WO2022044803A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2022044803A1
WO2022044803A1 PCT/JP2021/029607 JP2021029607W WO2022044803A1 WO 2022044803 A1 WO2022044803 A1 WO 2022044803A1 JP 2021029607 W JP2021029607 W JP 2021029607W WO 2022044803 A1 WO2022044803 A1 WO 2022044803A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
core
leg
reactor
magnetic flux
Prior art date
Application number
PCT/JP2021/029607
Other languages
English (en)
French (fr)
Inventor
智仁 福田
隆 熊谷
数章 福井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US18/006,207 priority Critical patent/US20230260691A1/en
Priority to JP2022545629A priority patent/JPWO2022044803A1/ja
Publication of WO2022044803A1 publication Critical patent/WO2022044803A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel

Definitions

  • This disclosure relates to a power conversion device.
  • the reactor is provided with a core gap in the core made of soft magnetic material.
  • the normal mode inductance can be reduced by increasing the core gap length. However, if the core gap length exceeds a certain level, increasing the core gap length does not contribute to the reduction of the normal mode inductance. Therefore, there is a problem that the normal mode inductance cannot be adjusted to a desired value with high accuracy.
  • common mode noise which is subject to EMI (Electro-Magnetic Interference) regulation
  • EMI Electro-Magnetic Interference
  • common mode inductance the inductance of the reactor effective for removing noise and reducing current ripple when a common mode current flows.
  • Patent Document 1 discloses a reactor having both a normal mode inductance and a common mode inductance.
  • the reactor described in Japanese Patent No. 5790700 provides one or two core gaps for each closed magnetic path. However, it is not possible to achieve high accuracy of inductance only by providing one or two core gaps.
  • the winding is heated by the induction heating of the winding due to the leakage flux of the core gap portion, which causes a problem that the coil becomes large.
  • the power conversion device of the present disclosure is for solving the above-mentioned problems, and an object thereof is to mitigate the influence of induction heating of the winding due to the leakage flux of the core gap portion and to reduce the size of the coil. It is to provide a power conversion device that incorporates a reactor that can be used.
  • the power conversion device includes a core, a first conductive member, and a second conductive member.
  • the core includes a first member and a second member arranged apart from each other, and a first leg portion, a second leg portion, and a third leg portion, each of which connects the first member and the second member.
  • the first leg is arranged between the second leg and the third leg.
  • the first conductive member includes a first winding wound around the first leg and a second winding connected in series with the first winding and wound around the second leg.
  • the second conductive member includes a third winding wound around the first leg and a fourth winding connected in series with the third winding and wound around the third leg.
  • the first leg portion is composed of a first core member made of a soft magnetic material and provided with a plurality of gaps, and a plurality of members each made of a non-magnetic material and arranged in a plurality of gaps of the first core member. Includes a first gap member.
  • the influence of the induction heating of the winding due to the leakage flux of the core gap portion of the reactor can be alleviated, and the coil can be miniaturized.
  • FIG. It is a circuit diagram which shows the structure of the power conversion apparatus 1 of Embodiment 1.
  • FIG. It is a schematic perspective view which shows the appearance of the power conversion apparatus 1 of Embodiment 1.
  • FIG. It is sectional drawing of the core 300 constituting the reactor 100.
  • It is a winding diagram of the reactor 100.
  • It is a partial cross-sectional view of a winding shown by enlarging the periphery of a gap member.
  • It is a figure which shows the magnetic flux when the common mode current flows through the reactor 100.
  • FIG. 1 It is a figure which shows the magnetic flux when the normal mode current flows through the reactor 103. It is a figure which shows the magnetic flux when the common mode current flows through the reactor 103. It is a circuit diagram which shows the main circuit composition of the power conversion apparatus which concerns on Embodiment 3.
  • FIG. It is a winding diagram of the reactor 104. It is a figure which shows the magnetic flux when the normal mode current flows through the reactor 104. It is a figure which shows the magnetic flux when the common mode current flows through the reactor 104. It is sectional drawing of the core 312 which concerns on Embodiment 4. FIG. It is sectional drawing of the core 321 which concerns on Embodiment 5.
  • FIG. 1 is a circuit diagram showing the configuration of the power conversion device 1 of the first embodiment.
  • FIG. 2 is a schematic perspective view showing the appearance of the power conversion device 1 of the first embodiment. That is, FIG. 2 shows the completed circuit diagram of FIG. 1 assembled with each member.
  • the reactor 100 mounted on the power conversion device 1 of the first embodiment will be described with reference to FIGS. 1 and 2.
  • the power conversion device 1 includes input terminals 10 and 11, smoothing capacitors 20 to 22, a switching circuit 30, a reactor 100, and output terminals 12 and 13.
  • Input terminals 10 to 11 receive DC voltage.
  • the smoothing capacitor 20 stabilizes the received DC voltage.
  • the switching circuit 30 is composed of semiconductor elements 31 to 34. The switching circuit 30 switches and converts the DC voltage.
  • the reactor 100 and the smoothing capacitors 21-22 stabilize the converted DC voltage.
  • the output terminals 12 to 13 supply the converted DC voltage to the outside of the power conversion device 1 as a power supply voltage.
  • the reactor 100 has a function of converting the voltage of the input terminals 10 to 11 and smoothing the output terminals 12 to 13 so as to output a direct current.
  • a normal mode inductance 101 is required for this smoothing.
  • One end of the smoothing capacitors 21 and 22 may be connected to the ground terminal 14 due to EMI regulations or safety standards.
  • a high frequency is generated from the terminals B and C of the reactor 100 to the grounded portion of the input terminal 11 and the grounded portion of the input circuit in the previous stage of the input terminals 10 and 11 via the smoothing capacitors 21 and 22 and the grounded terminal 14. There is a path for current to be energized.
  • the reactor 100 is required to have a common mode inductance 102.
  • the semiconductor elements 31 to 34 are switched at a frequency of about 50 Hz to 5 MHz.
  • the reactor 100 has a common mode inductance 102 so as not to cause a malfunction of the output destination device due to the propagation of the switching noise to the output terminals 12 to 13 and a malfunction of the peripheral device due to the radiated electromagnetic wave radiated in the space. Is required.
  • the reactor 100 of the present embodiment has both the normal mode inductance 101 and the common mode inductance 102, and each inductance value can be set with high accuracy and in a wide range.
  • the influence of the induction heating of the winding due to the leakage flux of the core gap portion can be alleviated, and the coil can be miniaturized.
  • FIG. 3 is a cross-sectional view of the core 300 constituting the reactor 100.
  • FIG. 4 is a winding diagram of the reactor 100. The configuration of the reactor 100 will be described with reference to FIGS. 3 to 4.
  • the core 300 includes a first member 301, a second member 302, core pieces 303 to 311 and gap members 400 to 411, which are divided into small pieces.
