WO2022045171A1 - 摩擦攪拌点接合方法及びこれを用いた接合体 - Google Patents

摩擦攪拌点接合方法及びこれを用いた接合体 Download PDF

Info

Publication number
WO2022045171A1
WO2022045171A1 PCT/JP2021/031098 JP2021031098W WO2022045171A1 WO 2022045171 A1 WO2022045171 A1 WO 2022045171A1 JP 2021031098 W JP2021031098 W JP 2021031098W WO 2022045171 A1 WO2022045171 A1 WO 2022045171A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
friction stir
shoulder
press
overlapping portion
Prior art date
Application number
PCT/JP2021/031098
Other languages
English (en)
French (fr)
Inventor
遼一 波多野
賢一 上向
慎太郎 深田
俊祐 春名
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP2022545658A priority Critical patent/JP7369872B2/ja
Priority to EP21861595.3A priority patent/EP4186632A4/en
Publication of WO2022045171A1 publication Critical patent/WO2022045171A1/ja
Priority to US18/112,521 priority patent/US20230191710A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0681Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding created by a tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8223Peel tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8253Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3034Particular design of joint configurations the joint involving an anchoring effect making use of additional elements, e.g. meshes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72141Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • B29C66/81429General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3064Trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts

Definitions

  • the present disclosure discloses a friction stir point joining method for joining a first member and a second member made of a thermoplastic resin molded body mixed with a fibrous material by using a tool for double-acting friction stir point joining. With respect to the junction using.
  • thermoplastic resin molded body mixed with a fiber reinforced material may be used as a constituent member of a structure such as an aircraft, a railroad vehicle, or an automobile.
  • a molded body in which short fibers or long fibers as the fiber reinforcing material are mixed with a thermoplastic resin, a fiber array in which continuous fibers are arranged in a predetermined direction, or a woven fabric of continuous fibers is used with a thermoplastic resin.
  • An example is an impregnated molded body.
  • Patent Document 1 describes a joining method in which two resin molded bodies mixed with fiber reinforced plastics are joined by friction stir point using a double-acting rotary tool provided with a pin member and a shoulder member arranged coaxially. It has been disclosed. In this technique, a shoulder member is press-fitted in advance into the overlapping portion of two resin molded bodies to be point-bonded to perform frictional stirring, and the pin member is retracted upward to cause the resin overflowing due to the press-fitting of the shoulder member. Let the material escape. After that, by lowering the pin member and backfilling the overflowing resin material, a stirring stir welding portion for point-bonding the two resin molded bodies is formed in the overlapping portion.
  • the shoulder leading method in which the shoulder member is press-fitted in advance can form a friction stir welding portion having a large diameter, and is therefore advantageous for improving the joining strength.
  • the bonding method of Patent Document 1 when a fiber-reinforced resin molded body is targeted for bonding, sufficient bonding strength may not be obtained. It was found that the cause was the fusion strength between the stirring joint and the resin molded body around it.
  • the present disclosure provides a friction stir point joining method capable of sufficiently ensuring the joining strength when a plurality of resin molded bodies mixed with fibrous materials are joined by friction stir welding, and a joining body using the same.
  • the purpose is.
  • a frictional agitation point joining method uses a tool for double acting friction agitation point joining, including a pin and a shoulder with a hollow portion into which the pin is inserted.
  • This is a friction stirring point joining method for joining a first member made of a thermoplastic resin molded body mixed with the above and a second member made of a molded body containing at least a thermoplastic resin, wherein the first member and the second member are joined.
  • the pin While arranging the tool with respect to the overlapping portion, at least the pin is rotated about the rotation axis, the pin is press-fitted into the overlapping portion from the first member side, and the pin is pressed around the press-fitting region of the pin. While frictional agitation is performed so that the extended fibers in which the fiber material is extended remain in the overlapped portion, the shoulder is retracted with respect to the overlapped portion in the direction of the rotation axis, so that the pin overflows due to press fitting. The resin molded body material is released to the peripheral region of the pin generated by the retracting, and the extended resin molded body material is involved in the extended fiber when the overflowed resin molded body material is backfilled from the peripheral region to the press-fitting region. The shoulder is brought closer to the overlapping portion in the direction of the rotation axis, while the pin is retracted from the overlapping portion.
  • a double-acting friction stir point joining tool is used, and a pin is first pressed into the overlapping portion of the first member and the second member to cause friction stir.
  • the press-fitting region of the pin is a region that finally becomes a friction stir welding portion, and at least the fiber material mixed in the first member in the overlapping portion is also stirred.
  • the fiber material is not cut cleanly at the boundary between the press-fitting region and the peripheral portion thereof, and a part of the fiber material extends from the boundary (residual extension fiber).
  • the backfilling operation by the shoulder is performed so that the resin molded material overflowed by the press-fitting of the pin entrains the extended fiber.
  • the stirring joint portion is in a state in which the extended fibers extending from the periphery of the press-fitting region have entered the inside of the stirring joint portion. That is, the stirring joint portion and the surrounding first and second members are not only bonded depending on the bonding between the resins, but are also connected and bonded by the extended fibers. Therefore, the joint strength between the first member and the second member can be improved.
  • the joined body according to another aspect of the present disclosure is a joined body of a first member made of a thermoplastic resin molded body mixed with a fibrous material and a second member made of at least a molded body containing a thermoplastic resin.
  • the overlapping portion where at least a part of the first member and the second member are in contact with each other and the overlapping portion are provided, and the first member and the second member are joined by friction stir welding.
  • the stir-welded joint is provided with a joined stir-welded joint, and in the stir-welded joint, the extended fiber in which the fiber material in the overlapped portion extends from the periphery of the stir-welded joint is caught in the resin material constituting the stir-welded joint. It has a entangled part.
  • the stirring joint portion includes a winding portion in which extended fibers extending from the periphery of the stirring joint portion are caught in the resin material. Therefore, the stirring joint portion and the surrounding first and second members are not only bonded depending on the bonding between the resins, but are also connected by the extended fibers. Therefore, it is possible to provide a bonded body having improved bonding strength between the stirring joint portion and the first member and the second member.
  • a friction stir point joining method capable of sufficiently ensuring the joining strength when two resin molded bodies in which fibrous materials are mixed are joined by friction stir welding, and a joining body using the same are provided. Can be provided.
  • FIG. 1 is a schematic diagram showing a configuration of a double-acting friction stir point joining device capable of carrying out the joining method according to the present disclosure.
  • FIG. 2 is a diagram showing a pin leading process in which a pin is first pressed into an overlapping portion of a joining member when a double-acting friction stir welding tool is used.
  • FIG. 3 is a diagram showing a shoulder preceding process in which the shoulder is pressed into the overlapping portion of the joining members in advance when the tool is used.
  • FIG. 4 is a diagram showing a process chart of the friction stir welding point joining method according to the exemplary embodiment of the present disclosure.
  • FIG. 5 is a diagram showing the configuration of the first member and the second member to be joined by friction stir welding and the process of forming the overlapping portion of both.
  • FIG. 6 is a cross-sectional view showing a process of arranging the tool with respect to the overlapping portion.
  • FIG. 7 is a cross-sectional view showing a step of press-fitting a pin into the overlapping portion.
  • FIG. 8 is a cross-sectional view of the overlapping portion when the tool is removed at the timing shown in FIG. 7.
  • FIG. 9 is a cross-sectional view showing a lowering process of the shoulder.
  • FIG. 10 is a cross-sectional view of the overlapping portion when the tool is removed at the timing shown in FIG.
  • FIG. 11A is a cross-sectional view showing a joint body of the first member and the second member formed by the friction stir point joining method of the present embodiment.
  • 11B is an enlarged view of a main part of FIG. 11A.
  • FIG. 12 is a diagram showing a friction stir welding point joining method of a comparative example, and is a cross-sectional view showing a step of previously press-fitting a shoulder to the overlapping portion.
  • FIG. 13 is a cross-sectional view of the overlapping portion when the tool is removed at the timing shown in FIG.
  • FIG. 14 is a diagram showing a friction stir welding point joining method of a comparative example, and is a cross-sectional view showing a lowering step of the member.
  • FIG. 15 is a cross-sectional view of the overlapping portion when the tool is removed at the timing shown in FIG.
  • FIG. 16A is a cross-sectional view showing a joined body of the first member and the second member formed by the friction stir point joining method of the comparative example.
  • FIG. 16B is an enlarged view of a main part of FIG. 16A.
  • FIG. 17A is a perspective view showing the state of the peeling test of the joined body according to the present embodiment.
  • FIG. 17B is a cross-sectional view of FIG. 17A after the peeling test.
  • FIG. 18A is a perspective view showing the state of the peeling test of the joined body according to the comparative example.
  • FIG. 18B is a cross-sectional view of FIG. 18A after the peeling test.
  • two or more structural materials such as a plate, a frame, an exterior material, or a columnar material made of a thermoplastic resin molded body mixed with a fiber material are superposed and point-bonded. It can be applied to the production of various joints.
  • the manufactured joint is, for example, a component of a structure such as an aircraft, a railroad vehicle, or an automobile.
  • the friction stir point joining device M includes a tool 1 for double-acting friction stir point joining, a tool drive unit 2 for rotating and raising and lowering the tool 1, and a controller C for controlling the operation of the tool drive unit 2. .. It should be noted that although the directions of "upper” and “lower” are attached to FIG. 1, this is for convenience of explanation and is not intended to limit the actual usage direction of the tool 1.
  • Tool 1 is supported by the tool fixing part.
  • the tool fixing portion may be, for example, the tip portion of an articulated robot.
  • the backup 15 is arranged so as to face the lower end surface of the tool 1.
  • At least two fiber-reinforced thermoplastic resin molded bodies to be joined are arranged between the tool 1 and the backup 15.
  • an overlapping portion 30 in which a part of the first member 31 made of a flat plate plate and a part of a second member 32 also made of a flat plate plate are overlapped in the vertical direction is formed between the tool 1 and the backup 15. An example of placement is shown.
  • Tool 1 includes a pin 11, a shoulder 12, a clamp 13 and a spring 14.
  • the pins 11 are formed in a columnar shape, and their axes are arranged so as to extend in the vertical direction.
  • the pin 11 can rotate with the axis R as the rotation axis R, and can move up and down, that is, move forward and backward along the rotation axis R.
  • the rotation axis R and the point joining position W in the overlapping portion 30 are aligned with each other.
  • the shoulder 12 is a member formed in a cylindrical shape, including a hollow portion into which the pin 11 is inserted.
  • the axis of the shoulder 12 is coaxial with the axis of the pin 11 which is the rotation axis R.
  • the shoulder 12 rotates around the rotation axis R and moves up and down, that is, moves back and forth along the rotation axis R.
  • the shoulder 12 and the pin 11 inserted in the hollow portion both rotate about the axis of the rotation axis R and relatively move in the direction of the rotation axis R. That is, the pin 11 and the shoulder 12 not only move up and down at the same time along the rotation axis R, but also move independently so that one goes down and the other goes up.
  • the clamp 13 is a member formed in a cylindrical shape, including a hollow portion into which the shoulder 12 is inserted.
  • the axis of the clamp 13 is also coaxial with the rotation axis R.
  • the clamp 13 does not rotate about an axis, but moves up and down, that is, moves back and forth along the rotation axis R.
  • the clamp 13 serves to surround the outer periphery of the pin 11 or the shoulder 12 when the pin 11 or the shoulder 12 performs friction stir welding. By the enclosure of the clamp 13, the friction stir welding material can be smoothly finished without being scattered.
  • the spring 14 is attached to the upper end side of the clamp 13 and urges the clamp 13 downward in the direction toward the overlapping portion 30.
  • the clamp 13 is attached to the tool fixing portion via the spring 14.
  • the backup 15 includes a flat surface that abuts on the lower surface side of the joining target (overlapping portion 30).
  • the backup 15 is a backing member that supports the overlapping portion 30 when the pin 11 or the shoulder 12 is press-fitted into the overlapping portion 30.
  • the clamp 13 urged by the spring 14 presses the overlapping portion 30 against the backup 15.
  • the tool drive unit 2 includes a rotation drive unit 21, a pin drive unit 22, a shoulder drive unit 23, and a clamp drive unit 24.
  • the rotation drive unit 21 includes a motor, a drive gear, and the like, and rotationally drives the pin 11 and the shoulder 12 around the rotation axis R.
  • the pin drive unit 22 is a mechanism for moving the pin 11 forward and backward, that is, moving it up and down along the rotation axis R.
  • the pin driving unit 22 drives the pin 11 so as to press-fit the pin 11 into the overlapping portion 30 and retract the pin 11 from the overlapping portion 30.
  • the shoulder drive unit 23 is a mechanism for moving the shoulder 12 forward and backward along the rotation axis R, and press-fits and retracts the shoulder 12 into the overlapping portion 30.
  • the clamp drive unit 24 is a mechanism for moving the clamp 13 forward and backward along the rotation axis R.
  • the clamp drive unit 24 moves the clamp 13 toward the overlapping portion 30 and presses the overlapping portion 30 against the backup portion 15. At this time, the urging force of the spring 14 acts.
  • the controller C is composed of a microcomputer or the like, and controls the operation of each part of the tool driving unit 2 by executing a predetermined control program. Specifically, the controller C controls the rotation drive unit 21 to cause the pin 11 and the shoulder 12 to perform the required rotation operation. Further, the controller C controls the pin drive unit 22, the shoulder drive unit 23, and the clamp drive unit 24, and causes the pin 11, the shoulder 12, and the clamp 13 to perform the required advance / retreat movement operation.
  • the method of use includes a pin leading process in which the pin 11 of the tool 1 is pressed into the overlapping portion of the joining members in advance, and a shoulder leading process in which the shoulder 12 is pressed into the overlapping portion of the joining members in advance. There is.
  • a pin-first process is adopted.
  • FIG. 2 is a diagram showing processes P11 to P14 of the friction stir welding point joining method by the pin preceding process.
