっくり滴下し、滴下後、-20℃で1時間攪拌した。室温まで徐々に昇温し、終夜継続攪拌した。氷浴で冷却しながら水をゆっくり滴下し、酢酸エチルを加え有機層を分離した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物7を4.05g(23.5mmol)得た。得られた化合物7の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.90 (s, 6H), 6.77 (s, 2H), 6.97 (dd, J=5.3, 3.0 Hz, 2H), 7.13 (dd, J=5.3, 3.0 Hz, 2H).
 <化合物8の合成>
 下記に示す化合物8を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000125
 2Lの3口フラスコに化合物7を4.05g(23.5mmol)、tert-ブチルアルコール129mL、および水32mLを添加し、攪拌させながら内温を0℃まで冷却した。別のフラスコに過マンガン酸カリウム7.23g、水161mL、および水酸化ナトリウム1.61gを添加して攪拌し、過マンガン酸カリウム水溶液を調製した。先に調製した化合物7の溶液に過マンガン酸カリウム水溶液をゆっくり滴下し、内温が5℃を超えないように滴下した。滴下後、0℃で1時間攪拌を継続した。飽和ピロ亜硫酸ナトリウム水溶液を調製し、反応液にゆっくり滴下し、白色の沈殿物が生成するまで滴下した。生成した沈殿物を濾過によって除去し、ろ液を酢酸エチルで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮し、粗生成物3.03gを得た。シリカゲルカラムクロマトグラフィーで精製し、化合物8を2.02g(10.7mmol)得た。得られた化合物8の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.76 (s, 6H), 2.84 (br s, 2H), 3.76 (br s, 2H), 7.15-7.25 (m, 4H).
 <化合物9の合成>
 下記に示す化合物9を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000126
 窒素雰囲気下、50mLの3口フラスコに、化合物8を2.15g(10.4mmol)、および脱水ピリジンを10mL添加して攪拌した。氷浴で冷却し、塩化ベンゾイル2.8mLをゆっくり添加した。添加後、室温まで昇温して終夜攪拌した。再び氷浴で冷却し、メタノール5mLを添加した。ビーカーに水100mLと酢酸エチル100mLを加え、有機層を分離した。有機層を水で3回洗浄し、飽和塩化アンモニウム水溶液、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾過し、ロータリーエバポレーターで濃縮し、4.78gの粗生成物を得た。シリカゲルカラムクロマトグラフィーで精製して化合物9を3.29g(7.9mmol、白色固体)得た。得られた化合物9の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.85 (s, 6H), 5.34 (s, 2H), 7.22-7.55 (m, 10H), 7.91-8.02 (m, 4H).
 得られた化合物9の融解完了温度は196℃であった。
 [実施例A5]
 <化合物10の合成>
 下記に示す化合物10を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000127
 窒素雰囲気下、500mLの3口フラスコに3,4-ジブロモトルエン16.0g、脱水トルエン120mL、およびシクロペンタジエン4.23gを添加して攪拌した。反応に使用したシクロペンタジエンは、非特許文献13を参考にして、160~170℃でジシクロペンタジエンを熱分解し、40℃~67℃で留出した成分を速やかに使用した。内温を0℃に冷却し、n-ブチルリチウムヘキサン溶液(1.6M)40mLをゆっくり滴下した。滴下後、徐々に室温まで昇温させ、室温で4時間攪拌した。反応後、飽和塩化アンモニウム水溶液を添加し、次いでジエチルエーテルを加えた。有機層を分離し、有機層を水、飽和食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮し、粗生成物14.32gを得た。粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物10を4.19g(26.8mmol)得た。得られた化合物10の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.19-2.24(m, 1H), 2.27-2.33 (m, 4H), 3.85 (s, 2H), 6.71-6.81 (m, 2H), 7.06-7.12 (m, 3H).
 <化合物11の合成>
 下記に示す化合物11を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000128
 500mLの3口フラスコに、化合物10を4.19g(26.8mmol)、tert-ブチルアルコール107mL、および水27mLを添加し、攪拌させながら内温を0℃まで冷却した。別のフラスコに過マンガン酸カリウム6.40g、水135mL、水酸化ナトリウム1.42gを添加して攪拌し、過マンガン酸カリウム水溶液を調製した。先に調製した化合物10の溶液に過マンガン酸カリウム水溶液をゆっくり滴下し、内温が5℃を超えないように滴下した。滴下後、0℃で1時間攪拌を継続した。飽和ピロ亜硫酸ナトリウム水溶液を調製し、反応液にゆっくり滴下し、白色の沈殿物が生成するまで滴下した。生成した沈殿物を濾過によって除去し、ろ液を酢酸エチルで4回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮し、粗生成物3.80gを得た。シリカゲルカラムクロマトグラフィーで精製し、化合物11を3.04g(16.0mmol)得た。得られた化合物11の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.86-1.93 (m, 1H), 2.18-2.24 (m, 1H), 2.30 (s, 3H), 2.78-2.86 (m, 2H), 3.15-3.19 (m, 2H), 3.78-3.84 (m, 2H), 6.90 (d, J=7.3 Hz, 1H), 7.02 (s, 1H), 7.07 (d, J=7.3 Hz, 1H).
 <化合物12の合成>
 下記に示す化合物12を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000129
 窒素雰囲気下、200mLの3口フラスコに、化合物11を2.94g(15.5mmol)、脱水クロロホルム80mL、および塩化ベンゾイル4.6gを加えて攪拌した。氷浴で冷却し、脱水ピリジン2.6mLをゆっくり滴下した。添加後、室温まで昇温して終夜攪拌し、再び氷浴で冷却し、メタノール5mLを添加した。反応液に水とクロロホルムを加えて攪拌した後、有機層を分離した。有機層を飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮して粗生成物7.91gを得た。シリカゲルカラムクロマトグラフィーで精製し、化合物12を4.82g(12.1mmol、白色固体)得た。得られた化合物12の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.08-2.17 (m, 1H), 2.35 (s, 3H), 2.55-2.63 (m, 1H), 3.49-3.55 (m, 2H), 5.13-5.18 (m, 2H), 6.96-7.04 (m, 1H), 7.15-7.39 (m, 6H), 7.44-7.52 (m, 2H), 7.87-7.95 (m, 4H).
 得られた化合物12の融解完了温度は155℃であった。
 [実施例A6]
 <化合物13の合成>
 下記に示す化合物13を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000130
 窒素雰囲気下、200mLの3口フラスコに水素化ナトリウム21.7g(64.6%流動パラフィン分散体)を加え、脱水テトラヒドロフラン135mLを加えて攪拌した。氷浴で冷却しながらシクロペンタジエン19.3gをゆっくり滴下した。反応に使用したシクロペンタジエンは、非特許文献13を参考にして、160~170℃でジシクロペンタジエンを熱分解し、40℃~67℃で留出した成分を速やかに使用した。滴下後、室温で20分間攪拌した後、氷浴で冷却しながら、1,2-ジクロロエタン28.9gをゆっくり滴下した。滴下後、室温まで昇温し8時間攪拌した。ビーカーにテトラヒドロフラン100mLと水10.5gを加えて含水THFを調製した。反応後のフラスコを氷浴で冷却しながら含水テトラヒドロフランをゆっくり滴下した。別のフラスコに氷水を用意し、先の反応液を氷水中に移液した。その後、ペンタンを添加し、有機層を分離した。次いで有機層を0.5N塩酸で2回、水で2回、飽和食塩水で1回洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾別し、得られた有機層を蒸留し、664~665torr、留出温度88~92℃の成分を回収し、化合物13を18.09g得た。
 <化合物14の合成>
 下記に示す化合物14を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000131
 窒素雰囲気下、500mLの3口フラスコに1,2-ジブロモベンゼン15.1g(64.0mmol)、脱水トルエン130mL、および化合物13を5.90g添加して攪拌した。内温を0℃に冷却し、n-ブチルリチウムヘキサン溶液(1.6M)40mLをゆっくり滴下した。滴下後、徐々に室温まで昇温させ、室温で4時間攪拌した。反応後、飽和塩化アンモニウム水溶液を添加し、次いでジエチルエーテルを加えた。有機層を分離し、水と飽和食塩水の順に洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムを濾別して得られた有機層をロータリーエバポレーターで濃縮し、粗生成物を15.44g得た。粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物14を7.70g(45.8mmol)得た。
 <化合物14-2の合成>
 下記に示す化合物14-2を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000132
 500mLの3口フラスコに化合物14を7.7g(45.8mmol)、tert-ブチルアルコール178mL、および水44mLを添加し、攪拌させながら内温を0℃まで冷却した。別のフラスコに過マンガン酸カリウム10.6g、水222mL、および水酸化ナトリウム2.32gを添加して攪拌し、過マンガン酸カリウム水溶液を調製した。先に調製した化合物14の溶液に過マンガン酸カリウム水溶液をゆっくり滴下し、内温が5℃を超えないように滴下した。滴下後、0℃で1時間攪拌を継続した。飽和ピロ亜硫酸ナトリウム水溶液を調製し、反応液にゆっくり滴下し、白色の沈殿物が生成するまで滴下した。生成した沈殿物を濾過によって除去し、ろ液を酢酸エチルで4回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮し、粗生成物5.63gを得た。シリカゲルカラムクロマトグラフィーで精製し、化合物14-2を3.85g(19.0mmol)得た。得られた化合物14-2の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ0.29-0.35 (m, 2H), 0.89-0.95 (m, 2H), 2.69-2.79 (m, 4H), 3.91-3.96 (m, 2H), 7.08-7.22 (m, 4H).
 <化合物15の合成>
 下記に示す化合物15を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000133
 窒素雰囲気下、200mLの3口フラスコに、化合物14-2を4.06g(24.1mmol)、脱水クロロホルム105mL、および塩化ベンゾイル5.95gを加えて攪拌した。氷浴で冷却し、脱水ピリジン3.4mLをゆっくり滴下した。添加後、室温まで昇温して終夜攪拌し、再び氷浴で冷却し、メタノール5mLを添加した。反応液に水とクロロホルムを加えて攪拌した後、有機層を分離した。有機層を飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮して粗生成物9.65gを得た。シリカゲルカラムクロマトグラフィーで精製し、化合物15を3.88g(9.5mmol、白色固体)得た。得られた化合物15の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ0.46-0.56 (m, 2H), 1.05-1.14 (m, 2H), 3.04 (s, 2H), 5.28 (s, 2H), 7.17-7.37 (m, 8H), 7.44-7.53 (m, 2H), 7.88-7.96 (m, 4H).
 得られた化合物15の融解完了温度は111℃であった。
 [実施例A7]
 <化合物16の合成>
 下記に示す化合物16を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000134
 窒素雰囲気下、500mLの3口フラスコに、1,2-ジブロモ-4-tert―ブチルベンゼン20.0g(68.5mmol)、脱水トルエン130mL、およびシクロペンタジエン4.54gを添加して攪拌した。反応に使用したシクロペンタジエンは、非特許文献13を参考にして、160~170℃でジシクロペンタジエンを熱分解し、40℃~67℃で留出した成分を速やかに使用した。内温を0℃に冷却し、n-ブチルリチウムヘキサン溶液(1.6M)43mLをゆっくり滴下した。滴下後、徐々に室温まで昇温させ、室温で12時間攪拌した。反応後、飽和塩化アンモニウム水溶液を添加し、次いでジエチルエーテルを加えた。有機層を分離し、水と飽和食塩水の順に洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮し、粗生成物19.67gを得た。粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物16を5.57g(28.1mmol)得た。得られた化合物16の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.30 (s, 9H), 2.21-2.33 (m, 2H), 3.83-3.87 (m, 2H), 6.76-6.80 (m, 2H), 6.93 (dd, J=7.2, 1.6 Hz, 1H), 7.13 (d, J=7.2 Hz, 1H), 7.29 (d, J=1.6 Hz, 1H).
 <化合物17の合成>
 下記に示す化合物17を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000135
 500mLの3口フラスコに、化合物16を5.57g(28.1mmol)、tert-ブチルアルコール109mL、および水27mLを添加し、攪拌させながら内温を0℃まで冷却した。別のフラスコに過マンガン酸カリウム6.55g、水135mL、および水酸化ナトリウム1.55gを添加して攪拌し、過マンガン酸カリウム水溶液を調製した。先に調製した化合物16の溶液に過マンガン酸カリウム水溶液をゆっくり滴下し、内温が5℃を超えないように滴下した。滴下後、0℃で1時間攪拌を継続した。飽和ピロ亜硫酸ナトリウム水溶液を調製し、反応液にゆっくり滴下し、白色の沈殿物が生成するまで滴下した。生成した沈殿物を濾過によって除去し、ろ液を酢酸エチルで4回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物17を4.11g(17.7mmol)得た。得られた化合物17の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.29 (s, 9H), 1.88-1.95 (m, 1H), 2.19-2.25 (m, 1H), 2.89 (br s, 2H), 3.17-3.20 (m, 2H), 3.80-3.84 (m, 2H), 7.09-7.12 (m, 2H), 7.22-7.24 (m, 1H).
 <化合物18の合成>
 下記に示す化合物18を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000136
 窒素雰囲気下、50mLの3口フラスコに、化合物17を4.11g(9.3mmol)、および脱水ピリジンを17.7mL添加して攪拌した。氷浴で冷却し、塩化ベンゾイル4.3mLをゆっくり添加した。添加後、室温まで昇温して終夜攪拌した。再び氷浴で冷却し、メタノール5mLを添加した。ビーカーに水100mLと酢酸エチル100mLを加え、有機層を分離した。有機層を水で3回、飽和塩化アンモニウム水溶液、飽和食塩水で各1回ずつ順に洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾過し、ロータリーエバポレーターで濃縮し、9.34gの粗生成物を得た。シリカゲルカラムクロマトグラフィーで精製し、6.13gの固体成分を得た。得られた固体をヘキサンで再結晶することによって化合物18を4.0g(9.0mmol、白色固体)得た。得られた化合物18の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.33 (s, 9H), 2.11-2.19 (m, 1H), 2.56-2.63 (m, 1H), 3.53 (s, 2H), 5.15-5.19 (m, 2H), 7.18-7.32 (m, 6H), 7.37-7.39 (m, 1H), 7.44-7.53 (m, 2H), 7.88-7.94 (m, 4H).
 得られた化合物18の融解完了温度は115℃であった。
 [実施例A8]
 <化合物19の合成>
 下記に示す化合物19を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000137
 窒素雰囲気下、500mLの3口フラスコに、1,2-ジブロモ-4,5-ジメチルベンゼン20.0g(75.8mmol)、脱水トルエン150mL、およびシクロペンタジエン5.01gを添加して攪拌した。反応に使用したシクロペンタジエンは、非特許文献13を参考にして、160~170℃でジシクロペンタジエンを熱分解し、40℃~67℃で留出した成分を速やかに使用した。内温を0℃に冷却し、n-ブチルリチウムヘキサン溶液(1.6M)47.5mLをゆっくり滴下した。滴下後、徐々に室温まで昇温させ、室温で12時間攪拌した。反応後、飽和塩化アンモニウム水溶液を添加し、次いでジエチルエーテルを加えた。有機層を分離し、水と飽和食塩水の順に洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮し、粗生成物18.64gを得た。粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物19を3.89g(22.8mmol)得た。得られた化合物19の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.17-2.22 (m, 7H), 2.29 (dt, J=6.9, 1.6 Hz, 1H), 3,81-3.85 (m, 2H), 6.77 (t, J=2.0 Hz, 2H), 7.03 (s, 2H).
 <化合物20の合成>
 下記に示す化合物20を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000138
 500mLの3口フラスコに、化合物19を5.57g(22.8mmol)、tert-ブチルアルコール89mL、および水22mLを添加し、攪拌させながら内温を0℃まで冷却した。別のフラスコに過マンガン酸カリウム5.33g、水111mL、および水酸化ナトリウム1.22gを添加して攪拌し、過マンガン酸カリウム水溶液を調製した。先に調製した化合物19の溶液に過マンガン酸カリウム水溶液をゆっくり滴下し、内温が5℃を超えないように滴下した。滴下後、0℃で1時間攪拌を継続した。飽和ピロ亜硫酸ナトリウム水溶液を調製し、反応液にゆっくり滴下し、白色の沈殿物が生成するまで滴下した。生成した沈殿物を濾過によって除去し、ろ液を酢酸エチルで4回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物20を2.25g(11.0mmol)得た。得られた化合物20の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.83-1.90 (m, 1H), 2.17-2.23 (m, 7H), 2.70-2.77 (m, 2H), 3.12-3.17 (m, 2H), 3.77-3.83 (m, 2H), 6.98 (s, 2H).
 <化合物21の合成>
 下記に示す化合物21を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000139
 窒素雰囲気下、50mLの3口フラスコに、化合物20を2.25g(11.0mmol)、および脱水ピリジンを11.0mL添加して攪拌した。氷浴で冷却し、塩化ベンゾイル2.7mLをゆっくり添加した。添加後、室温まで昇温して終夜攪拌した。再び氷浴で冷却し、メタノール5mLを添加した。ビーカーに水100mLと酢酸エチル100mLを加え、有機層を分離した。有機層を水で3回、飽和塩化アンモニウム水溶液と飽和食塩水で各1回ずつ順に洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾過し、ロータリーエバポレーターで濃縮し、4.82gの粗生成物を得た。シリカゲルカラムクロマトグラフィーで精製し、化合物21を4.44g(10.8mmol、淡黄色固体)得た。得られた化合物21の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.09 (d, J = 9.8 Hz, 1H), 2.26 (s, 6H), 2.57 (d, J = 9.8 Hz, 1H), 3.49 (s, 2H), 5.13 (d, J = 1.3 Hz, 2H), 7.13 (s, 2H), 7.20-7.31 (m, 4H), 7.44-7.52 (m, 2H), 7.87-7.93 (m, 4H).
 得られた化合物21の融解完了温度は152℃であった。
 [実施例A9]
 <化合物22の合成>
 下記に示す化合物22を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000140
 十分に加熱乾燥させた撹拌子入りの1Lの三つ口フラスコに、滴下漏斗、温度計および三方コックを備え付けた。窒素雰囲気下にて2-イソプロピルフェノールを6.00mL(44.1mmol, 1当量)装入し、続いてジクロロメタン100mLとジイソプロピルアミン0.62mL(4.41mmol, 0.1当量)を加えた。次に、窒素雰囲気下でジクロロメタン400mLに溶解させたN-ブロモスクシンイミド(NBS)を8.21g(46.1mmol, 1.05当量)、室温条件で先に調製した反応溶液へゆっくりと滴下し、滴下終了後の反応溶液を室温で1時間撹拌した。反応終了後、塩酸(2M)をpHが1となるまで加え、水100mLを加えた後にジクロロメタンで3回抽出した。集めた有機層を硫酸ナトリウムで乾燥後、ロータリーエバポレーターで濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)で精製した結果、化合物22を9.40g(43.7mmol、収率91%)得た。得られた化合物は「J. Med. Chem. 2017, 60, 3618-3625」で合成された同一化合物のスペクトルと良い一致を示した。得られた化合物22の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.24 (d, J=6.9 Hz, 6H), 3.32 (sep, J=6.9 Hz, 1H), 5.57 (s, 1H), 6.77 (t, J=7.5 Hz, 1H), 7.14 (dd, J=7.5, 1.7 Hz, 1H) 7.29 (dd, J=7.5, 1.7 Hz, 1H). 合成参考文献:Bull. Chem. Soc. Jpn. 1993, 66, 1576-1579.
 <化合物23の合成>
 下記に示す化合物23を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000141
 十分に加熱乾燥させた撹拌子入りの500mLの三つ口フラスコに、還流管、平栓および三方コックを備え付けた。窒素雰囲気下にて化合物22を9.40g(43.7mmol, 1当量)およびTHF85mL、1,1,1,3,3,3-ヘキサメチルジシラザン(HMDS) を12.0mL(56.8mmol, 1.3当量)加え、平栓を温度計に換えた後、オイルバスにて80℃で加熱撹拌した。終夜撹拌後、室温まで放冷してから窒素雰囲気下にて減圧し、THFと未反応のHMDSを反応系内から取り除いた。本反応における生成物は精製を行わず、そのまま以下の反応に用いた。
 上記反応の生成物入り容器に滴下漏斗を備え付け、THF120mLを加えた後、-78℃まで冷却した。nBuLiヘキサン溶液38.3mL(1.6M, 61.2mmol, 1.4当量)をゆっくりと滴下し、滴下終了後、-78℃にて30分間撹拌した。続いて-78℃条件下にてトリフルオロメタンスルホン酸無水物(Tf2O)を10.0mL(61.0mmol, 1.4当量)をゆっくりと滴下し、滴下終了後、-78℃にて30分間撹拌した後に反応溶液を室温とした。反応溶液を再び0℃に冷やし、飽和炭酸水素ナトリウム水溶液をpHが7~8程度となるまでゆっくりと加えた。酢酸エチルで3回抽出し、集めた有機層を硫酸ナトリウムで乾燥させた後にロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)で精製した結果、化合物23を9.93g(29.2mmol、収率67%)得た。得られた化合物23は「Angew. Chem. Int. Ed. 2011, 50, 5674-5677」で合成された同一化合物のスペクトルと良い一致を示した。得られた化合物23の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ0.38 (s, 9H), 1.24 (d, J=6.9 Hz, 6H), 3.31 (sep, J=6.9 Hz, 1H), 7.31-7.43 (m, 3H). 合成参考文献:Org. Lett. 2013, 15, 5722-5725.
 <化合物24の合成>
 下記に示す化合物24を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000142
 十分に加熱乾燥させた撹拌子入りの1L三つ口フラスコに、還流管、平栓および三方コックを備え付け、窒素雰囲気下にてフッ化セシウム22.2g(146mmol, 5当量)とアセトニトリル290mLを装入した。続いて、直前にジシクロペンタジエンを加熱分解して得られたシクロペンタジエン12.3mL(146mmol, 5当量)を反応溶液に加え、その後すぐに化合物23を9.93g(29.2mmol, 1当量)加えた。平栓を温度計に換えた後にオイルバスで40℃に加熱し、16時間加熱撹拌させた。反応終了後、室温に放冷し、反応溶液をシリカゲルに通し(展開溶媒:酢酸エチル)、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)で精製した結果、化合物24と少量の不純物を含む溶液を5.32g得た。更なる精製は実施せずに次の反応に使用した。得られた化合物24の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.20 (d, J =6.9 Hz, 3H), 1.28 (d, J=6.9 Hz, 3H),2.17-2.21 (m, 1H), 2.26-2.30 (m, 1H), 3.13 (sep, J=6.9 Hz, 1H), 3.86-3.88 (m, 1H), 4.08-4.09 (m, 1H), 6.77-6.93 (m, 4H), 7.07 (d, J=6.3 Hz, 1H). 合成参考文献:Macromolecules 2017, 50, 580-586.
 <化合物25の合成>
 下記に示す化合物25を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000143
 撹拌子入りの500mL三つ口フラスコに滴下漏斗、温度計および三方コックを備え付けた。窒素雰囲気下にてtBuOH 120mLと水35mL、<化合物24の合成>で得られた化合物24の混合溶液 5.32g(1当量)を装入し、反応溶液を0℃に冷却した。水130mLにNaOH 1.45g(36.2mmol, 1.25当量)とKMnO4 6.86g(43.4mmol, 1.5当量)を溶解させ、反応溶液にゆっくりと滴下した。滴下終了後、0℃の条件下でさらに30分間撹拌させた後、ピロ亜硫酸ナトリウムの飽和水溶液を用いて未反応のKMnO4をクエンチした。しばらく室温で撹拌させた後、反応溶液のpHが7~8程度となるまで炭酸水素ナトリウムを加え、生じた白色沈殿物をろ過して取り除いた。ろ過した溶液を酢酸エチルで3回抽出し、集めた有機層を硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンで1L展開した後、ヘキサン:酢酸エチル=3:1で展開)で精製した結果、化合物25を5.31g(24.3mmol、収率84%)得た。得られた化合物25の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.22 (d, J =6.9 Hz, 3H), 1.27 (d, J = 6.9 Hz, 3H),1.86-1.92 (m, 1H), 2.20-2.24 (m, 1H), 2.71 (d, J = 4.9 Hz, 1H), 2.86 (d, J = 4.9 Hz, 1H), 3.09 (sep, J = 6.9 Hz,1H), 3.20 (br s, 1H), 3.40 (br s, 1H), 3.78-3.87 (m, 2H), 6.99-7.10 (m, 3H). 合成参考文献:J. Org. Chem. 2017, 82, 9715-9730.
 <化合物26の合成>
 下記に示す化合物26を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000144
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物25を5.31g(24.3mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、ベンゾイルクロリドを7.0mL(60.3mmol, 2.5当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール10mLを加え、1時間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=20:1)およびヘキサンによる再結晶によって精製した結果、化合物26を5.19g(12.2mmol、収率50%、白色固体)得た。得られた化合物26の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.32 (d, J =6.9 Hz, 3H), 1.33 (d, J = 6.9 Hz, 3H), 2.10-2.15 (m, 1H), 2.57-2.61 (m, 1H), 3.19 (sep, J = 6.9 Hz,1H), 3.56 (br s, 1H), 3.75 (br s, 1H), 5.12-5.19 (m, 2H), 7.08-7.17 (m, 3H), 7.22-7.35 (CHCl3のシグナルと被る, m, 4H), 7.45-7.54 (m, 2H), 7.87-7.96 (m, 4H).
 得られた化合物26の融解完了温度は114℃であった。
 [実施例A10]
 <化合物27の合成>
 下記に示す化合物27を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000145
 <化合物23の合成>において、化合物22を9.40g(43.7mmol)使用する代わりに、6-ブロモ-o-クレゾールを6.00mL(48.4mmol)使用した以外は、<化合物23の合成>に記載の操作および当量関係に従い、化合物27を7.26g(23.2mmol、収率48%)得た。得られた化合物27は「J. Org. Chem. 2015, 80, 11618-11623」で合成された同一化合物のスペクトルと良い一致を示した。得られた化合物27の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ0.38 (s, 9H), 2.38 (s, 3H), 7.28-7.30 (m, 2H), 7.38-7.47 (m, 1H).
 <化合物28の合成>
 下記に示す化合物28を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000146
 <化合物24の合成>において、化合物23を9.93g(29.2mmol)使用する代わりに、化合物27を7.26g(23.2mmol)使用した以外は、<化合物24の合成>に記載の操作および当量関係に従い、ヘキサンが少量混入した化合物28を3.39g(17mmol、収率74%)得た。得られた化合物28の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.17-2.21 (m, 1H), 2.26-2.31 (m,4H), 3.85-3.88 (m, 1H), 3.99-4.00 (m, 1H), 6.73-6.85 (m, 4H), 7.05 (d, J = 6.9 Hz, 1H).
 <化合物29の合成>
 下記に示す化合物29を、後述する方法で合成した。