  • the materials constituting the first member 301, the second member 302, and the core pieces 303 to 311 are, for example, pure iron, Fe—Si alloy, Fe—Si—Al alloy, Ni—Fe alloy, and Ni—Fe—Mo alloy. It is a soft magnetic material such as a dust core, an Mn—Zn-based or Ni—Zn-based ferrite core, an amorphous core, and a nanocrystal core.
  • powder resin or the like may be coated on each of the first member 301, the second member 302, and the core pieces 303 to 311.
  • dust cores and ferrite cores are heat-treated after forming a powdery material with a press.
  • the first member 301, the second member 302, and the core pieces 303 to 311 shown in the first embodiment are combined with the cores divided into small pieces to form a large core 300. Therefore, the first member 301, the second member 302, and the core pieces 303 to 311 are easy to manufacture, the manufacturing cost can be reduced, the variation during manufacturing is reduced, and the quality is improved.
  • Amorphous cores and nanocrystal cores can be considered as other materials. These cores are heat treated after stacking thin strips of material. Similar to the dust core and the ferrite core, these also shrink during the heat treatment, so the same effect as described above can be obtained by dividing them into small pieces.
  • the material constituting the gap members 400 to 411 is a non-magnetic material.
  • a resin such as polypropylene (PP), ABS, polyethylene terephthalate (PET), polycarbonate (PC), fluorine, phenol, melamine, polyurethane, epoxy, silicon, or kraft pulp, aramid, fiber, insulating paper, etc. is used as a gap member 400. It can be used as a material of ⁇ 411.
  • the relative permeability is relatively small, about 26 to 150. Therefore, the length of the core gap may be determined to be about 0.1 to 20 mm, and the thickness of the gap members 400 to 411 may be determined according to the length of the core gap. Further, for example, in the case of a ferrite core, the relative magnetic permeability is relatively large at 1500 to 4000. Therefore, the length of the core gap in the case of the ferrite core is about 0.1 to 40 mm, which is longer than that in the case of the dust core. The larger the number of divided core pieces 303 to 311 and the larger the number of core gaps, the shorter the length of the core gaps per location. The shorter the core gap length, the smaller the magnetic flux that leaks. Therefore, the eddy current loss of the windings 201 to 204 generated by the magnetic flux leaking from the core gap interlinking the windings 201 to 204 can be reduced.
  • the gap members 400 to 411 may be fixed by applying an adhesive to a part or all of the surfaces of the first member 301, the second member 302, and the core pieces 303 to 311.
  • an adhesive may be applied to a part or all the surfaces of the gap members 400 to 411 and attached to the first member 301, the second member 302, and the core pieces 303 to 311.
  • Windings 201 to 204 are wound around the core 300 described with reference to FIG. Since the current flows, the windings 201 to 204 are made of copper or aluminum having a low electrical resistivity. In order to prevent a short circuit with adjacent windings, the windings 201 to 204 are preferably a conductive wire having an insulating coating or a conductive wire wrapped with insulating paper. To prevent short circuits between adjacent coils, the thickness of the coating or coating may be about 0.001 to 2 mm without any problem. These windings 201-204 are wound so as to cover one or more gap members.
  • FIG. 5 is a partial cross-sectional view of the winding shown by enlarging the periphery of the gap member. Since there are a plurality of gap members and the length of the core gap per location is short, the magnetic flux leaking from the core gap portion is small. Therefore, the eddy current loss of the windings 201 to 204 generated by the magnetic flux leaking from the core gap interlinking with the windings 201 to 204 can be reduced, and the temperature rise portion is dispersed, so that the winding can be miniaturized.
  • the winding when the winding is arranged so as to cover the core gap as shown in FIG. 5, magnetic flux flows along the winding surface which is a conductor. Therefore, the magnetic flux leaking from the core gap can be shielded by the winding, and the magnetic flux leakage to the outside of the reactor 100 can be reduced.
  • the winding method of the winding will be described again with reference to FIGS. 3 and 4.
  • the windings 201 and 203 are wound around the core pieces 306 to 308 constituting the first leg portion 131 (middle leg) of the core 300 from the first member 301 side toward the second member 302. At this time, the windings 201 and 203 are wound clockwise when the first leg portion 131 is viewed from the upper surface of the reactor, that is, the first member 301 side.
  • the winding 202 is wound around the core pieces 303 to 305 constituting the second leg portion 132 (left leg) of the core 300 from the first member 301 side toward the second member 302. At this time, the winding 202 is wound counterclockwise with the first leg 131 viewed from the upper surface of the reactor, that is, the first member 301 side.
  • the winding 204 is wound around the core pieces 309 to 311 constituting the third leg portion 133 (right leg) of the core 300 from the first member 301 side toward the second member 302. At this time, the winding 202 is wound clockwise when the first leg 131 is viewed from the upper surface of the reactor, that is, the first member 301 side.
  • winding 202 and one end of winding 201 are directly connected.
  • One end of winding 204 and one end of winding 203 are also directly connected.
  • the winding 202 and the winding 204 are wound the same number of turns. If the number of turns is the same, the magnetic flux densities that cancel each other out, which will be described later, are the same, which is preferable.
  • Winding 201 and winding 203 are wound several times in the same turn. If the number of turns is the same, the magnetic flux densities that cancel each other out, which will be described later, are the same, which is preferable.
  • FIG. 6 is a diagram showing a magnetic flux when a normal mode current flows through the reactor 100.
  • FIG. 7 is a diagram showing a magnetic flux when a common mode current flows through the reactor 100. The behavior of the magnetic circuit in each current mode will be described with reference to FIGS. 6 to 7.
  • the terminals A and D of the reactor 103 are connected to the switching circuit 30.
  • the terminal B of the reactor 103 is connected to the smoothing capacitor 21 and the output terminal 12.
  • the terminal C of the reactor 103 is connected to the smoothing capacitor 22 and the output terminal 13.
  • FIG. 6 will be used to explain the behavior of the magnetic circuit when a normal mode current flows.
  • the current 500 flows from the terminal A of the winding 202, and the current 501 flows from the terminal C of the winding 204.
  • magnetic fluxes of 600 to 605 are generated according to Ampere's law.
  • the magnetic flux 604 generated by the winding 203 and the magnetic flux 605 generated by the winding 201 have the same magnitude and opposite magnetic flux densities. Since the magnetic flux 604 and the magnetic flux 605 pass through the same core cross section, they cancel each other out. Therefore, the first leg 131 and the windings 203 and 201 do not contribute as the normal mode inductance of the reactor 100.
  • the normal mode inductance at this time is determined by the magnetic flux 600 to 603, the number of turns of the winding 202 and the winding 204, and the thickness of the gap members 400 to 403 and 408 to 411.
  • FIG. 7 will be used to explain the behavior of the magnetic circuit when a common mode current flows.
  • the current 502 flows from the terminal A of the winding 202, and the current 503 flows from the terminal D of the winding 203.
  • magnetic fluxes 606 to 618 are generated according to Ampere's law.