  • Process P11 shows a preheating step of the overlapping portion 30.
  • Process P12 shows the press-fitting process of the pin 11.
  • the pin 11 is lowered to press-fit it into the overlapping portion 30, while the shoulder 12 is raised, that is, retracted.
  • the material in the press-fitting region of the pin 11 is agitated.
  • the overflow material OF overflowing from the overlapping portion 30 due to the press fitting is released to the annular region between the pin 11 and the clamp 13 generated by the retracting of the shoulder 12.
  • Process P13 shows the backfilling process of the overflow material OF.
  • the pin 11 is raised and retracted, while the shoulder 12 is lowered.
  • the shoulder 12 descends, as shown by the arrow a2, the overflow material OF that has escaped to the annular region is backfilled in the press-fit region of the pin 11.
  • Process P14 shows the break-in process. With the lower end surfaces of the pin 11 and the clamp 13 returned to the height position of the surface of the first member 31, both are rotated to smooth the point-joined portion. By the above process, the friction stir welding portion 4a is formed, and the first member 31 and the second member 32 are point-bonded at the overlapping portion 30.
  • FIG. 3 is a diagram showing processes P21 to P24 of the friction stir welding point joining method by the shoulder preceding process.
  • the process P21 is a preheating step of the overlapping portion 30 similar to the above-mentioned process P11.
  • Process P22 shows the press-fitting process of the shoulder 12.
  • the shoulder 12 is lowered and press-fitted into the overlapping portion 30, while the pin 11 is raised, that is, retracted.
  • the material in the press-fitting region of the shoulder 12 is agitated.
  • the overflow material OF that overflows from the overlapping portion 30 due to the press fitting is released to the hollow space of the shoulder 12 created by the retracting of the pin 11.
  • Process P23 shows the backfilling process of the overflow material OF.
  • the shoulder 12 is raised and retracted, while the pin 11 is lowered.
  • the overflow material OF that has escaped into the hollow space is backfilled in the press-fitting region of the shoulder 12.
  • the process P24 shows a break-in process similar to the above-mentioned process P14. By the above process, the friction stir welding portion 4b is formed.
  • the stirring stir welding portion 4b by the shoulder preceding process has a larger diameter than the stirring joining portion 4a by the pin preceding process. Can be formed. Therefore, when the first member 31 and the second member 32 are made of a metal material such as an aluminum alloy, it is advantageous to adopt the shoulder prior process from the viewpoint of improving the strength and stabilizing the joint portion.
  • the first member 31 and the second member 32 are thermoplastic resin molded bodies in which a fiber material as a reinforcing material is mixed, it is better to adopt the pin preceding process. It was found that the bonding strength can be improved.
  • the joining target is a fiber-reinforced thermoplastic resin molded body
  • FIG. 4 is a diagram showing a process chart of the friction stir welding point joining method according to the embodiment of the present disclosure.
  • the friction stir welding point joining method of the present embodiment is a joining method of the first member 31 and the second member 32 made of a thermoplastic resin molded body mixed with a fiber material, and includes the following steps S1 to S5.
  • Step S1 The overlapping portion 30 of the first member 31 and the second member 32 to be joined is formed.
  • Step S2 The tool 1 is arranged and rotated at the point joining position W of the overlapping portion 30.
  • -Step S4 The shoulder 12 is lowered to backfill the material.
  • -Step S5 The friction stir portion is smoothed.
  • step S2 is the "preheating step” of the process P11 shown in FIG. 2
  • step S3 is the "press-fitting step” of the process P12
  • step S4 is the “backfilling step” of the process P13
  • step S5 is the process P14.
  • the bonding target is the thermoplastic resin molded body mixed with the fiber material
  • the steps S3 and S4 have different actions from the conventional simple "press-fitting step” and "backfilling step”. It becomes a process to fulfill. That is, in step S3, the fiber material mixed in the first member 31 and the second member 32 is extended from the periphery of the press-fitting region of the pin 11 into the overlapping portion 30. Further, in step S4, a friction stir weld is formed so that the extended fiber material entrains the backfill material.
  • FIG. 5 is a diagram showing a step of forming the overlapping portion 30 in the above step S1.
  • the first member 31 and the second member 32 are arranged so that an overlapping portion 30 is formed so that at least a part of both members are in contact with each other.
  • an overlapping portion 30 in which a part of the plate-shaped first member 31 and a part of the plate-shaped second member 32 are vertically overlapped with each other is illustrated.
  • the overlapping portion 30 may be an overlapping portion between the plate and the frame or the columnar material, or an overlapping portion between the frames.
  • the overlapping portion 30 is formed with a mating surface BD in which the joint surface 31A, which is the lower surface of the first member 31, and the joint surface 32A, which is the upper surface of the second member 32, are in direct contact with each other.
  • the first member 31 and the second member 32 are friction stir welded at a required point joining position W.
  • thermoplastic resin molded body mixed with a fiber material As described above, as the first member 31 and the second member 32, a thermoplastic resin molded body mixed with a fiber material is used.
  • a molded body for example, a molded body in which short fibers or long fibers as a fiber reinforcing material are mixed with a thermoplastic resin, a fiber array in which continuous fibers are arranged in a predetermined direction, or a woven fabric of continuous fibers is impregnated with a thermoplastic resin.
  • An example of the molded body is made of.
  • a molded body formed by laminating a prepreg which is a sheet impregnated with a thermoplastic resin in an array of continuous fibers, in multiple layers is used as the first member 31 and the second member 32.
  • the first member 31 on the side where the pin 11 is press-fitted may be a thermoplastic resin molded body mixed with a fiber material
  • the second member 32 is a thermoplastic resin molded body containing no fiber material. May be.
  • FIG. 5 shows a part of the sheet stack 33 constituting the first member 31.
  • the sheet stack 33 includes a first sheet layer 33A, a second sheet layer 33B, and a third sheet layer 33C, each of which is composed of a sheet in which an array of continuous fibers is impregnated with a thermoplastic resin.
  • the first sheet layer 33A is a sheet having a thickness of about 0.1 mm to 0.5 mm, in which a large number of continuous fibers 34 are arranged in a predetermined arrangement direction, and the arrangement is impregnated with a thermoplastic resin and integrated. be.
  • the second sheet layer 33B and the third sheet layer 33C are the same sheets as described above, but the arrangement directions of the continuous fibers 34 are different from each other.
  • the first member 31 has pseudo-isotropic properties by laminating three types of sheets having the arrangement directions of the continuous fibers 34 in different triaxial directions in a multi-layered manner.
  • the second member 32 is also a plate made of a multi-layered laminate of sheets similar to the first member 31.
  • the continuous fiber 34 for example, carbon fiber, glass fiber, ceramic fiber, metal fiber or organic fiber can be used.
  • FIG. 5 exemplifies a sheet in which continuous fibers 34 are arranged in one direction, a fabric-type sheet in which continuous fibers are used as warp and weft to form a woven fabric and then impregnated with a thermoplastic resin may be used.
  • a sheet or plate in which long fibers having a length of about 2 mm to 20 mm are mixed with a thermoplastic resin can also be used.
  • thermoplastic resin polypropylene (PP), polyethylene (PE), polyamide (PA), polystyrene (PS), polyaryletherketone (PAEK), polyacetal (POM), polycarbonate (PC), polyethylene terephthalate (PET). ), Polyetheretherketone (PEEK), polyphenylene sulfide (PPS), ABS resin, thermoplastic epoxy resin and the like can be exemplified.
  • the first member 31 and the second member 32 are entirely composed of a laminated body of sheets (molded bodies) in which an array of continuous fibers 34 is impregnated with a thermoplastic resin, but a part thereof is formed. It may be composed of the sheet. For example, a layer made of a thermoplastic sheet containing no reinforcing fibers or a thermoplastic sheet mixed with reinforcing fibers that are not continuous fibers is interposed between the first to third sheet layers 33A to 33C shown in FIG. You may do so.
  • FIG. 6 is a cross-sectional view showing a tool arranging process of the above step S2.
  • the tool 1 is arranged with respect to the overlapping portion 30 so that the rotation axis R of the tool 1 is aligned in the overlapping direction of the first member 31 and the second member 32, that is, in the vertical direction.
  • the lower end surface of the tool 1 is brought into contact with the upper surface of the first member 31 in a state where the rotation axis R is aligned with the predetermined point joining position W.
  • the clamp 13 presses the overlapping portion 30 against the backup 15 with the urging force of the spring 14.
  • the rotation drive unit 21 shown in FIG. 1 rotates the pin 11 and the shoulder 12 around the rotation axis R. This rotation preheats the region of the overlapping portion 30 where the pin 11 and the shoulder 12 are in contact.
  • FIG. 7 is a cross-sectional view showing a press-fitting process of the pin 11 in the above process S3.
  • the pin drive unit 22 lowers the pin 11 along the rotation axis R, and press-fits the pin 11 into the overlapping portion 30.
  • the shoulder drive unit 23 raises the shoulder 12 and retracts the shoulder 12 with respect to the overlapping portion 30 in the rotation axis R direction.
  • the clamp 13 is immovable.
  • the overflow material OF which is a resin molded material that overflows from the overlapping portion 30 due to the press-fitting of the pin 11, moves upward along the outer peripheral surface of the pin 11 and escapes to the annular region.
  • the overlapping portion 30 is formed by using the first member 31 as the upper member and the second member 32 as the lower member.
  • the pin 11 is press-fitted from the upper surface side of the first member 31.
  • the pin 11 is lowered until the lower end 11T of the pin 11 penetrates the first member 31 which is the upper member and reaches a part of the second member 32 which is the lower member in the thickness direction. .. It is desirable to lower the pin 11 until the lower end 11T reaches at least half the thickness of the second member 32.
  • FIG. 8 is a cross-sectional view of the overlapping portion 30 when the tool 1 is removed at the timing shown in FIG. 7.
  • the positions of the pin 11, the shoulder 12 and the clamp 13 before being removed are shown by dotted lines.
  • the pin 11 penetrates the first member 31 and is press-fitted to the lowest layer sheet 33BS of the sheet stack 33 of the second member 32.
  • the press-fitting region of the pin 11 is hollow.
  • the overflow material OF is temporarily retracted above the peripheral edge of the hollowed-in area.
  • the extending fiber 35 remains around the press-fitting region of the pin 11 in the overlapping portion 30, in other words, on the inner peripheral wall of the hollowed out region.
  • the extension fiber 35 is a continuous fiber 34 in the overlapping portion 30 composed of the first member 31 and the second member 32 extending from the inner peripheral wall of the press-fitting region of the pin 11 to the hollow region.
  • the extended fiber 35 extended from the inner peripheral wall of the press-fitted region with a length of about 1 mm to 2 mm.
  • the length of the extended fiber 35 is exaggerated for ease of understanding.
  • the first member 31 and the second member 32 to be joined are both composed of a sheet stack 33 in which a sheet impregnated with a thermoplastic resin is laminated on an array of continuous fibers 34.
  • the thermoplastic resin is frictionally agitated in the press-fitting region, and the continuous fiber 34 is also agitated.
  • the continuous fiber 34 is not cut cleanly at the boundary between the press-fitting region and the peripheral portion thereof, and a part of the continuous fiber 34 extends from the boundary. That is, the extending fiber 35 remains on the inner peripheral wall of the press-fitting region.
  • the sheet stack 33 in which the continuous fibers 34 are arranged in different multi-axis (triaxial) directions is used (exemplified in FIG. 5), from almost the entire circumference of the inner peripheral wall of the press-fitting region.
  • the extension fiber 35 will extend.
  • the press-fitting region is a region that finally becomes a friction stir welding portion 4 that joins the first member 31 and the second member 32.
  • the bonding strength can be improved by involving the extended fiber 35 in the resin material constituting the friction stir welding portion 4.
  • FIG. 9 is a cross-sectional view showing the backfilling step of the above step S4.
  • the pin drive unit 22 raises the pin 11 along the rotation axis R, and retracts the pin 11 from the overlapping portion 30.
  • the shoulder drive unit 23 lowers the shoulder 12 and brings the shoulder 12 closer to the overlapping portion 30 in the rotation axis R direction.
  • FIG. 9 shows a state in which the lower end portion 11T of the pin 11 is raised to the vicinity of the mating surface BD.
  • the overflow material OF temporarily retracted into the annular region (peripheral region) between the pin 11 and the clamp 13 due to the lowering of the shoulder 12 is backfilled in the press-fitting region.
  • FIG. 10 is a cross-sectional view of the overlapping portion 30 when the tool 1 is removed at the timing shown in FIG.
  • the positions of the pin 11, the shoulder 12 and the clamp 13 before being removed are shown by dotted lines.
  • the overflow material OF pushed to the lower end portion 12T of the shoulder 12 flows along the arrow f1 and flows into the press-fitting region as the backfill material 36. That is, the space created by the ascent of the pin 11 is gradually filled with the backfill material 36.
  • the backfill material 36 is cured, it becomes a friction stir welding portion 4 for joining the first member 31 and the second member 32.
  • the extending fiber 35 remains on the inner peripheral wall of the press-fitting region. Further, the overflow material OF flows toward the center of the press-fitting region as shown by the arrow f1. Therefore, when the overflow material OF is backfilled from the annular region to the press-fitting region, the extending fiber 35 is involved. That is, since the overflow material OF flows along the extension direction of the extension fiber 35, the extension fiber 35 is not pushed back to the outside in the radial direction of the press-fitting region. Therefore, if the shoulder 12 is lowered in this step S4, the overflow material OF, that is, the backfill material 36, which overflows due to the press-fitting of the pin 11, is naturally backfilled so as to involve the extension fiber 35.
  • step S4 the pin 11 is further raised from the state shown in FIG. 9 until the lower end 11T reaches the upper surface of the first member 31, and the shoulder 12 is lowered until the lower end 12T reaches the upper surface of the first member 31. .. That is, all of the overflow material OF is backfilled, and the press-fitting region of the pin 11 is filled with the backfill material 36.
  • step S5 the leveling step of the above step S5 is performed. In the leveling step, the lower end portion 11T of the pin 11 and the lower end portion 12T of the shoulder 12 are flush with each other, and the surface of the frictionally agitated portion is smoothed.
  • the filled backfill material 36 is cooled and solidified to form a friction stir welding portion 4 for joining the first member 31 and the second member 32.
  • FIG. 11A is a cross-sectional view showing a joint body 3 of the first member 31 and the second member 32 formed by the friction stir welding point joining method of the present embodiment
  • FIG. 11B is an enlarged view of the E1 part of FIG. 11A.
  • the joint body 3 includes an overlapping portion 30 in which a part of the first member 31 and the second member 32 are overlapped with each other in a state of being in contact with each other on the mating surface BD, and a stirring joint portion 4 provided in the overlapping portion 30.
  • the stirring joint portion 4 is a joint portion joined by the friction stir point joining method of the above steps S1 to S5.