                                                                                            
Figure JPOXMLDOC01-appb-C000147
 撹拌子入りの500mL三つ口フラスコに滴下漏斗、温度計および三方コックを備え付けた。窒素雰囲気下にてtBuOH 70mLと水20mL、<化合物28の合成>で得られた、ヘキサンが少量混入した化合物28を3.39g(17mmol, 1当量)装入し、反応溶液を0℃に冷却した。水80mLにNaOH 0.85g(21.3mmol, 1.25当量)とKMnO4 4.03g(25.5mmol, 1.5当量)を溶解させ、反応溶液にゆっくりと滴下した。滴下終了後、0℃の条件下でさらに30分間撹拌させた後、ピロ亜硫酸ナトリウムの飽和水溶液を用いて未反応のKMnO4をクエンチした。しばらく室温で撹拌させた後、反応溶液のpHが7~8程度となるまで炭酸水素ナトリウムを加え、生じた白色沈殿物をろ過して取り除いた。ろ過した溶液を酢酸エチルで3回抽出し、集めた有機層を硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=3:1)で精製した結果、化合物29を2.19g(11.5mmol、収率68%)得た。得られた化合物29の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.86-1.91 (m, 1H), 2.19-2.24 (m, 1H), 2.31 (s, 3H), 2.72-2.74 (m, 1H), 2.83-2.85 (m, 1H), 3.19-3.20 (m, 1H), 3.31-3.32 (m, 1H), 3.77-3.84 (m, 2H), 6.89-7.07 (m, 3H).
 <化合物30の合成>
 下記に示す化合物30を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000148
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物29を2.19g(11.5mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、ベンゾイルクロリドを2.94mL(25.3mmol, 2.2当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、3時間撹拌した。反応終了後、溶液を0℃に冷やし、メタノール20mLを加え、1時間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=10:1)によって精製した結果、化合物30を3.19g(8.01mmol、収率70%、白色固体)得た。得られた化合物30の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.09-2.14 (m, 1H), 2.41 (s, 3H), 2.56-2.60 (m, 1H), 3.55 (br s, 1H), 3.67 (br s, 1H), 5.10-5.18 (m, 2H), 6.99-7.17 (m, 3H), 7.24-7.33 (CHCl3のシグナルと被る, m, 4H), 7.45-7.53 (m, 2H), 7.88-7.95 (m, 4H).
 得られた化合物30の融解完了温度は131℃であった。
 [実施例A11]
 <化合物31の合成>
 下記に示す化合物31を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000149
 <化合物22の合成>において、2-イソプロピルフェノールを6.00mL(44.1mmol)使用する代わりに、2,5-ジメチルフェノールを7.33g(60.0mmol)使用した以外は、<化合物22の合成>に記載の操作および当量関係に従い、化合物31の化合物を10.8g(53.9mmol、収率90%)得た。得られた化合物は「Adv. Synth. Catal. 2008, 350, 1309-1315」で合成された同一化合物のスペクトルと良い一致を示した。得られた化合物31の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.27 (s, 3H), 2.36 (s, 3H), 5.65 (s, 1H), 6.71 (d, J = 7.6 Hz, 1H), 6.95 (d, J = 7.6 Hz, 1H).
 <化合物32の合成>
 下記に示す化合物32を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000150
 <化合物23の合成>において、化合物22を9.40g(43.7mmol)使用する代わりに、化合物31を10.8g(53.9mmol)使用した以外は、<化合物23の合成>に記載の操作および当量関係に従い、少量の不純物を含む化合物32の化合物を13.0g得た。本反応における生成物の精製および同定はこれ以上行わず、次の反応に用いた。
 <化合物33の合成>
 下記に示す化合物33を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000151
 <化合物24の合成>において、化合物23を9.93g(29.2mmol)使用する代わりに、少量の不純物を含む化合物32を13.0g(39.9mmolを1当量として)使用した以外は、<化合物24の合成>に記載の操作および当量関係に従い、化合物33を5.58g(32.8mmol)得た。得られた化合物33の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.13-2.17 (m, 1H), 2.23-2.27 (m, 7H), 3.97-4.00 (m, 2H), 6.66 (s, 2H), 6.78-6.79 (m, 2H).
 <化合物34の合成>
 下記に示す化合物34を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000152
 撹拌子入りの500mL三つ口フラスコに滴下漏斗、温度計および三方コックを備え付けた。窒素雰囲気下にてtBuOH 135mLと水40mL、化合物33を5.58g(32.8mmol, 1当量)装入し、反応溶液を0℃に冷却した。水150mLにNaOH 1.64g(41.0mmol, 1.25当量)とKMnO4 7.78g(49.2mmol, 1.5当量)を溶解させ、反応溶液にゆっくりと滴下した。滴下終了後、0℃の条件下でさらに30分間撹拌させた後、ピロ亜硫酸ナトリウムの飽和水溶液を用いて未反応のKMnO4をクエンチした。しばらく室温で撹拌させた後、反応溶液のpHが7~8程度となるまで炭酸水素ナトリウムを加え、生じた白色沈殿物をろ過して取り除いた。ろ過した溶液を酢酸エチルで3回抽出し、集めた有機層を硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=5:1)で精製した結果、化合物34を5.29g(25.9mmol、収率79%)得た。得られた化合物34の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.82-1.87 (m, 1H), 2.18-2.22 (m, 1H), 2.27 (s, 6H), 2.73-2.78 (m, 2H), 3.29-3.03 (m, 2H), 3.76-3.80 (m, 2H), 6.81 (s, 2H).
 <化合物35の合成>
 下記に示す化合物35を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000153
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物34を5.29g(25.9mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、ベンゾイルクロリドを6.60mL(57.0mmol, 2.2当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、4時間撹拌した。反応終了後、溶液を0℃に冷やし、メタノール20mLを加え、1時間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=20:1)およびヘキサンによる再結晶によって精製した結果、化合物35を5.49g(13.3mmol、収率51%、白色固体)得た。得られた化合物35の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.04-2.10 (m, 1H), 2.36 (s, 6H), 2.54-2.58 (m, 1H), 3.66 (br s, 2H), 5.10-5.11 (m, 2H), 6.91 (s, 2H), 7.26-7.32 (CHCl3のシグナルと被る, m, 4H), 7.46-7.53 (m, 2H), 7.91-7.94 (m, 4H).
 得られた化合物35の融解完了温度は138℃であった。
 [実施例A12]
 <化合物36の合成>
 下記に示す化合物36を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000154
 撹拌子入りの500mL三つ口フラスコに滴下漏斗、温度計および三方コックを備え付けた。窒素雰囲気下にてtBuOH 110mLと水35mL、1,4-Dihydro-1,4-methanoanthraceneを5.00g(26.0mmol, 1当量)を装入し、反応溶液を0℃に冷却した。水120mLにNaOH 1.30g(32.5mmol, 1.25当量)とKMnO4 6.16g(39.0mmol, 1.5当量)を溶解させ、反応溶液にゆっくりと滴下した。滴下終了後、0℃の条件下でさらに1時間撹拌させた後、ピロ亜硫酸ナトリウムの飽和水溶液を用いて未反応のKMnO4をクエンチした。しばらく室温で撹拌させた後、反応溶液のpHが7~8程度となるまで炭酸水素ナトリウムを加え、生じた白色沈殿物をろ過して取り除いた。ろ過した溶液を酢酸エチルで3回抽出し、集めた有機層を硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=10:1)で精製した結果、化合物36を2.57g(11.4mmol、収率44%)得た。得られた化合物36の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.94-1.99 (m, 1H), 2.33-2.37 (m, 1H), 2.82 (br s, 2H), 3.37 (s, 2H), 3.92 (br s, 2H), 7.39-7.43 (m, 2H), 7.60 (br s, 2H), 7.74-7.77 (m, 2H).
 <化合物37の合成>
 下記に示す化合物37を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000155
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物36を2.57g(11.4mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、ベンゾイルクロリドを2.90mL(25.1mmol, 2.2当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール10mLを加え、1時間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物を2回のシリカゲルカラムクロマトグラフィー(展開溶媒:1回目:ヘキサン:酢酸エチル=20:1の後、酢酸エチルのみ、2回目:ヘキサン:酢酸エチル=5:1)およびヘキサンによる洗浄によって精製した結果、化合物37を3.09g(7.1mmol、収率62%、淡黄色固体)得た。得られた化合物37の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.19 (d, J =9.9 Hz, 1H), 2.71 (d, J = 9.2 Hz, 1H), 3.72 (br s, 2H), 5.26 (m, 2H), 7.27-7.32 (m, 4H), 7.45-7.53 (m, 4H), 7.76 (br s, 2H), 7.80-7.83 (m, 2H), 7.91-7.94 (m, 4H).
 得られた化合物37の融解完了温度は164℃であった。
 [実施例A13]
 <化合物38の合成>
 下記に示す化合物38を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000156
 撹拌子入りの500mL三つ口フラスコに滴下漏斗、温度計および三方コックを備え付けた。窒素雰囲気下にてtBuOH 150mLと水50mL、1,4-エポキシ-1,4-ジヒドロナフタレンを4.33g(30.0mmol, 1当量)を装入し、反応溶液を0℃に冷却した。水150mLにNaOH 1.50g(37.5mmol, 1.25当量)とKMnO4 7.11g(45.0mmol, 1.5当量)を溶解させ、反応溶液にゆっくりと滴下した。滴下終了後、0℃の条件下でさらに1時間撹拌させた後、ピロ亜硫酸ナトリウムの飽和水溶液を用いて未反応のKMnO4をクエンチした。しばらく室温で撹拌させた後、反応溶液のpHが7~8程度となるまで炭酸水素ナトリウムを加え、生じた白色沈殿物をろ過して取り除いた。ろ過した溶液を酢酸エチルで3回抽出し、集めた有機層を硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル)で精製した結果、化合物38を2.79g(15.7mmol、収率53%)得た。得られた化合物38の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.71-2.77 (m, 2H), 3.93-3.98 (m, 2H), 5.17 (s, 2H), 7.19-7.24 (m, 2H), 7.27-7.31 (m, 2H).
 <化合物39の合成>
 下記に示す化合物39を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000157
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物38を3.10g(17.4mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、ベンゾイルクロリドを4.50mL(38.3mmol, 2.2当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール10mLを加え、30分間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をアセトンによる再結晶によって精製した結果、化合物39を3.92g(10.1mmol、収率58%、無色透明結晶)得た。得られた化合物39の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ5.30 (s, 2H), 5.55 (s, 2H), 7.26-7.33 (CHCl3のシグナルと被る, m, 6H), 7.43-7.54 (m, 4H), 7.94-7.97 (m, 4H).
 得られた化合物39の融解完了温度は188℃であった。
 [実施例A14]
 <化合物40の合成>
 下記に示す化合物40を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000158
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物5を2.13g(12.1mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、o-トルオイルクロリドを3.42mL(26.8mmol, 2.2当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール10mLを加え、30分間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=5:1の後、酢酸エチルのみ)で精製した結果、化合物40を3.75g(9.08mmol、収率75%、白色固体)得た。得られた化合物40の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.13-2.17 (m, 1H), 2.49 (s, 6H), 2.54-2.59 (m, 1H), 3.55 (s, 2H), 5.15-5.16 (m, 2H), 7.02 (t, J = 7.6 Hz, 2H), 7.15-7.20 (m, 4H), 7.30-7.36 (m, 4H), 7.77-7.80 (m, 2H).
 得られた化合物40の融解完了温度は119℃であった。
 [実施例A15]
 <化合物41の合成>
 下記に示す化合物41を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000159
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物5を2.15g(12.2mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、m-トルオイルクロリドを3.54mL(26.8mmol, 2.2当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール10mLを加え、30分間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物を2回のシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=5:1)およびエタノールによる再結晶によって精製した結果、化合物41を2.60g(6.30mmol、収率52%、白色固体)得た。得られた化合物41の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.13-2.21 (m, 7H), 2.59-2.63 (m,
1H), 3.57 (s, 2H), 5.15-5.16 (m, 2H), 7.17-7.24 (m, 4H), 7.29-7.36 (m, 4H), 7.68 (br s, 2H), 7.76-7.79 (m, 2H).
 得られた化合物41の融解完了温度は84℃であった。
 [実施例A16]
 <化合物42の合成>
 下記に示す化合物42を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000160
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物5を2.23g(12.6mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、3,5-ジメチルベンゾイルクロリドを4.20mL(28.4mmol, 2.3当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール10mLを加え、1時間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物を2回のシリカゲルカラムクロマトグラフィー(展開溶媒:1回目:ヘキサン:酢酸エチル=10:1、2回目:ヘキサン:酢酸エチル=20:1)で精製した結果、化合物42を5.13g(11.6mmol、収率92%、白色固体)得た。得られた化合物42の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.12-2.19 (m, 13H), 2.59-2.63 (m, 1H), 3.56 (s, 2H), 5.11-5.12 (m, 2H), 7.12 (br s, 2H), 7.17-7.20 (m, 2H), 7.32-7.35 (m, 2H), 7.53 (br s, 4H).
 得られた化合物42の融解完了温度は118℃であった。
 [実施例A17]
 <化合物43の合成>
 下記に示す化合物43を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000161
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物5を2.26g(12.8mmol, 1当量)およびピリジンを約10mL加えた。反応溶液を0℃に冷やした後、4-メトキシベンゾイルクロリドを5.00g(29.3mmol, 2.3当量)ゆっくりと装入した。装入終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール10mLを加え、1時間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をエタノールによる洗浄によって精製した結果、化合物43を4.67g(10.5mmol、収率82%、淡黄色固体)得た。得られた化合物43の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.11-2.16 (m, 1H), 2.56-2.61 (m, 1H), 3.54 (s, 2H), 3.83 (s, 6H), 5.12-5.13 (m, 2H), 6.75-6.80 (m, 4H), 7.16-7.19 (m, 2H), 7.31-7.34 (m, 2H), 7.84-7.89 (m, 4H).
 得られた化合物43の融解完了温度は167℃であった。
 [実施例A18]
 <化合物44の合成>
 下記に示す化合物44を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000162
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物5を2.26g(12.8mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、3-メトキシベンゾイルクロリドを3.81mL(27.9mmol, 2.2当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール10mLを加え、1時間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=10:1)およびアセトン-ヘキサンの二層系での再結晶によって精製した結果、化合物44を3.07g(6.91mmol、収率54%、白色固体)得た。得られた化合物44の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.13-2.18 (m, 1H), 2.57-2.61 (m, 1H), 3.56 (s, 2H), 3.66 (s, 6H), 5.16-5.17 (m, 2H), 7.01-7.06 (m, 2H), 7.17-7.23 (m, 4H), 7.32-7.35 (m, 2H), 7.41-7.42 (m, 2H), 7.52-7.56 (m, 2H).
 得られた化合物44の融解完了温度は113℃であった。
 [実施例A19]
 <化合物45の合成>
 下記に示す化合物45を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000163
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物5を1.78g(10.1mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、3-(トリフルオロメチル)ベンゾイルクロリドを3.30mL(22.3mmol, 2.2当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール10mLを加え、1時間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=10:1)およびヘキサンによる再結晶によって精製した結果、化合物45を3.63g(6.98mmol、収率70%、無色透明結晶)得た。得られた化合物45の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.19-2.24 (m, 1H), 2.60-2.65 (m, 1H), 3.59 (br s, 2H), 5.22-5.23 (m, 2H), 7.19-7.24 (m, 2H), 7.34-7.37 (m, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.73-7.77 (m, 2H), 8.09-8.12 (m, 4H).
 得られた化合物45の融解完了温度は124℃であった。
 [実施例A20]
 <化合物46の合成>
 下記に示す化合物46を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000164
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物5を2.06g(11.7mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、1-ナフトイルクロリドを3.80mL(25.3mmol, 2.2当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール10mLを加え、1時間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=10:1)およびヘキサンによる洗浄によって精製した結果、化合物46を4.73g(9.76mmol、収率85%、白色固体)得た。得られた化合物46の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.19-2.24 (m, 1H), 2.65-2.69 (m, 1H), 3.67 (s, 2H), 5.34-5.35 (m, 2H), 7.06-7.12 (m, 2H), 7.21-7.24 (m, 2H), 7.33-7.46 (m, 6H), 7.76-7.80 (m, 2H), 7.86 (d, J = 8.2, 2H), 8.01-8.05 (m, 2H), 8.79-8.82 (m, 2H).
 得られた化合物46の融解完了温度は158℃であった。
 [実施例A21]
 <化合物47の合成>
 下記に示す化合物47を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000165
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物5を2.03g(11.5mmol, 1当量)およびピリジンを約10mL加えた。反応溶液を0℃に冷やした後、2-ナフトイルクロリドを4.80g(25.2mmol, 2.2当量)ゆっくりと装入した。装入終了後、室温へと昇温し、終夜撹拌した。反応終了後、ジクロロメタンを約10mL加え、さらに3時間撹拌した後、溶液を0℃に冷やし、メタノール10mLを加え、1時間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物を2回のシリカゲルカラムクロマトグラフィー(展開溶媒:1回目:ヘキサン:酢酸エチル=7:1、2回目:ヘキサン:酢酸エチル=5:1)およびヘキサンによる洗浄によって精製した結果、化合物47を2.05g(4.23mmol、収率37%、白色固体)得た。得られた化合物47の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.21-2.26 (m, 1H), 2.71-2.76 (m, 1H), 3.67 (br s, 2H), 5.26-5.27 (m, 2H), 7.20-7.23 (m, 2H), 7.30-7.40 (m, 6H), 7.48-7.54 (m, 2H), 7.71 (d, J = 8.6 Hz, 2H), 7.77-7.80 (m, 2H), 7.96-8.00 (m, 2H), 8.39 (br s, 2H).
 得られた化合物47の融解完了温度は201℃であった。
 [実施例A22]
 <化合物48の合成>
 下記に示す化合物48を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000166
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物5を2.15g(12.2mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、2-エチルベンゾイルクロリドを4.00mL(26.8mmol, 2.2当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール10mLを加え、30分間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=20:1)で精製した結果、化合物48を4.34g(9.85mmol、収率81%、白色固体)得た。得られた化合物48の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.15 (t, J = 7.3 Hz, 6H), 2.13-2.17 (m, 1H), 2.54-2.57 (m, 1H), 2.89 (q, J = 7.3 Hz, 4H), 3.54 (br s, 2H), 5.16 (br s, 2H), 7.01 (t, J = 7.6 Hz, 2H), 7.17-7.21 (m, 4H), 7.33-7.38 (m, 4H), 7.73 (d, J = 8.2Hz, 2H).
 得られた化合物48の融解完了温度は52℃であった。
 [実施例A23]
 <化合物49の合成>
 下記に示す化合物49を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000167