  • the magnetic fluxes 606 to 607 generated by the winding 202 and the magnetic fluxes 608 to 609 generated by the winding 204 have the same magnetic flux density if the number of turns of the winding 202 and the winding 204 are the same. .. These magnetic fluxes cancel each other out because they pass through the same core cross section in the second leg portion 132 and the third leg portion 133. Therefore, the winding 202 and the winding 204 do not contribute as a common mode inductance.
  • the magnetic fluxes cancel each other out, so that the contribution of the winding 202 and the winding 204 to the common mode inductance can be reduced.
  • the inductance obtained by combining the inductance of the path of the magnetic flux 614 ⁇ 615 ⁇ 611 ⁇ 612 ⁇ 613 due to the winding 201 and the inductance of the path of the magnetic flux 617 ⁇ 618 ⁇ 611 ⁇ 612 ⁇ 616 due to the winding 203 is the common mode. It becomes an inductance.
  • the common mode inductance at this time is roughly determined by the magnetic fluxes 611 to 618, the number of turns of the winding 201 and the winding 203, and the thickness of the gap members 400 to 411.
  • the thicknesses of the gap members 400 to 403 of the second leg portion 132 and the gap members 408 to 411 of the third leg portion 133 are reduced, and the thickness of the first leg portion 131 is reduced.
  • the thickness of the gap members 404 to 407 is increased. This makes it possible to approach the required normal mode inductance and common mode inductance, respectively.
  • the desired normal mode inductance and common mode inductance can be realized with one reactor 100, and it is not necessary to mount two types of normal mode reactor and common mode reactor, and the power conversion device can be downsized. You can expect it.
  • Inductance in addition to adjusting the number of turns of the winding 202 and winding 204 arranged on the left leg and the right leg of the core, the thickness of the gap members 400 to 403 and 408 to 411 is adjusted. , Inductance can be configured with high accuracy and over a wide range.
  • the inductance after adjusting the normal mode inductance, the inductance can be made highly accurate by adjusting the number of turns of the winding 201 and winding 203 and the thickness of the gap members 404 to 407 of the core middle leg. And it can be configured in a wide range.
  • the core gap length per location can be shortened, and the inductance can be reduced as in the general theoretical formula. It becomes.
  • the core gap length per location can be shortened, the effect of induction heating of the winding due to the leakage flux of the core can be mitigated, and the winding due to low loss can be mitigated. Can be miniaturized.
  • the configuration including a plurality of gap members has been described, but the desired normal mode inductance and common mode inductance can be obtained by adjusting only the winding method and the number of turns without using the gap members. Can be configured.
  • FIG. 8 is a circuit diagram showing a main circuit configuration of the power conversion device according to the second embodiment.
  • the power conversion device according to the second embodiment includes a reactor 103 instead of the reactor 100 in the configuration of the power conversion device according to the first embodiment. Since the description of each circuit component having the same reference numeral is the same as that of the first embodiment, the description will not be repeated.
  • FIG. 9 is a diagram showing a magnetic flux when a normal mode current flows through the reactor 103.
  • FIG. 10 is a diagram showing a magnetic flux when a common mode current flows through the reactor 103.
  • the reactor 103 according to the second embodiment will be described with reference to FIGS. 9 and 10.
  • the reactor 103 is the same as the reactor 100 described in the first embodiment in the configuration of the core 300 and the winding method around the windings 201 to 204.
  • the reactor 103 differs from the reactor 100 of the first embodiment in that it is connected to the switching circuit 30 and the output terminal as follows.
  • the terminals A and D of the reactor 103 are connected to the switching circuit 30.
  • the terminal B of the reactor 103 is connected to the smoothing capacitor 21 and the output terminal 12.
  • the terminal C of the reactor 103 is connected to the smoothing capacitor 22 and the output terminal 13.
  • FIG. 9 will be used to explain the behavior of the magnetic circuit when a normal mode current flows.
  • the current 504 flows from the terminal A of the winding 202
  • the current 505 flows from the terminal D of the winding 203.
  • magnetic fluxes 619 to 631 are generated according to Ampere's law.
  • the magnetic fluxes 619 to 621 generated by the winding 202 and the magnetic fluxes 622 to 623 and 627 formed by the winding 204 have the same magnitude as long as the number of turns of the winding 202 and the winding 204 is the same. Now the magnetic flux density is in the opposite direction. Since these magnetic fluxes pass through the cross section of the same core in the second leg portion 132 and the third leg portion 133, they cancel each other's magnetic fluxes and do not contribute as a normal mode inductance.
  • the combined inductance of the inductance in the path of the magnetic flux 624 ⁇ 625 ⁇ 626 ⁇ 630 ⁇ 631 due to the winding 201 and the inductance in the path of the magnetic flux 627 ⁇ 628 ⁇ 629 ⁇ 630 ⁇ 631 due to the winding 203 is the normal mode. It becomes an inductance.
  • the normal mode inductance at this time is roughly determined by the magnetic fluxes 624 to 631, the number of turns of the windings 201 and 203, and the thickness of the gap members 400 to 411.
  • FIG. 10 will be used to explain the behavior of the magnetic circuit when a common mode current flows.
  • the current 506 flows from the terminal A of the winding 202, and the current 507 flows from the terminal C of the winding 204.
  • magnetic fluxes 632 to 637 are generated according to Ampere's law.
  • the magnetic flux 636 generated by the winding 203 and the magnetic flux 637 generated by the winding 201 have the same magnitude and opposite magnetic flux densities. Since the magnetic flux 636 and the magnetic flux 637 pass through the same core cross section, they cancel each other out. Therefore, the first leg 131 of the core and the windings 203 and 201 do not contribute as the normal mode inductance of the reactor 103.
  • the normal mode inductance at this time is determined by the magnetic fluxes 632 to 635, the number of turns of the windings 202 and 204, and the thicknesses of the gap members 400 to 403 and 408 to 411.
  • each inductance with high accuracy and in a wide range, depending on the winding connection method, number of turns, thickness and number of gap members, etc., according to the accuracy required for the circuit to be applied and the inductance.
  • FIG. 11 is a circuit diagram showing a main circuit configuration of the power conversion device according to the third embodiment.
  • the power conversion device according to the third embodiment includes a reactor 104 instead of the reactor 100 in the configuration of the power conversion device according to the first embodiment. Since the description of each circuit component having the same reference numeral is the same as that of the first embodiment, the description will not be repeated.
  • FIG. 12 is a winding diagram of the reactor 104.
  • the reactor 104 according to the third embodiment will be described with reference to FIG. Since the configuration of the core 300 is the same as that of the first and second embodiments, the description will not be repeated.
  • Windings 205 to 208 are wound from the first member 301 side toward the second member 302. At this time, all the windings 205 to 208 are wound counterclockwise when the first leg 131 is viewed from the upper part of the reactor, that is, the first member 301 side.