  • the friction stir welding portion 4 fills the press-fitting region of the columnar pin 11, it has a substantially columnar shape.
  • the friction stir welding portion 4 is provided with a winding portion 37 in the vicinity of the outer peripheral surface thereof.
  • the winding portion 37 is a portion where the extended fiber 35 in which the continuous fiber 34 in the overlapping portion 30 extends from the periphery of the stirring joint portion 4 is connected to the stirring joint portion 4.
  • a state in which the extension fiber 35 has entered the inside of the resin material constituting the stirring joint portion 4 in other words, a state in which the extension fiber 35 is entangled in the resin material is formed.
  • the boundary portion D between the stirring joint portion 4 and the base material portion of the overlapping portion 30 of the first member 31 and the second member 32 that are not stirred around the stirring joint portion 4 is shown by a dotted line.
  • the boundary portion D is a portion corresponding to the inner peripheral wall of the above-mentioned press-fitting region.
  • the extending fiber 35 extends substantially from the boundary portion D to the radial center of the stirring joint portion 4. Moreover, since the extended fiber 35 is an end portion of the continuous fiber 34 embedded in the base material portion, it can be said that the extended fiber 35 is firmly held by the base material portion.
  • the bonded body 3 of the present embodiment includes a entangled portion 37 formed by the extended fiber 35 firmly held by the base metal portion entering the resin material of the stirring joint portion 4. Therefore, the base material portion of the stirring joint portion 4 and the overlapping portion 30 located around the stirring joint portion 4 is not only bonded depending on the bonding between the resins, but is also connected by the extending fiber 35. .. Therefore, in the overlapping portion 30, the bonding strength between the stirring joint portion 4 and the base material portions of the first member 31 and the second member 32 can be improved.
  • FIG. 12 is a diagram showing a friction stir welding point joining method of a comparative example, in which the shoulder 12 of the tool 1 is press-fitted into the overlapping portion 30 of the first member 31 and the second member 32 in the same manner as in the above embodiment. It is sectional drawing which shows the process to perform.
  • the pin 11 is raised along the rotation axis R, while the rotating shoulder 12 is lowered along the rotation axis R.
  • the clamp 13 is immovable.
  • the shoulder 12 is press-fitted into the overlapping portion 30, the overlapping portion 30 is frictionally agitated in the press-fitting region of the shoulder 12 and the resin molded body material in that portion is softened.
  • the overflow material OF that overflows from the overlapping portion 30 due to the press fitting of the shoulder 12 is released to the evacuation region.
  • FIG. 13 is a cross-sectional view of the overlapping portion 30 when the tool 1 is removed at the timing shown in FIG.
  • the shoulder 12 penetrates the first member 31 and is press-fitted to the vicinity of the lowermost layer of the sheet stack 33 of the second member 32.
  • the press-fitting region of the shoulder 12 is an annular hollow region.
  • the overflow material OF is released to a columnar region inside the annular hollow region.
  • continuous fibers 34 in the base material portion of the overlapping portion 30 of the first member 31 and the second member 32 extend into the hollowed out region. 35A remains.
  • the extension length of the extension fiber 35A was about 0.7 mm when the shoulder 12 having a diameter of 9 mm was press-fitted, which was shorter than the press-fitting of the pin 11 described above.
  • FIG. 14 is a cross-sectional view showing a backfilling process of the overflow material OF.
  • the shoulder 12 is raised along the rotation axis R, and the shoulder 12 is retracted from the overlapping portion 30.
  • the pin 11 is lowered along the rotation axis R, and the overflow material OF that has escaped to the columnar region is backfilled in the annular hollow region.
  • the positional relationship is such that the cylindrical region in which the overflow material OF is temporarily retracted exists inside the annular hollow region into which the shoulder 12 is press-fitted. Therefore, as shown by the arrow f2 in FIG. 14, the overflow material OF during the backfilling flows outward in the radial direction from the columnar region to the annular hollow region. Become. That is, the overflow material OF flows in the direction opposite to the direction in which the extension fiber 35A extends from the inner peripheral wall of the press-fitting region.
  • FIG. 15 is a cross-sectional view of the overlapping portion 30 when the tool 1 is removed at the timing shown in FIG.
  • the positions of the pin 11, the shoulder 12 and the clamp 13 before being removed are shown by dotted lines.
  • the overflow material OF pushed by the lower end portion 11T of the pin 11 flows along the arrow f2 and flows into the press-fitting region of the shoulder 12 as the backfill material 36. That is, the space created by the rise of the shoulder 12 is gradually filled with the backfill material 36.
  • the backfill material 36 eventually becomes a friction stir welding portion 4A that joins the first member 31 and the second member 32.
  • the extended fiber 35A remains on the inner peripheral wall of the press-fitting region.
  • the overflow material OF flows toward the inner peripheral wall side of the press-fitting region, which is the base material portion side of the overlapping portion 30, as shown by the arrow f2. Therefore, when the overflow material OF is backfilled, the extension fiber 35A is pushed back to the base material portion side of the extension source. Therefore, unlike the embodiment shown above in FIG. 10, the overflow material OF, that is, the backfill material 36, can hardly involve the extended fiber 35A.
  • FIG. 16A is a cross-sectional view showing a joint body 3A of the first member 31 and the second member 32 formed by the friction stir welding point joining method of the comparative example
  • FIG. 16B is an enlarged view of the E2 part of FIG. 16A.
  • the joint body 3A includes an overlapping portion 30 in which the first member 31 and the second member 32 overlap each other, and a stirring joint portion 4A provided in the overlapping portion 30.
  • the stirring joint portion 4A is a joint portion joined by the friction stir point joining method according to the above-mentioned shoulder preceding process.
  • the friction stir welding portion 4A does not substantially include the entrainment portion 37 as shown in the above embodiment.
  • the boundary portion D between the stirring joint portion 4A and the base material portion of the overlapping portion 30 of the first member 31 and the second member 32 that are not stirred around the stirring joint portion 4A is shown by a dotted line. ..
  • the boundary portion D is a portion corresponding to the inner peripheral wall of the press-fitting region of the shoulder 12.
  • the extended fiber 35A in the comparative example is in a state of sticking to the boundary portion D. That is, the extended fiber 35A does not substantially enter the inside of the friction stir welding portion 4A.
  • an entrainment portion 37 in which the extension fiber 35 is entrained in the resin material of the stirring joint portion 4 is formed. Therefore, the extension fiber 35 bridges the stirring joint portion 4 and the base material portion of the overlapping portion 30, and the joint strength between the two is increased.
  • the extended fiber 35A does not substantially contribute to the bonding between the stirring joint portion 4A and the base material portion of the overlapping portion 30. That is, since the bonding between the stirring joint portion 4A and the base metal portion depends solely on the bonding between the resins, the bonding strength between the two is relatively weak.
  • a bonded body 3A bonded by friction stir point welding by the shoulder preceding process shown in the comparative example of 15 was manufactured. The test was performed 5 times in both the example and the comparative example. Further, as the tool 1, a pin 11 having a diameter of 9 mm was used in the examples, and a shoulder 12 having an outer diameter of 9 mm was used in the comparative example so that the stirring joint portions 4 and 4A were finished to the same diameter.
  • the average value of the breaking strength which is the peeling strength between the first member 31 and the second member 32, in the joints 3 and 3A according to the examples and the comparative examples was as follows. That is, it was confirmed that the bonded body 3 according to the example had a breaking strength about 1.4 times higher than that of the bonded body 3A according to the comparative example.
  • FIG. 17A is a perspective view showing the state of the peeling test of the bonded body 3 according to the embodiment
  • FIG. 17B is a cross-sectional view after the peeling test.
  • the first member 31 which is the upper member and the second member 32 which is the lower member are separated from each other at the peeling portion 41 in the friction stir welding portion 4. It should be noted that, as observed from FIG. 17A, the stripped piece on the side of the second member 32 is accompanied by the fiber piece 38 entangled from the stirring joint portion 4.
  • the entangled fiber piece 38 is a continuous fiber 34 of the first member 31.
  • the continuous fibers 34 are delaminated from the sheet layer near the mating surface BD of the first member 31, and the fibers that are peeled off together with the second member 32 are the entangled fibers.
  • the delamination portion 39 of the entangled fiber piece 38 appears on the peeling piece on the first member 31 side.
  • the end portion of the entangled fiber piece 38 is a portion entangled in the entangled portion 37 of the stirring joint portion 4 shown in FIG. 11B. It is considered that as a result of the end portion of the entangled fiber piece 38 entering the region of the second member 32 in the stirring joint portion 4, the entangled fiber piece 38 was attached to the second member 32 and peeled off from the first member 31. Be done.
  • FIG. 18A is a perspective view showing the state of the peeling test of the bonded body 3A according to the comparative example
  • FIG. 18B is a cross-sectional view after the peeling test.
  • the first member 31 and the second member 32 are separated from each other at the peeling portion 42 appearing along the outer periphery of the friction stir welding portion 4A. So to speak, at the boundary between the friction stir welding portion 4A and the first member 31, both are "cleanly" peeled off. This can be said to indicate that the extended fiber 35A does not particularly contribute to the improvement of the bonding strength.
  • the bonding strength between the stirring joint portion 4 and the base metal portion in the bonded body 3 of the embodiment the entrainment fiber piece 38 is delaminated from the first member 31 due to the bonding strength of the resin portion between the two. It can be said that the strength is added.
  • the bonding strength between the stirring joint portion 4A and the base metal portion in the bonded body 3 of the comparative example depends solely on the bonding strength of the resin portion between the two. Therefore, it can be seen that in the pin-preceding embodiment, the bonding strength between the first member 31 and the second member 32 is higher than that in the shoulder-preceding comparative example.
  • the tool 1 for double-acting friction stir point joining is used, and the pin 11 is preceded by the overlapping portion of the first member 31 and the second member 32. It is press-fitted into 30 and agitated by friction.
  • the press-fitting region of the pin 11 is a region that finally becomes the friction stir welding portion 4, and the fiber material mixed with at least the first member 31 in the overlapping portion 30 is also stirred together with the resin.
  • the fiber material is not cut cleanly at the boundary portion D between the press-fitting region and the peripheral portion thereof, and a part thereof extends from the boundary portion D. That is, a state in which the extending fibers 35 remain on the inner peripheral wall of the press-fitting region of the pin 11 is formed.
  • the friction stir welding portion 4 is in a state in which the extending fibers 35 extending from the periphery of the press-fitting region enter the inside of the friction stir welding portion 4 and are involved. That is, the stirring joint portion 4 and the base metal portion around the stirring joint portion 4 are not only bonded depending on the bonding between the resins, but are also connected and bonded by the extended fiber 35. Therefore, the joint strength between the first member 31 and the second member 32 can be improved.
  • first member 31 and the second member 32 to be joined a member including a molded body in which continuous fibers 34 are impregnated with a thermoplastic resin is used.
  • first member 31 and the second member 32 having pseudo-isotropic properties are used by forming the sheet stack 33 in which resin-impregnated sheets having different arrangement directions of the continuous fibers 34 are laminated in multiple layers. Has been done.
  • the extended fiber 35 is the extended end portion from the continuous fiber 34, the root portion thereof is firmly held by the base material portion in the overlapping portion 30. Moreover, since it is provided with pseudo-isotropic properties, the continuous fibers 34 extend in the multiaxial direction when viewed in units of the sheet stack 33. Therefore, the extending fiber 35 extends from the entire circumference of the inner peripheral wall of the press-fitting region of the pin 11. Therefore, the bonding between the friction stir welding portion 4 and the peripheral base metal portion can be made stronger.
  • the extension fiber 35 can be extended not only from the first member 31 but also from the second member 32 by lowering the pin 11 until it enters the second member 32. .. Therefore, in the overlapping portion 30, both the stirring joint portion 4 and the first member 31 and the second member 32 can be connected by the extending fiber 35. Therefore, the joint strength between the first member 31 and the second member 32 can be further improved.
  • the tool 1 used in this embodiment includes a clamp 13 having a hollow portion into which the shoulder 12 is inserted. Therefore, an annular region is formed between the inner wall surface of the hollow portion of the clamp 13 and the outer peripheral surface of the pin 11. Then, the overflow material OF, which is the resin molded material that overflows due to the press-fitting of the pin 11, is backfilled in the direction from the annular region shown by the arrow f1 in FIGS. 9 and 10 toward the center of the press-fitting region.
  • the overflow material OF which is the resin molded material that overflows due to the press-fitting of the pin 11
  • the backfilling direction of the arrow f1 is along the extending direction of the extending fiber 35. Therefore, when the overflow material OF is backfilled, the extension fiber 35 is not pushed back to the base material portion side, and the extension fiber 35 is naturally involved. Therefore, the rolled-in portion 37, which is a portion where the extended fiber 35 is satisfactorily bonded to the resin material of the stirring joint portion 4, can be formed, which can contribute to the improvement of the bonding strength.
  • the bonded body 3 formed by the present embodiment is a bonded body of a first member 31 and a second member 32 made of a thermoplastic resin molded body in which continuous fibers 34, which are fibrous materials, are mixed, and is a first member.
  • the overlapping portion 30 in which at least a part of the 31 and the second member 32 are in contact with each other and the overlapping portion 30 are provided, and the first member 31 and the second member 32 are joined by friction stir welding.
  • a stirring joint portion 4 is provided.
  • the stirring joint portion 4 includes a winding portion 37 in which the extending fibers 35 in which the continuous fibers 34 in the overlapping portion 30 extend from the periphery of the stirring joining portion 4 are caught in the resin material constituting the stirring joining portion 4. ing.
  • the stirring joint portion 4 since the stirring joint portion 4 includes the winding portion 37, the base material portion composed of the stirring joint portion 4 and the first member 31 and the second member 32 around the stirring joint portion 4 is made of resin. Not only the bonding is dependent on the bonding, but the extended fiber 35 is also connected. Therefore, it is possible to provide a bonded body 3 having improved bonding strength between the stirring joint portion 4 and the base metal portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