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物5を2.19g(12.4mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、2,3-ジメチルベンゾイルクロリドを4.50g(26.7mmol, 2.2当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール10mLを加え、1時間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=20:1)およびヘキサンによる再結晶によって精製した結果、化合物49を4.62g(10.5mmol、収率85%、白色固体)得た。得られた化合物49の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.10-2.31 (m, 13H), 2.51-2.55 (m, 1H), 3.53-3.54 (m, 2H), 5.13-5.14 (m, 2H), 6.88-6.95 (m, 2H), 7.17-7.23 (m, 4H), 7.33-7.36 (m, 2H), 7.49-7.52 (m, 2H).
 得られた化合物49の融解完了温度は107℃であった。
 [実施例A24]
 <化合物50の合成>
 下記に示す化合物50を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000168
 <化合物6の合成>において、塩化ベンゾイルを13.4mL使用する代わりに、p-ジメチルアミノベンゾイルクロリドを10g使用し、試薬添加後の反応温度を115℃で7日間反応させた以外は、<化合物6の合成>に記載の操作および当量関係に従い、化合物50の化合物を4.34g(淡黄色固体)得た。得られた化合物50の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.07-2.12 (m, 1H), 2.57-2.60 (m, 1H), 3.00 (s, 12H), 3.52 (br s, 2H), 5.10-5.11 (m, 2H), 6.52 (d, J = 8.9 Hz, 4H), 7.14-7.17 (m, 2H), 7.30-7.33 (m, 2H), 7.81 (d, J = 8.9 Hz, 4H).
 得られた化合物50の融解完了温度は252℃であった。
 [実施例A25]
 <化合物51の合成>
 下記に示す化合物51を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000169
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物5を2.80g(15.9mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、シクロヘキサンカルボニルクロリドを4.38mL(32.3mmol, 2当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール20mLを加え、1時間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=20:1)で精製した結果、化合物51を4.57g(11.5mmol、収率72%、白色固体)得た。得られた化合物51の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.19-1.53 (m, 10H), 1.62-1.83 (m, 6H), 1.89-2.01 (m, 5H), 2.26-2.35 (m, 3H), 3.31-3.32 (m, 2H), 4.75-4.76 (m, 2H), 7.10-7.13 (m, 2H), 7.23-7.27 (CHCl3のシグナルと被る, m, 2H).
 得られた化合物51の融解完了温度は80℃であった。
 [実施例A26]
 <化合物52の合成>
 下記に示す化合物52を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000170
 十分に加熱乾燥させた撹拌子入りの100mL三つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物5を3.22g(18.3mmol, 1当量)およびピリジンを約10mL加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、イソブチリルクロリドを4.25mL(40.3mmol, 2.2当量)ゆっくりと滴下した。滴下終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール20mLを加え、40分間撹拌させた。水を約20mLおよびジクロロメタンを約30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄し、硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=15:1)で精製した結果、化合物52を5.70g(18.0mmol、収率98%、淡黄色液体)得た。得られた化合物52の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.17-1.22 (m, 12H), 1.98-2.03 (m, 1H), 2.30-2.34 (m, 1H), 2.57 (sep, J = 6.9 Hz, 2H), 3.32-3.33 (m, 2H), 4.77-4.78 (m, 2H), 7.11-7.16 (m, 2H), 7.23-7.27 (CHCl3のシグナルと被る, m, 2H).
 [実施例A27]
 <化合物53の合成>
 下記に示す化合物53を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000171
 1Lの3口フラスコにトリシクロ[6,2,1,0(2,7)]ウンデカ-4-エン14.8g、tert-ブチルアルコール500mL、および水100mLを添加して攪拌しながら内温を0℃まで冷却した。別のフラスコに過マンガン酸カリウム23.7g、水400mL、水酸化ナトリウム4.8gを添加して攪拌し、過マンガン酸カリウム水溶液を調製した。先に調製したトリシクロウンデセン溶液に過マンガン酸カリウム水溶液を内温が5℃を超えないように滴下した。滴下後、0℃で1時間攪拌を継続した。その後飽和チオ硫酸ナトリウム水溶液を水層の赤紫色が消失するまで滴下した。生成した沈殿物を濾過によって除去し、濾液からtert-ブチルアルコールを減圧で留去した。その後濾液を酢酸エチルで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。化合物53は精製を行わず続けて反応を行った。
 <化合物54の合成>
 下記に示す化合物54を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000172
 窒素雰囲気下、300mLの3口フラスコに化合物53を5.5g、トリエチルアミン6.4g、クロロホルム100mL添加して攪拌しながら氷浴を用いて0℃に冷却した。塩化ベンゾイル8.9gを内温が5℃を超えないように添加した。添加後、室温まで昇温して終夜攪拌した。原料の消失を液体クロマトグラフィーで確認した後、再び氷浴で冷却し、メタノール5mLを添加した。反応液にクロロホルムと水を添加し有機層を分取し、水層をクロロホルムで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。反応混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=10/1)で精製し、化合物54を3.7g得た(収率:31%、液体)。得られた化合物54の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ7.97-7.91(m,4H)、7.55-7.47(m,2H)、7.39-7.33(m,4H)、5.49-5.47(m,2H)、2.19-1.14(m,14H).
 [実施例A28]
 <化合物55の合成>
 下記に示す化合物55を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000173
 窒素雰囲気下、300mLの3口フラスコに、化合物5を3g、トリエチルアミン5.2g、4-ジメチルアミノピリジン(DMAP)0.21g、およびクロロホルム100mLを添加し、攪拌しながら氷浴を用いて0℃に冷却した。4-メチルベンゾイルクロライド7.9gを内温が5℃を超えないように添加した。添加後、室温まで昇温して終夜攪拌した。原料の消失を液体クロマトグラフィーで確認した後、再び氷浴で冷却し、メタノール5mLを添加した。反応液にクロロホルムと水を添加し有機層を分取し、水層をクロロホルムで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。反応混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=10/1)で精製し、化合物55を4.3g得た(10.4mmol,収率:61%、白色粉末)。得られた化合物55の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ7.80(d,J=8.4Hz,4H)、7.33(dd,J=5.1Hz,3.2Hz,2H)、7.18(dd,J=5.4Hz,3.0HzHz,2H)、7.09(d,J=8.4Hz,4H)、5.14(d,J=1.6Hz,2H)、3.55(s,2H)、2.59(d,J=9.5Hz,1H)、2.38(s,6H)、2.14(d,J=9.7Hz,1H).
 得られた化合物55の融解完了温度は186℃であった。
 [実施例A29]
 <化合物56の合成>
 下記に示す化合物56を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000174
 窒素雰囲気下、300mLの3口フラスコに、化合物5を3g、トリエチルアミン5.2g、4-ジメチルアミノピリジン(DMAP)0.21g、およびクロロホルム100mLを添加し、攪拌しながら氷浴を用いて0℃に冷却した。4-トリフルオロメチルベンゾイルクロライド10.7gを内温が5℃を超えないように添加した。添加後、室温まで昇温して終夜攪拌した。原料の消失を液体クロマトグラフィーで確認した後、再び氷浴で冷却し、メタノール5mLを添加した。反応液にクロロホルムと水を添加し有機層を分取し、水層をクロロホルムで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。反応混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=10/1)で精製し、化合物56を4.8g得た(9.2mmol、収率:54%、白色粉末)。得られた化合物56の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ7.96(d,J=8.4Hz,4H)、7.54(d,J=8.4Hz,4H)、7.35(dd,J=5.4Hz,3.0Hz,2H)、7.21(dd,J=5.4Hz,3.0Hz,2H)、5.22(d,J=1.4Hz,2H)、3.58(s,2H)、2.60(d,J=10.0Hz,1H)、2.14(d,J=10.3Hz,1H).
 得られた化合物56の融解完了温度は146℃であった。
 [実施例A30]
 <化合物57の合成>
 下記に示す化合物57を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000175
 窒素雰囲気下、300mLの3口フラスコに、化合物5を3g、トリエチルアミン5.17g、4-ジメチルアミノピリジン(DMAP)0.21g、クロロホルム100mL添加して攪拌しながら氷浴を用いて0℃に冷却した。4-ブチルベンゾイルクロリド10.0gを内温が5℃を超えないように添加した。添加後、室温まで昇温して終夜攪拌した。原料の消失を液体クロマトグラフィーで確認した後、再び氷浴で冷却し、メタノール5mLを添加した。反応液にクロロホルムと水を添加し有機層を分取し、水層をクロロホルムで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。反応混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=10/1)で精製し、化合物57を3.8g得た(7.7mmol、収率:45%、白色粉末)。得られた化合物57の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ7.81(d,J=8.4Hz,4H)、7.33(dd,J=5.1Hz,3.2Hz,2H)、7.18(dd,J=5.4Hz,3.2Hz,2H)、7.07(d,J=8.4Hz,4H)、5.14(d,J=1.6Hz,2H)、3.55(s,2H)、2.65-2.57(m,5H)、2.14(d,J=9.7Hz,1H)、1.64-1.53(m,4H)、1.41-1.27(m,4H)、0.93(t,J=7.3Hz,6H).
 得られた化合物57の融解完了温度は86℃であった。
 [実施例A31]
 <化合物58の合成>
 下記に示す化合物58を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000176
 窒素雰囲気下、300mLの3口フラスコに化合物5を3g、トリエチルアミン5.2g、4-ジメチルアミノピリジン(DMAP)0.21g、クロロホルム100mL添加して攪拌しながら氷浴を用いて0℃に冷却した。2,4,6-トリメチルベンゾイルクロリド9.3gを内温が5℃を超えないように添加した。添加後、室温まで昇温して終夜攪拌した。原料の消失を液体クロマトグラフィーで確認した後、再び氷浴で冷却し、メタノール5mLを添加した。反応液にクロロホルムと水を添加し有機層を分取し、水層をクロロホルムで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。反応混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=10/1)で精製し、化合物58を4.6g得た(9.8mmol、収率:58%、白色粉末)。得られた化合物58の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ7.34(dd,J=5.4Hz,3.2Hz,2H)、7.17(dd,J=5.4Hz,3.0Hz,2H)、6.76(s,4H)、5.10(d,J=1.6Hz,2H)、3.55(s,2H)、2.42(d,J=9.5Hz,1H)、2.28-2.25(m,7H)、2.13(s,12H).
 得られた化合物58の融解完了温度は173℃であった。
 [実施例A32]
 <化合物59の合成>
 下記に示す化合物59を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000177
 300mLの3口フラスコに30%過酸化水素水15mL、88%ギ酸60mLを添加して攪拌しながら40℃に油浴を用いて加熱した。反応液にトリシクロ[6,2,1,0(2,7)]ウンデカ-4-エン14.8gを内温が50℃を超えないように滴下した。滴下後、40℃で1時間攪拌を継続した。その後室温まで放冷し17時間攪拌した。反応液を減圧下濃縮し、2mol/Lの水酸化ナトリウム水溶液20mL、酢酸エチル50mLを50℃以下で加え、50℃で1時間攪拌した。有機層を分取し、水層を酢酸エチルで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。化合物59は精製を行わず続けて反応を行った。
 <化合物60の合成>
 下記に示す化合物60を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000178
 窒素雰囲気下、300mLの3口フラスコに、化合物59を3.3g、トリエチルアミン3.8g、4-ジメチルアミノピリジン(DMAP)0.22g、クロロホルム100mL添加して攪拌しながら氷浴を用いて0℃に冷却した。塩化ベンゾイル5.3gを内温が5℃を超えないように添加した。添加後、室温まで昇温して終夜攪拌した。原料の消失を液体クロマトグラフィーで確認した後、再び氷浴で冷却し、メタノール5mLを添加した。反応液にクロロホルムと水を添加し有機層を分取し、水層をクロロホルムで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。反応混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=10/1)で精製し、化合物60を5.3g得た(13.6mmol、収率:74%、白色粉末)。得られた化合物60の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ8.06-8.01(m,4H)、7.55-7.39(m,6H)、5.50-5.45(m,1H)、5.21-5.13(m,1H)、2.06-1.09(m,14H).
 得られた化合物60の融解完了温度は125℃であった。
 [実施例A33]
 <化合物61の合成>
 下記に示す化合物61を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000179
 300mLの3口フラスコに30%過酸化水素水15mL、88%ギ酸60mLを添加して攪拌しながら40℃に油浴を用いて加熱した。反応液に1,4-ジヒドロ-1,4-メタノナフタレン14.2gを内温が50℃を超えないように滴下した。滴下後、40℃で1時間攪拌を継続した。その後室温まで放冷し17時間攪拌した。反応液を減圧下濃縮し、2mol/Lの水酸化ナトリウム水溶液20mL、酢酸エチル50mLを50℃以下で加え、50℃で1時間攪拌した。有機層を分取し、水層を酢酸エチルで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。化合物61は精製を行わず続けて反応を行った。
 <化合物62の合成>
 下記に示す化合物62を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000180
 窒素雰囲気下、300mLの3口フラスコに化合物61を8.8g、トリエチルアミン10.63g、クロロホルム100mLを添加し、攪拌しながら氷浴を用いて0℃に冷却した。塩化ベンゾイル14.8gを内温が5℃を超えないように添加した。添加後、室温まで昇温して終夜攪拌した。原料の消失を液体クロマトグラフィーで確認した後、再び氷浴で冷却し、メタノール5mLを添加した。反応液にクロロホルムと水を添加し有機層を分取し、水層をクロロホルムで3回抽出した。有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。反応混合物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=10/1)で精製し、化合物62を4.1g得た(10.7mmol、収率:21%、白色粉末)。得られた化合物62の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ8.09-8.05(m,2H)、7.83-7.79(m,2H)、7.57-7.15(m,10H)、5.09-5.02(m,2H)、3.94(s,1H)、3.65-3.63(m,1H)、2.45-2.38(m,1H)、2.27-2.19(m,1H).
 得られた化合物62の融解完了温度は192℃であった。
 [実施例A34]
 <化合物63の合成>
 下記に示す化合物63を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000181
 窒素雰囲気下、500mLの3口フラスコに1,2-ジブロモベンゼン35.2g(149mmol)、脱水トルエン300mL、1,3-シクロヘキサジエン12.0gを添加して攪拌した。内温を0℃に冷却し、n-ブチルリチウムヘキサン溶液(1.6M)83mLをゆっくり滴下した。滴下後、徐々に室温まで昇温させ、室温で12時間攪拌した。反応後、飽和塩化アンモニウム水溶液を添加し、次いでジエチルエーテルを加えた。有機層を分離し、水と飽和食塩水の順に洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮し、粗生成物15.42gを得た。粗生成物をシリカゲルカラムクロマトグラフィーで精製し、不純物との混合物として化合物63を4.9g得た。
 <化合物64の合成>
 下記に示す化合物64を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000182
 1000mLの3口フラスコに、<化合物63の合成>で得られた不純物を含む化合物63を4.9g、tert-ブチルアルコール125mL、および水31mLを添加し、攪拌させながら内温を0℃まで冷却した。別のフラスコに過マンガン酸カリウム7.35g、水150mL、水酸化ナトリウム1.70gを添加して攪拌し、過マンガン酸カリウム水溶液を調製した。先に調製した化合物63を含む溶液に過マンガン酸カリウム水溶液をゆっくり滴下し、内温が5℃を超えないように滴下した。滴下後、0℃で1時間攪拌を継続した。飽和ピロ亜硫酸ナトリウム水溶液を調製し、反応液にゆっくり滴下し、白色の沈殿物が生成するまで滴下した。生成した沈殿物を濾過によって除去し、ろ液を酢酸エチルで4回抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別し、得られた有機層をロータリーエバポレーターで濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物64を異性体混合物として0.72g得た。
 <化合物65-1、65-2の合成>
 下記に示す化合物65-1および65-2を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000183
 窒素雰囲気下、50mLの3口フラスコに、化合物64を0.65g(3.3mmol)、脱水ピリジンを10.0mL添加して攪拌した。氷浴で冷却し、塩化ベンゾイル0.82mLをゆっくり添加した。添加後、室温まで昇温して終夜攪拌した。再び氷浴で冷却し、メタノール5mLを添加した。ビーカーに水100mLと酢酸エチル100mLを加え、有機層を分離した。有機層を水で3回洗浄し、飽和塩化アンモニウム水溶液、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾過し、ロータリーエバポレーターで濃縮して粗生成物を得た。シリカゲルカラムクロマトグラフィーで精製し、化合物65-1を0.41g(白色固体)、化合物65-2を0.53g(白色固体)得た。化合物65-1と65-2の立体構造はNOESYによって決定した。化合物65-1および化合物65-2の1H-NMRデータを以下に示す。
 (化合物65-1)
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.40-1.50 (m, 2H), 2.36-2.45 (m, 2H), 3.45 (s, 2H), 5.19 (s, 2H), 7.25-7.32 (m, 8H), 7.44-7.53 (m, 2H), 7.90-7.96 (m, 4H).
 (化合物65-2)
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.52-1.62 (m, 2H), 1.92-2.00 (m, 2H), 3.41 (s, 2H), 5.55-5.57 (m, 2H), 7.08-7.16 (m, 4H), 7.22-7.38 (m, 6H), 7.52-7.57 (m, 4H).
 得られた化合物65-1の融解完了温度は143℃であった。また、得られた化合物65-2の融解完了温度は193℃であった。
 [実施例A35]
 <化合物66の合成>
 下記に示す化合物66を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000184
 窒素雰囲気下、30mLの耐圧容器にアントラセン3.8g、炭酸ビニレン2.9gおよびトルエン15mLを添加し、内温が180℃になるよう加熱攪拌し、45時間攪拌を継続した。室温まで冷却後、濃縮して固体を濾別した。得られた固体をヘキサンで洗浄した後、乾燥して化合物66を3.85g得た。得られた化合物66の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):7.40-7.37 (m, 4H), 7.27-7.22 (m, 4H), 4.88 (m, 2H), 4.70 (m, 2H).
 <化合物67の合成>
 下記に示す化合物67を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000185
 100mLの3口フラスコに化合物66を3.8g、4mol/Lの水酸化ナトリウム水容器7.2mLおよびメタノール28mLを添加した。添加後、室温で30分攪拌した。メタノールを留去した後、20mLの水を加え、クロロホルム30mLを用いて抽出し、有機層を硫酸ナトリウムで乾燥した。クロロホルムを留去し、乾燥して化合物67を2.88g得た。得られた化合物67の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):7.39-7.30 (m, 4H), 7.23-7.14 (m, 4H), 4.42 (s, 2H), 4.06 (s, 2H) , 2.10 (s, 2H).
 <化合物68の合成>
 下記に示す化合物68を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000186
 窒素雰囲気下、化合物67を2.9g、トリエチルアミン3.51mLおよびクロロホルム12mLを添加し、室温で10分攪拌した。室温で塩化ベンゾイル2.92mLを添加し、内温が85℃になるよう加熱攪拌し、12時間攪拌を継続した。氷浴で冷却した後、飽和炭酸水素ナトリウム5mLを添加し、クロロホルム10mLを用いて抽出した。有機層は硫酸マグネシウムで乾燥させた後、濃縮した。得られた固体を濾別し、ヘキサンにより洗浄後、乾燥して化合物68を5.0g(11.2mmol、収率:92%、白色粉末)得た。得られた化合物68の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):7.59-7.56 (m, 4H), 7.44-7.36 (m, 6H), 7.26-7.21 (m, 4H), 7.18-7.12 (m, 4H), 5.52 (s, 2H), 4.68 (s, 2H).
 得られた化合物68の融解完了温度は174℃であった。
 [実施例A36]
 <化合物69の合成>
 下記に示す化合物69を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000187
 窒素雰囲気下、30mLの耐圧容器に9-メチルアントラセン3.8gおよび炭酸ビニレン5.2gを添加し、内温が220℃になるよう加熱攪拌し、9時間攪拌を継続した。室温まで冷却後、メタノール5mLを添加して攪拌した後、固体を濾別した。得られた固体をメタノールで洗浄した後、乾燥して化合物69を5.6g得た。
 <化合物70の合成>
 下記に示す化合物70を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000188
 50mLの3口フラスコに化合物69を5.6g、水酸化ナトリウム8.0gおよび純水30mLを添加し、内温が100℃になるよう加熱攪拌し、6時間攪拌を継続した。室温まで冷却後、12mol/Lの濃塩酸を50℃以下で加えて中和した。固体を濾別し、純水で洗浄後、乾燥して化合物70を5.0g得た。
 <化合物71の合成>
 下記に示す化合物71を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000189
 窒素雰囲気下、200mL3口フラスコに化合物70を5.0g、塩化ベンゾイル8.4gおよびピリジン50mLを添加し、内温が60℃になるよう加熱攪拌し、6時間攪拌を継続した。ピリジンを留去した後、クロロホルムを添加し、2mol/L塩酸、2mol/L水酸化ナトリウム水溶液で洗浄した後、有機層を硫酸マグネシウムで乾燥した。濃縮後、固体を濾別し、ヘキサンで洗浄後、乾燥して化合物71を6.4g(14.0mmol、収率:70%、白色粉末)得た。得られた化合物71の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):7.64-7.61 (m, 2H), 7.49-7.17 (m, 14H), 7.08-7.02 (m, 2H), 5.57 (dd, J = 7.8 Hz, 3.0 Hz, 1H), 5.29 (d, J = 7.6 Hz, 1H), 4.68 (d, J = 3.0 Hz, 1H), 2.02 (s, 3H).
 得られた化合物71の融解完了温度は173℃であった。
 [実施例A37]
 <化合物72の合成>
 下記に示す化合物72を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000190
 窒素雰囲気下、30mLの耐圧容器に9、10-ジメチルアントラセン4.0gおよび炭酸ビニレン5.0gを添加し、内温が220℃になるよう加熱攪拌し、9時間攪拌を継続した。室温まで冷却後、メタノール5mLを添加して攪拌した後、固体を濾別した。得られた固体をメタノールで洗浄した後、乾燥して化合物72を5.6g得た。
 <化合物73の合成>
 下記に示す化合物73を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000191
 50mLの3口フラスコに化合物72を5.6g、水酸化ナトリウム7.6gおよび純水30mLを添加し、内温が100℃になるよう加熱攪拌し、6時間攪拌を継続した。室温まで冷却後、12mol/Lの濃塩酸を50℃以下で加えて中和した。固体を濾別して純水で洗浄後、乾燥して化合物73を5.0g得た。
 <化合物74の合成>
 下記に示す化合物74を、後述する方法で合成した。