  • Winding 206 and winding 208 are wound so that the number of turns is the same. Similarly, the winding 205 and the winding 207 are also wound so as to have the same number of turns.
  • the terminal B of the winding 206 and the terminal C of the winding 205 are processed so that a conductor 700 such as copper or aluminum can be connected.
  • the terminal F of the winding 207 and the terminal G of the winding 208 are processed so that a conductor 701 such as copper or aluminum can be connected.
  • a large winding is formed by manually winding a straight conductor along a mold.
  • a large winding is formed by winding a straight conductor along a mold.
  • the windings 206 and 208 have the same winding shape. Further, the windings 205 and 207 have the same winding shape. Therefore, since the number of types of parts can be reduced, it can be manufactured at low cost, and it is possible to prevent erroneous assembly and obtain effects such as quality improvement.
  • the conductors 700 to 701 are connected to the windings 205 to 208 to form the reactor 100.
  • FIG. 13 is a diagram showing a magnetic flux when a normal mode current flows through the reactor 104. With reference to FIG. 13, the behavior of the magnetic circuit when a normal mode current flows will be described.
  • the current 508 flows from the winding 206 terminal A, and the current 509 flows from the terminal E of the winding 207. Since the magnetic flux generation state of the core 300 is the same as that of the magnetic flux generation state at the time of the normal mode current of the first embodiment described with reference to FIG. 6, the description is not repeated.
  • FIG. 14 is a diagram showing a magnetic flux when a common mode current flows through the reactor 104. With reference to FIG. 14, the behavior of the magnetic circuit when a common mode current flows will be described.
  • the current 510 flows from the winding 206 terminal A, and the current 511 flows from the terminal H of the winding 208. Since the magnetic flux generation state of the core 300 is the same as that of the magnetic flux generation state at the time of the common mode current of the first embodiment described with reference to FIG. 7, the description will not be repeated.
  • Embodiments 1 and 2 are made by connecting the terminals of the winding with conductors 700 and 701 while making the winding direction and the number of windings the same as in the present embodiment and facilitating the manufacture of the winding. The same effect as can be obtained.
  • FIG. 15 is a cross-sectional view of the core 312 according to the fourth embodiment.
  • the core 312 is a first leg portion 131A, a second leg portion 132A, and a third leg that connect the first member 301A and the second member 302A arranged apart from each other and the first member 301A and the second member 302A, respectively. Includes parts 133A.
  • the first member 301A and the second member 302A of the core 312 include core pieces 313 and 314 having an E-shaped cross section, respectively.
  • the cross section of the core pieces 313 to 314 is E-shaped.
  • the leakage flux is reduced.
  • the windings of the first to third embodiments are wound around the core 312 to form a reactor. Since the leakage flux leaking from the core gap is reduced, the eddy current loss of the winding generated by the leakage flux interlinking the winding can be reduced, and the winding can be miniaturized.
  • FIG. 16 is a cross-sectional view of the core 321 according to the fifth embodiment.
  • the core 321 has a first leg portion 131B, a second leg portion 132B, and a third leg that connect the first member 301B and the second member 302B arranged apart from each other and the first member 301B and the second member 302B, respectively. Includes parts 133B.
  • the first member 301B of the core 321 includes two core pieces 315,317, and the second member 302B contains two core pieces 316,318.
  • Each cross section of the core pieces 315 to 318 has a U-shaped shape.
  • the core piece 315 and the core piece 316 are arranged so as to face each other, and a hollow rectangular core 319 is configured.
  • the core piece 317 and the core piece 318 are arranged so as to face each other, and a hollow rectangular core 320 is formed.
  • a gap member 412 is inserted between the core 319 and the core 320 to form the core 321.
  • the core pieces 315 to 318 having a U-shaped cross section can be made smaller and easier to manufacture than the first members 301, 301A and the second members 302, 302A used in the first to fourth embodiments. As a result, the manufacturing cost can be further reduced, the variation during manufacturing is reduced, and the quality is improved.
  • the thickness of the gap members 400 to 411 inserted between the first member 301, the second member 302, and the core pieces 303 to 311 determines the normal mode inductance and the common mode inductance. It is possible to provide a power conversion device incorporating a configurable reactor with high accuracy and in a wide range.
  • the core pieces are divided into small pieces during production, the effects of press pressure during production and shrinkage after heat treatment can be reduced, the divided cores can be easily manufactured, and the manufacturing cost can be reduced. There is less variation and quality is improved.
  • the number of core gaps can be increased, the length of each core gap can be shortened, the eddy current loss of the winding due to the magnetic flux leaking from the core gap can be reduced, and the winding can be miniaturized. can do.
  • the power conversion device of the present disclosure includes a reactor 100 including a core 300, a first conductive member 121, and a second conductive member 122.
  • the core 300 includes a first member 301 and a second member 302 arranged apart from each other, and a first leg portion 131, a second leg portion 132, and a third leg, each of which connects the first member 301 and the second member 302. Including unit 133.
  • the first leg portion 131 is arranged between the second leg portion 132 and the third leg portion 133.
  • the first conductive member 121 has a first winding 201 wound around the first leg 131 and a second winding 202 connected in series with the first winding 201 and wound around the second leg 132. including.
  • the second conductive member 122 has a third winding 203 wound around the first leg portion and a fourth winding 204 connected in series with the third winding 203 and wound around the third leg portion 133.
  • the first leg portion 131 is made of a soft magnetic material, has a plurality of gaps, and is composed of a first core member made of core pieces 306, 307, 308 and a non-magnetic material, respectively, of the first core member. It includes a plurality of first gap members 404, 405, 406, 407 respectively arranged in the plurality of gaps.
  • the core gap length per place is shortened.
  • the influence of the induction heating of the winding due to the leakage flux of the core can be mitigated, and the winding can be miniaturized by reducing the loss.
  • the second leg 132 is made of a soft magnetic material, has a plurality of gaps, and has a second core member composed of core pieces 303, 304, 305, each of which is non-magnetic. It includes a plurality of second gap members 400, 401, 402, 403 which are composed of a body and are respectively arranged in a plurality of gaps of the second core member.
  • the third leg is made of a soft magnetic material, has a plurality of gaps, and is composed of a third core member made of core pieces 309, 310, 311 and a non-magnetic material, respectively, and a plurality of third core members. Includes a plurality of third gap members 408, 409, 410, 411, respectively, which are arranged in the gaps of.
  • At least a portion of the first winding 201 and the third winding 203 is wound so as to cover at least one of the plurality of first gap members 404, 405, 406, 407. Will be done.
  • the magnetic flux leaking from the core gap can be shielded by the winding, and the magnetic flux leakage to the outside of the reactor can be reduced.
  • the magnetic flux 605 and the third winding 203 generated by the first winding 201 are generated.
  • the first winding 201 and the third winding 203 are respectively wound so as to cancel each other out with the magnetic flux 604 generated by.