複動式の摩擦攪拌点接合用のツールを用いて、繊維材が混合された熱可塑性樹脂成形体からなる第1部材と、少なくとも熱可塑性樹脂を含む成形体からなる第2部材とを摩擦攪拌点接合する。第1部材と第2部材との重なり部を形成し、重なり部に対してツールを配置すると共に、ピン及びショルダを回転軸回りに回転させる。ピンを重なり部へ圧入し、当該ピンの圧入領域の周囲に延出繊維が残存するように摩擦攪拌を行う一方で、ショルダを退避させて溢れ出し材料を逃がす。溢れ出し材料が埋め戻される際に延出繊維を巻き込むように、ショルダを重なり部に対して接近させる一方で、ピンを重なり部から退避させる。

Description

摩擦攪拌点接合方法及びこれを用いた接合体
 本開示は、複動式の摩擦攪拌点接合用のツールを用いて、繊維材が混合された熱可塑性樹脂成形体からなる第1部材及び第2部材を接合する摩擦攪拌点接合方法、及びこれを用いた接合体に関する。
 航空機、鉄道車両又は自動車などの構造物の構成部材として、繊維強化材が混合された熱可塑性の樹脂成形体が用いられることがある。前記樹脂成形体としては、前記繊維強化材としての短繊維又は長繊維を熱可塑性樹脂に混合した成形体、連続繊維を所定方向に配列した繊維配列体若しくは連続繊維の織布に熱可塑性樹脂を含浸してなる成形体、などを例示することができる。
 前記構造物の製造に際しては、2つの部材の接合が必要となる場合がある。この接合の手法の一つとして、摩擦攪拌点接合が知られている。特許文献1には、繊維強化材が混合された2つの樹脂成形体を、同軸に配置されたピン部材及びショルダ部材を備えた複動式の回転ツールを用いて摩擦攪拌点接合する接合方法が開示されている。この技術では、点接合される2つの樹脂成形体の重なり部に、ショルダ部材を先行して圧入して摩擦攪拌を行うと共に、ピン部材を上方へ退避させ、前記ショルダ部材の圧入によって溢れた樹脂材料を逃がす。しかる後、前記ピン部材を下降させ、溢れた樹脂材料を埋め戻すことで、前記重なり部に2つの樹脂成形体を点接合する攪拌接合部が形成される。
 一般に、ショルダ部材を先行して圧入するショルダ先行方式の方が、径の大きい攪拌接合部を形成できるので、接合強度の向上には有利とされる。しかしながら、本発明者らの研究によれば、特許文献1の接合方法では、繊維強化樹脂成形体を接合対象とすると、接合強度が十分に得られない場合があることが判明した。その原因は、攪拌接合部とその周囲の樹脂成形体との融着強度にあることが判明した。
特許第6020501号公報
 本開示は、繊維材が混合された複数の樹脂成形体を摩擦攪拌点接合するに際し、その接合強度を十分に確保することができる摩擦攪拌点接合方法、及びこれを用いた接合体を提供することを目的とする。
 本開示の一の局面に係る摩擦攪拌点接合方法は、ピンと、前記ピンが内挿される中空部を備えたショルダとを含む、複動式の摩擦攪拌点接合用のツールを用いて、繊維材が混合された熱可塑性樹脂成形体からなる第1部材と少なくとも熱可塑性樹脂を含む成形体からなる第2部材とを接合する摩擦攪拌点接合方法であって、前記第1部材と前記第2部材とを、両者の少なくとも一部が互いに当接した状態で重なり合う重なり部が形成されるように配置し、前記第1部材及び前記第2部材の重なり方向に前記ツールの回転軸が沿うように、前記重なり部に対して前記ツールを配置すると共に、少なくとも前記ピンを前記回転軸回りに回転させ、前記ピンを前記第1部材側から前記重なり部へ圧入し、当該ピンの圧入領域の周囲に前記重なり部内の前記繊維材が延び出した延出繊維が残存するように摩擦攪拌を行う一方で、前記ショルダを前記重なり部に対して前記回転軸方向に退避させることで、前記ピンの圧入で溢れた樹脂成形体材料を前記退避によって生じた前記ピンの周囲領域に逃がし、前記溢れた樹脂成形体材料が、前記周囲領域から前記圧入領域に埋め戻される際に前記延出繊維を巻き込むように、前記ショルダを前記重なり部に対して前記回転軸方向に接近させる一方で、前記ピンを前記重なり部から退避させる。
 この摩擦攪拌点接合方法によれば、複動式の摩擦攪拌点接合用のツールを用い、ピンを先行して第1部材及び第2部材の重なり部に圧入させ、摩擦攪拌させる。前記ピンの圧入領域は最終的に攪拌接合部となる領域であり、前記重なり部において少なくとも前記第1部材に混合されている繊維材も攪拌される。しかし、前記繊維材は、前記圧入領域とその周囲部分との境界で綺麗に切断されず、前記境界から一部が延び出した状態となる(延出繊維の残存)。しかる後、前記ピンの圧入で溢れた樹脂成形体材料が前記延出繊維を巻き込むように、ショルダによる埋め戻し動作が実行される。このため、攪拌接合部は、前記圧入領域の周囲から延び出している前記延出繊維が、当該攪拌接合部の内部へ進入した状態となる。つまり、前記攪拌接合部とその周囲の前記第1・第2部材とが、樹脂同士の接合だけに依存して接合されるのではなく、前記延出繊維でも繋がって接合された状態となる。従って、前記第1部材と前記第2部材との接合強度を向上させることができる。
 本開示の他の局面に係る接合体は、繊維材が混合された熱可塑性樹脂成形体からなる第1部材と、少なくとも熱可塑性樹脂を含む成形体からなる第2部材との接合体であって、前記第1部材と前記第2部材との少なくとも一部が互いに当接した状態で重なり合う重なり部と、前記重なり部に設けられ、前記第1部材と前記第2部材とが摩擦攪拌点接合によって接合された攪拌接合部と、を備え、前記攪拌接合部は、当該攪拌接合部の周囲から前記重なり部内の繊維材が延び出した延出繊維が、前記攪拌接合部を構成する樹脂材に巻き込まれた巻き込み部を備えている。
 この接合体によれば、攪拌接合部は、当該攪拌接合部の周囲から延び出している延出繊維が前記樹脂材に巻き込まれた巻き込み部を備えている。このため、前記攪拌接合部とその周囲の前記第1・第2部材とが、樹脂同士の接合だけに依存して接合されるのではなく、前記延出繊維でも繋がった状態となる。従って、前記攪拌接合部と前記第1部材及び前記第2部材との接合強度を向上させた接合体を提供することができる。
 本開示によれば、繊維材が混合された2つの樹脂成形体を摩擦攪拌点接合するに際し、その接合強度を十分に確保することができる摩擦攪拌点接合方法、及びこれを用いた接合体を提供することができる。
図1は、本開示に係る接合方法を実行可能な、複動式の摩擦攪拌点接合装置の構成を示す模式図である。 図2は、複動式の摩擦攪拌点接合用ツールを用いた場合において、ピンを先行して接合部材の重なり部に圧入させるピン先行プロセスを示す図である。 図3は、同ツールを用いた場合において、ショルダを先行して接合部材の重なり部に圧入させるショルダ先行プロセスを示す図である。 図4は、本開示の例示的な実施形態に係る摩擦攪拌点接合方法の工程チャートを示す図である。 図5は、摩擦攪拌点接合される第1部材及び第2部材の構成及び両者の重なり部の形成工程を示す図である。 図6は、前記重なり部に対するツールの配置工程を示す断面図である。 図7は、前記重なり部へのピンの圧入工程を示す断面図である。 図8は、図7に示すタイミングでツールを取り外したときの、前記重なり部の断面図である。 図9は、ショルダの下降工程を示す断面図である。 図10は、図9に示すタイミングでツールを取り外したときの、前記重なり部の断面図である。 図11Aは、本実施形態の摩擦攪拌点接合方法により形成された第1部材と第2部材との接合体を示す断面図である。 図11Bは、図11Aの要部拡大図である。 図12は、比較例の摩擦攪拌点接合方法を示す図であって、前記重なり部へのショルダを先行して圧入する工程を示す断面図である。 図13は、図12に示すタイミングでツールを取り外したときの、前記重なり部の断面図である。 図14は、比較例の摩擦攪拌点接合方法を示す図であって、部材の下降工程を示す断面図である。 図15は、図14に示すタイミングでツールを取り外したときの、前記重なり部の断面図である。 図16Aは、比較例の摩擦攪拌点接合方法により形成された第1部材と第2部材との接合体を示す断面図である。 図16Bは、図16Aの要部拡大図である。 図17Aは、本実施形態に係る接合体の引き剥がし試験の状況を示す斜視図である。 図17Bは、図17Aの引き剥がし試験後の断面図である。 図18Aは、比較例に係る接合体の引き剥がし試験の状況を示す斜視図である。 図18Bは、図18Aの引き剥がし試験後の断面図である。
 以下、図面に基づいて、本開示の実施形態を詳細に説明する。本開示に係る摩擦攪拌点接合方法は、繊維材が混合された熱可塑性の樹脂成形体からなるプレート、フレーム、外装材或いは柱状材等の構造材を、二つ以上重ね合わせて点接合してなる各種接合体の製造に適用することができる。製造される接合体は、例えば、航空機、鉄道車両又は自動車などの構造物の構成部材となる。
 [複動式の摩擦攪拌点接合装置の構成]
 先ず、図1を参照して、本開示に係る摩擦攪拌点接合方法を実行可能な、複動式の摩擦攪拌点接合装置Mの構成例を説明する。摩擦攪拌点接合装置Mは、複動式の摩擦攪拌点接合用のツール1と、ツール1を回転及び昇降駆動するツール駆動部2と、ツール駆動部2の動作を制御するコントローラCとを含む。なお、図1には「上」「下」の方向表示を付しているが、これは説明の便宜のためであり、実際のツール1の使用方向を限定する意図ではない。
 ツール1は、ツール固定部によって支持される。前記ツール固定部は、例えば多関節ロボットの先端部とすることができる。ツール1の下端面に対向して、バックアップ15が配置されている。ツール1とバックアップ15との間には、接合対象となる少なくとも二つの繊維強化熱可塑性樹脂成形体が配置される。図1では、平板プレートからなる第1部材31の一部と、同じく平板プレートからなる第2部材32の一部とが上下方向に重なり合った重なり部30が、ツール1とバックアップ15との間に配置されている例を示している。
 ツール1は、ピン11、ショルダ12、クランプ13及びスプリング14を含む。ピン11は円柱状に形成されており、その軸心が上下方向に延びるように配されている。ピン11は、前記軸心を回転軸Rとして回転が可能であり、且つ、回転軸Rに沿って上下方向に昇降、つまり進退可能である。なお、ツール1の使用時には、回転軸Rと重なり部30における点接合位置Wとが位置合わせされる。
 ショルダ12は、ピン11が内挿される中空部を備え、円筒状に形成された部材である。ショルダ12の軸心は、回転軸Rであるピン11の軸心と同軸上にある。ショルダ12は、回転軸R回りに回転し、且つ、回転軸Rに沿って上下方向に昇降、つまり進退する。ショルダ12と、前記中空部に内挿されたピン11とは、共に回転軸Rの軸回りに回転しつつ、回転軸R方向に相対移動する。すなわち、ピン11及びショルダ12は、回転軸Rに沿って同時に昇降するだけでなく、一方が下降し他方が上昇するという独立移動を行う。
