WO2022045151A1 - 改変タンパク質の製造方法 - Google Patents

改変タンパク質の製造方法 Download PDF

Info

Publication number
WO2022045151A1
WO2022045151A1 PCT/JP2021/031039 JP2021031039W WO2022045151A1 WO 2022045151 A1 WO2022045151 A1 WO 2022045151A1 JP 2021031039 W JP2021031039 W JP 2021031039W WO 2022045151 A1 WO2022045151 A1 WO 2022045151A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
enzyme
modifying
modifying enzyme
ppiase
Prior art date
Application number
PCT/JP2021/031039
Other languages
English (en)
French (fr)
Inventor
寛敬 松原
杏匠 酒井
Original Assignee
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社 filed Critical 天野エンザイム株式会社
Priority to EP21861575.5A priority Critical patent/EP4202054A1/en
Priority to CN202180052715.XA priority patent/CN116113704A/zh
Priority to JP2022545646A priority patent/JPWO2022045151A1/ja
Priority to US18/042,510 priority patent/US20230323423A1/en
Publication of WO2022045151A1 publication Critical patent/WO2022045151A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y502/00Cis-trans-isomerases (5.2)

Definitions

  • the present invention relates to a method for producing a modified protein and a method for producing a modified protein material.
  • PPIase Peptidylprolyl isomerase
  • PPIase acts on the peptide bond on the N-terminal side of the proline (Pro) residue in the peptide or protein and catalyzes cis-trans isomerization.
  • PPIase has a so-called chaperone function involved in protein folding (see, for example, Non-Patent Document 1).
  • the chaperone function of PPIase is utilized, for example, to improve the expression efficiency of a heterologous protein in a host cell (see, for example, Patent Documents 1 to 3).
  • PPIase is also used for screening immunosuppressive substances (see, for example, Patent Document 4).
  • Non-Patent Document 2 discloses a method for measuring PPIase activity utilizing the fact that chymotrypsin acts only on the trans form of a synthetic substrate (peptide).
  • Such modification of a protein material for example, techniques such as softening of meat by protease, binding of meat by transglutaminase, and improvement of solubility of protein material by protein glutaminase are known.
  • a protein material modified by such a technique is provided as a new protein material.
  • the modified protein material has improved properties and new functions, so it can be expected to be applied to various fields, and its utility value is high. There is still a great need for further means to provide such highly useful protein materials. Therefore, it is an object of the present invention to provide a new means for modifying (processing) a protein material.
  • PPIase itself enables modification of protein materials. Given that PPIase is only known to catalyze the isomerization reaction, it is expected that PPIase will enable the modification of protein materials that has been done by enzymes that catalyze the molecular conversion reaction of protein molecules. It was outside. Furthermore, they have also found that the reaction efficiency of a protein-modifying enzyme can be regulated by using PPIase in combination with an enzyme that catalyzes the molecular conversion reaction of a protein molecule (hereinafter, also referred to as "protein-modifying enzyme"). The following inventions are mainly based on the above findings.
  • a method for producing a modified protein which comprises a step of allowing peptidylprolyl isomerase and a protein modifying enzyme to act on the protein.
  • the production method according to [1], wherein the treatment on which the protein-modifying enzyme is allowed to act and the treatment on which the peptidylprolyl isomerase is allowed to act are simultaneously performed.
  • the protein modifying enzyme is selected from the group consisting of a proteolytic enzyme, a protein side chain modifying enzyme, and a protein cross-linking enzyme.
  • the protein consists of plant proteins derived from beans, grains, nuts and seeds; milk proteins, egg proteins, blood proteins, muscle proteins and tendon proteins; and proteins derived from microorganisms, algae and insects.
  • a method for producing a modified protein material which comprises a step of treating a food material, a pharmaceutical material or an industrial material containing a protein with peptidyl prolyl isomerase and a protein modifying enzyme.
  • the production method according to [6] wherein the treatment with the protein-modifying enzyme is performed at the same time as the treatment with the peptidylprolyl isomerase.
  • the enzyme agent for protein modification according to [8], wherein the protein-modifying enzyme is selected from the group consisting of a proteolytic enzyme, a protein side chain modifying enzyme, and a protein cross-linking enzyme.
  • a method for producing a modified protein material which comprises a step of treating a protein-containing product material, a pharmaceutical material or an industrial material with peptidylprolyl isomerase.
  • a new means capable of modifying a protein material is provided.
  • modification of a protein means molecular conversion by decomposition, synthesis, cross-linking, etc., in other words, the number and / or type of constituent atoms of a protein molecule (also referred to as “protein substrate”). It refers to processing that changes the structure of a protein so as to change it (thus, it does not include mere isomerization), and means structural-modification as opposed to “modification” described later.
  • modification is the process of enzymatically treating a material containing a protein (also referred to as "protein material”) so that the characteristics of the protein material change based on changes in the physical properties of the protein. Describe as (property modification).
  • the "modification" of a protein material is an action and effect based on “modification” of a protein, an action and effect based on isomerization of a protein by peptidylprolyl isomerase, and an action and effect obtained by combining both actions and effects. Including effects.
  • the "protein” in the present invention broadly includes substances in which a plurality of amino acids are peptide-bonded. Therefore, the “protein” in the present invention includes oligopeptides having 10 or less amino acid residues, polypeptides having more than 10 amino acid residues, and proteins in which the polypeptides form a three-dimensional structure.
  • the first aspect of the present invention relates to a method for producing a modified protein.
  • the method for producing a modified protein of the present invention is characterized by comprising a step of reacting a protein (hereinafter, also referred to as “substrate protein”) with peptidylprolyl isomerase (PPIase) and a protein modifying enzyme.
  • substrate protein a protein
  • PPIase peptidylprolyl isomerase
  • the regulation of protein treatment is, in a typical and preferred example, an upward regulation (promotion of reaction), in which case it promotes the reaction of the protein-modifying enzyme.
  • the regulation is also allowed to be downward regulation (suppression of reaction), and in this case, it suppresses the reaction between PPIase and the protein-modifying enzyme.
  • Such a downward adjustment mode has, for example, a problem that the reaction proceeds too much (for example, if the protein-modifying enzyme is a cross-linking enzyme, the texture and the like are deteriorated due to cross-linking, and if the protein-modifying enzyme is a degrading (cleaving) enzyme. It is applied when there is deterioration of taste and physical properties).
  • Protein there are no particular restrictions on the origin of the protein (substrate protein) used in the present invention.
  • vegetable proteins that are examples of proteins used in the present invention include soy beans, green peas, lentils, chickpeas, black beans, and the like. Beans; wheat, barley, rye, swallow (Oat), rice and other grains; almonds, peanuts and other nuts; cannabis seeds (Hemp), chia seeds (Chia), quinoa, amaranthus (Amaranthus) and other seeds
  • proteins derived from include soy beans, green peas, lentils, chickpeas, black beans, and the like.
  • Beans wheat, barley, rye, swallow (Oat), rice and other grains; almonds, peanuts and other nuts; cannabis seeds (Hemp), chia seeds (Chia), quinoa, amaranthus (Amaranthus) and other seeds
  • proteins derived from include soy beans, green peas, lentils, chickpeas, black beans, and the
  • animal proteins used in the present invention include milk proteins such as casein and ⁇ -lactoglobulin; egg proteins such as ovalbumin; blood proteins such as serum albumin; muscle proteins such as myosin and actin. Includes tendon proteins such as gelatin and collagen.
  • proteins that are further examples of the proteins used in the present invention include proteins derived from insects such as crickets and silk; microorganisms such as yeast and filamentous fungi, and algae such as spirulina.
  • the natural protein in addition to the above-mentioned natural protein, is chemically partially decomposed by an acid, an alkali, or the like, and the natural protein is an enzyme by a protease or the like.
  • Preliminary modified proteins such as proteins that have undergone partial degradation and proteins in which the natural protein has been chemically modified with various reagents can also be mentioned.
  • the protein to be processed in the present invention is not only a protein that is industrially useful (that is, a protein that is enhanced by the addition of new properties by the treatment according to the present invention), but also a protein that is not industrially useful. (That is, the treatment according to the present invention reduces or eliminates the undesired properties of the protein, thereby imparting new usefulness).
  • proteins that are not industrially useful include various allergens (including gluten contained in wheat such as wheat, barley, rye, and swallow) and toxic peptides (eg, 33mer gliadin peptide contained in gluten degradation products). , Extrinsic opioid peptides (eg, casomorphin contained in casein degradation products, gliadorphin contained in gluten degradation products, etc.) and the like.
  • PPIase PPIase is an enzyme that acts on the N-terminal peptide bond of a proline (Pro) residue in a peptide or protein and catalyzes cis-trans isomerization.
  • PPIase activity an activity that changes the peptide bond on the N-terminal side of a Pro residue in a peptide or protein into a cis / trans form.
  • the PPIase used in the present invention is not particularly limited as long as it is a polypeptide having the activity. Therefore, a polypeptide having PPIase activity corresponds to PPIase used in the present invention even if it is not classified as PPIase on the official database.
  • the presence or absence of PPIase activity is determined by adding PPIase and chymotrypsin to the synthetic substrate Suc-Ala-Ala-Pro-Phe-pNA (Suc-AAPF-pNA) and detecting the release of pNA; Abz-Ala-Xaa-Pro-Phe. -Method of adding pNA, PPIase and protease to detect Abz fluorescence; activity detection method using FRET (Fluorescence Resonance Energy Transfer) substrate, etc., by at least one of these methods. If the PPIase activity can be detected, it can be determined that the PPIase activity is present.
  • FRET Fluorescence Resonance Energy Transfer
  • the presence or absence of PPIase activity can be confirmed by the method of detecting the release of pNA among the above methods.
  • the specific value of the activity of PPIase shall be measured based on the method for detecting the release of pNA.
  • PPIase used in the present invention is not particularly limited, and examples thereof include a wide range of organisms including prokaryotes, eukaryotes, and archaea (Biochim Biophys Acta. 2015 Oct; 1850 (10): 2017-2034.).
  • the activity of PPIase can be provided regardless of the presence of side chains if there is a characteristic pocket (cavity) with a diameter of 10 ⁇ and a depth of 6 ⁇ (Protein Engineering, Design and Selection, Volume 21, Issue 2, February 2008). , Pages83-89) Therefore, any polypeptide having the pocket can be used as the PPIase of the present invention.
  • polypeptide having PPIase activity examples include cyclophilin (Cyclophilin A and the like), FKBP (FKBP12 and the like), Pin1, parbrin, and the following [1] to [3] polypeptides and the like).
  • Polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1
  • polypeptide having PPIase activity [3] A polypeptide having an amino acid sequence having an amino acid sequence identity of 68% or more with respect to the amino acid sequence shown in SEQ ID NO: 1 and having PPIase activity.
  • SEQ ID NO: 1 in [1] is an amino acid sequence of PPIase derived from Streptomyces griseus.
  • polypeptides [2] and [3] are sequence-like PPIases having the amino acid sequence of the polypeptide of [1] as the basic skeleton.
  • the modification of the amino acid introduced into the polypeptide of [2] may include only one modification (for example, substitution) from substitutions, additions, insertions, and deletions, and two or more thereof. Modifications (eg, substitution and insertion) may be included.
  • the number of amino acids substituted, added, inserted or deleted may be one, more than one, or several, for example, 1 to 97, 1 to 80, 1 to 60. 1 to 40, 1 to 20, 1 to 10, preferably 1 to 8, 1 to 6, 1 to 5, or 1 to 4, more preferably 1 to 3, particularly preferably. 1 or 2 or 1 may be mentioned.
  • sequence identity may be 68% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, still more preferably 98%. As mentioned above, 99% or more is more preferable, 99.5% or more is particularly preferable, and 99.8% or more is most preferable.
  • sequence identity is defined as BLAST PACKAGE [sgi32 bit edition, Version 2.0.12; available from National Center for Biotechnology Information (NCBI)] bl2sevoT.A.T.
  • NCBI National Center for Biotechnology Information
  • the value of the identity of the amino acid sequence obtained by Microbiol. Lett., Vol. 174, p247-250, 1999) is shown.
  • the parameters may be set to Gap insertion Cost value: 11 and Gap extension Cost value: 1.
  • the 41st to 165th positions and the 220th to 309th positions in the amino acid sequence shown in SEQ ID NO: 1 constitute the FK506 binding protein (FKBP) domain. It is desirable not to introduce substitutions or deletions at these sites.
  • amino acid substitution introduced into the amino acid sequence shown in SEQ ID NO: 1 is another non-polar amino acid if the amino acid before substitution is a non-polar amino acid.
  • amino acid addition is introduced into the polypeptides of [2] and [3], as an embodiment of amino acid addition, for example, addition of a methionine residue to the N-terminal, binding to a tag for purification (for example, oligohistidine, etc.) Addition of oligopeptide) and the like can be mentioned.
  • polypeptides [2] and [3] include not only the polypeptide obtained by artificially mutating, but also naturally occurring mutations (mutants) based on individual differences or species differences of the organism from which the polypeptide is derived. Also included are polypeptides produced by (or variants).
  • the method for confirming the "PPIase activity" in the polypeptides of [2] and [3] is as described above.
  • the "PPIase activity" in the polypeptides of [2] and [3] is equivalent to that of the polypeptide of [1], and specifically, for the polypeptides of [2] and [3].
  • the amount of free pNA measured based on the method of detecting the release of pNA from the synthetic substrate Suc-Ala-Ala-Pro-Phe-pNA (Suc-AAPF-pNA) in the coexistence of chymotrypsin is the above-mentioned [1]. 80-120%, preferably 90-110%, of the amount of free pNA measured for the polypeptide of.
  • PPIases are commercially available (eg FKBP12 from Sigma, Cyclophilin A from Sigma) and are easily available. These PPIases may be used alone or in combination of two or more.
  • the amount per 1 g of the substrate protein is, for example, 0.0001 mg to 1 g, preferably 0.01 mg to 100 mg, or, for example, 0.01 to 100,000 U, preferably 0.1 to 10,000 U, more preferably. 1 to 1000 U, more preferably 10 to 200 U.
  • Protein-modifying enzyme In the method for producing a modified protein of the present invention, a protein-modifying enzyme (protein processing enzyme) is used in combination with PPIase. That is, PPIase is allowed to act on the substrate protein and a protein modifying enzyme is also allowed to act.
  • a protein-modifying enzyme is an enzyme that can modify a substrate protein molecule by its catalytic action (it can be processed to change the structure of a protein so as to change the number and / or type of constituent atoms of the protein molecule).
  • protein-modifying enzymes include proteolytic enzymes, protein side chain modifying enzymes, and protein cross-linking enzymes.
  • proteolytic enzymes include proteases (pepsin, trypsin, chymotrypsin, papaine, metal protease, serine protease, cysteine protease, proteinase such as acidic protease, carboxypeptidase, aminopeptidase, etc.).
  • protein side chain modifying enzyme examples include transglutaminase such as protein deamidating enzyme (protein glutaminase, protein arginine deiminase, etc.).
  • protein cross-linking enzyme is an oxidative-reducing enzyme that catalyzes protein cross-linking. (Rigyl oxidase, sulfhydryl oxidase, tyrosinase, lacquerze, birylbin oxidase, ascorbic acid oxidase, celluloplasmin, peroxidase, etc.) can be mentioned.
  • the protein deamidating enzyme is an enzyme that deamidates the amide groups of glutamine residues and asparagine residues in proteins.
  • enzymes that deamidate glutamine residues in proteins include protein glutaminase derived from Chryseobacterium proteolyticum (Eur J Biochem, 268 (5), 1410, 2001, Protein-glutaminase From Chryseobacterium Proteolyticum, an Enzyme That Deamidates Purification, characterization and Gene Cloning, S Yamaguchi 1, D J Jeenes, D B Archer or Front Microbiol, 9, 1975, 2018, Complete Genome Sequence and characterization of a Protein-Glutaminase Protein-Glutaminase Producing Strain Zhu, Min Tian, Yingjie Liu, Wenjuan Yan, Jian Ye, Hongliang Gao, Jing Huang) are well known, but not limited to this.
  • Enzymes that deamidate asparagine residues in proteins are disclosed, for example, in WO2015 / 133590, but are not limited thereto.
  • the protein deamidating enzyme in the present invention also includes an enzyme that deimidinates arginine residues.