                                                                                
Figure JPOXMLDOC01-appb-C000192
 窒素雰囲気下、200mL3口フラスコに化合物73を5.0g、塩化ベンゾイル8.0gおよびピリジン50mLを添加し、内温が60℃になるよう加熱攪拌し、6時間攪拌を継続した。ピリジンを留去した後、クロロホルムを添加し、2mol/L塩酸、2mol/L水酸化ナトリウム水溶液で洗浄した後、有機層を硫酸マグネシウムで乾燥した。濃縮後、固体を濾別してヘキサンで洗浄後、乾燥して化合物74を5.2g(11.0mmol、収率58%、白色粉末)得た。得られた化合物74の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):7.52-7.49 (m, 4H), 7.46-7.42 (m, 4H), 7.35-7.27 (m, 6H), 7.12-7.06 (m, 4H), 5.40 (s, 2H), 2.00 (s, 6H).
 得られた化合物74の融解完了温度は218℃であった。
 [実施例A38]
 <化合物75の合成>
 下記に示す化合物75を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000193
 窒素雰囲気下、30mLの耐圧容器に9、10-ジエトキシアントラセン8.0gおよび炭酸ビニレン7.7gを添加し、内温が220℃になるよう加熱攪拌し、9時間攪拌を継続した。室温まで冷却後、メタノール5mLを添加して攪拌した後、固体を濾別した。得られた固体をメタノールで洗浄した後、乾燥して化合物75を10.5g得た。
 <化合物76の合成>
 下記に示す化合物76を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000194
 50mLの3口フラスコに化合物75を10.5g、水酸化ナトリウム12.0gおよび純水30mLを添加し、内温が100℃になるよう加熱攪拌し、6時間攪拌を継続した。室温まで冷却後、12mol/Lの濃塩酸を50℃以下で加えて中和した。固体を濾別して純水で洗浄後、乾燥して化合物76を9.8g得た。
 <化合物77の合成>
 下記に示す化合物77を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000195
 窒素雰囲気下、200mL3口フラスコに化合物76を9.8g、塩化ベンゾイル12.6gおよびピリジン50mLを添加し、内温が60℃になるよう加熱攪拌し、6時間攪拌を継続した。ピリジンを留去した後、クロロホルムを添加し、2mol/L塩酸、2mol/L水酸化ナトリウム水溶液で洗浄した後、有機層を硫酸マグネシウムで乾燥した。濃縮後、固体を濾別してヘキサンで洗浄後、乾燥して化合物77を9.4g(17.6mmol、収率:59%、白色粉末)得た。得られた化合物77の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):7.76-7.73 (m, 2H), 7.51-7.46 (m, 6H), 7.39-7.26 (m, 6H), 7.10-7.04 (m, 4H), 5.98 (s, 2H), 4.20 (dq, J = 8.4 Hz, 7.0 Hz,2H), 3.93 (dq, J = 8.4 Hz, 7.0 Hz,2H), 1.46 (t, J = 7.0 Hz, 6H).
 得られた化合物77の融解完了温度は175℃であった。
 [実施例A39]
 <化合物78の合成>
 下記に示す化合物78を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000196
 窒素雰囲気下、30mLの耐圧容器に9、10-ジエチルアントラセン7.0gおよび炭酸ビニレン7.7gを添加し、内温が220℃になるよう加熱攪拌し、9時間攪拌を継続した。室温まで冷却後、メタノール5mLを添加して攪拌した後、固体を濾別した。得られた固体をメタノールで洗浄した後、乾燥して化合物78を9.6g得た。
 <化合物79の合成>
 下記に示す化合物79を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000197
 50mLの3口フラスコに化合物78を9.6g、水酸化ナトリウム12.0gおよび純水30mLを添加し、内温が100℃になるよう、6時間攪拌を継続した。室温まで冷却後、12mol/Lの濃塩酸を50℃以下で加えて中和した。固体を濾別し、純水で洗浄後、乾燥して化合物79を3.2g得た。
 <化合物80の合成>
 下記に示す化合物80を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000198
 窒素雰囲気下、200mL3口フラスコに化合物79を3.2g、塩化ベンゾイル4.6gおよびピリジン50mLを添加し、内温が60℃になるよう加熱攪拌し、6時間攪拌を継続した。ピリジンを留去した後、クロロホルムを添加し、2mol/L塩酸、2mol/L水酸化ナトリウム水溶液で洗浄した後、有機層を硫酸マグネシウムで乾燥した。濃縮後、固体を濾別し、ヘキサンで洗浄後、乾燥させて化合物80を2.1g得た(4.2mmol、収率:38%、白色粉末)。得られた化合物80の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):7.47-7.44 (m, 8H), 7.33-7.22 (m, 6H), 7.09-7.03 (m, 4H),5.65 (s, 2H), 2.58 (q, J = 7.3 Hz, 4H), 1.37 (t, J = 7.3 Hz, 6H).
 得られた化合物80の融解完了温度は184℃であった。
 [実施例A40]
 <化合物81の合成>
 下記に示す化合物81を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000199
 窒素雰囲気下、30mLの耐圧容器に9、10-ジ-n-ブチルアントラセン8.7gおよび炭酸ビニレン7.7gを添加し、内温が220℃になるよう加熱攪拌し、9時間攪拌を継続した。室温まで冷却後、メタノール5mLを添加して攪拌した後、固体を濾別した。得られた固体をメタノールで洗浄した後、乾燥して化合物81を11.3g得た。
 <化合物82の合成>
 下記に示す化合物82を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000200
 50mLの3口フラスコに化合物81を11.3g、水酸化ナトリウム12.0gおよび純水30mLを添加し、内温が100℃になるよう加熱攪拌し、6時間攪拌を継続した。室温まで冷却後、12mol/Lの濃塩酸を50℃以下で加えて中和した。固体を濾別し、純水で洗浄後、乾燥して化合物82を4.1g得た。
 <化合物83の合成>
 下記に示す化合物83を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000201
 窒素雰囲気下、200mL3口フラスコに化合物82を4.1g、塩化ベンゾイル4.9gおよびピリジン50mLを添加し、内温が60℃になるよう加熱攪拌し、6時間攪拌を継続した。ピリジンを留去した後、クロロホルムを添加し、2mol/L塩酸、2mol/L水酸化ナトリウム水溶液で洗浄した後、有機層を硫酸マグネシウムで乾燥した。濃縮後、固体を濾別し、ヘキサンで洗浄後、乾燥させて化合物83を5.4g得た(9.7mmol、収率:83%、白色粉末)。得られた化合物83の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):7.48-7.21 (m, 14H), 7.08-7.02 (m, 4H), 5.62 (s, 2H), 2.55-2.35 (m, 4H), 1.98-1.47 (m, 8H), 0.99 (t, J = 7.3 Hz, 6H).
 得られた化合物83の融解完了温度は176℃であった。
 [実施例A41]
 <化合物84の合成>
 下記に示す化合物84を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000202
 窒素雰囲気下、30mLの耐圧容器に9、10-ジメトキシアントラセン7.2gおよび炭酸ビニレン7.7gを添加し、内温が220℃になるよう加熱攪拌し、9時間攪拌を継続した。室温まで冷却後、メタノール5mLを添加して攪拌した後、固体を濾別した。得られた固体をメタノールで洗浄した後、乾燥して化合物84を9.7g得た。
 <化合物85の合成>
 下記に示す化合物85を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000203
 50mLの3口フラスコに化合物84を9.7g、水酸化ナトリウム12.0gおよび純水30mLを添加し、内温が100℃になるよう加熱攪拌し、6時間攪拌を継続した。室温まで冷却後、12mol/Lの濃塩酸を50℃以下で加えて中和した。固体を濾別し、純水で洗浄後、乾燥して化合物85を6.4g得た。
 <化合物86の合成>
 下記に示す化合物86を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000204
 窒素雰囲気下、200mL3口フラスコに化合物85を6.4g、塩化ベンゾイル9.1gおよびピリジン50mLを添加し、内温が60℃になるよう加熱攪拌し、6時間攪拌を継続した。ピリジンを留去した後、クロロホルムを添加し、2mol/L塩酸、2mol/L水酸化ナトリウム水溶液で洗浄した後、有機層を硫酸マグネシウムで乾燥した。濃縮後、固体を濾別し、ヘキサンで洗浄後、乾燥させて化合物86を7.4g得た(14.6mmol、収率:68%、白色粉末)。得られた化合物86の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):7.71-7.56 (m, 4H), 7.51-7.05 (m, 14H), 5.98 (s, 2H), 3.87 (s, 6H).
 得られた化合物86の融解完了温度は227℃であった。
 [実施例A42]
 <化合物87の合成>
 下記に示す化合物87を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000205
 窒素雰囲気下、200mL3口フラスコに化合物85を4.1g、4-メチルベンゾイルクロライド6.4gおよびピリジン50mLを添加し、内温が60℃になるよう加熱攪拌し、6時間攪拌を継続した。ピリジンを留去した後、クロロホルムを添加し、2mol/L塩酸、2mol/L水酸化ナトリウム水溶液で洗浄した後、有機層を硫酸マグネシウムで乾燥した。濃縮後、固体を濾別し、ヘキサンで洗浄後、乾燥させて化合物87を1.3g得た(2.4mmol、収率:18%、白色粉末)。得られた化合物87の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):7.70-7.53 (m, 4H), 7.39-7.26 (m, 8H), 6.90-6.87 (m, 4H), 5.95 (s, 2H), 3.85 (s, 6H) 2.24 (s, 6H).
 得られた化合物87の融解完了温度は220℃であった。
 [実施例A43]
 <化合物88の合成>
 下記に示す化合物88を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000206
 窒素雰囲気下、200mL3口フラスコに化合物85を4.1g、4-n-ブチルベンゾイル8.1gおよびピリジン50mLを添加し、内温が60℃になるよう加熱攪拌し、6時間攪拌を継続した。ピリジンを留去した後、クロロホルムを添加し、2mol/L塩酸、2mol/L水酸化ナトリウム水溶液で洗浄した後、有機層を硫酸マグネシウムで乾燥した。濃縮後、固体を濾別し、ヘキサンで洗浄後、乾燥させて化合物88を1.9g得た(3.1mmol、収率:22%、白色粉末)。得られた化合物88の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):7.70-7.55 (m, 4H), 7.39-7.25 (m, 8H), 6.89-6.86 (m, 4H), 5.95 (s, 2H), 3.86 (s, 6H) 2.51-2.45 (m, 4H), 1.56-1.19 (m, 8H), 0.88 (t, J = 7.0 Hz, 6H).
 得られた化合物88の融解完了温度は158℃であった。
 [実施例A44]
 <化合物89の合成>
 下記に示す化合物89を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000207
 窒素雰囲気下、200mLの3つ口フラスコに15gの化合物85(50.3mmol)と脱水ピリジン117mLを添加し、氷浴で冷却した。4-メトキシベンゾイルクロリド18.0g(105.5mmol)を約5分かけて滴下し、100℃に温めたオイルバスにて20時間加熱撹拌した。反応終了後に放冷し、脱水メタノール10mLを添加して室温でクエンチした。30分程度室温で撹拌してから、反応溶液をヘキサンと水の混合溶液600mL(ヘキサン:水=5:1)に滴下し、細かな結晶を得た。得られた結晶をろ過で集めた後、ろ集物をヘキサンで洗浄し、次いでジクロロメタン100mLに溶解させた。1規定の塩酸100mLで2回、続いて飽和炭酸水素ナトリウム水溶液と飽和食塩水各100mLで1回ずつ順に洗浄した後、得られた有機層を硫酸マグネシウムで乾燥した。ろ過操作で硫酸マグネシウムを除いた後にエバポレーターで濃縮後、生じた固体をクロロホルム30mLに再び溶解させ、メタノール150mLに滴下することで固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン:メタノール=100:0から97:3へグラジエント)で精製することで化合物89を20.17g(収率71%、白色固体)得た。得られた化合物89の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):7.70-7.67 (m, 2H), 7.58-7.55 (m, 2H), 7.46-7.43 (m, 4H), 7.37-7.33 (m, 2H), 7.31-7.28 (m, 2H), 6.59-6.56 (m, 4H), 5.94 (s, 2H), 3.86 (s, 6H) 3.73 (s, 6H).
 得られた化合物89の融解完了温度は221℃であった。
 [実施例A45]
 <化合物90の合成>
 下記に示す化合物90を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000208
 窒素雰囲気下、100mLの3つ口フラスコに5.0gの化合物85(16.8mmol)と脱水ピリジン13mLを添加し、室温で攪拌した。4-tert-ブチルベンゾイルクロリド7.0g(35.6mmol)を滴下した後、オイルバスを使用して100℃で24時間撹拌した。反応終了後、メタノール26mLを添加し、析出した固体をろ過で回収した。得られた固体を2規定の塩酸13mLで洗浄した後、20mLのメタノールに懸濁させ60℃で約1時間攪拌した。放冷した後ろ過にて白色固体を回収し、化合物90を10.2g(収率98%、白色固体)得た。得られた化合物90の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):7.71-7.67 (m, 2H), 7.58-7.55 (m, 2H), 7.46-7.28 (m, 8H), 7.12-7.09 (4H), 5.96 (s, 2H), 3.86 (s, 6H), 1.19 (s, 18H).
 得られた化合物90の融解完了温度は178℃であった。
 [実施例A46]
 <化合物91の合成>
 下記に示す化合物91を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000209
 十分に加熱乾燥させた撹拌子入りの300mLの3つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて3.08gの3-イソプロピル安息香酸(18.8mmol)および60mLのジクロロメタン、2滴のDMFを加えた。反応溶液を0℃に冷やした後、2.57mLの塩化オキサリル(30mmol)をゆっくりと滴下した。滴下終了後、室温へと昇温し、室温で3時間撹拌した。反応系の揮発性化合物を減圧して除去し、化合物91を得た。これ以上の精製は行わず、<化合物92の合成>に使用した。
 <化合物92の合成>
 下記に示す化合物92を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000210
 十分に加熱乾燥させた撹拌子入りの100mLの3つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて1.6gの化合物5と10mLの脱水ピリジンを加えた。反応溶液を0℃に冷やした後、<化合物91の合成>で合成した化合物91のジクロロメタン溶液20mLを化合物5のピリジン溶液にゆっくりと加え、終夜撹拌した。反応終了後、溶液を0℃に冷やし、20mLのメタノールを加え、1時間撹拌させた。20mLの水および30mLのジクロロメタンを加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄した。有機層を硫酸ナトリウムで乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=10:1)およびヘキサンを用いた再結晶で精製した結果、化合物92を1.54g(収率34%、白色固体)得た。得られた化合物92の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.12 (d, J = 6.9 Hz, 12H), 2.13-2.17 (m, 1H), 2.59-2.63 (m, 1H), 2.73 (sep, J = 6.9 Hz, 2H), 3.57 (s, 2H), 5.16 (s, 2H), 7.13-7.26 (CHCl3のシグナルと被る, m, 4H), 7.33-7.36 (m, 4H), 7.76-7.79 (m, 4H).
 得られた化合物92の融解完了温度は93℃であった。
 [実施例A47]
 <化合物93の合成>
 下記に示す化合物93を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000211
 <化合物91の合成>において、3-イソプロピル安息香酸を用いる代わりに、3,4-ジメチル安息香酸を4.21g(28.0mmol)使用した以外は<化合物91の合成>に記載の操作および当量関係に従い、化合物93の合成を行った。得られた化合物93はそのまま<化合物94の合成>に使用した。
 <化合物94の合成>
 下記に示す化合物94を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000212
 十分に加熱乾燥させた撹拌子入りの100mLの3つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて2.13gの化合物5(12.1mmol)と10mLの脱水ピリジンを加えた。反応溶液を0℃に冷やした後、<化合物93の合成>で合成した化合物93のジクロロメタン溶液20mLを化合物5のピリジン溶液にゆっくりと加え、終夜撹拌した。反応終了後、溶液を0℃に冷やし、20mLのメタノールを加え、1時間撹拌させた。20mLの水および30mLのジクロロメタンを加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄した。有機層を硫酸ナトリウムで乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=10:1)で精製した結果、化合物94を2.64g(6.0mmol、収率50%、淡黄色固体)得た。得られた化合物94の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ2.07 (s, 6H), 2.11-2.17 (m, 1H), 2.27 (s, 6H), 2.58-2.62 (m, 1H), 3.56 (s, 2H), 5.12-5.13 (m, 2H), 7.09 (d, J = 7.9 Hz, 2H), 7.16-7.19 (m, 2H), 7.32-7.35 (m, 2H), 7.62 (br s, 2H), 7.70-7.72 (m, 2H).
 得られた化合物94の融解完了温度は158℃であった。
 [実施例A48]
 <化合物95の合成>
 下記に示す化合物95を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000213
 窒素雰囲気下、1Lの3つ口フラスコに200mLの脱水アセトニトリルと6.36gの1-フェニルピロール、6.74gのフッ化セシウムを加え、室温で攪拌させた。続いて、4.3gの2-(トリメチルシリル)フェニルトリフラートをゆっくりと添加した後、反応溶液を40℃で16時間加熱撹拌した。反応溶液をシリカゲルショートカラム(展開溶媒:酢酸エチル)に通し、ロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=5:1)で精製した結果、化合物95を2.31g(10.5mmol、収率71%)得た。
 <化合物96の合成>
 下記に示す化合物96を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000214
 撹拌子入りの500mLの3つ口フラスコに滴下漏斗、温度計および三方コックを備え付けた。窒素雰囲気下にてtert-ブチルアルコールとアセトンの混合溶液60mLと水20mL、化合物95を2.51g(11.4mmol)添加し、反応溶液を0℃に冷却した。水60mLに水酸化ナトリウム0.57g(14.3mmol)と過マンガン酸カリウム2.70g(17.1mmol)を溶解させ、先に調製した反応溶液にゆっくりと滴下した。滴下終了後、0℃の条件下でさらに1時間撹拌させた後、ピロ亜硫酸ナトリウムの飽和水溶液を用いて未反応の過マンガン酸カリウムをクエンチした。しばらく室温で撹拌させた後、反応溶液のpHが7~8程度となるまで炭酸水素ナトリウムを加え、生じた白色沈殿物をろ過して取り除いた。ろ過した溶液を酢酸エチルで3回抽出し、集めた有機層を硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=1:1)で精製した結果、化合物96を2.04g(8.1mmol、収率71%)得た。
 <化合物97の合成>
 下記に示す化合物97を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000215
 十分に加熱乾燥させた撹拌子入りの100mLの3つ口フラスコに平栓、温度計および三方コックを備え付けた。窒素雰囲気下にて化合物96を2.18g(8.6mmol)および脱水ピリジン10mLを加え、平栓を滴下漏斗へ換えた。反応溶液を0℃に冷やした後、ベンゾイルクロリドを2.20mL(18.9mmol)ゆっくりと滴下した。滴下終了後、室温へと昇温し、終夜撹拌した。反応終了後、溶液を0℃に冷やし、メタノール10mLを加え、30分間撹拌させた。水を20mLおよびジクロロメタンを30mL加えた後、ジクロロメタンで3回抽出し、集めた有機層を飽和塩化アンモニウム水溶液で2回洗浄した。有機層を硫酸ナトリウムでの乾燥後、ロータリーエバポレーターにて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=10:1)で精製した結果、化合物97を1.80g(3.9mmol、収率45%、白色固体)得た。得られた化合物97の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ5.27-5.29 (m, 4H), 6.77-6.82 (m, 1H), 6.89-6.92 (m, 2H), 7.11-7.17 (m, 2H), 7.20-7.30 (CHCl3のシグナルと被る, m, 6H), 7.41-7.51 (m, 4H), 7.90-7.94 (m, 4H).
 得られた化合物97の融解完了温度は158℃であった。
 [実施例A49]
 <化合物98の合成>
 下記に示す化合物98を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000216
 窒素雰囲気下、2Lの3つ口フラスコに14.0gのp-ベンゾキノン(0.130mol)と17.6gのα-テルピネン(0.129mol)を加え、次いで700mLの水を加えて室温で攪拌した。420mLのアセトンをゆっくり滴下し、室温で終夜攪拌を継続した。700mLの酢酸エチルを加えて攪拌させた後、有機層と水層を分離した。有機層を飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥させた。ロータリーエバポレーターで濃縮して粗生成物を得た。得られた粗生成物を5.0gのp-ベンゾキノンを用いた同様な操作および当量関係で得られた粗生成物と合わせ(合計41.87g)、シリカゲルカラムクロマトグラフィーによって精製し、化合物98を30.0g得た。
 <化合物99の合成>
 下記に示す化合物99を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000217
 窒素雰囲気下、500mLの3つ口フラスコに化合物98を28.0g(0.115mol)加え、次いで1078mLの脱水メタノールを添加し、室温でしばらく撹拌した。92.9gの塩化セリウム七水和物(0.249mol)を加えた後に氷冷し、9.92gの水素化ホウ素ナトリウム(0.262mol)をゆっくりと加えた。添加終了後、氷冷下で1時間撹拌し、1規定の塩酸でクエンチした。飽和炭酸水素ナトリウム水溶液を加えて中和し、揮発性物質をロータリーエバポレーターで除去した。残った水溶液を酢酸エチルで抽出し、得られた有機層を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、ロータリーエバポレーターで濃縮した。エタノールを用いた再結晶とシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=90:10→60:40)によって精製し、異性体混合物の化合物99を24.9g(収率88%)得た。
 <化合物100の合成>
 下記に示す化合物100を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000218
 窒素雰囲気下、100mLの3つ口フラスコに化合物99を21.3g(85.8mmol)加え、次いで25.7gのヨウ化ナトリウム(171.5mmol)と326mLのアセトニトリルを加えて室温でしばらく撹拌した。そこへ21.7mLのクロロトリメチルシラン(171.0mmol)を滴下し、滴下終了後に室温で撹拌した。チオ硫酸ナトリウム溶液でクエンチし、生じた溶液をクロロホルムで抽出した。有機層を水と飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾別後、ロータリーエバポレーターで濃縮した。別ロットの粗生成物併せてシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)によって精製し、不純物を少量含む化合物100を9.13g得た。これ以上の精製は実施せず、次の<化合物101-1、101-2の合成>に使用した。
 <化合物101-1、101-2の合成>
 下記に示す化合物101-1および101-2を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000219
 窒素雰囲気下、1Lの3つ口フラスコに<化合物100の合成>で得た9.13gを加え、次いで167mLのtert-ブチルアルコールと42mLの水を添加し、氷浴で0℃に冷却した。別のフラスコに10.0gの過マンガン酸カリウム(63.2mmol)と2.18gの水酸化ナトリウム(54.5mol)、209mLの水からなる水溶液を調製し、先に調製した反応溶液へゆっくりと滴下した。滴下終了後、氷浴で冷やしたままの状態で、20分間撹拌を継続した。氷浴で冷やしながら、反応溶液の過マンガン酸カリウムの色が無くなるまでゆっくりとピロ亜硫酸ナトリウムを加えた。反応溶液に酢酸エチルを添加し、上澄みの有機層のみを分離する操作を4回繰り返し、集めた有機層を硫酸マグネシウムで乾燥後、ロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=100:0→60:40)によって精製し、化合物101-1と101-2をそれぞれ1.74g(収率16%)と1.77g(収率17%)得た。
 <化合物102の合成>
 下記に示す化合物102を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000220
 窒素雰囲気下、200mLの3つ口フラスコに1.74gの化合物101-1(7.06mmol)を加え、7mLの脱水ピリジンに溶解させた。氷浴で冷やしながら、1.72mLのベンゾイルクロリド(14.8mmol)を内温が5℃を超えない様にゆっくりと滴下した。滴下後、室温まで昇温し、しばらく撹拌した。反応溶液を氷冷後、メタノールをゆっくりと加えクエンチした。次いで水とジクロロメタンを添加し、有機層側を1規定の塩酸で3回、飽和炭酸水素ナトリウム水溶液で1回、飽和食塩水で1回、順に洗浄した。洗浄後の有機層を硫酸マグネシウムで乾燥させ、ろ過後にロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーによって精製し、化合物102を1.10g(収率35%、白色固体)得た。得られた化合物102の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.19-1.47 (m, 11 H), 2.27-2.58 (m, 3H), 5.15 (dd, J = 1.6, 8.6 Hz, 1H), 5.29 (dd, J = 1.6, 8.6 Hz, 1H), 7.11-7.17 (m, 2H), 7.29-7.40 (m, 6H), 7.43-7.50 (m, 2H), 7.77-7.80 (m, 2H), 7.88-7.92 (m, 2H).
 得られた化合物102の融点と考えられるピークが143℃と150℃に観測された。
 <化合物103の合成>
 下記に示す化合物103を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000221
 <化合物102の合成>において、1.74gの化合物101-1を使用する代わりに、1.77gの化合物102-2(7.18mmol)を使用した以外は、<化合物102の合成>に記載の操作および当量関係に従い、化合物103を2.36g(収率73%、白色固体)得た。得られた化合物103の1H-NMRデータを以下に示す。
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.04 (d, J = 6.9 Hz, 3H), 1.16 (d, J = 6.9 Hz, 3H), 1.41 (s, 3H), 1.48-1.58 (m, 2H), 1.77-1.94 (m, 2H), 2.73-2.83 (m, 1H), 5.55 (d, J = 7.9 Hz, 1H), 5.62 (d, J = 7.9 Hz, 1H), 6.94-7.00 (m, 2H), 7.09-7.15 (m, 2H), 7.21-7.52 (CHCl3のシグナルと被る, m, 10H).
 得られた化合物103の融解完了温度は149℃であった。
 [実施例A50]
 <化合物104の合成>
 下記に示す化合物104を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000222
 窒素雰囲気下、2Lの4つ口フラスコに、2-シクロペンテン-1-オン70g(0.85mol)と脱水ジエチルエーテル900mLを添加し、内温を0℃に冷却しながら攪拌した。次いで、シクロペンタジエン94g(1.42mol)を添加した。反応に使用したシクロペンタジエンはテトラデカン中160℃以上でジシクロペンタジエンを熱分解させたものを速やかに使用した。ボロントリフルオリド・エチルエーテル錯体48.4g(0.34mol)を内温0~5℃の状態のまま10分かけて滴下した。滴下終了後、室温まで昇温させ、そのまま17時間撹拌を続けた。反応終了後、純水900mLを加えて30分間撹拌した。有機層と水層に分け、回収した水層はジエチルエーテル500mLを用いて3回抽出した。有機層を全て集めた後、飽和食塩水1Lで分液洗浄した。得られた有機層を硫酸マグネシウムで乾燥・ろ過させた後、ロータリーエバポレーターを用いて濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=50:1)で精製し、化合物104を82.9g(収率66%)得た。
 <化合物105の合成>
 下記に示す化合物105を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000223
 窒素雰囲気下、500mLの4つ口フラスコに24gの化合物104(162mmol)と50%4-メチルモルホリン N-オキシド(以下「NMO」と称する。)水溶液41.7g(178mmol)、純水60mL、アセトン60mL、tert-ブチルアルコール120mLを添加し、撹拌させた。酸化オスミウム124mg(0.5mmol)を添加した後、室温で2日間撹拌した。反応終了後、ハイドロサルファイトナトリウム2gとフロリジール24g、純水160mLを加え30分間撹拌した。減圧濾過にてろ液を回収し、ろ液のpHが7となるように1規定の硫酸を用いて調整した。外温40℃でろ液から有機溶媒を減圧除去し、残った水溶液をpHが3となるように再び1規定の硫酸で調整した。過剰の塩化ナトリウムおよび酢酸エチル500mLを加えて撹拌し、減圧濾過して溶け残った塩化ナトリウムを濾別した。分液にて有機層と水層に分け、回収した水層は酢酸エチル400mLで3回抽出した。有機層を集め、硫酸ナトリウムで乾燥・ろ過した後、ロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ジクロロメタン=1:1)で精製し、化合物105を13.2g(収率45%)得た。
 <化合物106の合成>
 下記に示す化合物106を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000224