 クランプ13は、ショルダ12が内挿される中空部を備え、円筒状に形成された部材である。クランプ13の軸心も、回転軸Rと同軸上にある。クランプ13は、軸回りに回転はしないが、回転軸Rに沿って上下方向に昇降、つまり進退する。クランプ13は、ピン11又はショルダ12が摩擦攪拌を行う際に、これらの外周を囲う役目を果たす。クランプ13の囲いによって、摩擦攪拌材料を四散させず、摩擦攪拌点接合部分を平滑に仕上げることができる。
 スプリング14は、クランプ13の上端側に取り付けられ、クランプ13を重なり部30に向かう方向である下方に付勢している。クランプ13は、スプリング14を介して、前記ツール固定部に取り付けられている。バックアップ15は、接合対象(重なり部30)の下面側に当接する平面を備える。バックアップ15は、ピン11又はショルダ12が重なり部30に圧入される際に、当該重なり部30を支持する裏当て部材である。スプリング14で付勢されたクランプ13は、重なり部30をバックアップ15に押し当てる。
 ツール駆動部2は、回転駆動部21、ピン駆動部22、ショルダ駆動部23及びクランプ駆動部24を含む。回転駆動部21は、モーター及び駆動ギア等を含み、ピン11及びショルダ12を回転軸R回りに回転駆動する。ピン駆動部22は、回転軸Rに沿ってピン11を進退移動、つまり昇降させる機構である。ピン駆動部22は、ピン11の重なり部30への圧入並びに重なり部30からの退避を行うように、ピン11を駆動する。ショルダ駆動部23は、回転軸Rに沿ってショルダ12を進退移動させる機構であって、ショルダ12の重なり部30への圧入並びに退避を行わせる。クランプ駆動部24は、回転軸Rに沿ってクランプ13を進退移動させる機構である。クランプ駆動部24は、クランプ13を重なり部30に向けて移動させ、重なり部30をバックアップ15に押圧させる。この際、スプリング14の付勢力が作用する。
 コントローラCは、マイクロコンピュータ等からなり、所定の制御プログラムを実行することで、ツール駆動部2の各部の動作を制御する。具体的にはコントローラCは、回転駆動部21を制御して、ピン11及びショルダ12に所要の回転動作を行わせる。また、コントローラCは、ピン駆動部22、ショルダ駆動部23及びクランプ駆動部24を制御して、ピン11、ショルダ12及びクランプ13に、所要の進退移動動作を行わせる。
 [複動式ツールの使用方法]
 続いて、本実施形態で例示しているツール1のような、複動式の摩擦攪拌点接合用ツールの一般的な使用方法について説明しておく。前記使用方法としては、大略的に、ツール1のピン11を先行して接合部材の重なり部へ圧入させるピン先行プロセスと、ショルダ12を先行して接合部材の重なり部へ圧入させるショルダ先行プロセスとがある。なお、後述する本開示の実施形態では、ピン先行プロセスが採用される。
 図2は、前記ピン先行プロセスによる摩擦攪拌点接合方法のプロセスP11~P14を示す図である。ここでは、第1部材31と第2部材32との重なり部30を、摩擦攪拌点接合する場合のプロセスを簡略的に示している。プロセスP11は、重なり部30の予熱工程を示している。第1部材31の表面にツール1の下端を当接させた状態で、ピン11及びショルダ12を軸回りに所定の回転数で回転させる。
 プロセスP12は、ピン11の圧入工程を示している。図中に白抜き矢印にて示すように、ピン11を下降させて重なり部30へ圧入させる一方、ショルダ12を上昇、つまり退避させる。この動作により、ピン11の圧入領域の材料が攪拌される。また、矢印a1で示すように、前記圧入によって重なり部30から溢れ出した溢れ出し材料OFが、ショルダ12の退避によって生じた、ピン11とクランプ13との間の環状領域に逃がされる。
 プロセスP13は、溢れ出し材料OFの埋め戻し工程を示している。埋め戻し工程では、ピン11を上昇させて退避させる一方で、ショルダ12を下降させる。ショルダ12の下降により、矢印a2で示すように、前記環状領域に逃がされた溢れ出し材料OFが、ピン11の圧入領域に埋め戻される。
 プロセスP14は、ならし工程を示している。ピン11及びクランプ13の下端面を第1部材31の表面の高さ位置に復帰させた状態で両者を回転させ、点接合部分を平滑化する。以上のプロセスにより、攪拌接合部4aが形成され、第1部材31及び第2部材32が重なり部30において点接合される。
 図3は、前記ショルダ先行プロセスによる摩擦攪拌点接合方法のプロセスP21~P24を示す図である。プロセスP21は、先述のプロセスP11と同様な、重なり部30の予熱工程である。プロセスP22は、ショルダ12の圧入工程を示している。この圧入工程では、ショルダ12を下降させて重なり部30へ圧入させる一方、ピン11を上昇、つまり退避させる。この動作により、矢印b1で示すように、ショルダ12の圧入領域の材料が攪拌される。また、前記圧入によって重なり部30から溢れ出した溢れ出し材料OFが、ピン11の退避によって生じた、ショルダ12の中空空間に逃がされる。
 プロセスP23は、溢れ出し材料OFの埋め戻し工程を示している。埋め戻し工程では、ショルダ12を上昇させて退避させる一方で、ピン11を下降させる。ピン11の下降により、矢印b2で示すように、前記中空空間に逃がされた溢れ出し材料OFが、ショルダ12の圧入領域に埋め戻される。プロセスP24は、先述のプロセスP14と同様な、ならし工程を示している。以上のプロセスにより、攪拌接合部4bが形成される。
 同じサイズの複動式ツール1を用いて上述の2つのプロセスを実行した場合、ショルダ先行プロセスによる攪拌接合部4bの方が、ピン先行プロセスによる攪拌接合部4aよりも径の大きい攪拌接合部を形成できる。従って、第1部材31及び第2部材32がアルミニウム合金のような金属材料である場合は、ショルダ先行プロセスを採用する方が、接合部の強度向上、安定化の観点において有利である。しかしながら、本発明者らの研究によれば、第1部材31及び第2部材32が、強化材としての繊維材が混合された熱可塑性樹脂成形体である場合、ピン先行プロセスを採用した方が接合強度を向上できることを見出した。以下、接合対象を繊維強化熱可塑性樹脂成形体とする、本開示の実施形態に係る摩擦攪拌点接合方法の具体例を説明する。
 [実施形態に係る摩擦攪拌点接合方法]
 図4は、本開示の実施形態に係る摩擦攪拌点接合方法の工程チャートを示す図である。本実施形態の摩擦攪拌点接合方法は、繊維材が混合された熱可塑性樹脂成形体からなる第1部材31及び第2部材32の接合方法であって、次の工程S1~S5を含む。
・工程S1:接合対象となる第1部材31及び第2部材32の重なり部30を形成する。・工程S2:ツール1を重なり部30の点接合位置Wに配置および回転させる。
・工程S3:ピン11を重なり部30に圧入して摩擦攪拌を行う。
・工程S4:ショルダ12を下降させて、材料の埋め戻しを行う。
・工程S5:摩擦攪拌部のならしを行う。
 上記工程S2は、図2に示したプロセスP11の「予熱工程」に、工程S3はプロセスP12の「圧入工程」に、工程S4はプロセスP13の「埋め戻し工程」に、工程S5はプロセスP14の「ならし工程」に各々相当する。しかしながら、本実施形態では、接合対象が繊維材混合の熱可塑性樹脂成形体であることに伴い、工程S3及び工程S4が、従前の単純な「圧入工程」及び「埋め戻し工程」とは異なる作用を果たす工程となる。すなわち、工程S3では、ピン11の重なり部30への圧入領域の周囲から、第1部材31及び第2部材32に各々混合されている繊維材を延出させる。また、工程S4では、延出させた繊維材が埋め戻し材料を巻き込むように、攪拌接合部を形成する。
 図5は、上記工程S1の重なり部30の形成工程を示す図である。工程S1では、第1部材31と第2部材32とを、両者の少なくとも一部が互いに当接した状態で重なり合う重なり部30が形成されるように配置する。本実施形態では、プレート状の第1部材31の一部とプレート状の第2部材32の一部とが上下に重ね合わされた重なり部30を例示している。重なり部30は、プレートとフレーム又は柱状材との重なり部、或いはフレーム同士の重なり部等であっても良い。重なり部30には、第1部材31の下面である接合面31Aと、第2部材32の上面である接合面32Aとが直接接触した合わせ面BDが形成されている。このような重なり部30において、所要の点接合位置Wで第1部材31と第2部材32とが摩擦攪拌点接合されるものとする。
 既述の通り、第1部材31及び第2部材32としては、繊維材が混合された熱可塑性樹脂成形体が用いられる。前記成形体としては、例えば繊維強化材としての短繊維又は長繊維を熱可塑性樹脂に混合した成形体、連続繊維を所定方向に配列した繊維配列体若しくは連続繊維の織布に熱可塑性樹脂を含浸してなる成形体を例示することができる。本実施形態では、連続繊維の配列体に熱可塑性樹脂を含浸したシートであるプリプレグを多層に積層してなる成形体が、第1部材31及び第2部材32として用いられる例を示す。なお、少なくともピン11が圧入される側の第1部材31が繊維材の混合された熱可塑性樹脂成形体であれば良く、第2部材32は繊維材を含まない熱可塑性樹脂の成形体であっても良い。
 図5には、第1部材31を構成しているシート積重体33の一部が示されている。シート積重体33は、それぞれ連続繊維の配列体に熱可塑性樹脂を含浸したシートからなる第1シート層33A、第2シート層33B及び第3シート層33Cを含む。第1シート層33Aは、連続繊維34の多数本が所定の配列方向に配列され、その配列体に熱可塑性樹脂を含浸して一体化した、厚さ0.1mm~0.5mm程度のシートである。第2シート層33B及び第3シート層33Cも上記と同様なシートであるが、連続繊維34の配列方向が相互に異なる方向とされている。このように、例えば連続繊維34の配列方向を互いに異なる3軸方向とした3種のシートを多層に積層することで、第1部材31は疑似等方性を備えている。第2部材32も、第1部材31と同様なシートの多層積層体からなるプレートである。
 連続繊維34としては、例えば炭素繊維、ガラス繊維、セラミック繊維、金属繊維或いは有機繊維を用いることができる。図5では、連続繊維34を一方向に配列したシートを例示しているが、連続繊維を縦糸及び横糸として織布を形成した後に熱可塑性樹脂を含浸させるファブリック型のシートを用いても良い。また、連続繊維34に代えて、長さが2mm~20mm程度の長繊維を熱可塑性樹脂に混合させたシート又はプレートを用いることもできる。また、熱可塑性樹脂としては、ポリプロピレン(PP)、ポリエチレン(PE)、ポリアミド(PA)、ポリスチレン(PS)、ポリアリールエーテルケトン(PAEK)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ABS樹脂、熱可塑性のエポキシ樹脂などを例示することができる。
 第1部材31及び第2部材32は、連続繊維34の配列体に熱可塑性樹脂を含浸させたシート(成形体)の積層体にて全体が構成されていることが好ましいが、その一部が前記シートで構成されていても良い。例えば、補強繊維を含まない熱可塑性シート、或いは、連続繊維ではない補強繊維が混合された熱可塑性シートからなる層を、図5に示す第1~第3シート層33A~33Cの間に介在させるようにしても良い。