  • an enzyme that deiminates arginine residues for example, arginine deminase derived from Fusarium graminearum is known.
  • the deamidated protein has amphipathic properties and becomes an ideal surfactant, and the emulsifying power, emulsifying stability, foaming property, and foam stability of the protein are greatly improved.
  • deamidation of a protein brings about an improvement in various functional properties of the protein, and the use of the protein is dramatically increased (for example, Molecular Approaches to Improving Food Quality and Safety, D. Chatnagar and T.E. . Cleveland, eds., Van Nostrand Reinhold, New York, 1992, p. 37).
  • the arginine residue in the protein is deiminated, the hydrophobicity of the protein is increased and the higher-order structure of the protein is changed.
  • Transglutaminase is an enzyme that catalyzes the acyl transfer reaction of the ⁇ -carboxyamide group of the glutamine residue in the peptide chain, and when the ⁇ -amino group of the lysine residue in the protein acts as an acyl acceptor, it is a protein molecule.
  • ⁇ - ( ⁇ -Gln) -Lys cross-linking is formed within or between molecules of. Since protein modification can be performed by utilizing the action of transglutaminase, transglutaminase derived from the genus Streptomyces is used for meat binding, sausage, tofu, bread, and noodles. Further, the use of transglutaminase is being promoted not only in the food field but also in the textile field, the medical field, the cosmetics field and the like.
  • the above protein-modifying enzyme may be used alone or in combination of two or more.
  • combinations of two or more kinds of protein modifying enzymes include a combination of protein glutaminase and transglutaminase, a combination of protein glutaminase and laccase, a combination of transglutaminase and laccase, a combination of protease and transglutaminase, and the like.
  • the amount of the protein modifying enzyme used for example, 0.001 mg to 1 g, preferably 0.01 mg to 0.1 g, or, for example, 0.001 to 10000 U, preferably 0.01 to 5000 U, as an amount per 1 g of the substrate protein. , More preferably 0.1 to 3000 U.
  • the treatment for causing PPIase such as reaction operation and reaction conditions, and the treatment for allowing protein-modifying enzyme to act may be performed simultaneously or sequentially.
  • the treatment with PPIase and the treatment with a protein-modifying enzyme are preferably performed at the same time.
  • the treatment start timing may be the same or either.
  • the start timing of one of the processes may be delayed.
  • the end timings of the processes may be the same, or the end timing of either process may be delayed.
  • all protein-modifying enzymes may be used for simultaneous reaction with PPIase, or some protein-modifying enzymes may be used for simultaneous reaction with PPIase.
  • the remaining protein-modifying enzyme may be used after the co-reaction.
  • the temperature condition includes, for example, 10 ° C to 60 ° C, preferably 20 ° C to 50 ° C, and the pH condition is, for example, 3 to 9, preferably 4.
  • ⁇ 8 can be mentioned.
  • the total time required for treatment with PPIase and treatment with a protein modifying enzyme is, for example, 1 minute to 24 hours, preferably 10 minutes to 16 hours.
  • the optimum reaction conditions may be determined through preliminary experiments.
  • Modified protein In the modified protein obtained by the method for producing a modified protein of the present invention, the protein described in the above "1-1. Protein (substrate protein)" is replaced with the above "1-3. Protein modifying enzyme". It is produced by the modification action by the described protein-modifying enzyme.
  • Specific examples of the modified protein include a proteolytic product when a proteolytic enzyme is used as the protein modifying enzyme; and a side chain modification when a protein side chain modifying enzyme is used as the protein modifying enzyme. Protein; When a protein cross-linking enzyme is used as the protein-modifying enzyme, a protein cross-linked between molecules and / or within a molecule can be mentioned.
  • the second aspect of the present invention relates to a method for producing a modified protein material.
  • the combination of peptidylprolyl isomerase and a protein modifying enzyme can be used for modifying a substrate protein, and therefore, it can be applied to the treatment of a protein material.
  • Protein material can be modified.
  • the present invention also provides a method for producing a modified protein material.
  • a food material, a pharmaceutical material or an industrial material containing a protein is treated with peptidylprolyl isomerase, or peptidylprolyl isomerase and a protein modifying enzyme. It is characterized by including a step of performing.
  • the specific form of modification may be any form as long as it can be expected from the action and effect of the protein modifying enzyme.
  • Examples of specific forms of modification include improvement of the water dispersibility of the protein in the protein material, improvement of protein solubility in the protein material, and emulsion stability of the protein material, depending on the type and / or form of the protein material. Improvement, improvement of in-vivo digestibility of protein material, improvement of taste of protein material, improvement of foaming property of protein material, improvement of gelling property of protein material, etc. can be mentioned.
  • Another example of a specific form of modification is the reduction or elimination of allergic or opioid properties, the conferral of limited allergic properties useful for desensitization therapy (ie, reducing allergenicity and predetermined limitation). It is also possible to leave it within the specified range).
  • the protein material to be processed in the method for producing a modified protein material of the present invention is an article containing a protein and distributed in various industries (specific examples thereof include foods, pharmaceuticals, and industrial articles). It is a raw material used in the production of.
  • the protein contained in the protein material is as described in "1-1. Protein (substrate protein)" above.
  • Specific examples of protein materials include food materials, pharmaceutical materials and industrial materials. More specific examples of food materials include animal tissues and plant tissues, as well as their dispersions (particularly preferably vegetable milk in which pulverized edible parts of plants are dispersed in water), extracts.
  • a composition containing all of the so-called foodstuffs such as processed products such as products, an allergen and a food-acceptable ingredient, and a composition containing an exogenous opioid peptide and a food-acceptable ingredient.
  • Compositions containing toxic peptides and foodally acceptable ingredients and the like are also examples.
  • a composition containing an allergen and a pharmaceutically acceptable component can be mentioned.
  • industrial materials include fibers such as silk and wool.
  • the above-mentioned protein material has an action of peptidylprolyl isomerase or an action of peptidylprolyl isomerase and a protein modifying enzyme. It is what happens when you receive it.
  • modified protein materials examples of the above-mentioned protein materials produced by the action of peptidylprolyl isomerase include improved water dispersibility of the protein, improved solubility of the protein, and / or stable emulsification. Examples thereof include protein materials having improved properties (specifically, food materials or pharmaceutical materials).
  • modified protein materials examples of the above-mentioned protein material produced by the action of peptidylprolyl isomerase and a protein modifying enzyme include improved water dispersibility of the protein and improved solubility of the protein.
  • Protein materials with improved emulsion stability, improved foaming properties, and / or improved gelling properties specifically, food or pharmaceutical materials
  • improved digestibility in the body and / or improved taste.
  • Protein materials (specifically, food materials), and protein materials specifically, food materials, pharmaceutical materials, or industrial materials) whose allergic, opioid, toxic, and / or unnecessary substances have been reduced or eliminated. Can be mentioned.
  • the food material having improved digestibility in the body can be used, for example, for foods and drinks for animals with reduced digestive function, healthy foods and drinks with enhanced digestive and absorptive capacity;
  • Food materials with reduced or eliminated allergenicity can be used, for example, in foods and drinks for animals having a constitution that causes allergies to the allergen because allergens are reduced or eliminated; opioidity is reduced.
  • the disappeared food material can be used for foods and drinks for animals suffering from mental diseases such as autism caused by the opioid peptide because the exogenous opioid peptide is reduced or eliminated;
  • Food materials whose toxicity has been reduced or eliminated can be used, for example, in foods and drinks for animals suffering from celiac disease and other gluten-related diseases because the toxic peptide has been reduced or eliminated.
  • the pharmaceutical material with reduced allergenicity in the pharmaceutical material with reduced allergenicity, a part of the allergen is decomposed from the composition containing the allergen and the pharmaceutically acceptable component, and the allergen content is predeterminedly restricted. Since it is adjusted so as to remain within the above concentration range, it can be used, for example, as a drug for allergic desensitization therapy.
  • industrial materials with reduced or eliminated allergenicity can be used as materials for textile products that come into contact with the skin; industrial materials with reduced or eliminated unnecessary substances are sericin-removed. Examples thereof include (refined) silk and wool from which scale has been removed, and can be used as a material for textile products having an improved texture.
  • the types of the above animals are not particularly limited, but examples thereof include mammals and birds, preferably mammals, and more preferably humans.
  • the third aspect of the present invention relates to an enzyme agent for protein modification.
  • the combination of peptidylprolyl isomerase and a protein modifying enzyme can be used for modifying a substrate protein. Therefore, the present invention also provides a protein-modifying enzyme preparation containing peptidylprolyl isomerase and a protein-modifying enzyme.
  • the content of PPIase and protein-modifying enzyme, which are active ingredients, is not particularly limited in the protein-modifying enzyme preparation.
  • the content of PPIase per 1 g of the enzyme agent for protein modification is, for example, 0.0001 mg to 1000 mg, preferably 0.01 mg to 100 mg.
  • the content of the protein-modifying enzyme per 1 g of the protein-modifying enzyme agent is, for example, 0.0001 mg to 1000 mg, preferably 0.01 mg to 100 mg; as the protein-modifying enzyme.
  • peptidase for example, 0.0001 mg to 1000 mg, preferably 0.01 mg to 100 mg
  • protein glutaminase when used as a protein-modifying enzyme, for example, 0.0001 mg to 1000 mg, preferably 0.01 mg to 1 g of this enzyme preparation. 100 mg is mentioned; when transglutaminase is used as a protein-modifying enzyme, for example, 0.0001 mg to 1000 mg, preferably 0.01 mg to 100 mg can be mentioned.
  • the enzyme agent for protein modification of the present invention contains other components such as excipients, buffers, suspending agents, stabilizers, preservatives, preservatives, and physiological saline in addition to the above-mentioned enzymes which are active ingredients. May be.
  • the excipient include lactose, sorbitol, D-mannitol, maltodextrin, sucrose and the like.
  • the buffer include phosphates, citrates, acetates and the like.
  • the stabilizer include propylene glycol, ascorbic acid and the like.
  • the preservative include phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben and the like.
  • the preservative include benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like.
  • the properties of the enzyme preparation for protein modification of the present invention are not particularly limited, and examples thereof include a solid state, a liquid state, and a supported state.
  • more specific forms include granules and powders.
  • a more specific form includes a form in which the enzyme as an active ingredient is immobilized on the surface of an insoluble carrier such as silica or a porous polymer. Be done.
  • the fourth aspect of the present invention relates to an enzyme agent for modifying protein material.
  • peptidylprolyl isomerase alone or in combination with peptidylprolyl isomerase and a protein modifying enzyme can be used to modify a protein material.
  • the present invention also provides an enzyme agent for modifying a protein material containing peptidylprolyl isomerase.
  • the modifying enzyme agent of the present invention can further contain a protein-modifying enzyme.
  • the content of the enzyme as an active ingredient, the types of other components that may be contained, and the properties thereof are for protein modification according to the third aspect. It is the same as the enzyme preparation.
  • ⁇ Measurement method of PPIase activity The activity of PPIase was measured using a Protease-coupled assay. 0.2 mM tetrapeptide (Suc-Ala-Ala-Pro-Phe-pNA) was dissolved in 0.47M lithium chloride (LiCl) + trifluoroethanol solution to prepare a substrate solution. 0.3 mg / ml chymotrypsin and an appropriate amount of PPIase were added to the substrate solution, mixed, treated at 30 ° C. for 3 minutes, and then the absorbance at 390 nm (Abs390 (Ch + PPI)) was measured.
  • LiCl lithium chloride
  • ⁇ Test Example 1 Effect of combined use of PPIase and protease>
  • Method Amano a 1 mg / mL umamizyme G (protease derived from Aspergillus oryzae) in 10 ⁇ L in 100 ⁇ L of a substrate aqueous solution (dissolved azocasein (manufactured by Sigma) in 2% (w / v) in 20 mM Na acetate (pH 6.0)).
  • Enzyme Co., Ltd. 150 u / g) and 10 ⁇ L of 0.1 mg / mL FKBP12 (microbial-derived PPIase, Sigma, 0.15 mg / ml) were added, and after a reaction at 37 ° C for 0, 10 or 30 minutes, 240 ⁇ L of 10 The reaction was stopped by adding the% (w / v) TCA solution. After centrifugation, 120 ⁇ L of the supernatant was collected. 140 ⁇ L of 1N NaOH was added to the recovered supernatant, mixed and colored, and the absorbance at OD440 nm was measured to evaluate the degradability of azocasein. The degradability of azocasein was compared based on a sample (protease only) to which purified water was added instead of FKBP12.
  • ⁇ Test Example 2 Effect of combined use of PPIase and protein glutaminase> (1) Method 10 ⁇ L of 25 u / mL PG in 1 mL of substrate solution (10% (w / v) soybean protein (Fuji Pro F, manufactured by Fuji Oil Co., Ltd.) aqueous solution or 10% (w / v) wheat gluten aqueous solution) Add -500 (protein glutaminase "Amano" 500, manufactured by Amano Enzyme Co., Ltd.) and 10 ⁇ L of 0.1 mg / ml Cyclophilin A (PPIase derived from bovine thoracic gland, C7696 manufactured by Sigma) or purified water, and add 10, 60 at 37 ° C.
  • substrate solution 10% (w / v) soybean protein (Fuji Pro F, manufactured by Fuji Oil Co., Ltd.) aqueous solution or 10% (w / v) wheat gluten aqueous solution
  • Add -500 protein glut
  • the reaction was stopped by adding 1 mL of 10% (w / v) TCA solution.
  • the degree of deamidation was evaluated by measuring the amount of ammonia produced in the sample after each reaction was stopped using Ammonia Test Wako (manufactured by FUJIFILM). Specifically, after each reaction was stopped, the sample was diluted 5-fold with the deproteinization solution attached to the kit, and then centrifuged to collect the supernatant (removal of protein components). Ammonia nitrogen in the supernatant was developed and the absorbance at 630 nm was compared.
  • the residual rate of 33mer peptide in the reaction solution was calculated by an ELISA assay using an anti-33mer peptide antibody.
  • the degradability of the peptide was evaluated by a relative amount with the residual rate of the peptide as 100% when pepsin alone was used as the enzyme (when Cyclophilin A was not used in combination).
  • SgPPI was expressed in E. coli BL21 and recovered, and its properties were examined. The optimum pH, optimum temperature, pH stability, and temperature stability of SgPPI are shown in FIG. Although not shown, it was also confirmed that SgPPI has a known PPIase effect such as an effect of improving thermal stability.
  • ⁇ Test Example 4 Effect of using SgPPI and laccase together> (1) Method In a 5% (w / v) milk casein aqueous solution, LC-Y120 (laccase, manufactured by Amano Enzyme Co., Ltd.) of 2400 U per 1 g of protein, or LC-Y120 of 2400 U per 1 g of protein and 174 U per 1 g of protein. SgPPI was added and shaken at 40 ° C. for 4 hours, and then the reaction solution was subjected to SDS-PAGE. The cross-linking of the protein and its degree can be confirmed by the presence of a band closer to the origin and the intensity of the band in SDS-PAGE.
  • Chickpea milk was prepared by suspending Indian "chickpea” (KOBE GROCERS) protein at 10 w / v% in ionized water. To 10 mL of the obtained chickpea milk, SgPPI was added so as to be 87 U per 1 g of protein, and the mixture was incubated for 24 hours at 40 ° C. (standing). After that, the properties of chickpea milk were photographed.
  • KBE GROCERS Indian "chickpea”
  • a new means capable of modifying a protein material is provided. Specifically, by allowing peptidylprolyl isomerase and a protein-modifying enzyme to act on a protein, the protein-modifying reaction can be regulated (typically promoted).
  • the protein material can be modified.
  • the protein material can also be modified by treating the protein material with peptidyl prolyl isomerase.
  • modified protein materials can be used as industrial materials such as food materials, pharmaceutical materials and industrial materials, and contribute to the production of industrial products such as foods, pharmaceuticals and industrial products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本発明は、タンパク質素材を改質できる新たな手段を提供することを課題とする。タンパク質素材に、ペプチジルプロリルイソメラーゼ、又は、ペプチジルプロリルイソメラーゼ及びタンパク質改変酵素を作用させることにより、タンパク質素材を改質できる。