  • the normal mode currents 500 and 501 flow through the first conductive member 121 and the second conductive member 122, the direction of the magnetic flux 605 generated by the first winding 201 and the magnetic flux 604 generated by the third winding 203.
  • the first winding 201 and the third winding 203 are respectively wound so that the directions are opposite to each other.
  • the normal mode currents 500 and 501 flow through the first conductive member 121 and the second conductive member 122, the direction of the magnetic flux 605 generated by the first winding 201 and the magnetic flux 604 generated by the third winding 203.
  • the first winding 201 and the third winding 203 are respectively wound so that the directions of the first winding 201 and the third winding 203 cancel each other out.
  • the number of turns in which the first winding 201 is wound around the first leg 131 and the number of turns in which the third winding 203 is wound around the first leg 131 are preferable. It is the same as the number. It is preferable that the number of turns is the same, but the number of turns may be slightly different.
  • the normal mode inductance can be determined by the number of turns of the second winding 202 and the fourth winding 204.
  • the first member 301A and the second member 302A each include a core piece 313, 314 having an E-shaped cross section.
  • the core gap in the corner part disappears. Therefore, the leakage flux leaking from the core gap can be reduced, the eddy current loss of the winding generated by the leakage flux interlinking the winding can be reduced, and the winding can be miniaturized.
  • the first member 301B includes a first core piece 315 with a U-shaped cross section and a second core piece 317 with a U-shaped cross section
  • the second member 302B is a second member with a U-shaped cross section. It includes one core piece 316 and a second core piece 318 with a U-shaped cross section.
  • the number of core pieces and the number of gap members constituting the cores 300, 312, 315, and 321 are intended to be within the scope of the claims even if they are not the numbers shown in the embodiments of the present specification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

コア(300)の第1脚部(131)は、第2脚部(132)と第3脚部(133)との間に配置される。第1導電部材(121)は、第1脚部(131)に巻き回される第1巻線(201)と、第1巻線(201)に直列接続され、第2脚部(132)に巻き回される第2巻線(202)とを含む。第2導電部材(122)は、第1脚部に巻き回される第3巻線(203)と、第3巻線(203)に直列接続され、第3脚部(133)に巻き回される第4巻線(204)とを含む。第1脚部(131)は、複数のギャップが設けられ、コア片(306~308)からなる第1コア部材と、各々が非磁性体で構成され、第1コア部材の複数のギャップにそれぞれ配置される複数の第1ギャップ部材(404~407)とを含む。このような構成とすることによって巻線の誘導加熱の影響を緩和し、コイルを小型化することができる。

Description

電力変換装置
 本開示は、電力変換装置に関する。
 近年、電力変換装置の小型化、高出力化に対する需要が高まっている。一般に、電力変換装置に含まれる半導体素子のスイッチング周波数を高周波化すると、電力変換装置に含まれているリアクトルのノーマルモード電流が流れる場合のインダクタンスを低減でき、小型化できることが知られている。以下、ノーマルモード電流が流れる場合のノイズの除去および電流リプル低減に有効なリアクトルのインダクタンスを「ノーマルモードインダクタンス」と言う。
 所望のノーマルモードインダクタンスを得るために、リアクトルには、軟磁性材料で構成されるコアにコアギャップが設けられる。
 ノーマルモードインダクタンスの低減は、コアギャップ長を長くすることで可能である。しかし、ある一定のコアギャップ長を超えると、コアギャップ長を長くしてもノーマルモードインダクタンスの低減には寄与しない。このため、ノーマルモードインダクタンスを所望の値に高精度に合わせることができないという課題があった。
 また、コアギャップから漏れる磁束が、巻き回されたコイルに鎖交することでコイルの渦電流損が発生する。一般的に、電流の高周波化および長いコアギャップ長は、渦電流損の増加を招く。これにより、より巻線の損失を低減するために、巻線断面積の広い巻線に変更し、巻線抵抗を低減する必要がある。巻線断面積を広くするために、コアの巻線可能なスペースも大きくする必要があり、コアも大型化する。これらにより、コア、コイル共に大型化するという課題があった。
 さらに、EMI(Electro-Magnetic Interference)の規制対象となるコモンモードノイズが、高周波化により発生しやすくなり、コモンモードノイズを除去できるインダクタンスをもつリアクトルを追加する必要がある。以下、コモンモード電流が流れる場合のノイズの除去および電流リプル低減に有効なリアクトルのインダクタンスを「コモンモードインダクタンス」と言う。
 したがって、一般的には、ノーマルモードインダクタンスをもつリアクトルとコモンモードインダクタンスをもつリアクトルの両方を組み込む必要があり、電力変換装置の小型化は実現困難であった。
 特許第5790700号公報(特許文献1)は、ノーマルモードインダクタンスとコモンモードインダクタンスを併せ持つリアクトルを開示する。
特許第5790700号公報
 特許第5790700号公報に記載のリアクトルは、各閉磁路に対して、1か所または2か所のコアギャップを設ける。しかしながら、1または2か所のコアギャップを設けるだけでは、インダクタンスの高精度化が実現できない。
 また、所望のコモンモードインダクタンスおよびノーマルモードインダクタンスを得るために、長いコアギャップを設けても、2つのモードのインダクタンスを高精度に実現できない場合がある。
 さらに、長いコアギャップを設けると、コアギャップ部の漏れ磁束による巻線の誘導加熱により、巻線が加熱され、コイルが大型化する問題が発生する。
 本開示の電力変換装置は、上記のような課題を解決するためのものであり、その目的は、コアギャップ部の漏れ磁束による巻線の誘導加熱の影響を緩和し、コイルを小型化することができるリアクトルを組み込んだ電力変換装置を提供することである。
 本開示は、電力変換装置に関する。電力変換装置は、コアと、第1導電部材と、第2導電部材とを備える。コアは、離れて配置された第1部材および第2部材と、各々が第1部材と第2部材とを接続する第1脚部、第2脚部、第3脚部とを含む。第1脚部は、第2脚部と第3脚部との間に配置される。第1導電部材は、第1脚部に巻き回される第1巻線と、第1巻線に直列接続され、第2脚部に巻き回される第2巻線とを含む。第2導電部材は、第1脚部に巻き回される第3巻線と、第3巻線に直列接続され、第3脚部に巻き回される第4巻線とを含む。第1脚部は、軟磁性材料で構成され、複数のギャップが設けられた第1コア部材と、各々が非磁性体で構成され、第1コア部材の複数のギャップにそれぞれ配置される複数の第1ギャップ部材とを含む。
 本開示の電力変換装置によれば、リアクトルのコアギャップ部の漏れ磁束による巻線の誘導加熱の影響を緩和し、コイルを小型化することができる。
実施の形態1の電力変換装置1の構成を示す回路図である。 実施の形態1の電力変換装置1の外観を示す概略斜視図である。 リアクトル100を構成するコア300の断面図である。 リアクトル100の巻線図である。 ギャップ部材周辺を拡大して示した巻線の部分断面図である。 リアクトル100にノーマルモード電流が流れた時の磁束を示す図である。 リアクトル100にコモンモード電流が流れた時の磁束を示す図である。 実施の形態2に係る電力変換装置の主回路構成を示す回路図である。 リアクトル103にノーマルモード電流が流れた時の磁束を示す図である。 リアクトル103にコモンモード電流が流れた時の磁束を示す図である。 実施の形態3に係る電力変換装置の主回路構成を示す回路図である。 リアクトル104の巻線図である。 リアクトル104にノーマルモード電流が流れた時の磁束を示す図である。 リアクトル104にコモンモード電流が流れた時の磁束を示す図である。 実施の形態4に係るコア312の断面図である。 実施の形態5に係るコア321の断面図である。
 以下、実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰返さない。
 実施の形態1.