 窒素雰囲気下、3つ口フラスコに3.33gの化合物105(18.3mmol)を添加し、続いて10mLの脱水ピリジンを加えて攪拌した。氷浴で冷却し、4.68mLのベンゾイルクロリド(40.3mmol)ゆっくりと添加した。添加後、室温まで昇温し5時間攪拌した。再び氷浴で冷却し、10mLのメタノールを添加してクエンチした。その後、水とジクロロメタンを添加し、分液漏斗へ移液した。水と飽和塩化アンモニウム水溶液で洗浄し、有機層を硫酸マグネシウムで乾燥後、ロータリーエバポレーターで濃縮した。得られた8.29gの粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=85:15→65:35)とアセトン溶媒での再結晶によって精製し、化合物106を3.16g(収率44%、淡黄色固体)得た。得られた化合物106の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.63-1.67 (m, 1H), 2.08-2.62 (m, 6H), 2.76-2.82 (m, 1H), 2.89-2.99 (m, 2H), 5.11-5.13 (m, 1H), 5.45-5.48 (m, 1H), 7.17 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.42 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H). 7.74-7.77 (m, 2H), 7.90-7.92 (m, 2H).
 得られた化合物106の融解完了温度は127℃であった。
 [実施例A51]
 <化合物107の合成>
 下記に示す化合物107を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000225
 窒素雰囲気下、5Lの4つ口フラスコに脱水ジエチルエーテル1.5Lを添加し、内温が0℃になるまで冷却した。次いで水素化アルミニウムリチウム22.2g(585mmol)を加えた。51gの化合物104(344mmol)を脱水ジエチルエーテル500mLに溶解させ、先に調製した溶液へ30分間かけて滴下した。この時、液温が0~5℃の範囲となるようにした。滴下終了後、室温まで昇温させて1時間撹拌を続けた。反応終了後、再び液温を0℃まで冷却し、メタノール200mLを水素の発生に注意しながら1時間かけて滴下した。次いで飽和酒石酸カリウムナトリウム水溶液2Lをゆっくり添加し、室温で2時間撹拌した。有機層と水層に分け、回収した水層はジエチルエーテル500mLで3回抽出した。有機層を集め、飽和食塩水1Lで分液洗浄した。有機層を硫酸ナトリウムで乾燥・ろ過した後、ロータリーエバポレーターで濃縮し、外温40℃で2時間真空乾燥させた結果、化合物107を48.0g(収率93%)で得た。
 <化合物108の合成>
 下記に示す化合物108を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000226
 窒素雰囲気下、2Lの4つ口フラスコに47.9gの化合物107(319mmol)とトリエチルアミン48.5g(479mmol)、ジクロロメタン1Lを添加し、内温が0℃になるまで冷却した。次いで、メタンスルホニルクロリド40.2g(351mmol)を内温が0~5℃となるように注意しながら、30分間かけて滴下した。滴下終了後、内温を5℃としたまま30分間撹拌した。反応終了後、純水500mLを加え、30分間撹拌した。有機層を分離し、氷浴で冷却した10%塩酸500mLへ添加し、撹拌した。次いで有機層を分離し、飽和炭酸水素ナトリウム水溶液500mLへ添加し、撹拌した。再び有機層を分け、飽和食塩水500mLで分液洗浄した。有機層を硫酸ナトリウムで乾燥・ろ過した後、ロータリーエバポレーターで濃縮し、外温40℃で2時間真空乾燥させた結果、化合物108を70.4g(収率97%)で得た。
 <化合物109の合成>
 下記に示す化合物109を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000227
 窒素雰囲気下、5Lの4つ口フラスコに脱水ジエチルエーテル1Lを添加し、内温を0℃とした。次いで、水素化アルミニウムリチウム17.5g(460mmol)を添加した。70.0gの化合物108(307mmol)を脱水ジエチルエーテル500mLに溶解させ、この溶液を先に調製した溶液へ30分間かけて滴下した。この時、内温が0~5℃の範囲となるようにした。滴下終了後、室温で3時間撹拌した。反応終了後、内温を再び0℃まで冷却し、飽和酒石酸カリウムナトリウム水溶液2Lを水素の発生に注意しながら2時間かけて滴下し、その後室温でさらに2時間撹拌した。有機層と水層に分け、回収した水層はジエチルエーテル400mLで4回抽出した。集めた有機層を飽和食塩水1Lで分液洗浄した。有機層を硫酸ナトリウムで乾燥・ろ過した後、外温50℃で常圧濃縮した。濃縮後、外温60℃、10mmHgで減圧蒸留した。40℃で留出した成分を集めた結果、化合物109を37g(収率90%、無色透明液体)で得た。
 <化合物110の合成>
 下記に示す化合物110を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000228
 2Lの4つ口フラスコに15gの化合物109(112mmol)と純水108mL、tert-ブチルアルコール600mLを添加し氷冷した。水酸化ナトリウム5.87g(145mmol)と過マンガン酸カリウム19.43g(123mmol)を水660mLに溶解させ、滴下ロートに入れ、先に調製した混合溶液へ内温が3℃以下となるようにゆっくりと滴下した。滴下終了後にGC分析にて反応終了を確認した後、飽和ピロ亜硫酸ナトリウム水溶液を過マンガン酸カリウムの色が消えるまで加え、次いでセライトろ過を行った。ろ液を濃縮し、得られた水層を酢酸エチルで3回抽出した。集めた有機層を硫酸ナトリウムで乾燥・ろ過した後、ロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタン:酢酸エチル=2:1)で精製し、化合物110を11.95g(収率64%、白色固体)得た。
 <化合物111の合成>
 下記に示す化合物111を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000229
 窒素雰囲気下、3つ口フラスコに3.0gの化合物110(17.8mmol)を添加し、続いて10mLの脱水ピリジンを加えて攪拌した。氷浴で冷却し、4.25mLのベンゾイルクロリド(36.6mmol)を10分かけてゆっくりと添加した。添加後、室温まで昇温して終夜攪拌した。再び氷浴で冷却し、3mLのメタノールを添加してクエンチした。その後、水と酢酸エチルを添加し、分液漏斗へ移液した。水と飽和塩化アンモニウム水溶液、飽和食塩水の順で洗浄し、有機層を硫酸マグネシウムで乾燥後、ロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)によって精製し、6.47gの化合物111(収率96%、白色固体)を得た。得られた化合物111の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.58-1.87 (m, 7H), 2.22-2.26 (m, 1H), 2.44 (br s, 2H), 2.58 (br s, 2H), 5.38 (d, J = 1.6 H, 2H), 7.22-7.28 (CHCl3のシグナルと被る, m, 4H), 7,46 (t, J = 7.6 Hz, 2H), 7.84-7.87 (m, 4H).
 得られた化合物111の融解完了温度は97℃であった。
 [実施例A52]
 <化合物112の合成>
 下記に示す化合物112を、下記反応式に従い、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000230
 窒素雰囲気下、5Lの4つ口フラスコに塩化アルミニウム33.3g(0.25mol)と脱水トルエン1.5Lを加え、室温で撹拌した。2-シクロペンテン-1-オン41g(0.50mol)を脱水トルエン1Lに溶解させた後、先に調製した反応液へ添加し、室温で40分間撹拌した。次いで、1,3-シクロヘキサジエン240.4g(3.0mol)を添加し、内温を60℃に昇温して12時間加熱撹拌した。反応終了後、氷浴を用いて冷却し、1規定の塩酸2Lを添加した後、室温で30分間撹拌した。有機層と水層に分け、回収した水層はトルエン500mLで2回抽出した。集めた有機層を飽和食塩水1Lで1回、飽和炭酸水素ナトリウム水溶液1Lで1回分液洗浄した。有機層を硫酸ナトリウムで乾燥・ろ過した後、ロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1)で精製し、異性体混合物である化合物112を36g(収率44%)得た。
 <化合物113の合成>
 下記に示す化合物113を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000231
 窒素雰囲気下、500mLの4つ口フラスコに35.5gの化合物112(219mmol)と50%NMO水溶液50mL(241mmol)、純水81mL、アセトン81mL、tert-ブチルアルコール162mLを添加し、撹拌した。次いで、酸化オスミウム170mg(0.66mmol)を添加して、内温40℃で40時間加熱撹拌した。反応終了後、ハイドロサルファイトナトリウム2.7gとフロリジール33g、純水216mLを加え30分間撹拌した。減圧濾過にてろ液を回収し、ろ液のpHが7となるように1規定の硫酸を用いて調整した。外温40℃でろ液から有機溶媒を減圧除去し、残った水溶液をpHが3となるように再び1規定の硫酸で調整した。過剰の塩化ナトリウムおよび酢酸エチル600mLを加えて撹拌し、減圧濾過して溶け残った塩化ナトリウムを濾別した。分液にて有機層と水層に分け、回収した水層は酢酸エチル600mLで3回抽出した。有機層を集め、硫酸ナトリウムで乾燥・ろ過した後、ロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ジクロロメタン=1:1)およびヘキサン溶媒を用いた洗浄で精製し、化合物113を27.0g(収率64%)得た。
 <化合物114の合成>
 下記に示す化合物114を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000232
 窒素雰囲気下、100mLの3つ口フラスコに4.0gの化合物113(20.4mmol)添加し、続いて10mLの脱水ピリジンを添加して攪拌した。氷浴で冷却し、4.89mLのベンゾイルクロリド(42.1mmol)をゆっくり添加した。添加後、室温まで昇温して終夜攪拌した。再び氷浴で冷却し、5mLのメタノールを添加しクエンチした。その後、水と酢酸エチルを加え水層と有機層に分離し、有機層を飽和塩化アンモニウム水溶液と飽和炭酸水素ナトリウム水溶液、飽和食塩水で順に1回ずつ洗浄した。有機層を硫酸マグネシウムで乾燥して濾別後、有機層をロータリーエバポレーターで濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1→5:1)によって精製し、7.49gの化合物114(収率91%、淡黄色固体)を得た。得られた化合物114の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.48-1.55 (H2Oのシグナルと被る, m, 2H), 1.98-2.54 (m, 9H), 2.68-2.81 (m, 1H), 5.01-5.05 (m, 1H), 5.52-5.56 (m, 1H), 7.18-7.34 (CHCl3のシグナルと被る, m, 4H), 7.41-7.52 (m, 2H), 7.79-7.92 (m, 4H).
 得られた化合物114の融解完了温度は122℃であった。
 [実施例A53]
 <化合物115の合成>
 下記に示す化合物115を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000233
 窒素雰囲気下、1Lの3つ口フラスコに2.68gの5,6-ジヒドロジシクロペンタジエン(20mmol)と100mLのtert-ブチルアルコール、40mLの水を添加し、反応溶液を0℃に冷却した。水100mLに1.0gの水酸化ナトリウム(25mmol)と4.74gの過マンガン酸カリウム(30mmol)を溶解させ、先に調製した反応溶液へゆっくりと滴下した。滴下終了後、そのままの温度で1時間攪拌した後、飽和ピロ亜硫酸ナトリウム水溶液を未反応の過マンガン酸カリウムの色が無くなるまで滴下した。しばらく室温で撹拌させた後、反応溶液のpHが7~8程度となるまで炭酸水素ナトリウムを加え、生じた白色沈殿物をろ過して取り除いた。ろ過した溶液を酢酸エチルで3回抽出し、集めた有機層を硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。化合物115を含む粗生成物(2.51g)はこれ以上の精製を行わず、次の<化合物116の合成>に使用した。
 <化合物116の合成>
 下記に示す化合物116を、後述する方法で合成した。
Figure JPOXMLDOC01-appb-C000234
 窒素雰囲気下、100mLの3つ口フラスコに<化合物115の合成>で得られた粗生成物2.51gを添加し、続いて10mLの脱水ピリジンを添加して攪拌した。氷浴で冷却し、4.04mLのベンゾイルクロリド(34.8mmol)をゆっくり添加した。添加後、室温まで昇温して終夜攪拌した。再び氷浴で冷却し、10mLのメタノールを添加しクエンチした。その後、水とジクロロメタンを加え水層と有機層に分離し、有機層を飽和塩化アンモニウム水溶液で2回洗浄した。有機層を硫酸ナトリウムで乾燥して濾別後、有機層をロータリーエバポレーターで濃縮した。粗生成物を2回のシリカゲルカラムクロマトグラフィー(1回目:ヘキサン:酢酸エチル=10:1、2回目:ヘキサン:酢酸エチル=20:1)によって精製し、3.03gの化合物116(無色透明液体)を得た。得られた化合物116の1H-NMRデータを以下に示す。
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.50-1.61 (H2Oのシグナルと被る, m, 6H), 1.97-2.14 (m, 2H), 2.25 (br s, 1H), 2.44 (br s, 1H), 2.61-2.69 (m, 1H), 2.72-2.83 (m, 1H), 5.47 (t, J = 4.0 Hz, 1H), 5.61-5.67 (m, 1H), 7.32-7.40 (m, 4H), 7.48-7.55 (m, 2H), 7.92-7.98 (m, 4H).
 [実施例A54]
 <固体状チタン触媒成分[α1]の調製>
 1Lのガラス容器を十分に窒素置換した後、無水塩化マグネシウム85.8g、デカン321gおよび2-エチルヘキシルアルコール352gを入れ、130℃で3時間加熱反応させて均一溶液とした。この溶液241gと安息香酸エチル6.43gをガラス容器に加え、50℃にて1時間攪拌混合を行った。このようにして得られた均一溶液を室温まで冷却した後、この均一溶液38.3mLを-20℃に保持した四塩化チタン100mL中に攪拌回転数350rpmでの攪拌下45分間にわたって全量滴下装入した。装入終了後、この混合液の温度を3.8時間かけて80℃に昇温し、80℃になったところで混合液中に前記化合物6を0.97g添加した。再び40分かけて120℃に昇温し、35分同温度にて攪拌下保持した。反応終了後、熱濾過にて固体部を採取し、この固体部を100mLの四塩化チタンにて再懸濁させた後、再び120℃で35分、加熱反応を行った。反応終了後、再び熱濾過にて固体部を採取し、100℃デカン、室温のデカンで洗液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。以上の操作によって調製した固体状チタン触媒成分[α1]はデカンスラリ-として保存したが、この内の一部を、触媒組成を調べる目的で乾燥した。このようにして得られた固体状チタン触媒成分[α1]の組成はチタン0.28質量%、マグネシウム1.7質量%、および2-エチルヘキシルアルコール残基0.12質量%であった。
 <本重合>
 内容積2Lの重合器に、室温で500gのプロピレンおよび水素1NLを加えた後、ヘプタン7mL、トリエチルアルミニウム0.5mmol、シクロヘキシルメチルジメトキシシラン0.08mmol、および固体状チタン触媒成分[α1]0.004mmol(チタン原子換算)を25℃で10分間混合した混合液を加え、速やかに重合器内を70℃まで昇温した。70℃で1.5時間重合した後、少量のメタノールにて反応停止し、プロピレンをパージした。さらに得られた重合体粒子を80℃で一晩、減圧乾燥した。重合結果は以下の通りである。
 活性:48.6kg-PP/g-触媒
 嵩比重:490kg/m3
 MFR(ASTM1238E規格、230℃、2.16kg荷重):0.57g/10分
 デカン不溶成分量:1.87wt%
 Tm:163.92℃
 Tmf:172.08℃
 Mw/Mn:10.64
 Mz/Mw:4.85
 上記物性の測定方法は以下の通りである。
 (1)嵩比重:
 JIS K-6721に従って測定した。
 (2)メルトフローレート(MFR):
 ASTM D1238Eに準拠し、測定温度はプロピレン重合体の場合、230℃とした。
 (3)デカン可溶(不溶)成分量:
 ガラス製の測定容器にプロピレン重合体約3g(10-4gの単位まで測定した。また、この重量を、下式においてb(g)と表した。)、デカン500mL、およびデカンに可溶な耐熱安定剤を少量装入し、窒素雰囲気下、スターラーで攪拌しながら2時間で150℃に昇温してプロピレン重合体を溶解させ、150℃で2時間保持した後、8時間かけて23℃まで徐冷した。得られたプロピレン重合体の析出物を含む液を、磐田ガラス社製25G-4規格のグラスフィルターにて減圧濾過した。濾液の100mLを採取し、これを減圧乾燥してデカン可溶成分の一部を得て、この重量を10-4gの単位まで測定した(この重量を、下式においてa(g)と表した。)。この操作の後、デカン可溶成分量を下記式によって決定した。
 デカン可溶成分含有率=100 × (500 × a) / (100 × b) 
 デカン不溶成分含有率=100 - 100 × (500 × a) / (100 × b) 
 (4)分子量分布:
 ゲル浸透クロマトグラフ:東ソー株式会社製 HLC-8321 GPC/HT型
 検出器:示差屈折計
 カラム:東ソー株式会社製 TSKgel GMH6-HT x 2本およびTSKgel GMH6-HTL x 2本を直列接続した。
 移動相媒体:o-ジクロロベンゼン
 流速:1.0mL/分
 測定温度:140℃
 検量線の作成方法:標準ポリスチレンサンプルを使用した
 サンプル濃度:0.1%(w/w)
 サンプル溶液量:0.4mL
の条件で測定し、得られたクロマトグラムを公知の方法によって解析することで重量平均分子量(Mw)、数平均分子量(Mn)、Z平均分子量(Mz)、および分子量分布(MWD)の指標であるMw/Mn値、Mz/Mw値を算出した。1サンプル当たりの測定時間は60分であった。
 (5)重合体の融点(Tm):
 本発明における重合体の融点(Tm)、結晶化温度(Tc)、融解熱量(ΔH)は、セイコーインスツルメンツ社製DSC220C装置で示差走査熱量計(DSC)により測定した。試料3~10mgをアルミニウムパン中に密封し、室温から100℃/分で200℃まで加熱した。その試料を、200℃で5分間保持し、次いで10℃/分で30℃まで冷却した。この冷却試験で、ピーク温度を結晶化温度(Tc)とした。続いて30℃で5分間置いた後、その試料を10℃/分で200℃まで2度目に加熱した。この2度目の加熱試験で、ピーク温度を融点(Tm)、発熱量を融解熱量(ΔH)として採用した。
 本発明における重合体の最終融点(Tmf)は、セイコーインスツルメンツ社製DSC220C装置で示差走査熱量計(DSC)により測定した。試料3~10mgをアルミニウムパン中に密封し、室温から80℃/分で240℃まで加熱した。その試料を、240℃で1分間保持し、次いで80℃/分で0℃まで冷却した。0℃で1分間保持した後、その試料を80℃/分で150℃まで加熱し、5分間保持した。最後に、試料を1.35℃/分で180℃まで加熱し、この最終加熱試験で得られるピークの高温側の変曲点の接線と、ベースラインとの交点を最終融点(Tmf)として採用した。
 Tmfは、結晶化し難い傾向があるとされる超高分子量領域の重合体の結晶化のしやすさや結晶構造等を評価する一つのパラメータと考えることができる。より具体的には、このTmfの値が高い程、超高分子量重合体成分が、強く、耐熱性の高い結晶を形成しやすいと考えることができる。
 [実施例B1]
 <化合物201および202の合成>
 下記に示す化合物201および202の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000235
[(化合物201)において、太線は紙面手前側、点線は紙面奥側を表し、化合物201は上記式(34)に示すendo体由来のジオール化合物に相当する。]
Figure JPOXMLDOC01-appb-C000236
[(化合物202)において、太線は紙面手前側を表し、化合物202は上記式(34)に示すexo体由来のジオール化合物に相当する。]
 2リットルのフラスコにメカニカルスターラーを装着し、内部を窒素で流通させ置換した。フラスコ内にオレフィン((式(33)においてR4、R9、R31~R34が水素原子、XがCH2である化合物)25.4グラム、tert-ブチルアルコール440ml、および水110mlを添加し、内温を0℃まで冷却した。別の1Lのビーカーに過マンガン酸カリウム30グラム、水600ml、および水酸化ナトリウム6.60グラムを添加し、過マンガン酸カリウムアルカリ水溶液を調製した。前記の2リットルフラスコに滴下ロートを装着し、該滴下ロートに調製した過マンガン酸カリウムアルカリ水溶液を装入し、内温が5℃を超えないように過マンガン酸カリウムアルカリ水溶液をゆっくり滴下した。滴下終了後、内温0℃で1時間攪拌した。別のフラスコに飽和ピロ亜硫酸ナトリウム水溶液を調製し、先の反応液にゆっくり滴下し、白色の沈殿物が生成するまで滴下した。滴下後、室温まで昇温し白色固体を沈殿させた。上澄みの有機層を回収した後、酢酸エチルで水層から2回抽出操作を行った。有機層を足し合わせ、水、飽和食塩水で洗浄し、有機層を硫酸マグネシウムで乾燥させた。次いで、有機層を濃縮することにより粗生成物27.41グラムを得た。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、22.71グラムの目的物(異性体混合物)を得た。得られた生成物を再度シリカゲルカラムで精製することで異性体の分離を行い、化合物201を10.9グラム、および化合物202を2.9グラム単離した。得られた化合物201および202の1H-NMRデータを以下に示す。
 (化合物201)
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.39-1.51 (m, 1 H), 1.89-2.01 (m,1 H), 2.19-2.27 (m, 1 H), 2.30-2.38 (m, 1 H), 2.47-2.58 (m, 2 H), 2.70-3.08 (m,3H), 3.21-3.32 (m, 1H), 3.58-3.76 (m, 2 H), 7.06-7.36 (m, 4 H).
 (化合物202)
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.00-1.10 (m, 1 H), 1.55-1.64 (m,1 H), 2.07(br s, 1 H), 2.23-2.35 (m, 2 H), 2.50 (dd, J = 14.5, 5.3 Hz, 2 H) 2.63 (dd, J = 17.1, 3.6 Hz 1H), 3.06 (d, J = 7.9, 1 H), 3.28 (dd, J = 17.4, 10.5Hz 1 H), 3.79-3.87 (m, 1 H), 3.88-3.96 (m, 1 H), 7.09-7.20 (m, 4 H).
 <化合物203の合成>
 下記に示す化合物203の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000237
 200mlフラスコ内部を窒素で置換し、化合物201を5グラム添加し、次いで脱水ピリジン30mlを添加した。氷浴で冷却しながら塩化ベンゾイル5.69mlをゆっくり滴下した。滴下後、室温まで昇温し終夜攪拌した。再び氷浴で冷却し、メタノールを添加してクエンチした。クロロホルムと水を添加して攪拌した後、有機層を分離した。有機層を飽和塩化アンモニウム水溶液および飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。次いで、有機層を濃縮することにより粗生成物10.61グラムを得た。シリカゲルカラムクロマトグラフィーで精製し、化合物203を6.83グラム得た。得られた化合物203の1H-NMRデータを以下に示す。
 (化合物203)
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.68-1.74 (m, 1 H), 2.29-2.34 (m,1 H), 2.57-2.59 (m, 1 H), 2.90-3.20 (m, 4 H), 3.83 (dd, J = 10.2, 5.6 Hz, 1 H) 4.66 (dd, J = 5.9, 1.3 Hz 1H), 5.03 (dd, J = 5.9, 1.7 Hz 1 H), 7.20-7.49 (m, 10 H), 7.79-7.86 (m, 4 H).
 化合物203の融解完了温度は108.7℃であった。
 <化合物204の合成>
 下記に示す化合物204の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000238
 <化合物203の合成>において、化合物201を用いる代わりに、化合物202を2.2グラム使用したこと以外は<化合物203の合成>に記載の操作および当量関係に従い、化合物204を3.85グラム(収率89%)得た。得られた化合物204の1H-NMRデータを以下に示す。
 (化合物204)
 1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.27-1.33 (m, 1 H), 1.92-1.98 (m,1 H), 2.44 (br s, 1 H), 2.57-2.76 (m, 3 H), 3.34-3.45 (m, 2 H) 5.19-5.23 (m, 1H), 5.30-5.35 (m, 1 H), 7.17-7.32 (m, 8 H), 7.43-7.52 (m, 2 H), 7.84-7.92 (m, 4 H).
 化合物204の融解完了温度は168.2℃であった。
 [実施例B2]
 <固体状チタン触媒成分[α1]の調製>
 1Lのガラス容器を十分窒素置換した後、無水塩化マグネシウム85.8g、デカン321gおよび2-エチルヘキシルアルコール352gを入れ、130℃で3時間加熱反応させて均一溶液とした。この溶液241gと安息香酸エチル6.43gをガラス容器に加え、50℃にて1時間攪拌混合を行った。このようにして得られた均一溶液を室温まで冷却した後、この均一溶液38.3mlを-20℃に保持した四塩化チタン100ml中に攪拌回転数350rpmでの攪拌下45分間にわたって全量滴下装入した。装入終了後、この混合液の温度を3.8時間かけて80℃に昇温し、80℃になったところで混合液中に前記化合物203を0.91g添加した。再び40分かけて120℃に昇温し、35分同温度にて攪拌下保持した。反応終了後、熱濾過にて固体部を採取し、この固体部を100mlの四塩化チタンにて再懸濁させた後、再び120℃で35分、加熱反応を行った。反応終了後、再び熱濾過にて固体部を採取し、100℃デカン、室温のデカンで洗液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。以上の操作によって調製した固体状チタン触媒成分[α1]はデカンスラリ-として保存した。
 <本重合>
 内容積2リットルの耐圧性重合器に、室温で500gのプロピレンおよび水素1NLを加えた後、ヘプタン7ml、トリエチルアルミニウム0.5ミリモル、シクロヘキシルメチルジメトキシシラン0.08ミリモル、および固体状チタン触媒成分[α1]0.004ミリモル(チタン原子換算)を25℃で10分間混合した混合液を加え、速やかに重合器内を70℃まで昇温した。70℃で1.5時間重合した後、少量のメタノールにて反応停止し、プロピレンをパージした。さらに得られた重合体粒子を80℃で一晩、減圧乾燥した。重合結果は以下の通りである。
 活性:72.7kg-PP/g-触媒
 嵩比重:490kg/m3
 MFR(ASTM1238e規格、230℃、2.16kg荷重):0.45g/10分
 デカン不溶成分量:0.49wt%
 Tm:165.39℃
 Tmf:172.33℃
 Mw/Mn:11.25
 Mz/Mw:4.41
 上記物性の測定方法は、実施例A54で説明した通りである。
   [実施例B3]
 <化合物205の合成>
 下記に示す化合物205の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000239
 100mlフラスコ内部を窒素で置換し、化合物201と化合物202の混合物を3.0グラム(1当量)添加し、次いで脱水ピリジン15mlとクロロホルム15mlを添加した。氷浴で冷却しながら3-メチルベンゾイルクロリド4.5g(2.1当量)をゆっくり滴下した。滴下後、室温まで昇温し終夜攪拌した。再び氷浴で冷却し、メタノールを添加してクエンチした。クロロホルムと水を添加して攪拌した後、有機層を分離した。有機層を飽和塩化アンモニウム水溶液および飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。次いで、有機層を濃縮することにより粗生成物6.78グラムを得た。シリカゲルカラムクロマトグラフィーで精製してendo体とexo体の異性体混合物である化合物205(endo体:exo体=86:14)を5.94グラム(収率95%)得た。得られた化合物205の1H-NMRデータを以下に示す。
 (化合物205)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):endo体: δ1.68-1.73 (m, 1 H), 2.13-2.19 (m, 6 H), 2.30-2.35 (m, 1 H), 2.57-2.59 (m, 1 H), 2.89-3.20 (m, 4 H), 3.80-3.86 (dd, J = 10.6, 5.9 Hz, 1 H), 4.63-4.65 (m, 1 H), 5.00-5.03 (m, 1 H), 7.14-7.34 (m, 8 H), 7.56-7.76 (m, 4 H); exo体: 1.26-1.32 (m, 1 H), 1.92-1.96 (m, 1 H), 2.13-2.19 (m, 6 H), 2.42 (br s, 1 H), 2.61-2.74 (m, 3 H), 3.33-3.43 (m, 2 H), 5.16-5.18 (m, 1 H), 5.27-5.30 (m, 1 H), 7.14-7.34 (m, 8 H), 7.56-7.76 (m, 4 H).
 化合物205の融解完了温度は116.0℃であった。
   [実施例B4]
 <化合物206の合成>
 下記に示す化合物206の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000240
 <化合物205の合成>において、3-メチルベンゾイルクロリドを用いる代わりに、3,5-ジメチルベンゾイルクロリドを4.91グラム(2.1当量)使用した以外は<化合物205の合成>に記載の操作および当量関係に従い、endo体とexo体の異性体混合物である化合物206(endo体:exo体=85:15)を6.37グラム(収率96%)得た。得られた化合物206の1H-NMRデータを以下に示す。
 (化合物206)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):endo体: δ1.68-1.72 (m, 1 H), 2.13-2.18 (m, 12 H), 2.31-2.34 (m, 1 H), 2.56-2.58 (m, 1 H), 2.88-3.19 (m, 4 H), 3.79-3.85 (dd, J = 10.6, 5.6 Hz, 1 H), 4.60-4.63 (m, 1 H), 4.98-5.00 (m, 1 H), 7.07-7.09 (m, 2 H), 7.17-7.32 (m, 4 H), 7.42-7.50 (m, 4 H); exo体: 1.24-1.29 (m, 1 H), 1.90-1.96 (m, 1 H), 2.13-2.18 (m, 12 H), 2.42 (br s, 1 H), 2.60-2.74 (m, 3 H), 3.33-3.43 (m, 2 H), 5.14-5.16 (m, 1 H), 5.24-5.27 (m, 1 H), 7.07-7.09 (m, 2 H), 7.17-7.32 (m, 4 H), 7.42-7.50 (m, 4 H).
 化合物206の融点と考えられるピークが153.0℃と191.4℃に観測された。
   [実施例B5]
 <化合物207の合成>
 下記に示す化合物207の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000241
 <化合物205の合成>において、3-メチルベンゾイルクロリドを用いる代わりに、2-フロイルクロリドを3.80グラム(2.1当量)使用した以外は<化合物205の合成>に記載の操作および当量関係に従い、endo体とexo体の異性体混合物である化合物207(endo体:exo体=86:14)を5.40グラム(収率94%)得た。得られた化合物207の1H-NMRデータを以下に示す。
 (化合物207)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):endo体: δ1.66-1.70 (m, 1 H), 2.24-2.28 (m, 1 H), 2.54-2.55 (m, 1 H), 2.85-3.08 (m, 4 H), 3.78-3.83 (dd, J = 10.6, 5.6 Hz, 1 H), 4.55-4.57 (m, 1 H), 4.95-4.97 (m, 1 H), 6.37-6.42 (m, 2 H), 6.86-6.97 (m, 2 H), 7.16-7.30 (m, 4 H), 7.44-7.49 (m, 2 H); exo体: 1.23-1.28 (m, 1 H), 1.86-1.91 (m, 1 H), 2.39 (br s, 1 H), 2.57-2.72 (m, 3 H), 3.31-3.42 (m, 2 H), 5.11-5.13 (m, 1 H), 5.22-5.24 (m, 1 H), 6.37-6.42 (m, 2 H), 6.86-6.97 (m, 2 H), 7.16-7.30 (m, 4 H), 7.44-7.49 (m, 2 H).
 化合物207の融点と考えられるピークが107.6℃と120.5℃に観測された。
   [実施例B6]
 <化合物208の合成>
 下記に示す化合物208の合成を、後述する方法で行った。