Description

改変タンパク質の製造方法
 本発明は改変タンパク質の製造方法及び改質されたタンパク質素材の製造方法に関する。
 ペプチジルプロリルイソメラーゼ(以下、「PPIase」と略称することがある)はペプチド又はタンパク質中のプロリン(Pro)残基のN末端側のペプチド結合に作用し、シス・トランス異性化を触媒する。PPIaseは、タンパク質のフォールディングに関与する、所謂シャペロン機能を持つ(例えば非特許文献1を参照)。PPIaseのシャペロン機能は、例えば、宿主細胞での異種タンパク質の発現効率の向上に利用されている(例えば特許文献1~3を参照)。一方、免疫抑制物質のスクリーニングにもPPIaseが利用されている(例えば特許文献4を参照)。また、PPIaseによって酵素の熱安定性を向上できることが知られている(例えば特許文献5を参照)。非特許文献2には、キモトリプシンが合成基質(ペプチド)のトランス型にのみ作用することを利用したPPIase活性測定法が開示されている。
 一方、酵素によってタンパク質素材を改質させる研究が盛んに行われている。タンパク質素材の改質には、プロテアーゼなどによるタンパク質分解、プロテイングルタミナーゼなどによるタンパク質側鎖修飾、トランスグルタミナーゼ又はオキシダーゼによるタンパク質分子間架橋などの、タンパク質分子の分子変換反応が利用されており、このような分子変換反応が、タンパク素材の呈味性、物性、機能性(例えば、起泡性、乳化安定性、可溶性など)などの特性変化(つまり、改質)を可能にしている。このようなタンパク質素材の改質のより具体的な態様として、例えば、プロテアーゼによる食肉の軟化、トランスグルタミナーゼによる食肉の結着、及びプロテイングルタミナーゼによるタンパク質素材の可溶性向上などの技術が知られており、このような技術により改質されたタンパク質素材が、新しいタンパク質素材として提供されている。
特表2002-525120号公報 特開2004-215591号公報 特開2005-046066号公報 特開平2-124100号公報 特開平11-075837号公報
Biochim Biophys Acta. 2015 October ; 1850(10): 2017-2034. Biomed Biochim Acta 1984;43(10):1101-11.
 改質されたタンパク質素材は、特性が改良していたり、新たな機能が付与されていたりするため、様々な分野への応用が期待でき、その利用価値は高い。このような利用価値の高いタンパク質素材を提供するための、更なる手段に対するニーズは依然として高い。そこで本発明は、タンパク質素材を改質(加工)するための新たな手段を提供することを課題とする。
 本発明者は、PPIaseが、それ自体、タンパク質素材の改質を可能にすることを見出した。PPIaseが異性化の反応を触媒することしか知られていないことに鑑みると、これまでタンパク質分子の分子変換反応を触媒する酵素によってなされてきたタンパク質素材の改質がPPIaseによって可能になることは予想外であった。さらに、PPIaseを、タンパク質分子の分子変換反応を触媒する酵素(以下において、「タンパク質改変酵素」とも記載する)と併用することで、タンパク質改変酵素による反応効率を調節できることも見出した。以下の発明は主として上記知見に基づく。
[1] タンパク質に、ペプチジルプロリルイソメラーゼとタンパク質改変酵素とを作用させる工程を含む、改変タンパク質の製造方法。
[2] 前記タンパク質改変酵素を作用させる処理と前記ペプチジルプロリルイソメラーゼを作用させる処理とを同時に行う、[1]に記載の製造方法。
[3] 前記タンパク質改変酵素が、タンパク質分解酵素、タンパク質側鎖修飾酵素、及びタンパク質架橋酵素からなる群より選択される、[1]又は[2]に記載の製造方法。
[4] 前記タンパク質改変酵素が、プロテアーゼ、タンパク質脱アミド酵素、トランスグルタミナーゼ、及びタンパク質の架橋化を触媒する酸化還元酵素からなる群より選択される、[1]又は[2]に記載の製造方法。
[5] 前記タンパク質が、豆、穀物、ナッツ、及び種子に由来する植物タンパク質;乳タンパク質、卵タンパク質、血液タンパク質、筋肉タンパク質及び腱タンパク質;並びに、微生物、藻、及び昆虫に由来するタンパク質からなる群より選択される、[1]~[4]のいずれか一項に記載の製造方法。
[6] タンパク質を含有する食品素材、医薬素材又は工業素材を、ペプチジルプロリルイソメラーゼ及びタンパク質改変酵素で処理する工程を含む、改質されたタンパク質素材の製造方法。
[7] 前記タンパク質改変酵素による処理を前記ペプチジルプロリルイソメラーゼによる処理と同時に行う、[6]に記載の製造方法。
[8] ペプチジルプロリルイソメラーゼ及びタンパク質改変酵素を含有する、タンパク質改変用酵素剤。
[9] 前記タンパク質改変酵素が、タンパク質分解酵素、タンパク質側鎖修飾酵素、及びタンパク質架橋酵素からなる群より選択される、[8]に記載のタンパク質改変用酵素剤。
[10] タンパク質改変酵素が、プロテアーゼ、ペプチダーゼ、タンパク質脱アミド酵素、トランスグルタミナーゼ、及びタンパク質の架橋化を触媒する酸化還元酵素からなる群より選択される、[8]に記載のタンパク質改変用酵素剤。
[11] タンパク質を含有する品素材、医薬素材又は工業素材をペプチジルプロリルイソメラーゼで処理する工程を含む、改質されたタンパク質素材の製造方法。
[12] ペプチジルプロリルイソメラーゼを含有する、タンパク質素材の改質用酵素剤。
 本発明によれば、タンパク質素材を改質できる新たな手段が提供される。
上:大豆タンパク質の脱アミド化の評価。プロテイングルタミナーゼを反応させる際にPPIase(Cyclophilin A)を添加した場合(白抜きのバー)と添加しない場合(塗りつぶしのバー)の間で脱アミド化を比較した。下:小麦グルテンの脱アミド化の評価。プロテイングルタミナーゼを反応させる際にPPIase(Cyclophilin A)を添加した場合(白抜きのバー)と添加しない場合(塗りつぶしのバー)の間で脱アミド化を比較した。 小麦グルテン由来33merペプチドの分解後残存率。ペプシン単独で反応させた場合(塗りつぶしのバー。人工胃液の消化に相当する)と、ペプシンとPPIase(Cyclophilin A)を併用して反応させた場合(白抜きのバー)との間で33merペプチドの残存率(%)(ペプシン単独で反応させた場合の残存率を100%とした相対値)を比較した。 Streptomyces griseus由来PPIase(SgPPI)の性質を示す。 小麦グルテン、大豆タンパク質、エンドウ豆タンパク質、乳カゼイン、又は卵アルブミンに、SgPPIとプロテイングルタミナーゼとを併用して処理した場合の効果を示す。 SgPPIがプロテイングルタミナーゼ(PG)と併用される場合の、PGへの影響の有無を確認した結果を示す。 乳カゼインにSgPPIとラッカーゼとを併用して処理した場合の効果を示す。 ひよこ豆タンパク質にPPIaseを単独で処理した場合の効果を示す。
 本明細書においてタンパク質の「改変」(modification)とは、分解、合成、架橋等より分子変換すること、言い換えればタンパク質分子(「タンパク質基質」とも記載する)の構成原子の数及び/又は種類を変えるようにタンパク質の構造を変化させる加工を行うこと(従って、単なる異性化は含まれない)を指し、後述の「改質」に対して構造的改変(structural-modification)を意味する。また、タンパク質を含む素材(「タンパク質素材」とも記載する)に対してタンパク質の酵素処理を行うことでタンパク質の物性変化に基づきタンパク質素材の特性が変化するように加工することを、「改質」(property modification)と記載する。本発明において、タンパク質素材の「改質」は、タンパク質の「改変」に基づく作用効果と、ペプチジルプロリルイソメラーゼによるタンパク質の異性化に基づく作用効果と、それら両方の作用効果が相まって奏される作用効果を含む。
 さらに、本発明における「タンパク質」は、複数のアミノ酸がペプチド結合した物質を広く包含する。従って、本発明における「タンパク質」には、アミノ酸残基10個以下のオリゴペプチド、アミノ酸残基10個超のポリペプチド、及びポリペプチドが三次元構造を形成したタンパク質のいずれも含まれる。
1.改変タンパク質の製造方法
 本発明の第1の局面は改変タンパク質の製造方法に関する。本発明の改変タンパク質の製造方法は、タンパク質(以下「基質タンパク質」とも記載する)に、ペプチジルプロリルイソメラーゼ(PPIase)とタンパク質改変酵素とを作用させる工程を含むことを特徴とする。
 タンパク質を、PPIaseとタンパク質改変酵素との両方の酵素を用いて処理することで、タンパク質改変酵素によるタンパク質の改変反応の調節が可能になる。タンパク質の処理を当該調節は、典型例かつ好ましい例においては上方調節(反応の促進)であり、この場合、タンパク質改変酵素の反応を促進する。一方、当該調節は、下方調節(反応の抑制)であることも許容され、この場合、PPIaseとタンパク質改変酵素の反応を抑制する。このような下方調節の態様は、例えば、反応が進み過ぎるという問題(例えば、タンパク質改変酵素が架橋酵素であれば過架橋による食感等の悪化、タンパク質改変酵素が分解(切断)酵素であれば呈味性や物性の悪化など)がある場合に適用される。
1-1.タンパク質(基質タンパク質)
 本発明で用いられるタンパク質(基質タンパク質)の起源に特段の制約はない。たとえば、本発明で用いられるタンパク質の一例である植物性タンパク質としては、大豆(Soy beans)、えんどう豆(Green peas)、レンズ豆(Lentils)、ひよこ豆(Chickpeas) 、黒豆(Black beans)等の豆;小麦、大麦、ライ麦、燕麦(Oat)、米などの穀物;アーモンド、ピーナッツ等のナッツ;大麻種子(Hemp)、チア種子(Chia)、キヌア(Quinoa)、アマランサス(Amaranthus)などの種子に由来するタンパク質が挙げられる。本発明で用いられるタンパク質の他の例である動物性タンパク質としては、カゼイン、β-ラクトグロブリンなどの乳タンパク質;オボアルブミンなどの卵タンパク質;血清アルブミンなどの血液タンパク質;ミオシン、アクチンなどの筋肉タンパク質;ゼラチン、コラーゲンなどの腱タンパク質が挙げられる。本発明で用いられるタンパク質のさらなる例である他のタンパク質としては、コオロギ、シルクなどの昆虫;酵母、糸状菌などの微生物、スピルリナなどの藻に由来するタンパク質が挙げられる。
 本発明において用いられるタンパク質の更に別の例としては、上記の天然タンパク質の他、当該天然タンパク質が、酸、アルカリなどにより化学的に部分分解を受けたタンパク質、当該天然タンパク質が、プロテアーゼなどにより酵素的に部分分解を受けたタンパク質、当該天然タンパク質が、各種試薬により化学修飾を受けたタンパク質等の、予備改変タンパク質も挙げられる。
 なお、本発明において処理対象となるタンパク質は、産業上有用であるタンパク質(つまり、本発明による処理により新たな特性が付与されることで有用性が高まるもの)だけでなく、産業上有用でないタンパク質(つまり、本発明による処理により当該タンパク質が持つ所望しない特性を低減又は消失させることにより、新たに有用性が付与されるもの)も含む。産業上有用でないタンパク質としては、各種アレルゲン(小麦、大麦、ライ麦、燕麦等の麦に含まれるグルテン等が挙げられる)、毒性ペプチド(例えば、グルテン分解物に含まれる33merグリアジンペプチド等が挙げられる)、外因性オピオイドペプチド(例えば、カゼイン分解物に含まれるカソモルフィン、グルテン分解物に含まれるグリアドルフィン等が挙げられる)等が挙げられる。
1-2.ペプチジルプロリルイソメラーゼ(PPIase)