 図6は、上記工程S2のツールの配置工程を示す断面図である。工程S2では、第1部材31及び第2部材32の重なり方向、つまり上下方向にツール1の回転軸Rが沿うように、重なり部30に対してツール1が配置される。この際、回転軸Rが、予め定められた点接合位置Wに位置合わせされた状態で、ツール1の下端面が第1部材31の上面に当接される。また、クランプ13は、スプリング14の付勢力を伴って、重なり部30をバックアップ15に押圧する。位置決めが完了したら、図1に示す回転駆動部21がピン11及びショルダ12を回転軸R回りに回転させる。この回転により、重なり部30におけるピン11及びショルダ12が当接している領域が予熱される。
 図7は、上記工程S3のピン11の圧入工程を示す断面図である。工程S3では、ピン駆動部22がピン11を回転軸Rに沿って下降させ、当該ピン11を重なり部30へ圧入させる。一方、ショルダ駆動部23は、ショルダ12を上昇させ、当該ショルダ12を重なり部30に対して回転軸R方向に退避させる。クランプ13は不動である。回転しているピン11が重なり部30に圧入されると、当該ピン11の圧入領域において重なり部30は摩擦攪拌され、その部分の樹脂成形体材料は軟化する。もちろん、前記圧入領域内に含まれる連続繊維34も粉砕される。
 ショルダ12の前記退避によって、ピン11の外周面とクランプ13の中空部の内壁面との間には、環状領域が形成される。ピン11の圧入によって重なり部30から溢れた樹脂成形体材料である溢れ出し材料OFは、ピン11の外周面に沿って上方へ移動し、前記環状領域に逃がされる。
 本実施形態では、第1部材31を上側部材、第2部材32を下側部材として、重なり部30が形成されている。ピン11は、第1部材31の上面側から圧入される。ピン11は、当該ピン11の下端部11Tが、上側部材である第1部材31を貫通し、且つ、下側部材である第2部材32の厚さ方向の一部に到達するまで下降される。下端部11Tが第2部材32の厚さの半分以上に至るまで、ピン11を下降させることが望ましい。
 図8は、図7に示すタイミングでツール1を取り外したときの、重なり部30の断面図である。図8では、取り外される前のピン11、ショルダ12及びクランプ13の位置を点線で示している。ここでは、ピン11が、第1部材31を貫通し、第2部材32のシート積重体33の最下層シート33BSに至るまで圧入された例を示している。重なり部30において、ピン11の圧入領域は空洞化している。溢れ出し材料OFは、空洞化した前記圧入領域の周縁の上方に一時的に退避している。
 図8に示すように、重なり部30におけるピン11の圧入領域の周囲、換言すると前記空洞化した領域の内周壁には、延出繊維35が残存している。延出繊維35は、ピン11の圧入領域の内周壁から、第1部材31及び第2部材32から構成される重なり部30内の連続繊維34が前記空洞化領域へ延び出したものである。例えば、直径が9mmのピン11を圧入させた場合、1mm~2mm程度の長さで延出繊維35が圧入領域の内周壁から延び出すことが確認できた。なお、図8では、理解を容易とするために延出繊維35の長さが誇張して描かれている。
 本実施形態では、接合される第1部材31及び第2部材32が、いずれも連続繊維34の配列体に熱可塑性樹脂を含浸したシートを積層したシート積重体33で構成されている。このようなシート積重体33にピン11を回転させながら圧入すると、その圧入領域では熱可塑性樹脂が摩擦攪拌されることに伴い、連続繊維34も攪拌される。しかし、連続繊維34は、前記圧入領域とその周囲部分との境界で綺麗に切断されず、前記境界から一部が延び出した状態となる。つまり、前記圧入領域の内周壁に延出繊維35が残存した状態となる。
 本実施形態では、連続繊維34が互いに異なる多軸(3軸)方向に配列されたシート積重体33が用いられている(図5に例示)ので、前記圧入領域の内周壁のほぼ全周から延出繊維35が延び出すこととなる。前記圧入領域は、最終的に第1部材31と第2部材32とを接合する攪拌接合部4となる領域である。後記で詳述するが、攪拌接合部4を構成する樹脂材に延出繊維35を巻き込ませることで、接合強度の向上を図ることができる。
 図9は、上記工程S4の埋め戻し工程を示す断面図である。工程S4では、ピン駆動部22がピン11を回転軸Rに沿って上昇させ、当該ピン11を重なり部30から退避させる。一方、ショルダ駆動部23は、ショルダ12を下降させ、当該ショルダ12を重なり部30に対して回転軸R方向に接近させる。図9では、ピン11の下端部11Tが合わせ面BD付近まで上昇した状態を示している。ショルダ12の下降によって、ピン11とクランプ13との間の環状領域(周囲領域)に一時的に退避させた溢れ出し材料OFは、前記圧入領域に埋め戻される。
 回転軸R方向の平面視では、ピン11が圧入される前記圧入領域の周囲に、溢れ出し材料OFが一時的に退避する前記環状領域が存在する位置関係となる。このため、前記埋め戻しの際に溢れ出し材料OFは、図9の矢印f1にて示すように、前記環状領域から回転軸Rの位置である前記圧入領域の中心へ向かう方向に流動することになる。
 図10は、図9に示すタイミングでツール1を取り外したときの、重なり部30の断面図である。図10には、取り外される前のピン11、ショルダ12及びクランプ13の位置が点線で示されている。ショルダ12の下端部12Tに押された溢れ出し材料OFが矢印f1に沿って流動し、前記圧入領域に埋め戻し材料36となって流入している。つまり、ピン11の上昇によって生じる空間が、逐次埋め戻し材料36によって充填されてゆく。埋め戻し材料36が硬化すると、第1部材31と第2部材32とを接合する攪拌接合部4となる。
 上述の通り、前記圧入領域の内周壁には延出繊維35が残存している。また、溢れ出し材料OFは矢印f1の通り、前記圧入領域の中心に向かうように流動する。このため、溢れ出し材料OFが前記環状領域から前記圧入領域に埋め戻される際、延出繊維35を巻き込むようになる。すなわち、延出繊維35の延び出し方向に沿うように溢れ出し材料OFが流動するので、延出繊維35は前記圧入領域の径方向外側に押し戻されない。従って、本工程S4においてショルダ12を下降させる動作を行えば、ピン11の圧入で溢れた溢れ出し材料OF、つまり埋め戻し材料36が、自ずと延出繊維35を巻き込むように埋め戻される。
 工程S4では、図9に示す状態から、さらに下端部11Tが第1部材31の上面に至るまでピン11が上昇され、下端部12Tが第1部材31の上面に至るまでショルダ12が下降される。つまり、溢れ出し材料OFの全てが埋め戻され、ピン11の圧入領域が埋め戻し材料36で充填される。その後、上記工程S5のならし工程が行われる。ならし工程では、ピン11の下端部11T及びショルダ12の下端部12Tを面一として、摩擦攪拌された部分の表面を平滑化する作業が行われる。充填された埋め戻し材料36が冷却固化することで、第1部材31と第2部材32とを接合する攪拌接合部4が形成される。
 [接合体の構造]
 図11Aは、本実施形態の摩擦攪拌点接合方法により形成された第1部材31と第2部材32との接合体3を示す断面図、図11Bは図11AのE1部拡大図である。接合体3は、第1部材31と第2部材32との一部が合わせ面BDで互いに当接した状態で重なり合う重なり部30と、重なり部30に設けられた攪拌接合部4とを備えている。この攪拌接合部4は、上記の工程S1~S5の摩擦攪拌点接合方法によって接合された接合部である。
 攪拌接合部4は、円柱状のピン11の圧入領域を埋めているので、略円柱状の形状を有している。攪拌接合部4は、その外周面付近に巻き込み部37を備えている。巻き込み部37は、攪拌接合部4の周囲から重なり部30内の連続繊維34が延び出した延出繊維35が、当該攪拌接合部4と繋がった部分である。巻き込み部37では、延出繊維35が攪拌接合部4を構成している樹脂材の内部へ進入した状態、換言すると前記樹脂材に延出繊維35が巻き込まれた状態が形成されている。
 図11Bには、攪拌接合部4と、攪拌接合部4の周囲であって攪拌されていない第1部材31及び第2部材32の重なり部30の母材部分との境界部Dが点線で示されている。境界部Dは、上述の圧入領域の内周壁に相当する箇所である。延出繊維35は、大略的に境界部Dから攪拌接合部4の径方向中心に延び出している。しかも、延出繊維35は、前記母材部分に埋め込まれている連続繊維34の端部であるので、前記母材部分で強固に保持されているということができる。
 このように、本実施形態の接合体3は、前記母材部分で強固に保持された延出繊維35が攪拌接合部4の樹脂材に入り込むことで形成された巻き込み部37を備えている。このため、攪拌接合部4とその周囲に位置する重なり部30の母材部分とが、樹脂同士の接合だけに依存して接合されるのではなく、延出繊維35によっても繋がった状態となる。従って、重なり部30において、攪拌接合部4と第1部材31及び第2部材32の前記母材部分との接合強度を向上させることができる。
 [比較例]
 続いて、上記実施形態の比較例として、繊維材が混合された熱可塑性樹脂成形体からなる第1部材31及び第2部材32の摩擦攪拌点接合に、図3に示したショルダ先行プロセスを適用した場合の不具合を説明する。図12は、比較例の摩擦攪拌点接合方法を示す図であって、上記実施形態と同様な第1部材31及び第2部材32の重なり部30へ、ツール1のショルダ12を先行して圧入する工程を示す断面図である。
 先に図3に基づき説明した通り、ショルダ12の圧入工程では、ピン11が回転軸Rに沿って上昇される一方、回転しているショルダ12が回転軸Rに沿って下降される。クランプ13は不動である。ショルダ12が重なり部30に圧入されると、当該ショルダ12の圧入領域において重なり部30は摩擦攪拌され、その部分の樹脂成形体材料は軟化する。ピン11の上方への退避によって、ショルダ12の中空部内には、退避領域が形成される。ショルダ12の圧入によって重なり部30から溢れた溢れ出し材料OFは、前記退避領域に逃がされる。
 図13は、図12に示すタイミングでツール1を取り外したときの、重なり部30の断面図である。ここでは、ショルダ12が、第1部材31を貫通し、第2部材32のシート積重体33の最下層付近まで圧入された例を示している。重なり部30において、ショルダ12の圧入領域は環状の空洞化領域となっている。溢れ出し材料OFは、前記環状の空洞化領域の内側にある円柱状の領域に逃がされている。そして、重なり部30におけるショルダ12の圧入領域の周囲には、第1部材31及び第2部材32の重なり部30の母材部分内の連続繊維34が前記空洞化領域へ延び出した延出繊維35Aが残存している。なお、延出繊維35Aの延び出し長さは、直径が9mmのショルダ12を圧入させた場合には0.7mm程度であり、上掲のピン11の圧入の場合に比べて短尺であった。
 図14は、溢れ出し材料OFの埋め戻し工程を示す断面図である。埋め戻し工程では、ショルダ12を回転軸Rに沿って上昇させ、当該ショルダ12を重なり部30から退避させる。一方、ピン11は回転軸Rに沿って下降され、前記円柱状の領域に逃がされていた溢れ出し材料OFが、前記環状の空洞化領域に埋め戻される。