                                                                                
Figure JPOXMLDOC01-appb-C000242
 <化合物205の合成>において、3-メチルベンゾイルクロリドを用いる代わりに、2-テノイルクロリドを4.27グラム(2.1当量)使用した以外は<化合物205の合成>に記載の操作および当量関係に従い、endo体とexo体の異性体混合物である化合物208(endo体:exo体=86:14)を5.72グラム(収率94%)得た。得られた化合物208の1H-NMRデータを以下に示す。
 (化合物208)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):endo体: δ1.66-1.70 (m, 1 H), 2.24-2.29 (m, 1 H), 2.55-2.56 (m, 1 H), 2.87-3.14 (m, 4 H), 3.78-3.84 (dd, J = 10.2, 5.6 Hz, 1 H), 4.57-4.59 (m, 1 H), 4.94-4.97 (m, 1 H), 6.95-7.01 (m, 2 H), 7.16-7.32 (m, 4 H), 7.43-7.48 (m, 2 H), 7.58-7.67 (m, 2 H); exo体: 1.24-1.28 (m, 1 H), 1.87-1.92 (m, 1 H), 2.40 (br s, 1 H), 2.56-2.73 (m, 3 H), 3.32-3.42 (m, 2 H), 5.11-5.14 (m, 1 H), 5.23-5.25 (m, 1 H), 6.95-7.01 (m, 2 H), 7.16-7.32 (m, 4 H), 7.43-7.48 (m, 2 H), 7.58-7.67 (m, 2 H).
 化合物208の融点と考えられるピークが、110.9℃と141.5℃に観測された。
   [実施例B7]
 <化合物209の合成>
 下記に示す化合物209の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000243
 <化合物205の合成>において、3-メチルベンゾイルクロリドを用いる代わりに、1-ナフトイルクロリドを5.0グラム(2.1当量)使用した以外は<化合物205の合成>に記載の操作および当量関係に従い、endo体とexo体の異性体混合物である化合物209(endo体:exo体=88:12)を5.77グラム(収率88%)得た。得られた化合物209の1H-NMRデータを以下に示す。
 (化合物209)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):endo体: δ1.75-1.79 (m, 1 H), 2.36-2.40 (m, 1 H), 2.69-2.70 (m, 1 H), 2.96-3.29 (m, 4 H), 3.86-3.92 (dd, J = 10.2, 5.6 Hz, 1 H), 4.82-4.85 (m, 1 H), 5.19-5.22 (m, 1 H), 6.98-7.43 (m, 10 H), 7.73-7.98 (m, 6 H), 8.70-8.80 (m, 2 H); exo体: 1.33-1.37 (m, 1 H), 1.99-2.03 (m, 1 H), 2.53 (br s, 1 H), 2.70-2.79 (m, 3 H), 3.38-3.47 (m, 2 H), 5.36-5.38 (m, 1 H), 5.48-5.50 (m, 1 H), 6.98-7.43 (m, 10 H), 7.73-7.98 (m, 6 H), 8.70-8.80 (m, 2 H).
 化合物209の融解完了温度は149.8℃であった。
   [実施例B8]
 <化合物210の合成>
 下記に示す化合物210の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000244
 <化合物205の合成>において、3-メチルベンゾイルクロリドを用いる代わりに、2-ナフトイルクロリドを5.0グラム(2.1当量)使用した以外は<化合物205の合成>に記載の操作および当量関係に従い、endo体のみの化合物210を4.89グラム(収率75%)得た。得られた化合物210の1H-NMRデータを以下に示す。
 (化合物210)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ1.76-1.80 (m, 1 H), 2.43-2.47 (m, 1 H), 2.67-2.68 (m, 1 H), 2.95-3.25 (m, 4 H), 3.85-3.91 (dd, J = 10.6, 5.9 Hz, 1 H), 4.74-4.76 (m, 1 H), 5.11-5.14 (m, 1 H), 7.21-7.54 (m, 10 H), 7.64-7.80 (m, 4 H), 7.88-7.95 (m, 2 H), 8.27-8.35 (m, 2 H).
 化合物210の融解完了温度は、173.8℃であった。
   [実施例B9]
 <化合物211の合成>
 下記に示す化合物211の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000245
 <化合物205の合成>において、3-メチルベンゾイルクロリドを用いる代わりに、3-メトキシベンゾイルクロリドを5.0グラム(2.1当量)使用した以外は<化合物205の合成>に記載の操作および当量関係に従い、endo体とexo体の異性体混合物である化合物211(endo体:exo体=80:20)を4.70グラム(収率70%)得た。得られた化合物211の1H-NMRデータを以下に示す。
 (化合物211)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):endo体: δ1.69-1.72 (m, 1 H), 2.28-2.32 (m, 1 H), 2.57-2.58 (m, 1 H), 2.88-3.18 (m, 4 H), 3.60-3.66 (m, 6 H), 3.80-3.86 (dd, J = 10.2, 5.6 Hz, 1 H), 4.64-4.66 (m, 1 H), 5.01-5.03 (m, 1 H), 6.98-7.03 (m, 2 H), 7.13-7.37 (m, 8 H), 7.44-7.53 (m, 2 H); exo体: 1.26-1.30 (m, 1 H), 1.91-1.95 (m, 1 H), 2.42 (br s, 1 H), 2.60-2.73 (m, 3 H), 3.33-3.43 (m, 2 H), 3.60-3.66 (m, 6 H), 5.18-5.20 (m, 1 H), 5.29-5.31 (m, 1 H), 6.98-7.03 (m, 2 H), 7.13-7.37 (m, 8 H), 7.44-7.53 (m, 2 H).
 化合物211の融解完了温度は、124.3℃であった。
   [実施例B10]
 <化合物212の合成>
 下記に示す化合物212の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000246
 <化合物205の合成>において、3-メチルベンゾイルクロリドを用いる代わりに、フェニルアセチルクロリドを5.75グラム(2.7当量)使用した以外は<化合物205の合成>に記載の操作および当量関係に従い、endo体とexo体の異性体混合物である化合物212(endo体:exo体=78:22)を1.32グラム(収率21%)の無色透明液体として得た。得られた化合物212の1H-NMRデータを以下に示す。
 (化合物212)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):endo体: δ1.52-1.55 (m, 1 H), 1.98-2.02 (m, 1 H), 2.29-2.33 (m, 1 H), 2.63-2.65 (m, 1 H), 2.75-2.97 (m, 3 H), 3.17-3.26 (m, 4 H), 3.66-3.72 (dd, J = 10.6, 5.6 Hz, 1 H), 4.27-4.30 (m, 1 H), 4.64-4.67 (m, 1 H), 7.13-7.33 (m, 14 H); exo体: 1.09-1.13 (m, 1 H), 1.60-1.64 (m, 1 H), 2.15 (br s, 1 H), 2.33-2.57 (m, 3 H), 3.17-3.26 (m, 6 H), 5.20-5.22 (m, 1 H), 5.31-5.33 (m, 1 H), 7.13-7.33 (m, 14 H).
   [実施例B11]
 <化合物213の合成>
 下記に示す化合物213の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000247
 <化合物205の合成>において、3-メチルベンゾイルクロリドを用いる代わりに、3,5-ジフルオロベンゾイルクロリドを5.14グラム(2.1当量)使用した以外は<化合物205の合成>に記載の操作および当量関係に従い、endo体とexo体の異性体混合物である化合物213(endo体:exo体=96:4)を6.02グラム(収率87%)得た。得られた化合物213の1H-NMRデータを以下に示す。
 (化合物213)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):endo体: δ1.74-1.77 (m, 1 H), 2.24-2.29 (m, 1 H), 2.57-2.59 (m, 1 H), 2.89-3.11 (m, 4 H), 3.82-3.88 (dd, J = 10.6, 5.6 Hz, 1 H), 4.62-4.64 (m, 1 H), 5.00-5.02 (m, 1 H), 6.87-6.99 (m, 2 H), 7.18-7.38 (m, 8 H); exo体: 1.30-1.35 (m, 1 H), 1.87-1.91 (m, 1 H), 2.43 (br s, 1 H), 2.60-2.75 (m, 3 H), 3.35-3.45 (m, 2 H), 5.17-5.20 (m, 1 H), 5.29-5.31 (m, 1 H), 6.87-6.99 (m, 2 H), 7.18-7.38 (m, 8 H).
 化合物213の融解完了温度は、127.7℃であった。
   [実施例B12]
 <化合物214の合成>
 下記に示す化合物214の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000248
 100mlフラスコ内部を窒素で置換し、3-フェニル安息香酸を5.95グラム(1当量)添加し、次いでジクロロメタン60mlとジメチルホルムアミド2滴を添加した。氷浴で冷却しながら塩化オキサリル3.09ml(1.2当量)をゆっくり滴下した。滴下後、室温まで昇温し2時間攪拌した。反応系の揮発性化合物を減圧して除去し、化合物214を得た。これ以上の精製は行わず、化合物215の合成に使用した。
 <化合物215の合成>
 下記に示す化合物215の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000249
 <化合物214の合成>で合成した化合物214が全量(2.2当量)入った窒素雰囲気下の100mlフラスコへ、脱水ピリジン3mlを添加した。氷浴で冷却しながら、化合物201と化合物202の混合物2.92グラム(1当量)の10mlジクロロメタン溶液をゆっくりと添加した。滴下後、室温まで昇温し終夜攪拌した。再び氷浴で冷却し、メタノールを添加してクエンチした。クロロホルムと水を添加して攪拌した後、有機層を分離した。有機層を飽和塩化アンモニウム水溶液および飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。次いで、有機層を濃縮することにより粗生成物を9.87グラム得た。シリカゲルカラムクロマトグラフィーで精製してendo体とexo体の異性体混合物である化合物215(endo体:exo体=88:12)を6.82グラム(収率88%)得た。得られた化合物215の1H-NMRデータを以下に示す。
 (化合物215)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):endo体: δ1.72-1.75 (m, 1 H), 2.33-2.37 (m, 1 H), 2.60-2.61 (m, 1 H), 2.92-3.21 (m, 4 H), 3.82-3.88 (dd, J = 9.9, 5.3 Hz, 1 H), 4.69-4.72 (m, 1 H), 5.08-5.11 (m, 1 H), 7.17-7.39 (m, 16 H), 7.59-7.64 (m, 2 H), 7.81-7.85 (m, 2 H), 8.02-8.07 (m, 2 H); exo体: 1.26-1.33 (m, 1 H), 1.96-1.99 (m, 1 H), 2.45 (br s, 1 H), 2.63-2.75 (m, 3 H), 3.35-3.45 (m, 2 H), 5.25-5.38 (m, 1 H), 5.36-5.38 (m, 1 H), 7.17-7.39 (m, 16 H), 7.59-7.64 (m, 2 H), 7.81-7.85 (m, 2 H), 8.02-8.07 (m, 2 H).
 化合物215は、62.5℃から徐々に融解する挙動を示した。
   [実施例B13]
 <化合物216の合成>
 下記に示す化合物216の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000250
 <化合物205の合成>において、3-メチルベンゾイルクロリドを用いる代わりに、3-クロロベンゾイルクロリドを5.36グラム(2.2当量)使用し、溶媒にピリジン10mlのみ用いた以外は<化合物205の合成>に記載の操作および当量関係に従い、endo体とexo体の異性体混合物である化合物216(endo体:exo体=83:17)を2.22グラム(収率32%)得た。得られた化合物216の1H-NMRデータを以下に示す。
 (化合物216)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):endo体: δ1.71-1.75 (m, 1 H), 2.28-2.32 (m, 1 H), 2.57-2.58 (m, 1 H), 2.89-3.10 (m, 4 H), 3.80-3.86 (dd, J = 10.2, 5.6 Hz, 1 H), 4.63-4.65 (m, 1 H), 5.01-5.04 (m, 1 H), 7.16-7.33 (m, 6 H), 7.40-7.45 (m, 2 H), 7.71-7.80 (m, 4 H); exo体: 1.28-1.32 (m, 1 H), 1.90-1.95 (m, 1 H), 2.42 (br s, 1 H), 2.60-2.74 (m, 3 H), 3.32-3.42 (m, 2 H), 5.17-5.20 (m, 1 H), 5.29-5.31 (m, 1 H), 7.16-7.33 (m, 6 H), 7.40-7.45 (m, 2 H), 7.71-7.80 (m, 4 H).
 化合物216の融解完了温度は、139.4℃であった。
   [実施例B14]
 <化合物217の合成>
 下記に示す化合物217の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000251
 <化合物205の合成>において、3-メチルベンゾイルクロリドを用いる代わりに、3,5-ジクロロベンゾイルクロリドを6.41グラム(2.2当量)使用し、溶媒にピリジン10mlのみ用いた以外は<化合物205の合成>に記載の操作および当量関係に従い、endo体のみの化合物217を4.50グラム(収率58%)得た。得られた化合物217の1H-NMRデータを以下に示す。
 (化合物217)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ 1.74-1.78 (m, 1 H), 2.26-2.30 (m, 1 H), 2.57-2.58 (m, 1 H), 2.89-3.10 (m, 4 H), 3.82-3.88 (dd, J = 9.9, 5.6 Hz, 1 H), 4.60-4.62 (m, 1 H), 4.98-5.01 (m, 1 H), 7.23-7.32 (m, 4 H), 7.45-7.48 (m, 2 H), 7.62-7.67 (m, 4 H).
 化合物217の融解完了温度は、208.2℃であった。
   [実施例B15]
 <化合物218の合成>
 下記に示す化合物218の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000252
 <化合物214の合成>において、3-フェニル安息香酸を用いる代わりに、3,4-ジメチル安息香酸を4.63グラム(1当量)使用した以外は<化合物214の合成>に記載の操作および当量関係に従い、化合物218の合成を行った。得られた化合物218はそのまま化合物219の合成に使用した。
 <化合物219の合成>
 下記に示す化合物219の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000253
 100mlフラスコ内部を窒素で置換し、化合物201と化合物202の混合物を2.57グラム(1当量)添加し、次いで<化合物218の合成>で合成した化合物218全量(2.2当量)のジクロロメタン溶液20mlを添加した。氷浴で冷却しながら脱水ピリジン10mlをゆっくり滴下した。滴下後、室温まで昇温し終夜攪拌した。再び氷浴で冷却し、メタノールを添加してクエンチした。ジクロロメタンと水を添加して攪拌した後、有機層を分離した。有機層を飽和塩化アンモニウム水溶液および飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。次いで、有機層を濃縮することにより粗生成物10.3グラムを得た。シリカゲルカラムクロマトグラフィーで精製してendo体とexo体の異性体混合物である化合物219(endo体:exo体=87:13)を4.80グラム(収率83%)得た。得られた化合物219の1H-NMRデータを以下に示す。
 (化合物219)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):endo体: δ1.66-1.70 (m, 1 H), 2.07-2.08 (m, 6 H), 2.23-2.25 (m, 6 H), 2.29-2.33 (m, 1 H), 2.56-2.57 (m, 1 H), 2.88-3.18 (m, 4 H), 3.79-3.85 (dd, J = 10.9, 5.6 Hz, 1 H), 4.61-4.63 (m, 1 H), 4.97-5.00 (m, 1 H), 7.02-7.08 (m, 2 H), 7.16-7.34 (m, 4 H), 7.51-7.66 (m, 4 H); exo体: 1.24-1.27 (m, 1 H), 1.91-1.95 (m, 1 H), 2.07-2.08 (m, 6 H), 2.23-2.25 (m, 6 H), 2.41 (br s, 1 H), 2.59-2.74 (m, 3 H), 3.30-3.42 (m, 2 H), 5.14-5.16 (m, 1 H), 5.25-5.28 (m, 1 H), 7.02-7.08 (m, 2 H), 7.16-7.34 (m, 4 H), 7.51-7.66 (m, 4 H).
 化合物219の融解完了温度は、131.1℃であった。
   [実施例B16]
 <化合物220の合成>
 下記に示す化合物220の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000254
 <化合物214の合成>において、3-フェニル安息香酸を用いる代わりに、5,6,7,8-テトラヒドロ-2-ナフトエ酸を4.85グラム(1当量)使用した以外は<化合物214の合成>に記載の操作および当量関係に従い、化合物220の合成を行った。得られた化合物220はそのまま化合物221の合成に使用した。
 <化合物221の合成>
 下記に示す化合物221の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000255
 <化合物219の合成>において、化合物218を用いる代わりに、化合物220(2.2当量)を使用した以外は<化合物219の合成>に記載の操作および当量関係に従い、endo体とexo体の異性体混合物である化合物221(endo体:exo体=86:14)を4.30グラム(収率74%)得た。得られた化合物221の1H-NMRデータを以下に示す。
 (化合物221)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):endo体: δ1.66-1.73 (m, 9 H), 2.28-2.32 (m, 1 H), 2.37-2.77 (m, 9 H), 2.88-3.19 (m, 4 H), 3.78-3.84 (dd, J = 10.2, 5.3 Hz, 1 H), 4.60-4.62 (m, 1 H), 4.97-4.99 (m, 1 H), 6.96-7.01 (m, 2 H), 7.14-7.32 (m, 4 H), 7.41-7.50 (m, 2 H), 7.58-7.63 (m, 2 H); exo体: 1.23-1.27 (m, 1 H), 1.66-1.73 (m, 8 H), 1.90-1.94 (m, 1 H), 2.37-2.77 (m, 12 H), 3.30-3.42 (m, 2 H), 5.13-5.15 (m, 1 H), 5.24-5.27 (m, 1 H), 6.96-7.01 (m, 2 H), 7.14-7.32 (m, 4 H), 7.41-7.50 (m, 2 H), 7.58-7.63 (m, 2 H).
 化合物221の融解完了温度は、151.2℃であった。
   [実施例B17]
 <化合物222の合成>
 下記に示す化合物222の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000256
 <化合物214の合成>において、3-フェニル安息香酸を用いる代わりに、4-メトキシ-3-メチル安息香酸を5.0グラム(1当量)使用した以外は<化合物214の合成>に記載の操作および当量関係に従い、化合物222の合成を行った。得られた化合物222はそのまま化合物223の合成に使用した。
 <化合物223の合成>
 下記に示す化合物223の合成を、後述する方法で行った。
Figure JPOXMLDOC01-appb-C000257
 <化合物219の合成>において、化合物218を用いる代わりに、化合物222(2.2当量)を使用した以外は<化合物219の合成>に記載の操作および当量関係に従い、endo体のみの化合物223を2.10グラム(収率33%)得た。得られた化合物223の1H-NMRデータを以下に示す。
 (化合物223)
1H NMR(270 MHz, CDCl3, 内部標準としてTMS):δ 1.66-1.70 (m, 1 H), 1.95 (s, 3 H), 2.02 (s, 3 H), 2.29-2.33 (m, 1 H), 2.55-2.56 (m, 1 H), 2.87-3.19 (m, 4 H), 3.78-3.88 (m, 7 H), 4.59-4.61 (m, 1 H), 4.96-4.98 (m, 1 H), 6.67-6.73 (m, 2 H), 7.21-7.33 (m, 4 H), 7.51-7.58 (m, 2 H), 7.72-7.79 (m, 2 H).
 化合物223の融解完了温度は、187.1℃であった。
 本発明に係る新規なエステル化合物は樹脂添加剤、化粧料や皮膚外用剤、殺菌組成物、酸化防止剤、キレート剤、チーグラー・ナッタ触媒の製造に有用な化合物である。特にチーグラー・ナッタ触媒用の触媒成分として利用することが可能であり、ポリプロピレンを重合した際に優れた立体規則性と生産性を与える触媒を製造することができ、工業的に極めて価値が高い。