 PPIaseは、ペプチド又はタンパク質中のプロリン(Pro)残基のN末端側のペプチド結合に作用し、シス・トランス異性化を触媒する酵素である。換言すれば、PPIaseは、ペプチド又はタンパク質中のPro残基のN末端側のペプチド結合をシス/トランス型に変化させる活性(PPIase活性)を有する。本発明で用いられるPPIaseとしては、当該活性を有するポリペプチドである限り特に限定されない。従って、公式データベース上でPPIaseに分類されていなくとも、PPIase活性を有するポリペプチドは本発明で用いられるPPIaseに該当する。
 PPIase活性の有無は、合成基質Suc-Ala-Ala-Pro-Phe-pNA(Suc-AAPF-pNA)にPPIaseとキモトリプシンを入れ、pNAの遊離を検出する方法;Abz-Ala-Xaa-Pro-Phe-pNA、PPIase及びプロテアーゼを添加し、Abzの蛍光を検出する方法;FRET(Fluorescence Resonance Energy Transfer:蛍光共鳴エネルギー移動)基質を用いた活性検出法などが挙げられ、これらの少なくともいずれかの方法によってPPIase活性が検出できれば、PPIase活性を有していると判断することができる。好ましくは、PPIase活性の有無は、上記の方法のうちpNAの遊離を検出する方法によって確認することができる。なお、本発明において、PPIaseの活性の具体的な値については、pNAの遊離を検出する方法に基づいて測定されるものとする。
 本発明で用いられるPPIaseの由来は特に限定されず、原核生物、真核生物、アーキア(Biochim Biophys Acta. 2015 Oct; 1850(10): 2017-2034.)を含む広範な生物が挙げられる。また、PPIaseの活性は側鎖の存在とは無関係に、直径10Å、深さ6Åの特徴的なポケット(キャビティ)があれば具備することができる(Protein Engineering, Design and Selection, Volume21, Issue2, February2008, Pages83-89)ため、当該ポケットを有するポリペプチドであれば本発明のPPIaseとして用いることができる。PPIase活性を有するポリペプチドの具体例としては、シクロフィリン(Cyclophilin A等)、FKBP(FKBP12等)、Pin1、パルブリン、下記[1]~[3]のポリペプチド等)等が挙げられる。
[1]配列番号1に示すアミノ酸配列からなるポリペプチド
[2]配列番号1に示すアミノ酸配列において、1個又は数個のアミノ酸が置換、付加、挿入又は欠失されてなるアミノ酸配列からなり、且つ、PPIase活性を有するポリペプチド
[3]配列番号1に示すアミノ酸配列に対する配列同一性が68%以上のアミノ酸配列からなり、且つ、PPIase活性を有するポリペプチド
 [1]における配列番号1は、Streptomyces griseus由来のPPIaseのアミノ酸配列である。
 [2]及び[3]のポリペプチドは、[1]のポリペプチドのアミノ酸配列を基本骨格とする配列類似のPPIaseである。
 前記[2]のポリペプチドに導入されるアミノ酸の改変については、置換、付加、挿入、および欠失の中から1種類の改変(例えば置換)のみを含むものであってもよく、2種以上の改変(例えば、置換と挿入)を含んでいてもよい。前記[2]のポリペプチドにおいて、置換、付加、挿入又は欠失されるアミノ酸は、1個又は複数個若しくは数個であればよく、例えば1~97個、1~80個、1~60個、1~40個、1~20個、1~10個、好ましくは1~8個、1~6個、1~5個、又は1~4個、更に好ましくは1~3個、特に好ましくは1又は2個或いは1個が挙げられる。
 また、前記[3]のポリペプチドにおいて、配列同一性は、68%以上であればよいが、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、一層好ましくは98%以上、より一層好ましくは99%以上、特に好ましくは99.5%以上、最も好ましくは99.8%以上が挙げられる。
 ここで、前記[3]のポリペプチドにおいて、例えば配列番号1に示すアミノ酸配列に対する配列同一性とは、配列番号1に示すアミノ酸配列と比較して算出される配列同一性である。また、「配列同一性」とは、BLAST PACKAGE[sgi32 bit edition,Version 2.0.12;available from National Center for Biotechnology Information(NCBI)]のbl2seq program(Tatiana A.Tatsusova,Thomas L.Madden,FEMS Microbiol.Lett.,Vol.174,p247-250,1999)により得られるアミノ酸配列の同一性の値を示す。パラメーターは、Gap insertion Cost value:11、Gap extension Cost value:1に設定すればよい。
 前記[2]及び[3]のポリペプチドにおいて、配列番号1に示すアミノ酸配列における第41位~165位、第220~第309位は、FK506 binding protein (FKBP)ドメインを構成しているため、これらの部位には置換又は欠失を導入しないことが望ましい。
 前記[2]及び[3]のポリペプチドにアミノ酸置換が導入される場合、アミノ酸置換の態様として、保存的置換が挙げられる。即ち、[2]及び[3]のポリペプチドにおいて、配列番号1に示すアミノ酸配列に対して導入されるアミノ酸置換としては、例えば、置換前のアミノ酸が非極性アミノ酸であれば他の非極性アミノ酸への置換、置換前のアミノ酸が非荷電性アミノ酸であれば他の非荷電性アミノ酸への置換、置換前のアミノ酸が酸性アミノ酸であれば他の酸性アミノ酸への置換、及び置換前のアミノ酸が塩基性アミノ酸であれば他の塩基性アミノ酸への置換が挙げられる。
 前記[2]及び[3]のポリペプチドにアミノ酸付加が導入される場合、アミノ酸付加の態様として、例えば、N末端へのメチオニン残基の付加、精製用タグ(例えば、オリゴヒスチジン等の結合性オリゴペプチド)の付加等が挙げられる。
 前記[2]及び[3]のポリペプチドには、人為的に変異させて得られるポリペプチドのみならず、ポリペプチドが由来する生物の個体差又は種の違いに基づく、天然に生じる変異(ミュータント又はバリアント)によって生じるポリペプチドも含まれる。
 さらに、前記[2]及び[3]のポリペプチドにおける「PPIase活性」の確認方法は、上述の通りである。好ましくは、前記[2]及び[3]のポリペプチドにおける「PPIase活性」は、前記[1]のポリペプチドと同等であり、具体的には、前記[2]及び[3]のポリペプチドについて、キモトリプシンの共存下で合成基質Suc-Ala-Ala-Pro-Phe-pNA(Suc-AAPF-pNA)からpNAの遊離を検出する方法に基づいて測定される遊離pNAの量が、前記[1]のポリペプチドについて測定される遊離pNAの量の80~120%、好ましくは90~110%である。
 いくつかのPPIaseは市販されており(例えばSigma社のFKBP12、Sigma社のCyclophilin A)、容易に入手することができる。これらのPPIaseは1種を単独で使用してもよいし、二種類以上を組み合わせて使用してもよい。
 PPIaseの使用量については、基質タンパク質1g当たりの量として、例えば0.0001mg~1g、好ましくは0.01mg~100mg、又は、例えば0.01~100000U、好ましくは0.1~10000U、より好ましくは1~1000U、さらに好ましくは10~200Uが挙げられる。
1-3.タンパク質改変酵素
 本発明の改変タンパク質の製造方法では、PPIaseにタンパク質改変酵素(タンパク質加工酵素)を併用する。即ち、基質タンパク質に対してPPIaseを作用させるとともにタンパク質改変酵素も作用させる。
 タンパク質改変酵素とは、その触媒作用によって基質タンパク質分子を改変できる(タンパク質分子の構成原子の数及び/又は種類を変えるようにタンパク質の構造を変化させる加工を行うことができる)酵素である。タンパク質改変酵素の例としては、タンパク質分解酵素、タンパク質側鎖修飾酵素、及びタンパク質架橋酵素が挙げられる。タンパク質分解酵素の具体例としては、プロテアーゼ(ペプシン、トリプシン、キモトリプシン、パパイン、金属プロテアーゼ、セリンプロテアーゼ、システインプロテアーゼ、酸性プロテアーゼ等のプロテイナーゼ、カルボキシペプチダーゼ、アミノペプチダーゼ等)が挙げられる。タンパク質側鎖修飾酵素の具体例としては、タンパク質脱アミド酵素(プロテイングルタミナーゼ、プロテインアルギニンデイミナーゼ等、トランスグルタミナーゼが挙げられる。タンパク質架橋酵素の具体例としては、タンパク質の架橋化を触媒する酸化還元酵素(リジルオキシダーゼ、スルフヒドリルオキシダーゼ、チロシナーゼ、ラッカーゼ、ビリルビンオキシダーゼ、アスコルビン酸オキシダーゼ、セルロプラズミン、パーオキシダーゼ等)が挙げられる。
 タンパク質脱アミド酵素とは、タンパク質中のグルタミン残基及びアスパラギン残基のアミド基を脱アミドする酵素である。タンパク質中のグルタミン残基を脱アミドする酵素としては、例えばChryseobacterium proteolyticum由来のプロテイングルタミナーゼ(Eur J Biochem, 268 (5), 1410, 2001, Protein-glutaminase From Chryseobacterium Proteolyticum, an Enzyme That Deamidates Glutaminyl Residues in Proteins. Purification, Characterization and Gene Cloning, S Yamaguchi 1 , D J Jeenes, D B Archer或いはFront Microbiol , 9, 1975, 2018, Complete Genome Sequence and Characterization of a Protein-Glutaminase Producing Strain, Chryseobacterium proteolyticum QSH1265, Ruidan Qu, Xiaoyu Zhu, Min Tian, Yingjie Liu, Wenjuan Yan, Jian Ye, Hongliang Gao, Jing Huang)がよく知られているが、これに限定されるものではない。タンパク質中のアスパラギン残基を脱アミドする酵素については、例えばWO2015/133590に開示されているが、これに限定されるものではない。本発明でいうタンパク質脱アミド酵素には、アルギニン残基を脱イミノ化する酵素も含まれる。アルギニン残基を脱イミノ化する酵素としては、例えばFusarium graminearum由来のアルギニンデイミナーゼが知られている。
 一般にタンパク質中のグルタミン及びアスパラギン残基を脱アミド化し、カルボキシル基を生じさせると、そのタンパク質の負電荷が増加し、その結果等電点が低下、水和力が増加する。さらに静電反撥力の上昇によるタンパク質間の相互作用の低下すなわち会合性の低下がもたらされる。これらの変化によりタンパク質の可溶性、水分散性は大きく増大する。またタンパク質の負電荷の増加は、そのタンパク質の折りたたみをほぐし、高次構造を変化させ、分子内部に埋もれていた疎水性領域を分子表面に露出させる。したがって脱アミド化タンパク質は両親媒性を有し理想的な界面活性剤となり、タンパク質の乳化力、乳化安定性、起泡性、泡沫安定性が大きく向上する。このように、タンパク質の脱アミド化は、タンパク質の様々な機能特性の向上をもたらし、そのタンパク質の用途は飛躍的に増大する(例えばMolecular Approaches to Improving Food Quality and Safety, D. Chatnagar and T. E. Cleveland, eds., Van Nostrand Reinhold, New York, 1992, p. 37)。また、タンパク質中のアルギニン残基を脱イミノ化した場合も、タンパク質の疎水性を増大させて、タンパク質の高次構造を変化させる。