 図1は、実施の形態1の電力変換装置1の構成を示す回路図である。図2は、実施の形態1の電力変換装置1の外観を示す概略斜視図である。すなわち図1の回路図を各部材で組み立てて完成させたものが図2に示される。
 図1および図2を参照し、実施の形態1の電力変換装置1に実装されるリアクトル100について説明する。
 電力変換装置1は、入力端子10,11と、平滑コンデンサ20~22と、スイッチング回路30と、リアクトル100と、出力端子12,13とを備える。
 入力端子10~11は、直流電圧を受ける。平滑コンデンサ20は、受けた直流電圧を安定化する。スイッチング回路30は、半導体素子31~34で構成される。スイッチング回路30は、直流電圧をスイッチングして変換する。リアクトル100および平滑コンデンサ21~22は、変換された直流電圧を安定化する。出力端子12~13は、変換された直流電圧を電力変換装置1の外部に電源電圧として供給する。
 リアクトル100は、入力端子10~11の電圧を変換し、出力端子12~13に直流電流を出力するように平滑する機能を有する。この平滑化には、ノーマルモードインダクタンス101が要求される。
 平滑コンデンサ21,22の一端は、EMI規制または安全規格などにより、接地端子14に接続される場合がある。
 この場合、リアクトル100の端子Bと端子Cから平滑コンデンサ21および22と接地端子14とを経由して、入力端子11の接地部および入力端子10、11前段の入力回路の接地部に向けて高周波電流が通電する経路ができる。
 この高周波電流を制限するために、リアクトル100にはコモンモードインダクタンス102が要求される。
 半導体素子31~34は、50Hz~5MHz程度の周波数でスイッチングされる。出力端子12~13にそのスイッチングノイズが伝搬されることによる出力先の機器の誤動作および空間上に放射される放射電磁波による周辺機器の誤動作などを発生させないように、リアクトル100にはコモンモードインダクタンス102が要求される。
 本実施の形態のリアクトル100は、ノーマルモードインダクタンス101とコモンモードインダクタンス102を併せ持ち、それぞれのインダクタンス値を高精度に、かつ広範囲に、設定することが可能である。
 さらに、コアギャップ部の漏れ磁束による巻線の誘導加熱の影響を緩和し、コイルを小型化することができる。
 図3は、リアクトル100を構成するコア300の断面図である。図4は、リアクトル100の巻線図である。図3~図4を用いて、リアクトル100の構成を説明する。
 コア300は、小型に分割された第1部材301、第2部材302、コア片303~311と、ギャップ部材400~411とを含む。
 第1部材301、第2部材302、コア片303~311を構成する材料は、たとえば、純鉄、Fe-Si合金、Fe-Si-Al合金、Ni-Fe合金、Ni-Fe-Mo合金のダストコア、Mn-Zn系またはNi-Zn系のフェライトコア、アモルファスコア、ナノ結晶コアなどの軟磁性材料である。絶縁のために第1部材301、第2部材302、コア片303~311の各々には、粉末樹脂などが塗布されていても良い。一般的に、ダストコアおよびフェライトコアは、粉状の材料をプレス機で成形した後、熱処理する。ダストコアおよびフェライトコアはプレスされる面に加わる面圧力を一定にする必要があり、コアが大型化すればするほど、プレス能力が高いプレス機を使用する必要がある。また、成形された材料は、熱処理時に収縮するため、コアが大型化すると寸法の精度が低くなる。実施の形態1で示す第1部材301、第2部材302、コア片303~311は、小型に分割したコアを組み合わせて、大型のコア300を構成する。このため、第1部材301、第2部材302、コア片303~311は、製造がし易く、製造コストを低減でき、さらに製造時のばらつきが少なくなり、品質が向上する。その他の材料としてアモルファスコアおよびナノ結晶コアが考えられる。これらのコアは、薄い帯状の材料を積み重ねた後、熱処理する。これらもダストコアおよびフェライトコアと同様に、熱処理時に収縮するため、小型に分割することによって上記と同様の効果が得られる。
 ギャップ部材400~411を構成する材料は、非磁性体である。たとえば、ポリプロピレン(PP)、ABS、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、フッ素、フェノール、メラミン、ポリウレタン、エポキシ、シリコンなどの樹脂または、クラフトパルプ、アラミド、ファイバー、絶縁紙などをギャップ部材400~411の材料として使用することができる。
 たとえば、ダストコアの場合は比透磁率が26~150程度と比較的小さい。このため、コアギャップの長さを0.1~20mm程度に決定し、ギャップ部材400~411の厚みをコアギャップの長さに合わせて決定すればよい。また、たとえば、フェライトコアの場合は比透磁率が1500~4000と比較的大きい。このため、フェライトコアの場合のコアギャップの長さは、0.1~40mm程度とダストコアの場合に比べて長くなる。分割されたコア片303~311の数が多く、コアギャップの数が多いほど、1か所あたりのコアギャップの長さが短くなる。コアギャップの長さが短いほど、漏れる磁束が小さくなる。よって、コアギャップから漏れる磁束が巻線201~204に鎖交することによって発生する巻線201~204の渦電流損を低減できる。
 第1部材301、第2部材302、コア片303~311と接触する一部またはすべての面に接着剤を塗布してギャップ部材400~411を固定しても良い。もしくは、ギャップ部材400~411の一部またはすべての面に接着剤を塗布して第1部材301、第2部材302、コア片303~311に貼り付けても良い。
 図4を用いて、リアクトル100を構成する巻線201~204の構成を説明する。図3で説明したコア300に巻線201~204を巻き回す。電流が流れるため、巻線201~204は電気抵抗率が低い銅またはアルミなどで構成される。隣り合う巻線との短絡を防止するために、巻線201~204は絶縁被膜付きの導電線または絶縁紙を巻いた導電線が好ましい。隣り合うコイルの短絡を防止するためであれば、被膜または被覆の厚みは、0.001~2mm程度で問題ない。これらの巻線201~204は、1つ以上のギャップ部材を覆うように巻き回される。
 図5は、ギャップ部材周辺を拡大して示した巻線の部分断面図である。ギャップ部材は複数個あり、1か所あたりのコアギャップの長さが短いため、コアギャップ部から漏れる磁束が少ない。したがって、コアギャップから漏れる磁束が巻線201~204に鎖交することで発生する巻線201~204の渦電流損を低減でき、温度上昇部分が分散されるため、巻線を小型化できる。
 また、図5に示すようにコアギャップを覆うように巻線を配置すると、導体である巻線表面を沿うように磁束が流れる。このため、コアギャップから漏れる磁束を巻線でシールドすることができ、リアクトル100の外部への漏れ磁束を減らすことができる。
 再び、図3、図4を参照して巻線の巻き方について説明する。
 巻線201および203は、コア300の第1脚部131(中脚)を構成するコア片306~308に、第1部材301側から第2部材302に向けて巻き回される。このとき、巻線201および203は、リアクトル上面すなわち第1部材301側から第1脚部131を見て、時計回りに巻き回される。