 回転軸R方向の平面視では、ショルダ12が圧入される前記環状の空洞化領域の内側に、溢れ出し材料OFが一時的に退避する前記円柱状の領域が存在する位置関係となる。このため、前記埋め戻しの際に溢れ出し材料OFは、図14の矢印f2にて示すように、前記円柱状の領域から前記環状の空洞化領域に向けて、径方向外側に流動することになる。つまり、延出繊維35Aの前記圧入領域の内周壁からの延び出し方向とは逆方向に、溢れ出し材料OFが流動する。
 図15は、図14に示すタイミングでツール1を取り外したときの、重なり部30の断面図である。図15には、取り外される前のピン11、ショルダ12及びクランプ13の位置が点線で示されている。ピン11の下端部11Tに押された溢れ出し材料OFが矢印f2に沿って流動し、ショルダ12の圧入領域に埋め戻し材料36となって流入している。つまり、ショルダ12の上昇によって生じる空間が、逐次埋め戻し材料36によって充填されてゆく。埋め戻し材料36は、やがて第1部材31と第2部材32とを接合する攪拌接合部4Aとなる。
 上述の通り、前記圧入領域の内周壁には延出繊維35Aが残存している。しかしながら、溢れ出し材料OFは矢印f2の通り、重なり部30の母材部分側である前記圧入領域の内周壁側に向かうように流動する。このため、溢れ出し材料OFが埋め戻される際、延出繊維35Aが延出元の母材部分側へ押し戻されるようになる。従って、先に図10に示した実施形態とは異なり、溢れ出し材料OF、つまり埋め戻し材料36は延出繊維35Aをほとんど巻き込むことができない。
 図16Aは、比較例の摩擦攪拌点接合方法により形成された第1部材31と第2部材32との接合体3Aを示す断面図、図16Bは図16AのE2部拡大図である。接合体3Aは、第1部材31と第2部材32とが重なり合う重なり部30と、重なり部30に設けられた攪拌接合部4Aとを備えている。この攪拌接合部4Aは、上記のショルダ先行プロセスによる摩擦攪拌点接合方法によって接合された接合部である。攪拌接合部4Aは、上掲の実施形態に示したような巻き込み部37を実質的に具備していない。
 図16Bには、攪拌接合部4Aと、攪拌接合部4A周囲の攪拌されていない第1部材31及び第2部材32の重なり部30の母材部分との境界部Dが点線で示されている。境界部Dは、ショルダ12の圧入領域の内周壁に相当する箇所である。図11Bに示した実施形態とは異なり、比較例における延出繊維35Aは、境界部Dに貼り付くような状態となっている。つまり、延出繊維35Aは、攪拌接合部4Aの内部へ実質的に入り込んでいない。
 図11Bの実施形態では、攪拌接合部4の樹脂材に延出繊維35が巻き込まれた巻き込み部37が形成される。従って、攪拌接合部4と重なり部30の母材部分とを延出繊維35が橋絡する態様となり、両者の接合強度は高くなる。これに対し比較例では、攪拌接合部4Aと重なり部30の母材部分との接合に、実質的に延出繊維35Aは寄与しない。すなわち、攪拌接合部4Aと前記母材部分との接合は、専ら樹脂同士の接合だけに依存することになるので、両者の接合強度は比較的弱いものとなる。
 [接合体の引き剥がし試験]
 図11に示す本開示の実施例に係るピン先行プロセスによる摩擦攪拌点接合により得られた接合体3と、図16に示す比較例に係るショルダ先行プロセスによる摩擦攪拌点接合により得られた接合体3Aについて、NASM1312-8の試験方法に準拠して、引き剥がし強度の試験を行った。実施例及び比較例において接合材となる第1部材31及び第2部材32としては、厚さ3.3mmの疑似等方積層型の連続繊維CFRTP(Carbon Fiber Reinforced Thermoplastics)材を用いた。
 上記のCFRTP材からなる第1部材31及び第2部材32を重ね合わせ、図7~図10の実施例に示したピン先行プロセスによる摩擦攪拌点接合で接合した接合体3と、図12~図15の比較例に示したショルダ先行プロセスによる摩擦攪拌点接合で接合した接合体3Aとを製作した。試験は実施例と比較例共に5回行った。また、ツール1として、実施例においては直径=9mmのピン11を用い、比較例においては外径=9mmのショルダ12を用い、攪拌接合部4、4Aが同じ直径に仕上がるようにした。
 実施例及び比較例に係る接合体3、3Aにおける、第1部材31と第2部材32との間の引き剥がし強度である破断強度の平均値は次の通りであった。すなわち、実施例に係る接合体3の方が、比較例に係る接合体3Aよりも、破断強度が約1.4倍程度高いことが確認された。
 ・実施例(ピン先行);破断強度=2.05kN
 ・比較例(ショルダ先行);破断強度=1.46kN
 図17Aは、実施例に係る接合体3の引き剥がし試験の状況を示す斜視図、図17Bは、引き剥がし試験後の断面図である。上側部材である第1部材31と下側部材である第2部材32とは、攪拌接合部4において剥離部41において離間している。注目すべきは、図17Aから観察されるように、第2部材32側の剥離片に攪拌接合部4から巻き込み繊維片38が付随している点である。巻き込み繊維片38は、第1部材31の連続繊維34である。
 すなわち、第1部材31から第2部材32が剥がれる際、第1部材31の合わせ面BD付近のシート層から連続繊維34が層間剥離し、第2部材32と共に引き剥がされたものが、巻き込み繊維片38である。第1部材31側の剥離片には、巻き込み繊維片38の層間剥離部39が表れている。巻き込み繊維片38の端部は、図11Bに示した、攪拌接合部4の巻き込み部37に巻き込まれている部分である。当該巻き込み繊維片38の端部が、攪拌接合部4において第2部材32の領域まで入り込んでいる結果、巻き込み繊維片38が第2部材32に付随して第1部材31から引き剥がされたと考えられる。
 図18Aは、比較例に係る接合体3Aの引き剥がし試験の状況を示す斜視図、図18Bは、引き剥がし試験後の断面図である。第1部材31と第2部材32とは、攪拌接合部4Aの外周に沿って表れている剥離部42において離間している。言わば、攪拌接合部4Aと第1部材31との境界で、両者は「綺麗に」剥がれている。このことは、延出繊維35Aが特段接合強度の向上に寄与していないことを示すと言える。
 以上の結果から、実施例の接合体3における攪拌接合部4と母材部分との接合強度には、両者間の樹脂部分の接合強度に、巻き込み繊維片38が第1部材31から層間剥離する強度が上乗せされているということができる。一方、比較例の接合体3における攪拌接合部4Aと母材部分との接合強度は、専ら両者間の樹脂部分の接合強度に依存している。従って、ピン先行の実施例では、ショルダ先行の比較例に比べて、第1部材31と第2部材32との接合強度が高められたことが判る。
 [作用効果]
 以上説明した、本開示に係る摩擦攪拌点接合方法によれば、複動式の摩擦攪拌点接合用のツール1を用い、ピン11を先行して第1部材31及び第2部材32の重なり部30に圧入させ、摩擦攪拌させる。ピン11の圧入領域は最終的に攪拌接合部4となる領域であり、重なり部30において少なくとも第1部材31に混合されている繊維材も樹脂と一緒に攪拌される。しかし、繊維材は、前記圧入領域とその周囲部分との境界部Dで綺麗に切断されず、境界部Dから一部が延び出した状態となる。つまり、ピン11の圧入領域の内周壁に延出繊維35が残存した状態が形成される。
 しかる後、ピン11の圧入で溢れた樹脂成形体材料である溢れ出し材料OFが延出繊維35を巻き込むように、ショルダ12よる埋め戻し動作が実行される。このため、攪拌接合部4は、前記圧入領域の周囲から延び出している延出繊維35が、当該攪拌接合部4の内部へ進入して巻き込まれた状態となる。つまり、攪拌接合部4とその周囲の母材部分とが、樹脂同士の接合だけに依存して接合されるのではなく、延出繊維35でも繋がって接合された状態となる。従って、第1部材31と第2部材32との接合強度を向上させることができる。
 本実施形態では、接合対象となる第1部材31及び第2部材32として、連続繊維34に熱可塑性樹脂を含浸させた成形体を含む部材が用いられている。具体的には、連続繊維34の配列方向が互いに異なる樹脂含浸シートを多層に積層したシート積重体33とすることで、疑似等方性を具備させた第1部材31及び第2部材32が用いられている。
 この場合、延出繊維35は、連続繊維34からの延び出し端部となるので、その根元部分は重なり部30における母材部分で強固に保持されている。しかも、疑似等方性を具備させているため、シート積重体33の単位でみると、連続繊維34は多軸方向に延在している。このため、ピン11の圧入領域の内周壁の全周から延出繊維35が延び出している。従って、攪拌接合部4とその周囲の母材部分との接合を、より強固なものとすることができる。
 また、ピン11の圧入の際、当該ピン11を第2部材32に進入するまで下降させることで、第1部材31だけでなく第2部材32からも延出繊維35を延び出させることができる。このため、重なり部30において攪拌接合部4と第1部材31及び第2部材32との双方が延出繊維35で繋がれた状態とすることができる。従って、第1部材31と第2部材32との接合強度を、一層向上させることができる。
 本実施形態で用いられるツール1は、ショルダ12が内挿される中空部を備えたクランプ13を備える。このため、クランプ13の前記中空部の内壁面とピン11の外周面との間には、環状領域が形成される。そして、ピン11の圧入により溢れた樹脂成形体材料である溢れ出し材料OFは、図9、図10の矢印f1に示す前記環状領域から前記圧入領域の中心へ向かう方向へ埋め戻される。
 矢印f1の埋め戻し方向は、延出繊維35の延び出し方向に沿っている。このため、溢れ出し材料OFが埋め戻される際、延出繊維35が母材部分側へ押し戻されることなく、自ずと延出繊維35を巻き込むようになる。従って、延出繊維35が攪拌接合部4の樹脂材料と良好に結合する部分である巻き込み部37を形成することができ、接合強度の向上に寄与させることができる。
 本実施形態により形成される接合体3は、繊維材である連続繊維34が混合された熱可塑性樹脂成形体からなる第1部材31と第2部材32との接合体であって、第1部材31と第2部材32との少なくとも一部が互いに当接した状態で重なり合う重なり部30と、重なり部30に設けられ、第1部材31と第2部材32とが摩擦攪拌点接合によって接合された攪拌接合部4と、を備える。攪拌接合部4は、当該攪拌接合部4の周囲から重なり部30内の連続繊維34が延び出した延出繊維35が、攪拌接合部4を構成する樹脂材に巻き込まれた巻き込み部37を備えている。
 この接合体3によれば、攪拌接合部4が巻き込み部37を備えているので、攪拌接合部4とその周囲の第1部材31及び第2部材32からなる母材部分とが、樹脂同士の接合だけに依存して接合されるのではなく、延出繊維35でも繋がった状態となる。従って、攪拌接合部4と前記母材部分との接合強度を向上させた接合体3を提供することができる。
 