 トランスグルタミナーゼは、ペプチド鎖内にあるグルタミン残基のγ-カルボキシルアミド基のアシル転移反応を触媒する酵素であり、アシル受容体としてタンパク質中のリジン残基のε-アミノ基が作用すると、タンパク質分子の分子内あるいは分子間においてε-(γ-Gln)-Lys架橋結合を形成させる。トランスグルタミナーゼの作用を利用すればタンパク質の改質を行うことができるため、ストレプトミセス属由来のトランスグルタミナーゼが肉の結着、ソーセージ、豆腐、パン、麺類の製造に使用されている。また、食品分野に限らず、繊維分野、医療分野、香粧品分野等でのトランスグルタミナーゼの利用が図られている。
 上記のタンパク質改変酵素は、1種を単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。2種類以上のタンパク質改変酵素の組合せの例としては、プロテイングルタミナーゼとトランスグルタミナーゼの組合せ、プロテイングルタミナーゼとラッカーゼの組合せ、トランスグルタミナーゼとラッカーゼの組合せ、プロテアーゼとトランスグルタミナーゼの組合せ等が挙げられる。
 タンパク質改変酵素の使用量については、基質タンパク質1g当たりの量として、例えば0.001mg~1g、好ましくは0.01mg~0.1g、又は、例えば0.001~10000U、好ましくは0.01~5000U、より好ましくは0.1~3000Uが挙げられる。
1-4.反応操作、反応条件等
 PPIaseを作用させる処理とタンパク質改変酵素を作用させる処理とは、同時に行ってもよいし、逐次的に行ってもよい。本発明においては、作業効率及び/又は反応効率等の観点から、好ましくは、PPIaseによる処理とタンパク質改変酵素による処理とを同時に行う。
 PPIaseによる処理とタンパク質改変酵素による処理とを同時に行う場合、基質タンパク質溶液中にPPIaseとタンパク質改変酵素が併存する状態を形成すればよく、処理の開始タイミングは同時であってもよいし、いずれか一方の処理の開始タイミングを遅くしてもよい。また、両処理を同時に行う場合、処理の終了タイミングは同時であってもよいし、いずれか一方の処理の終了タイミングを遅くしてもよい。例えば、二以上のタンパク質改変酵素を組み合わせて使用する場合、全てのタンパク質改変酵素をPPIaseとの同時反応に使用してもよいし、一部のタンパク質改変酵素をPPIaseとの同時反応に使用し、残りのタンパク質改変酵素を当該同時反応後に用いてもよい。
 タンパク質の処理における温度条件及びpH条件については、使用する酵素の至適温度及び至適pHに応じて当業者が適宜決定することができる。PPIaseによる処理及びタンパク質改変酵素による処理のいずれについても、温度条件としては、例えば10℃~60℃、好ましくは20℃~50℃が挙げられ、pH条件としては、例えば3~9、好ましくは4~8が挙げられる。
 また、タンパク質の処理にかかる反応時間については、PPIaseによる処理とタンパク質改変酵素による処理とにかかる時間の合計として、例えば1分~24時間、好ましくは10分~16時間が挙げられる。
 尚、具体的に最適な反応条件は予備実験を通して決定すればよい。
1-5.改変タンパク質
 本発明の改質タンパク質の製造方法によって得られる改変タンパク質は、上記の「1-1.タンパク質(基質タンパク質)」に記載されるタンパク質が、上記の「1-3.タンパク質改変酵素」に記載されるタンパク質改変酵素による改変作用を受けて生じるものである。改変タンパク質の具体例としては、タンパク質改変酵素としてタンパク質分解酵素を用いた場合にあってはタンパク質分解物;タンパク質改変酵素としてタンパク質側鎖修飾酵素を用いた場合にあっては側鎖修飾を受けたタンパク質;タンパク質改変酵素としてタンパク質架橋酵素を用いた場合にあっては分子間及び/又は分子内で架橋されたタンパク質が挙げられる。
2.改質されたタンパク質素材の製造方法
 本発明の第2の局面は改質されたタンパク質素材の製造方法に関する。上記第1の局面に係る改変タンパク質の製造方法で述べたとおり、ペプチジルプロリルイソメラーゼとタンパク質改変酵素との組み合わせは、基質タンパク質の改変に用いることができるため、タンパク質素材の処理に適用することで、タンパク質素材の改質が可能になる。さらに、ペプチジルプロリルイソメラーゼは、単独であっても、タンパク質素材の処理に適用することで、タンパク質素材の改質が可能になる。従って、本発明は、改質されたタンパク質素材の製造方法も提供する。
 具体的には、本発明の改質されたタンパク質素材の製造方法は、タンパク質を含有する食品素材、医薬素材又は工業素材を、ペプチジルプロリルイソメラーゼ、又は、ペプチジルプロリルイソメラーゼ及びタンパク質改変酵素で処理する工程を含むことを特徴とする。
 改質の具体的な形態については、タンパク質改質酵素の作用効果から期待できる形態であればいかなる形態であってもよい。
 改質の具体的な形態の例としては、タンパク質素材の種類及び/又は形態等に応じ、タンパク質素材におけるタンパク質の水分散性の向上、タンパク質素材におけるタンパク質可溶性の向上、タンパク質素材の乳化安定性の向上、タンパク質素材の体内消化性の向上、タンパク質素材の呈味の向上、タンパク質素材の起泡性の向上、タンパク質素材のゲル化特性の向上等が挙げられる。
 改質の具体的な形態の別の例としては、アレルギー性又はオピオイド性の低減又は消失、減感作療法に有用な制限されたアレルギー特性の付与(つまり、アレルギー性を低減し且つ所定の制限された範囲内で残存させること)等も挙げられる。
 本発明の改質されたタンパク質素材の製造方法で処理対象となるタンパク質素材とは、タンパク質を含み、且つ、各種産業界で流通する物品(具体例として、食品、医薬品、工業物品が挙げられる)の製造に用いられる原料である。タンパク質素材に含まれるタンパク質については、上記の「1-1.タンパク質(基質タンパク質)」に記載される通りである。タンパク質素材の具体例としては、食品素材、医薬素材及び工業素材が挙げられる。食品素材のより具体的な例としては、動物組織及び植物組織、並びにそれらの分散液(特に好ましくは、植物の可食部の粉砕物を水中に分散させた植物性ミルクが挙げられる)、抽出物等の加工品等、所謂食材として用いられるもの全般と、アレルゲンと食品学的に許容される成分とを含む組成物、外因性オピオイドペプチドと食品学的に許容される成分とを含む組成物、毒性ペプチドと食品学的に許容される成分とを含む組成物等が挙げられる。また、医薬素材のより具体的な例としては、アレルゲンと薬学的に許容される成分とを含む組成物等が挙げられる。さらに、工業素材のより具体的な例としては、絹及び羊毛等の繊維等が挙げられる。
 本発明の改質されたタンパク質素材の製造方法で得られる改質されたタンパク質素材は、上記のタンパク質素材が、ペプチジルプロリルイソメラーゼの作用、又は、ペプチジルプロリルイソメラーゼとタンパク質改変酵素との作用を受けて生じるものである。
 改質されたタンパク質素材のうち、上記のタンパク質素材がペプチジルプロリルイソメラーゼの作用を受けて生じるものの例としては、タンパク質の水分散性が向上した、タンパク質の可溶性が向上した、及び/又は乳化安定性が向上したタンパク質素材(具体的には食品素材又は医薬素材)等が挙げられる。
 改質されたタンパク質素材のうち、上記のタンパク質素材がペプチジルプロリルイソメラーゼとタンパク質改変酵素との作用を受けて生じるものの例としては、タンパク質の水分散性が向上した、タンパク質の可溶性が向上した、乳化安定性が向上した、起泡性が向上した、及び/又はゲル化特性が向上したタンパク質素材(具体的には食品素材又は医薬素材)、体内消化性が向上した及び/又は呈味が向上したタンパク質素材(具体的には食品素材)、並びに、アレルギー性、オピオイド性、毒性、及び/又は不要物が低減又は消失したタンパク質素材(具体的には食品素材、医薬素材又は工業素材)等が挙げられる。
 上記の改質されたタンパク質素材の中でも、体内消化性が向上した食品素材は、例えば、消化機能が低減した動物用の飲食品、消化吸収能を高めた健康飲食品等に用いることができ;アレルギー性が低減又は消失した食品素材は、アレルゲンが低減又は消失しているため、例えば、当該アレルゲンに対してアレルギーを起こす体質を持つ動物用の飲食品等に用いることができ;オピオイド性が低減又は消失した食品素材は、外因性オピオイドペプチドが低減又は消失しているため、例えば、当該オピオイドペプチドに起因する自閉症等の精神疾患に罹患した動物用の飲食品等に用いることができ;毒性が低減又は消失した食品素材は、毒性ペプチドが低減又は消失しているため、例えば、セリアック病及び他のグルテン関連疾患に罹患した動物用の飲食品等に用いることができる。
 上記の改質されたタンパク質素材の中でも、アレルギー性が低減した医薬素材は、アレルゲンと薬学的に許容される成分とを含む組成物から一部のアレルゲンが分解等されアレルゲン含量が所定の制限された濃度範囲内に残存するように調整されているため、例えば、アレルギーの減感作療法用の医薬品として用いることができる。
 上記の改質されたタンパク質素材の中でも、アレルギー性が低減又は消失した工業素材は、肌に触れる繊維製品の材料に用いることができ;不要物が低減又は消失した工業素材としては、セリシン除去された(精練された)絹、スケール除去された羊毛等が挙げられ、風合いが向上した繊維製品の材料に用いることができる。
 なお、上記の動物について、その種類は特に制限されないが、例えば、哺乳類及び鳥類等が挙げられ、好ましくは哺乳類が挙げられ、さらに好ましくはヒトが挙げられる。
 本発明の改質されたタンパク質素材の製造方法で適用される、PPIase、タンパク質改変酵素、それら酵素の使用量、反応操作、反応条件等の詳細については、上記第1の局面に係る改変タンパク質の製造方法に記載される通りである。
3.タンパク質改変用酵素剤
 本発明の第3の局面はタンパク質改変用酵素剤に関する。上記第1の局面に係る改変タンパク質の製造方法で述べたとおり、ペプチジルプロリルイソメラーゼとタンパク質改変酵素との組み合わせは、基質タンパク質の改変に用いることができる。従って、本発明は、ペプチジルプロリルイソメラーゼ及びタンパク質改変酵素を含有するタンパク質改変用酵素剤も提供する。
 タンパク質改変用酵素剤において、有効成分であるPPIase及びタンパク質改変酵素の含有量は特に限定されない。例えば、タンパク質改変用酵素剤1g当たりのPPIaseの含有量としては、例えば0.0001mg~1000mg、好ましくは0.01mg~100mgが挙げられる。タンパク質改変用酵素剤1g当たりのタンパク質改変用酵素の含有量としては、タンパク質改変用酵素としてプロテアーゼを用いる場合、例えば、0.0001mg~1000mg、好ましくは0.01mg~100mgが挙げられ;タンパク質改変用酵素としてペプチダーゼを用いる場合、例えば0.0001mg~1000mg、好ましくは0.01mg~100mgが挙げられ;タンパク質改変用酵素としてプロテイングルタミナーゼを用いた場合、例えば、本酵素剤1g当たり0.0001mg~1000mg、好ましくは0.01mg~100mgが挙げられ;タンパク質改変用酵素としてトランスグルタミナーゼを用いる場合、例えば0.0001mg~1000mg、好ましくは0.01mg~100mgが挙げられる。
 本発明のタンパク質改変用酵素剤は、有効成分である上記酵素の他、賦形剤、緩衝剤、懸濁剤、安定剤、保存剤、防腐剤、生理食塩水などの他の成分を含有していてもよい。賦形剤としては、乳糖、ソルビトール、D-マンニトール、マルトデキストリン、白糖等が挙げられる。緩衝剤としては、リン酸塩、クエン酸塩、酢酸塩等が挙げられる。安定剤としては、プロピレングリコール、アスコルビン酸等が挙げられる。保存剤としては、フェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等が挙げられる。防腐剤としては、塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等が挙げられる。