Claims (28)

  1.  下記一般式(1)で表されるエステル化合物。
    Figure JPOXMLDOC01-appb-C000001
    〔式(1)中、R1~R24は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基またはヘテロ原子含有炭化水素基である。R1~R10、R23およびR24は互いに結合して環を形成してもよく、隣接する置換基が直接結合した多重結合を形成してもよい。R11~R24は互いに結合して環を形成してもよく、隣接する置換基が互いに結合して多重結合を形成してもよい。R1~R24において少なくとも1組は互いに結合して環構造を形成する。n2~n5は、それぞれ独立に0~2の整数を表す。n1およびn6は、それぞれ独立に0または1の整数を表す。L1およびL2は、それぞれ独立に炭化水素基またはヘテロ原子含有炭化水素基である。〕
  2.  L1およびL2は、それぞれ独立に炭素数1~20の炭化水素基またはヘテロ原子含有炭化水素基である、請求項1に記載のエステル化合物。
  3.  L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である、請求項1に記載のエステル化合物。
  4.  下記一般式(2)~(4)のいずれかで表される、請求項1に記載のエステル化合物。
    Figure JPOXMLDOC01-appb-C000002
    〔式(2)~(4)中、R1~R24は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基またはヘテロ原子含有炭化水素基である。R1~R10、R23およびR24は互いに結合して環を形成してもよく、隣接する置換基が直接結合した多重結合を形成してもよい。R11~R24は互いに結合して環を形成してもよく、隣接する置換基が互いに結合して多重結合を形成してもよい。XおよびYは、それぞれ独立に炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。n2~n5は、それぞれ独立に0~2の整数を表す。n1およびn6は、それぞれ独立に0または1の整数を表す。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。〕
  5.  n1およびn6が1であり、n2~n5がすべて0である、請求項3または4に記載のエステル化合物。
  6.  下記一般式(5)または(6)で表される、請求項1に記載のエステル化合物。
    Figure JPOXMLDOC01-appb-C000003
    〔式(5)中、R1およびR2は、それぞれ独立に水素原子または炭化水素基であり、R4およびR9は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基であり、R11、R15、R17およびR21は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基またはヘテロ原子含有炭化水素基である。R11、R15、R17およびR21は互いに結合して環を形成してもよい。Xは炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。〕
    Figure JPOXMLDOC01-appb-C000004
    〔式(6)中、R1およびR2は、それぞれ独立に水素原子または炭化水素基であり、R4、R9、R11、R12、R15~R18、R21およびR22は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基である。R11、R12、R15~R18、R21およびR22は互いに結合して環を形成してもよく、隣接する置換基が互いに結合した多重結合を形成してもよい。Xは炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。〕
  7.  下記一般式(7)または(8)で表される、請求項1に記載のエステル化合物。
    Figure JPOXMLDOC01-appb-C000005
    〔式(7)中、R4、R9、R12、R15~R18およびR21は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基である。R15~R18は互いに結合して環を形成してもよく、隣接する置換基が互いに結合した多重結合を形成してもよい。Yは炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。〕
    Figure JPOXMLDOC01-appb-C000006
    〔式(8)中、R1およびR2は、それぞれ独立に水素原子または炭化水素基であり、R3、R4、R9、R10、R12、R15~R18およびR21は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基である。R15~R18は互いに結合して環を形成してもよく、隣接する置換基が互いに結合した多重結合を形成してもよい。Yは炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。〕
  8.  下記一般式(9)で表される、請求項1に記載のエステル化合物。
    Figure JPOXMLDOC01-appb-C000007
    〔式(9)中、R1およびR2は、それぞれ独立に水素原子または炭化水素基であり、R4、R9、R12、R15~R18およびR21は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基である。R15~R18は互いに結合して環を形成してもよく、隣接する置換基が互いに結合した多重結合を形成してもよい。XおよびYは、それぞれ独立に炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。L1およびL2は、それぞれ独立に炭素数4以上の炭化水素基またはヘテロ原子含有炭化水素基である。〕
  9.  下記一般式(31)で表される、請求項1に記載のエステル化合物。
    Figure JPOXMLDOC01-appb-C000008
    [式(31)中、R31~R34は、それぞれ独立に水素原子、ハロゲン原子、炭化水素基またはヘテロ原子含有炭化水素基であり、R4、R9、R21およびR22は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基であり、R4、R9、R21、R22、およびR31~R34は、互いに結合して環を形成してもよい。L1およびL2は、それぞれ独立に炭化水素基またはヘテロ原子含有炭化水素基である。Xは、炭化水素基、ヘテロ原子またはヘテロ原子含有炭化水素基である。]
  10.  XおよびYが、それぞれ独立に下記一般式群(10)に示す基から選ばれる二価の基である、請求項4および6~9のいずれか1項に記載のエステル化合物。
    Figure JPOXMLDOC01-appb-C000009
    [群(10)中、R1'~R7'は、それぞれ独立に水素原子、炭化水素基またはヘテロ原子含有炭化水素基であり、R2'~R7'は互いに結合して環を形成してもよく、隣接する置換基同士が直接結合して多重結合を形成してもよい。]
  11.  XおよびYが、下記一般式群(11)に示す基から選ばれる二価の基である、請求項4および6~9のいずれか1項に記載のエステル化合物。
    Figure JPOXMLDOC01-appb-C000010
    [群(11)中、R1'~R5'は、それぞれ独立に水素原子、炭素数1~20の炭化水素基または炭素数1~20のヘテロ原子含有炭化水素基であり、R2'~R5'は互いに結合して環を形成してもよく、隣接する置換基同士が直接結合して多重結合を形成してもよい。]
  12.  Xが、下記一般式(13)に示す二価の基である、請求項9に記載のエステル化合物。
    Figure JPOXMLDOC01-appb-C000011
    [式(13)中、R2'およびR3'は、それぞれ独立に水素原子、炭素数1~20の炭化水素基または炭素数1~20のヘテロ原子含有炭化水素基であり、R2'およびR3'は互いに結合して環を形成してもよい。]
  13.  R1'~R7'が、それぞれ独立に水素原子または炭素数1~10の炭化水素基である、請求項10に記載のエステル化合物。
  14.  R1'~R5'が、それぞれ独立に水素原子または炭素数1~10の炭化水素基である、請求項11に記載のエステル化合物。
  15.  R2'およびR3'が、それぞれ独立に水素原子または炭素数1~10の炭化水素基である、請求項12に記載のエステル化合物。
  16.  R2'およびR3'がすべて水素原子である、請求項12に記載のエステル化合物。
  17.  R1~R24が、それぞれ独立に水素原子、炭素数1~20の炭化水素基または炭素数1~20のヘテロ原子含有炭化水素基である、請求項1~16のいずれか1項に記載のエステル化合物。
  18.  R1~R24が、それぞれ独立に水素原子、炭素数1~10の炭化水素基または炭素数1~10のヘテロ原子含有炭化水素基である、請求項1~16のいずれか1項に記載のエステル化合物。
  19.  R31~R34が、それぞれ独立に水素原子、ハロゲン原子、炭素数1~20の炭化水素基または炭素数1~20のヘテロ原子含有炭化水素基である、請求項9に記載のエステル化合物。
  20.  R31~R34が、それぞれ独立に水素原子、炭素数1~10の炭化水素基または炭素数1~10のヘテロ原子含有炭化水素基である、請求項9に記載のエステル化合物。
  21.  R31~R34がすべて水素原子であり、R4、R9、R21およびR22が、それぞれ独立に水素原子、炭素数1~6の炭化水素基または炭素数1~6のヘテロ原子含有炭化水素基であり、L1およびL2が、それぞれ独立に炭素数1~10の炭化水素基または炭素数1~10のヘテロ原子含有炭化水素基である、請求項9に記載のエステル化合物。
  22.  R31~R34、R21およびR22がすべて水素原子であり、R4およびR9が、それぞれ独立に水素原子または炭素数1~6の炭化水素基であり、L1およびL2が、それぞれ独立に炭素数1~10の炭化水素基から選ばれる、請求項9に記載のエステル化合物。
  23.  R1およびR2が水素原子である、請求項1~8のいずれか1項に記載のエステル化合物。
  24.  R1、R2、R23、R24がすべて水素原子であり、R3~R22が、それぞれ独立に水素原子、または炭素数1~4の置換もしくは未置換のアルキル基である、請求項1~8のいずれか1項に記載のエステル化合物。
  25.  L1およびL2が、それぞれ独立に炭素数4~20の炭化水素基またはヘテロ原子含有炭化水素基である、請求項1~8のいずれか1項に記載のエステル化合物。
  26.  L1およびL2が、それぞれ独立に炭素数4~10の炭化水素基またはヘテロ原子含有炭化水素基である、請求項1~8のいずれか1項に記載のエステル化合物。
  27.  前記R4および/またはR9が、炭化水素基またはヘテロ原子含有炭化水素基である、請求項4、6または6に記載のエステル化合物。
  28.  前記R4および/またはR9が、炭化水素基または酸素原子含有炭化水素基である、請求項4、6または8に記載のエステル化合物。
PCT/JP2021/031281 2020-08-26 2021-08-26 エステル化合物 WO2022045231A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21861653.0A EP4206182A1 (en) 2020-08-26 2021-08-26 Ester compound
JP2022545692A JP7575466B2 (ja) 2020-08-26 2021-08-26 エステル化合物
CN202180052872.0A CN115989216A (zh) 2020-08-26 2021-08-26 酯化合物
KR1020237006344A KR20230043174A (ko) 2020-08-26 2021-08-26 에스터 화합물
US18/022,470 US20240025838A1 (en) 2020-08-26 2021-08-26 Ester compound
BR112023003400A BR112023003400A2 (pt) 2020-08-26 2021-08-26 Composto de éster