 巻線202は、コア300の第2脚部132(左脚)を構成するコア片303~305に、第1部材301側から第2部材302に向けて巻き回される。このとき、巻線202は、リアクトル上面すなわち第1部材301側から第1脚部131を見て、反時計回りに巻き回される。
 巻線204は、コア300の第3脚部133(右脚)を構成するコア片309~311に、第1部材301側から第2部材302に向けて巻き回される。このとき、巻線202は、リアクトル上面すなわち第1部材301側から第1脚部131を見て、時計回りに巻き回される。
 巻線202の一端と巻線201の一端は直接接続される。巻線204の一端と巻線203の一端も直接接続される。
 好ましくは、巻線202と巻線204とは、同一ターン数巻き回される。同一ターン数とすれば、後述する打ち消しあう磁束密度が同一となるため好ましい。
 巻線201と巻線203とは、同一ターン数巻き回される。同一ターン数とすれば、後述する打ち消しあう磁束密度が同一となるため好ましい。
 図6は、リアクトル100にノーマルモード電流が流れた時の磁束を示す図である。図7は、リアクトル100にコモンモード電流が流れた時の磁束を示す図である。各電流モードによる磁気回路の振る舞いを図6~図7で説明する。
 再び図1を参照して、リアクトル103の端子AおよびDは、スイッチング回路30に接続される。リアクトル103の端子Bは、平滑コンデンサ21および出力端子12に接続される。リアクトル103の端子Cは、平滑コンデンサ22および出力端子13に接続される。このような接続関係とすると、端子Aから端子Bに向けて電流が流れる場合に、端子Cから端子Dに向けて電流が流れるとノーマルモード電流となり、端子Dから端子Cに向けて電流が流れるとコモンモード電流となる。
 図6を用いて、ノーマルモード電流が流れた時の磁気回路の振る舞いを説明する。ノーマルモード電流では、巻線202の端子Aから電流500が流れ込み、巻線204の端子Cから電流501が流れ込む。この時に、アンペールの法則に従い、磁束600~605が発生する。
 巻線203によって発生する磁束604と巻線201によって発生する磁束605とは、巻線203と巻線201のターン数が同じであれば、同じ大きさで逆向きの磁束密度となる。磁束604と磁束605は、同一コア断面を通るため、互いの磁束を打ち消しあう。したがって、第1脚部131と巻線203および201はリアクトル100のノーマルモードインダクタンスとして寄与しないこととなる。
 また、巻線203と巻線201のターン数が同じでない場合であっても、互いの磁束を打ち消しあうので、コアの第1脚部131と巻線203および巻線201とのノーマルモードインダクタンスへの寄与を小さくすることができる。
 この時のノーマルモードインダクタンスは、磁束600~603と巻線202および巻線204の各ターン数、およびギャップ部材400~403、408~411の各厚みで決定される。
 図7を用いて、コモンモード電流が流れた時の磁気回路の振る舞いを説明する。コモンモード電流では、巻線202の端子Aから電流502が流れ込み、巻線203の端子Dから電流503が流れ込む。この時に、アンペールの法則に従い、磁束606~618が発生する。
 この磁束の中で、巻線202によって発生する磁束606~607と巻線204によって発生する磁束608~609は、巻線202と巻線204のターン数が同じであれば、同じ磁束密度となる。これらの磁束は、第2脚部132と第3脚部133において、同一コア断面を通るため互いの磁束を打ち消しあう。このため、巻線202と巻線204とは、コモンモードインダクタンスとして寄与しないこととなる。
 また、巻線202と巻線204のターン数が同じでない場合であっても、互いの磁束を打ち消しあうので、巻線202および巻線204のコモンモードインダクタンスへの寄与を小さくすることができる。
 したがって、巻線201による磁束614→615→611→612→613の経路のインダクタンスと、巻線203による磁束617→618→611→612→616の経路のインダクタンスとが合成されたインダクタンスが、コモンモードインダクタンスとなる。
 巻線202および巻線204によるコモンモードインダクタンスよりも、この巻線201および203で決定されるコモンモードインダクタンスを高くすることが可能となり、巻線201および203でコモンモードインダクタンスを高精度に構成できる。
 よって、この時のコモンモードインダクタンスは、磁束611~618と巻線201および巻線203の各ターン数、並びにギャップ部材400~411の各厚みでおおよその値が決定される。
 一般的に、電力変換装置で要求されるノーマルモードインダクタンスとコモンモードインダクタンスの値はそれぞれ違う値となる。
 たとえば、ノーマルモードインダクタンスがコモンモードインダクタンスより小さい場合は、第2脚部132のギャップ部材400~403および第3脚部133のギャップ部材408~411の各厚みを薄くし、かつ第1脚部131のギャップ部材404~407の厚みを厚くする。これにより、要求されるそれぞれのノーマルモードインダクタンスおよびコモンモードインダクタンスに近づけることができる。
 これ対して、ノーマルモードインダクタンスがコモンモードインダクタンスより大きい場合は、ギャップ部材400~403、408~411の各厚みを厚くし、かつギャップ部材404~407の厚みを薄くする。これにより、同様に要求されるそれぞれのインダクタンスの値に近づけることできる。
 以上の説明より、所望のノーマルモードインダクタンスとコモンモードインダクタンスを1つのリアクトル100で実現することができ、ノーマルモードリアクトルとコモンモードリアクトルの2種を実装する必要がなく、電力変換装置の小型化が見込める。
 また、ノーマルモードインダクタンスについては、コア左脚と右脚に配置される巻線202および巻線204のターン数の調整に加えて、ギャップ部材400~403、408~411の厚みを調整することによって、インダクタンスを高精度に、かつ広範囲に、構成できる。
 また、コモンモードインダクタンスについては、ノーマルモードインダクタンスの調整後に、巻線201および巻線203の各ターン数とコア中脚のギャップ部材404~407の厚みを調整することによって、インダクタンスを高精度に、かつ広範囲に、構成できる。
 このように各モードインダクタンスを調整でき、様々な仕様のリアクトルを実現できる。
 低インダクタンスに調整する場合には、ギャップ部材の厚みを薄くし、ギャップ部材数を増やすことによって、1か所あたりのコアギャップ長は短くなり、一般的な理論式と同様にインダクタンスの低減が可能となる。
 さらに、複数個所にコアギャップを分散して配置することによって、1か所当たりのコアギャップ長は短くなり、コアの漏れ磁束による巻線の誘導加熱の影響を緩和でき、低損失化による巻線の小型化が可能となる。
 なお、本実施の形態では、ギャップ部材を複数個含む構成を説明したが、ギャップ部材を用いずに、巻線方法とターン数のみを調整することによっても所望のノーマルモードインダクタンスとコモンモードインダクタンスを構成することができる。
 実施の形態2.