 本発明のタンパク質改変用酵素剤の性状としては特に限定されず、固体状、液体状及び担持状が挙げられる。本発明のタンパク質改変用酵素剤が固体状である場合、より具体的な形態としては、顆粒及び粉体等が挙げられる。本発明のタンパク質改変用酵素剤が担持状である場合、より具体的な形態としては、シリカ、多孔質ポリマー等の不溶性担体の表面に有効成分である上記酵素が固定化されている形態が挙げられる。
 本発明のタンパク質改変用酵素剤で使用される、PPIase、タンパク質改変酵素、改変の態様、対象となるタンパク質、及び使用方法の詳細については、上記第1の局面に係る改変タンパク質の製造方法に記載される通りである。
4.タンパク質素材の改質用酵素剤
 本発明の第4の局面はタンパク質素材の改変用酵素剤に関する。上記第2の局面に係る改質されたタンパク質素材の製造方法で述べたとおり、ペプチジルプロリルイソメラーゼは単独で、又は、ペプチジルプロリルイソメラーゼとタンパク質改変酵素との組み合わせで、タンパク質素材の改質に用いることができる。従って、本発明は、ペプチジルプロリルイソメラーゼを含有するタンパク質素材の改質用酵素剤も提供する。本発明の改質用酵素剤は、さらにタンパク質改変酵素を含有することができる。
 本発明のタンパク質素材の改質用酵素剤において、有効成分である酵素の含有量、さらに含有していてもよい他の成分の種類、及び性状については、上記第3の局面に係るタンパク質改変用酵素剤と同様である。
 本発明のタンパク質素材の改質用酵素剤で使用される、PPIase、タンパク質改変酵素、改質の態様、対象となるタンパク質素材、及び使用方法の詳細については、上記第2の局面に係る改質されたタンパク質素材の製造方法に記載される通りである。
 以下に実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
<ラッカーゼ活性の測定法>
 ラッカーゼの活性については、基質である2,2’-Azino-di-[3-ethylbenzthiazoline sulfonate](ABTS)の50mM溶液20μL及び125mMのリン酸ナトリウム緩衝液160μLに、酵素液20μLを加えて37℃で反応を行い15分後と0分後の405nmの吸光度を測定した場合に、1分間に1μmolのABTSの酸化を触媒する酵素量を1ユニット(U)とした。
<PPIase活性の測定法>
 PPIaseの活性については、Protease-coupled assayを用いて測定した。0.2mM テトラペプチド(Suc-Ala-Ala-Pro-Phe-pNA)を0.47M 塩化リチウム(LiCl)+トリフルオロエタノール溶液に溶解して基質溶液とした。基質溶液に0.3mg/ml キモトリプシンと適当量のPPIaseとを加えて、混合し、30℃で3分処理後、390nmの吸光度(Abs390(Ch+PPI))を測定した。ブランクとして、0.1μM PPIaseを加えない条件で上記同様に実施し、吸光度(Abs390(Ch))を測定した。1分間に1μmolのpNAを遊離させる酵素量を1Uとして、以下の式から算出する。
Figure JPOXMLDOC01-appb-M000001
<試験例1:PPIaseとプロテアーゼを併用した場合の効果>
(1)方法
 100μLの基質水溶液(20mM 酢酸Na(pH6.0)にアゾカゼイン(Sigma社製)を2%(w/v)で溶解)に10μLの1mg/mLウマミザイムG(Aspergillus oryzae由来プロテアーゼ、天野エンザイム株式会社製、150u/g)と10μLの0.1mg/mL FKBP12(微生物由来PPIase、Sigma社製、0.15mg/ml)を加えて、37℃で0、10又は30分反応後、240μLの10%(w/v) TCA溶液を加えることで反応を停止した。遠心分離後、上清120μLを回収した。回収した上清に140μLの1N NaOHを添加し、混合・発色させ、OD440nmの吸光度を測定し、アゾカゼインの分解性を評価した。アゾカゼインの分解性について、FKBP12の代わりに精製水を添加したサンプル(プロテアーゼのみ)を基準にして比較した。
(2)結果
 プロテアーゼにPPIaseを組み合わせた場合、プロテアーゼのみの場合よりもアゾカゼインがより多く分解された。具体的には、プロテアーゼのみの場合の分解度を100%としたときの相対値で評価した結果、PPIaseを組み合わせた場合、10分の反応で102%、30分の反応で105%の分解が認められた。反応時間が長いほど、プロテアーゼのみの場合との間で分解度に差が生じた。PPIaseはタンパク質を異性化する作用しかなく、これまでシャペロン機能が利用されてきたすぎなかったが、プロテアーゼを組み合わせることで、プロテアーゼによる分解を促進することが確認できた。
<試験例2:PPIaseとプロテイングルタミナーゼを併用した場合の効果>
(1)方法
 1mLの基質溶液(10%(w/v) 大豆タンパク質(フジプロF、不二製油社製)水溶液又は10%(w/v)小麦グルテン水溶液)に、10μLの25u/mLのPG-500(プロテイングルタミナーゼ「アマノ」500、天野エンザイム株式会社製)と10μLの0.1mg/ml Cyclophilin A(ウシ胸腺由来PPIase、Sigma社製C7696)又は精製水とを加え、37℃で10、60、120又は960分振とう反応させた後、1mLの10%(w/v) TCA溶液を加えることで反応を停止した。アンモニア・テストワコー(FUJIFILM社製)を用いて各反応停止後サンプル中のアンモニアの生成量を測定することで脱アミド化の程度を評価した。具体的には、各反応停止後サンプルをキット付属の除タンパク質液で5倍希釈した後、遠心分離して上清を回収した(タンパク成分の除去)。上清中のアンモニア体窒素を発色させて、630nmの吸光度を比較した。
(2)結果
 結果を図1に示す。図1に示されるとおり、大豆タンパク質及び小麦タンパク質のいずれについても、プロテイングルタミナーゼにPPIaseを組み合わせた場合、プロテイングルタミナーゼのみの場合よりも、脱アミド化反応が促進されることが確認できた。
<試験例3:PPIaseとペプシンを併用した場合の効果>
(1)方法
 小麦グルテン由来の毒性ペプチドとして知られる33merペプチド(ペプチド研究所社製)を水中で1.0mg/mlに調整し、基質溶液とした。この基質溶液10μlに対し1M 酢酸ナトリウムバッファー(pH4.5)を0.5μl、5mg/mLのペプシン(Sigma社製)溶液2.5μl及び0.1mg/mLのCyclophilin A(Sigma社製)溶液10μl若しくは蒸留水10μlを加え、37℃で1時間反応した。抗33merペプチド抗体を用いたELISAアッセイによって反応液中の33merペプチドの残存率を算出した。ペプチドの分解性について、酵素としてペプシンのみを用いた場合(Cyclophilin Aを併用しない場合)の当該ペプチドの残存率を100%とした相対量で評価した。
(2)結果
 結果を図2に示す。図2に示される通り、ペプシンにPPIaseを組み合わせた場合、ペプシンのみの場合よりも、小麦グルテン由来33merペプチドの分解が促進されることが確認できた。
<試験例3:Streptomyces griseus由来PPIase(SgPPI)とプロテイングルタミナーゼを併用した場合の効果>
(1)Streptomyces griseus由来PPIaseの取得と性質確認
 BLAST検索にて細胞外分泌シグナルを有するPPIaseを探索した結果、Streptomyces griseus (BSL1) ゲノムに細胞外分泌シグナルを有する PPIase がコードされていることを見出した。このStreptomyces griseus由来PPIase(以下において、「SgPPI」とも記載する。)のアミノ酸配列は、配列番号1に示される通りである。
 SgPPIをE. coli BL21にて発現させて回収し、性質を検討した。SgPPIの、至適pH、至適温度、pH安定性、及び温度安定性を図3に示す。また、図示しないが、SgPPIに、熱安定性向上効果等の公知のPPIase作用があることも確認した。
(2)方法
 5%(w/v)の小麦グルテン水溶液、5%(w/v)の大豆タンパク質水溶液、5%(w/v)のエンドウ豆タンパク質水溶液、5%(w/v)の乳カゼイン水溶液、5%(w/v)の卵アルブミン水溶液それぞれについて、タンパク質1g当たり0.1UのPG-500(プロテイングルタミナーゼ「アマノ」500、天野エンザイム株式会社製)、又は、タンパク質1g当たり0.1UのPG-500とタンパク質1g当たり174UのSgPPIとを加えて、40℃で4時間振とう反応させた後、1mLの10%(w/v) TCA溶液を加えることで反応を停止した。試験例2と同様にして脱アミド化の程度を評価した。
(3)結果
 結果を図4に示す。図4に示すように、小麦グルテン、大豆タンパク質、エンドウ豆タンパク質、乳カゼイン、卵アルブミンのいずれについても、プロテイングルタミナーゼにSgPPIを組み合わせた場合、プロテイングルタミナーゼのみの場合よりも、脱アミド化反応が促進されることが確認できた。
(4)補足:SgPPIがプロテイングルタミナーゼ(PG)と併用される場合のPGへの影響の確認
 プロテイングルタミナーゼ(PG)の基質であるCbz-Gln-GlyとPGとの共存系と、Cbz-Gln-GlyとPGとSgPPIとの共存系とを構築し、それぞれの系について、PG 活性(Cbz-Gln-Glyを基質としてアンモニアを生じさせる活性)を経時的に調べた。結果を図5に示す。図5に示す通り、SgPPI は、Cbz-Gln-Gly に対する PG 活性を向上しなかった。従って、図4に示された効果は、SgPPIがPGではなく、基質タンパク質に作用することにより得られた効果であると推認できる。
<試験例4:SgPPIとラッカーゼを併用した場合の効果>
(1)方法
 5%(w/v)の乳カゼイン水溶液に、タンパク質1g当たり2400UのLC-Y120(ラッカーゼ、天野エンザイム株式会社製)、又は、タンパク質1g当たり2400UのLC-Y120とタンパク質1g当たり174UのSgPPIとを加えて、40℃で4時間振とう反応させ、その後、反応液をSDS-PAGEに供した。タンパク質の架橋化及びその程度は、SDS-PAGEにおいて原点により近いバンドの存在及び当該バンドの濃さにより確認することができる。
(2)結果
 結果を図6に示す。図6に示すように、ラッカーゼのみを用いた場合に得られる架橋タンパク質の量に比べて、ラッカーゼとSgPPIとを組み合わせて用いた場合に、架橋タンパク質の量が増加していることが分かった。
<試験例5:PPIase単独で使用した場合の効果>
(1)方法
 インド産の「ひよこ豆」(KOBE GROCERS)タンパク質を、イオン水中10w/v%となるように懸濁させ、ひよこ豆ミルクを調製した。得られたひよこ豆ミルク10 mLに、SgPPI をタンパク質1gあたり87Uとなるように添加し、24時間で40℃の条件でインキュベートした(静置)。その後、ひよこ豆ミルクの性状を撮影した。
(2)結果
 結果を図7に示す。図7に示すとおり、PPIaseを用いなかった場合(Control)ではひよこ豆ミルクが分散せず多量の沈殿を生じたが、PPIaseを用いた場合ではひよこ豆ミルクが均一分散し、分散性向上の改質効果が確認された。
 本発明によれば、タンパク質素材を改質できる新たな手段が提供される。具体的には、ペプチジルプロリルイソメラーゼとタンパク質改変酵素とをタンパク質に作用させることでタンパク質の改変反応を調節(典型的には促進)できるため、これら酵素を組み合わせてタンパク質素材を処理することで、タンパク質素材を改質することができる。また、ペプチジルプロリルイソメラーゼでタンパク質素材を処理することでも、タンパク質素材を改質することができる。このような改質されたタンパク質素材は、食品素材、医薬素材及び工業素材等の産業用素材として用いることができ、食品、医薬及び工業製品等の産業製品の製造に寄与する。
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。