Claims (4)

  1.  ピンと、前記ピンが内挿される中空部を備えたショルダとを含む、複動式の摩擦攪拌点接合用のツールを用いて、繊維材が混合された熱可塑性樹脂成形体からなる第1部材と少なくとも熱可塑性樹脂を含む成形体からなる第2部材とを接合する摩擦攪拌点接合方法であって、
     前記第1部材と前記第2部材とを、両者の少なくとも一部が互いに当接した状態で重なり合う重なり部が形成されるように配置し、
     前記第1部材及び前記第2部材の重なり方向に前記ツールの回転軸が沿うように、前記重なり部に対して前記ツールを配置すると共に、少なくとも前記ピンを前記回転軸回りに回転させ、
     前記ピンを前記第1部材側から前記重なり部へ圧入し、当該ピンの圧入領域の周囲に前記重なり部内の前記繊維材が延び出した延出繊維が残存するように摩擦攪拌を行う一方で、前記ショルダを前記重なり部に対して前記回転軸方向に退避させることで、前記ピンの圧入で溢れた樹脂成形体材料を前記退避によって生じた前記ピンの周囲領域に逃がし、
     前記溢れた樹脂成形体材料が、前記周囲領域から前記圧入領域に埋め戻される際に前記延出繊維を巻き込むように、前記ショルダを前記重なり部に対して前記回転軸方向に接近させる一方で、前記ピンを前記重なり部から退避させる、
    摩擦攪拌点接合方法。
  2.  請求項1に記載の摩擦攪拌点接合方法において、
     前記第1部材及び前記第2部材は、連続繊維に熱可塑性樹脂を含浸させた成形体を含む、摩擦攪拌点接合方法。
  3.  請求項1又は2に記載の摩擦攪拌点接合方法において、
     前記ツールは、前記ショルダが内挿される中空部を備えたクランプをさらに備え、
     前記ピンの周囲領域は、前記クランプの前記中空部の内壁面と前記ピンの外周面との間に形成される環状領域であり、
     前記溢れた樹脂成形体材料は、前記環状領域から前記圧入領域の中心へ向かう方向へ埋め戻される、摩擦攪拌点接合方法。
  4.  繊維材が混合された熱可塑性樹脂成形体からなる第1部材と、少なくとも熱可塑性樹脂を含む成形体からなる第2部材との接合体であって、
     前記第1部材と前記第2部材との少なくとも一部が互いに当接した状態で重なり合う重なり部と、
     前記重なり部に設けられ、前記第1部材と前記第2部材とが摩擦攪拌点接合によって接合された攪拌接合部と、を備え、
     前記攪拌接合部は、当該攪拌接合部の周囲から前記重なり部内の繊維材が延び出した延出繊維が、前記攪拌接合部を構成する樹脂材に巻き込まれた巻き込み部を備えている、接合体。
PCT/JP2021/031098 2020-08-25 2021-08-25 摩擦攪拌点接合方法及びこれを用いた接合体 WO2022045171A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022545658A JP7369872B2 (ja) 2020-08-25 2021-08-25 摩擦攪拌点接合方法及びこれを用いた接合体
EP21861595.3A EP4186632A4 (en) 2020-08-25 2021-08-25 FRICTION STIR SPOT WELDING METHOD AND WELDED ARTICLE USING SAME
US18/112,521 US20230191710A1 (en) 2020-08-25 2023-02-22 Friction stir spot welding method and welded assembly utilizing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-141804 2020-08-25
JP2020141804 2020-08-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/112,521 Continuation US20230191710A1 (en) 2020-08-25 2023-02-22 Friction stir spot welding method and welded assembly utilizing same

Publications (1)

Publication Number Publication Date
WO2022045171A1 true WO2022045171A1 (ja) 2022-03-03

Family

ID=80355281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031098 WO2022045171A1 (ja) 2020-08-25 2021-08-25 摩擦攪拌点接合方法及びこれを用いた接合体

Country Status (4)

Country Link
US (1) US20230191710A1 (ja)
EP (1) EP4186632A4 (ja)
JP (1) JP7369872B2 (ja)
WO (1) WO2022045171A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115091023A (zh) * 2022-07-14 2022-09-23 哈尔滨工业大学 一种连续焊接的两步式无匙孔搅拌摩擦点焊装置及方法
AT525908A4 (de) * 2022-10-24 2023-09-15 Royos Joining Solutions Gmbh Rührschweißvorrichtung zur Herstellung einer Schweißverbindung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186869A (ja) * 2014-03-27 2015-10-29 トヨタ自動車株式会社 接合方法
WO2020138326A1 (ja) * 2018-12-26 2020-07-02 川崎重工業株式会社 摩擦攪拌点接合装置及びその運転方法
WO2020145243A1 (ja) * 2019-01-07 2020-07-16 川崎重工業株式会社 摩擦攪拌点接合装置及び摩擦攪拌点接合方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015005407A1 (de) 2015-04-29 2016-11-03 Airbus Defence and Space GmbH Rührreibschweißen von Thermoplasten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186869A (ja) * 2014-03-27 2015-10-29 トヨタ自動車株式会社 接合方法
JP6020501B2 (ja) 2014-03-27 2016-11-02 トヨタ自動車株式会社 接合方法
WO2020138326A1 (ja) * 2018-12-26 2020-07-02 川崎重工業株式会社 摩擦攪拌点接合装置及びその運転方法
WO2020145243A1 (ja) * 2019-01-07 2020-07-16 川崎重工業株式会社 摩擦攪拌点接合装置及び摩擦攪拌点接合方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4186632A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115091023A (zh) * 2022-07-14 2022-09-23 哈尔滨工业大学 一种连续焊接的两步式无匙孔搅拌摩擦点焊装置及方法
AT525908A4 (de) * 2022-10-24 2023-09-15 Royos Joining Solutions Gmbh Rührschweißvorrichtung zur Herstellung einer Schweißverbindung
AT525908B1 (de) * 2022-10-24 2023-09-15 Royos Joining Solutions Gmbh Rührschweißvorrichtung zur Herstellung einer Schweißverbindung
WO2024086863A1 (de) 2022-10-24 2024-05-02 Royos Joining Solutions Gmbh RÜHRSCHWEIßVORRICHTUNG ZUR HERSTELLUNG EINER SCHWEIßVERBINDUNG

Also Published As

Publication number Publication date
EP4186632A4 (en) 2024-01-24
JP7369872B2 (ja) 2023-10-26
JPWO2022045171A1 (ja) 2022-03-03
US20230191710A1 (en) 2023-06-22
EP4186632A1 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
WO2022045171A1 (ja) 摩擦攪拌点接合方法及びこれを用いた接合体
EP2329905B1 (en) Method for joining metal and plastic workpieces
US11027498B2 (en) Ultrasonic welding of dissimilar sheet materials
JP5134017B2 (ja) ジョイントで用いるための構成部材の準備
US8197624B2 (en) Welding of functional components to polymer composite components
EP3433500B1 (en) Securing a second object to a first object
EP3122536B1 (en) Joining method
US20210039190A1 (en) Hybrid structures for joining of metals and continuous fiber materials
US7409757B2 (en) Automated Z-pin insertion technique using universal insertion parameters
JP2016175397A (ja) 樹脂接合体、樹脂接合体の製造方法及び車両用構造体
US20160176102A1 (en) Component having an integral bond and a joining method
JP6463642B2 (ja) 樹脂部材の接合方法
KR102300339B1 (ko) 금속판재와 탄소 섬유 강화 플라스틱 복합판재의 접합방법
EP3069852A1 (en) Resin joined body, method of producing resin joined body, and vehicular structural body
JP7445007B2 (ja) 摩擦攪拌点接合方法及びこれを用いた接合体
JP6045431B2 (ja) 繊維強化樹脂積層体の接合方法及び接合装置並びに繊維強化樹脂材
JP6614204B2 (ja) 金属部材と樹脂部材との接合方法およびその方法において使用される金属部材または樹脂部材
WO2022210250A1 (ja) 接合方法、接合体及び接合装置
WO2022145382A1 (ja) 接合方法、接合体及び接合装置
US20240075691A1 (en) Joint structure and joining method
JP2008221947A (ja) 車体の接合方法及びその接合構造
WO2022210510A1 (ja) 締結体並びにこれを用いた接合構造体および接合方法
CN116710216A (zh) 接合方法、接合体及接合装置
JP6977996B2 (ja) 異材接合方法
CN106170362A (zh) 用于使用薄膜分离器保护超声焊接角具的设备和过程

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545658

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021861595

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021861595

Country of ref document: EP

Effective date: 20230223

NENP Non-entry into the national phase

Ref country code: DE