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020-142570 2020-08-26
JP2020-142569 2020-08-26
JP2020142570 2020-08-26
JP2020142569 2020-08-26
JP2021011210 2021-01-27
JP2021-011210 2021-01-27
JP2021126616 2021-08-02
JP2021-126616 2021-08-02

Publications (1)

Publication Number Publication Date
WO2022045231A1 true WO2022045231A1 (ja) 2022-03-03

Family

ID=80353350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031281 WO2022045231A1 (ja) 2020-08-26 2021-08-26 エステル化合物

Country Status (6)

Country Link
US (1) US20240025838A1 (ja)
EP (1) EP4206182A1 (ja)
KR (1) KR20230043174A (ja)
CN (1) CN115989216A (ja)
BR (1) BR112023003400A2 (ja)
WO (1) WO2022045231A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116239433A (zh) * 2023-03-08 2023-06-09 常州大学 高收率制备双苯并二环庚二烯的方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000516987A (ja) 1997-06-09 2000-12-19 モンテル テクノロジー カンパニー ビーブイ オレフィンの重合用成分および触媒
US20020162991A1 (en) 2000-03-06 2002-11-07 Wako Pure Chemical Industries, Ltd. Process for producing 9,10-diphenylanthracene
JP2002542347A (ja) 1999-04-15 2002-12-10 バセル テクノロジー カンパニー ビー.ブイ. オレフィン重合用の成分および触媒
JP2005517746A (ja) 2002-02-07 2005-06-16 チャイナ ペトロレウム アンド ケミカル コーポレーション オレフィン重合用の固形触媒成分、それを含んでなる触媒、およびその使用
JP2005226076A (ja) 1993-10-01 2005-08-25 Basell North America Inc オレフィン重合用触媒成分および触媒
JP2008037756A (ja) 2006-08-01 2008-02-21 Mitsui Chemicals Inc 環状オレフィンおよびその製法
WO2008062553A1 (fr) 2006-11-20 2008-05-29 Mitsui Chemicals, Inc. Procédé de production d'oléfine cyclique
CN101195668A (zh) * 2006-12-06 2008-06-11 中国石油天然气股份有限公司 丙烯聚合用负载型主催化剂及其制备方法
JP2008247796A (ja) 2007-03-30 2008-10-16 Mitsui Chemicals Inc 環状オレフィンの製造方法
EP2194070A1 (en) * 2008-12-03 2010-06-09 Süd-Chemie Ag Electron donor composition for a solid catalyst, solid catalyst composition used in the polymerisation of alpha-olefins, and process for the production of a polymer consisting of alpha-olefin units using the solid catalyst composition
WO2011005822A1 (en) * 2009-07-07 2011-01-13 Exxonmobil Research And Engineering Company Oil based polyols or diacids esterified with oxo-acids or oxo-alcohols for producing plasticizers
JP2011529888A (ja) 2008-07-29 2011-12-15 ビー・エイ・エス・エフ、コーポレーション オレフィン重合触媒用内部供与体
JP2013020238A (ja) * 2011-06-13 2013-01-31 Shin Etsu Chem Co Ltd パターン形成方法及びレジスト組成物
JP2014500390A (ja) 2010-12-21 2014-01-09 ダウ グローバル テクノロジーズ エルエルシー 高メルトフロープロピレンベースポリマーを製造するプロセスおよび同プロセスによる生成物
CN103665209A (zh) * 2012-09-18 2014-03-26 中国石油天然气股份有限公司 一种聚丙烯催化剂及其制备方法
CN105585644A (zh) * 2014-11-03 2016-05-18 中国石油天然气股份有限公司 一种用于烯烃聚合的齐格勒-纳塔催化剂组分及其催化剂
US20180149973A1 (en) 2016-11-29 2018-05-31 Tokyo Ohka Kogyo Co., Ltd. Resist composition, method of forming resist pattern, compound, and acid generator

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226076A (ja) 1993-10-01 2005-08-25 Basell North America Inc オレフィン重合用触媒成分および触媒
JP2000516987A (ja) 1997-06-09 2000-12-19 モンテル テクノロジー カンパニー ビーブイ オレフィンの重合用成分および触媒
JP2002542347A (ja) 1999-04-15 2002-12-10 バセル テクノロジー カンパニー ビー.ブイ. オレフィン重合用の成分および触媒
US20020162991A1 (en) 2000-03-06 2002-11-07 Wako Pure Chemical Industries, Ltd. Process for producing 9,10-diphenylanthracene
JP2005517746A (ja) 2002-02-07 2005-06-16 チャイナ ペトロレウム アンド ケミカル コーポレーション オレフィン重合用の固形触媒成分、それを含んでなる触媒、およびその使用
JP2008037756A (ja) 2006-08-01 2008-02-21 Mitsui Chemicals Inc 環状オレフィンおよびその製法
WO2008062553A1 (fr) 2006-11-20 2008-05-29 Mitsui Chemicals, Inc. Procédé de production d'oléfine cyclique
CN101195668A (zh) * 2006-12-06 2008-06-11 中国石油天然气股份有限公司 丙烯聚合用负载型主催化剂及其制备方法
JP2008247796A (ja) 2007-03-30 2008-10-16 Mitsui Chemicals Inc 環状オレフィンの製造方法
JP2011529888A (ja) 2008-07-29 2011-12-15 ビー・エイ・エス・エフ、コーポレーション オレフィン重合触媒用内部供与体
EP2194070A1 (en) * 2008-12-03 2010-06-09 Süd-Chemie Ag Electron donor composition for a solid catalyst, solid catalyst composition used in the polymerisation of alpha-olefins, and process for the production of a polymer consisting of alpha-olefin units using the solid catalyst composition
WO2011005822A1 (en) * 2009-07-07 2011-01-13 Exxonmobil Research And Engineering Company Oil based polyols or diacids esterified with oxo-acids or oxo-alcohols for producing plasticizers
JP2014500390A (ja) 2010-12-21 2014-01-09 ダウ グローバル テクノロジーズ エルエルシー 高メルトフロープロピレンベースポリマーを製造するプロセスおよび同プロセスによる生成物
JP2013020238A (ja) * 2011-06-13 2013-01-31 Shin Etsu Chem Co Ltd パターン形成方法及びレジスト組成物
CN103665209A (zh) * 2012-09-18 2014-03-26 中国石油天然气股份有限公司 一种聚丙烯催化剂及其制备方法
CN105585644A (zh) * 2014-11-03 2016-05-18 中国石油天然气股份有限公司 一种用于烯烃聚合的齐格勒-纳塔催化剂组分及其催化剂
US20180149973A1 (en) 2016-11-29 2018-05-31 Tokyo Ohka Kogyo Co., Ltd. Resist composition, method of forming resist pattern, compound, and acid generator

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
"The Fourth Series of Experimental Chemistry", SYNTHESIS OF ORGANIC COMPOUND II, ALCOHOLS AND AMINES, vol. 20, pages 39
ADV. SYNTH. CATAL., vol. 350, 2008, pages 1309 - 1315
ANGEW. CHEM. INT. ED., vol. 50, 2011, pages 5674 - 5677
ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 17, 1978, pages 522 - 524
BULL. CHEM. SOC. JPN., vol. 66, 1993, pages 1576 - 1579
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 40, 1967, pages 2380 - 2382
CATALYSIS LETTERS, vol. 142, 2012, pages 124 - 130
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, vol. 24, 2017, pages 3501 - 3504
J. MED. CHEM., vol. 60, 2017, pages 3618 - 3625
J. ORG. CHEM. 2017, vol. 82, pages 9715 - 9730
J. ORG. CHEM., vol. 80, 2015, pages 11618 - 11623
JOURNAL OF ORGANIC CHEMISTRY, vol. 24, 1959, pages 54 - 55
JOURNAL OF ORGANIC CHEMISTRY, vol. 28, 1963, pages 2572 - 2577
JOURNAL OF ORGANIC CHEMISTRY, vol. 36, 1971, pages 3979 - 3987
JOURNAL OF ORGANIC CHEMISTRY, vol. 45, 1980, pages 2301 - 2304
JOURNAL OF ORGANIC CHEMISTRY, vol. 53, 1988, pages 2120 - 2122
JOURNAL OF ORGANIC CHEMISTRY, vol. 74, 2009, pages 405 - 407
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 74, 1952, pages 1027 - 1029
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 79, 1957, pages 2822 - 2824
MACROMOLECULES, vol. 50, 2017, pages 580 - 586
ORG. LETT., vol. 15, 2013, pages 5722 - 5725
ORGANIC LETTERS, vol. 6, 2004, pages 1589 - 1592
ORGANIC SYNTHESIS, vol. 32, 1952, pages 41
ORGANIC SYNTHESIS, vol. 70, 1991, pages 47 - 53
ORGANIC SYNTHESIS, vol. 74, 1997, pages 153 - 100

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116239433A (zh) * 2023-03-08 2023-06-09 常州大学 高收率制备双苯并二环庚二烯的方法

Also Published As

Publication number Publication date
CN115989216A (zh) 2023-04-18
BR112023003400A2 (pt) 2023-04-11
JPWO2022045231A1 (ja) 2022-03-03
KR20230043174A (ko) 2023-03-30
EP4206182A1 (en) 2023-07-05
US20240025838A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
TW309523B (ja)
WO2022045231A1 (ja) エステル化合物
JP4275186B2 (ja) ノルボルネン誘導体の製造方法
JP2015107923A (ja) 環状脂肪族アクリレート類の製造方法
US3437701A (en) Alkyl adamantanes
Chevtchouk et al. Preparation of ketones from esters via substituted cyclopropanols: Application to the synthesis of (±)-ipsenol,(±)-ipsdienol and amitinol, the components of aggregation pheromones of the Ips bark beetles
JP2511573B2 (ja) 1―エチルアダマンタンの製造方法
JP4999115B2 (ja) 奇数の炭素原子を持つオレフィンを製造するための触媒前駆体、その調製方法、並びにそのようなオレフィンの製造方法
WO2022138635A1 (ja) エステル化合物
US6489526B2 (en) Method for synthesis of hydrocarbyl bridged indenes
JP3741224B2 (ja) 脂環式トランス−ジカルボン酸ジエステルの製造方法
US7199274B2 (en) Preparation of substituted indenes
JP6635999B2 (ja) カリウム塩の製造方法、及びカリウム塩
JPH02138139A (ja) 1,3−ジブロム−5,7−ジメチルアダマンタンの製造方法
JP2007261980A (ja) エキソ体ノルボルネンモノカルボン酸エステルの製造方法
Pews et al. Hexabromocyclopentadiene V. The Diels-Alder reaction of hexabromocyclopentadiene
JP4271278B2 (ja) シクロアルケンの塩素化方法
US6414206B2 (en) Process for preparing bisindenylalkanes
JP5413611B2 (ja) 硫黄原子を有するノルボルネン化合物およびその製造方法
WO1997019906A1 (en) Tricyclocarboxylate, method for preparing the same and perfume comprising the same
JPS62120327A (ja) フルオロアルキル化方法
CN113956159A (zh) 一种二氟三元环化合物的制备方法
JPH01283236A (ja) アダマンチルアルコール類の製造方法
DE10249325A1 (de) Verfahren zur Herstellung von substituierten Indenen
JP2737304B2 (ja) キラルなフェロセン誘導体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545692

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237006344

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023003400

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202317016099

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021861653

Country of ref document: EP

Effective date: 20230327

ENP Entry into the national phase

Ref document number: 112023003400

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230224

WWE Wipo information: entry into national phase

Ref document number: 523442649

Country of ref document: SA

WWE Wipo information: entry into national phase

Ref document number: 523442649

Country of ref document: SA