Claims (12)

  1.  タンパク質に、ペプチジルプロリルイソメラーゼとタンパク質改変酵素とを作用させる工程を含む、改変タンパク質の製造方法。
  2.  前記タンパク質改変酵素を作用させる処理と前記ペプチジルプロリルイソメラーゼを作用させる処理とを同時に行う、請求項1に記載の製造方法。
  3.  前記タンパク質改変酵素が、タンパク質分解酵素、タンパク質側鎖修飾酵素、及びタンパク質架橋酵素からなる群より選択される、請求項1又は2に記載の製造方法。
  4.  前記タンパク質改変酵素が、プロテアーゼ、タンパク質脱アミド酵素、トランスグルタミナーゼ、及びタンパク質の架橋化を触媒する酸化還元酵素からなる群より選択される、請求項1又は2に記載の製造方法。
  5.  前記タンパク質が、豆、穀物、ナッツ、及び種子に由来する植物タンパク質;乳タンパク質、卵タンパク質、血液タンパク質、筋肉タンパク質及び腱タンパク質;並びに、微生物、藻、及び昆虫に由来するタンパク質からなる群より選択される、請求項1~4のいずれか一項に記載の製造方法。
  6.  タンパク質を含有する食品素材、医薬素材又は工業素材を、ペプチジルプロリルイソメラーゼ及びタンパク質改変酵素で処理する工程を含む、改質されたタンパク質素材の製造方法。
  7.  前記タンパク質改変酵素による処理を前記ペプチジルプロリルイソメラーゼによる処理と同時に行う、請求項6に記載の製造方法。
  8.  ペプチジルプロリルイソメラーゼ及びタンパク質改変酵素を含有する、タンパク質改変用酵素剤。
  9.  前記タンパク質改変酵素が、タンパク質分解酵素、タンパク質側鎖修飾酵素、及びタンパク質架橋酵素からなる群より選択される、請求項8に記載のタンパク質改変用酵素剤。
  10.  タンパク質改変酵素が、プロテアーゼ、ペプチダーゼ、タンパク質脱アミド酵素、トランスグルタミナーゼ、及びタンパク質の架橋化を触媒する酸化還元酵素からなる群より選択される、請求項8に記載のタンパク質改変用酵素剤。
  11.  タンパク質を含有する食品素材、医薬素材又は工業素材をペプチジルプロリルイソメラーゼで処理する工程を含む、改質されたタンパク質素材の製造方法。
  12.  ペプチジルプロリルイソメラーゼを含有する、タンパク質素材の改質用酵素剤。
PCT/JP2021/031039 2020-08-24 2021-08-24 改変タンパク質の製造方法 WO2022045151A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21861575.5A EP4202054A1 (en) 2020-08-24 2021-08-24 Method for producing modified protein
CN202180052715.XA CN116113704A (zh) 2020-08-24 2021-08-24 人工改造蛋白质的制备方法
JP2022545646A JPWO2022045151A1 (ja) 2020-08-24 2021-08-24
US18/042,510 US20230323423A1 (en) 2020-08-24 2021-08-24 Method for producing modified protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-141053 2020-08-24
JP2020141053 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022045151A1 true WO2022045151A1 (ja) 2022-03-03

Family

ID=80353953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031039 WO2022045151A1 (ja) 2020-08-24 2021-08-24 改変タンパク質の製造方法

Country Status (5)

Country Link
US (1) US20230323423A1 (ja)
EP (1) EP4202054A1 (ja)
JP (1) JPWO2022045151A1 (ja)
CN (1) CN116113704A (ja)
WO (1) WO2022045151A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124100A (ja) 1988-11-02 1990-05-11 Tonen Corp プロリルイソメラーゼの使用方法
JPH1175837A (ja) 1997-09-02 1999-03-23 Sekisui Chem Co Ltd 酵素反応方法
JP2001066309A (ja) * 1998-12-28 2001-03-16 Sekisui Chem Co Ltd ウイルス抗原の調製法
JP2001510848A (ja) * 1997-07-24 2001-08-07 メディカル リサーチ カウンシル フォルダーゼ(foldase)およびシャペロンを用いるリフォールディング方法
JP2002525120A (ja) 1998-09-30 2002-08-13 ダニスコ エイ/エス ペプチジルプロリルシス−トランスイソメラーゼ
JP2004215591A (ja) 2003-01-16 2004-08-05 Mitsui Chemicals Inc ペプチジルプロリルシストランスイソメラーゼを強化させた微生物による異種タンパク質の生産方法
JP2005046066A (ja) 2003-07-29 2005-02-24 Sekisui Chem Co Ltd 蛋白質生産用の新規なバクテリア及び蛋白質の製造方法
WO2006082922A1 (ja) * 2005-02-03 2006-08-10 San-Ei Gen F.F.I., Inc. 色調が改善されたクチナシ青色素とその製造方法
WO2015133590A1 (ja) 2014-03-07 2015-09-11 味の素株式会社 新規タンパク質脱アミド酵素
JP2018074967A (ja) * 2016-11-10 2018-05-17 日清ファルマ株式会社 塩味および旨味増強剤
JP2019508366A (ja) * 2015-12-15 2019-03-28 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft トランスグルタミナーゼ認識部位を有するfkbpドメイン
WO2019083795A1 (en) * 2017-10-27 2019-05-02 Pfenex Inc. GUIDED BACTERIAL SEQUENCES FOR EXPRESSION OF PERIPLASMIC PROTEINS

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124100A (ja) 1988-11-02 1990-05-11 Tonen Corp プロリルイソメラーゼの使用方法
JP2001510848A (ja) * 1997-07-24 2001-08-07 メディカル リサーチ カウンシル フォルダーゼ(foldase)およびシャペロンを用いるリフォールディング方法
JPH1175837A (ja) 1997-09-02 1999-03-23 Sekisui Chem Co Ltd 酵素反応方法
JP2002525120A (ja) 1998-09-30 2002-08-13 ダニスコ エイ/エス ペプチジルプロリルシス−トランスイソメラーゼ
JP2001066309A (ja) * 1998-12-28 2001-03-16 Sekisui Chem Co Ltd ウイルス抗原の調製法
JP2004215591A (ja) 2003-01-16 2004-08-05 Mitsui Chemicals Inc ペプチジルプロリルシストランスイソメラーゼを強化させた微生物による異種タンパク質の生産方法
JP2005046066A (ja) 2003-07-29 2005-02-24 Sekisui Chem Co Ltd 蛋白質生産用の新規なバクテリア及び蛋白質の製造方法
WO2006082922A1 (ja) * 2005-02-03 2006-08-10 San-Ei Gen F.F.I., Inc. 色調が改善されたクチナシ青色素とその製造方法
WO2015133590A1 (ja) 2014-03-07 2015-09-11 味の素株式会社 新規タンパク質脱アミド酵素
JP2019508366A (ja) * 2015-12-15 2019-03-28 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft トランスグルタミナーゼ認識部位を有するfkbpドメイン
JP2018074967A (ja) * 2016-11-10 2018-05-17 日清ファルマ株式会社 塩味および旨味増強剤
WO2019083795A1 (en) * 2017-10-27 2019-05-02 Pfenex Inc. GUIDED BACTERIAL SEQUENCES FOR EXPRESSION OF PERIPLASMIC PROTEINS

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BIOCHIM BIOPHYS ACTA, vol. 1850, no. 10, October 2015 (2015-10-01), pages 2017 - 2034
BIOMED BIOCHIM ACTA, vol. 43, no. 10, 1984, pages 1101 - 11
EUR J BIOCHEM, vol. 268, no. 5, 2001, pages 1410
PROTEIN ENGINEERING, DESIGN AND SELECTION, vol. 21, February 2008 (2008-02-01), pages 83 - 89
S YAMAGUCHI 1D J JEENESD B ARCHER, FRONT MICROBIOL, vol. 9, 2018, pages 1975
TATIANA A. TATSUSOVATHOMAS L. MADDEN, FEMS MICROBIOL. LETT., vol. 174, 1999, pages 247 - 250

Also Published As

Publication number Publication date
US20230323423A1 (en) 2023-10-12
EP4202054A1 (en) 2023-06-28
CN116113704A (zh) 2023-05-12
JPWO2022045151A1 (ja) 2022-03-03

Similar Documents

Publication Publication Date Title
Tavano et al. Biotechnological applications of proteases in food technology
JP5328100B2 (ja) ペプチドおよびタンパク質を加水分解するためのプロリン特異的エンドプロテアーゼの使用
Tapal et al. Nutritional and nutraceutical improvement by enzymatic modification of food proteins
Meng et al. Peanut allergen reduction and functional property improvement by means of enzymatic hydrolysis and transglutaminase crosslinking
JP2009540847A (ja) ペプチジルアルギニンデイミナーゼ、およびシトルリン化タンパク質およびペプチド生成におけるその使用
Moreno Amador et al. A new microbial gluten-degrading prolyl endopeptidase: Potential application in celiac disease to reduce gluten immunogenic peptides
US20230114377A1 (en) Protein crosslinking method
EP2515932A2 (en) Synergic action of a prolyl protease and tripeptidyl proteases
Shetty et al. Discovery, cloning and characterisation of proline specific prolyl endopeptidase, a gluten degrading thermo-stable enzyme from Sphaerobacter thermophiles
US7008653B2 (en) Method of deamidation of milk protein and method of denaturation of milk protein
WO2012174127A1 (en) Proteases for degrading gluten
Ciurko et al. Enzymatic hydrolysis using bacterial cultures as a novel method for obtaining antioxidant peptides from brewers' spent grain
Socha et al. The use of different proteases to hydrolyze gliadins
US5554508A (en) Process for the enzymatic synthesis of alkyl esters of peptides and peptides, and microparticles therefrom
Rezvankhah et al. The effects of combined enzymatic and physical modifications of lentil protein applying Alcalase, Flavourzyme, microbial transglutaminase, and ultrasound: Antioxidant, antihypertension, and antidiabetic activities
AU2019389833A1 (en) Soluble legume protein
WO2022045151A1 (ja) 改変タンパク質の製造方法
Guo et al. Effect of heat, rutin and disulfide bond reduction on in vitro pepsin digestibility of Chinese tartary buckwheat protein fractions
JP2006042757A (ja) 酵素の安定化剤
US7468265B2 (en) Stabilizing agent for enzymes
US20150201663A1 (en) Protein hydrolysate
Kamel et al. Ultrasound-assisted enzymatic hydrolysis of soymeal and quinoa
Esposito et al. Tissue transglutaminase and celiac disease
JP2022135142A (ja) ペプチド
JP6862627B2 (ja) 自然免疫応答疾患を治療するための医薬および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021861575

Country of ref document: EP

Effective date: 20230324