 図8は、実施の形態2に係る電力変換装置の主回路構成を示す回路図である。実施の形態2に係る電力変換装置は、実施の形態1の電力変換装置の構成において、リアクトル100に代えてリアクトル103を備える。なお、同一符号を付した各回路構成部品の説明は、実施の形態1と同様のため、説明は繰返さない。
 図9は、リアクトル103にノーマルモード電流が流れた時の磁束を示す図である。図10は、リアクトル103にコモンモード電流が流れた時の磁束を示す図である。ここでは、図9および図10を参照し、実施の形態2に係るリアクトル103について説明する。
 リアクトル103は、コア300の構成と、巻線201~204への巻き回し方などはすべて実施の形態1で説明したリアクトル100と同様である。リアクトル103は、以下のようにスイッチング回路30および出力端子に接続される点が、実施の形態1のリアクトル100と異なる。
 図8に示すように、リアクトル103の端子AおよびDは、スイッチング回路30に接続される。リアクトル103の端子Bは、平滑コンデンサ21および出力端子12に接続される。リアクトル103の端子Cは、平滑コンデンサ22および出力端子13に接続される。このような接続関係とすると、端子Aから端子Bに向けて電流が流れる場合に、端子Cから端子Dに向けて電流が流れるとノーマルモード電流となり、端子Dから端子Cに向けて電流が流れるとコモンモード電流となる。各電流モードによる磁気回路の振る舞いを図9および図10で説明する。
 図9を用いて、ノーマルモード電流が流れた時の磁気回路の振る舞いを説明する。ノーマルモード電流では、巻線202の端子Aから電流504が流れ込み、巻線203の端子Dから電流505が流れ込む。この時に、アンペールの法則に従い、磁束619~631が発生する。
 これら磁束の中で、巻線202によって発生する磁束619~621と巻線204で形成される磁束622~623、627は、巻線202と巻線204のターン数が同じであれば、同じ大きさで逆向きの磁束密度となる。これらの磁束は、第2脚部132と第3脚部133において、同一コアの断面を通るため、互いの磁束を打ち消しあい、ノーマルモードインダクタンスとして寄与しないこととなる。
 また、巻線202と巻線204のターン数が同じでない場合であっても、互いの磁束を打ち消しあうので、巻線202および巻線204のノーマルモードインダクタンスへの寄与を小さくすることができる。
 したがって、巻線201による磁束624→625→626→630→631の経路におけるインダクタンスと、巻線203による磁束627→628→629→630→631の経路におけるインダクタンスとが、合成されたインダクタンスがノーマルモードインダクタンスとなる。
 巻線202および巻線204によるコモンモードインダクタンスよりも、この巻線201および203で決定されるコモンモードインダクタンスを高くすることが可能となり、巻線201および203でコモンモードインダクタンスを高精度に構成できる。
 よって、この時のノーマルモードインダクタンスは、磁束624~631と巻線201および203の各ターン数、およびギャップ部材400~411の各厚みでおおよその値が決定される。
 図10を用いて、コモンモード電流が流れた時の磁気回路の振る舞いを説明する。コモンモード電流では、巻線202の端子Aから電流506が流れ込み、巻線204の端子Cから電流507が流れ込む。この時に、アンペールの法則に従い、磁束632~637が発生する。
 巻線203によって発生する磁束636と巻線201によって発生する磁束637は、同じ大きさで逆向きの磁束密度となる。磁束636と磁束637は、同一コア断面を通るため、互いの磁束を打ち消しあう。したがって、コアの第1脚部131と巻線203および201とはリアクトル103のノーマルモードインダクタンスとして寄与しないこととなる。
 この時のノーマルモードインダクタンスは、磁束632~635と巻線202および204の各ターン数、並びにギャップ部材400~403、408~411の厚みによって決定される。
 このように電流が流入出する端子の接続先を入れ替えた構成としても、実施の形態1と同様の効果を得ることができる。
 実施の形態1では、コモンモードインダクタンスにノーマルモードインダクタンスの20%程度が重畳し、実施の形態2では、ノーマルモードインダクタンスにコモンモードインダクタンスの20%程度が重畳する。
 適用する回路およびインダクタンスに必要な精度に応じて、巻線接続方法、巻数、ギャップ部材の厚みおよび数などによって、それぞれのインダクタンスを高精度に、かつ広範囲に、構成することが可能である。
 実施の形態3.
 図11は、実施の形態3に係る電力変換装置の主回路構成を示す回路図である。実施の形態3に係る電力変換装置は、実施の形態1の電力変換装置の構成において、リアクトル100に代えてリアクトル104を備える。なお、同一符号を付した各回路構成部品の説明は、実施の形態1と同様のため、説明は繰返さない。
 図12は、リアクトル104の巻線図である。ここでは、図12を参照し、実施の形態3に係るリアクトル104について説明する。コア300の構成は実施の形態1および2と同様であるので説明は繰返さない。
 巻線205~208は、第1部材301側から第2部材302に向けて巻き回される。このとき巻線205~208は、すべてリアクトル上部すなわち第1部材301側から第1脚部131を見たときに、反時計回りに巻き回されている。
 巻線206と巻線208は同一ターン数なるように巻き回されている。同様に、巻線205と巻線207も同一ターン数なるように巻き回されている。
 巻線206の端子Bと巻線205の端子Cは、銅またはアルミなどの導体700を接続できるよう加工されている。巻線207の端子Fと巻線208の端子Gは、銅またはアルミなどの導体701を接続できるよう加工されている。
 通常、大型の巻線は、型に沿って直線導体を手動で巻き回して形成される。また、自動機または半自動機を用いる場合も、同様に、大型の巻線は、型に沿って直線導体を巻き回して形成される。
 本実施の形態のように、同一巻線数、同一巻線方向であれば、巻線206と208は同じ巻線形状となる。また巻線205と207は、同じ巻線形状となる。したがって、部品の種類が少なくて済むので、低コストで製造できるとともに、誤組立防止ができ品質向上などの効果も得られる。
 コア300に巻線205~208を組み込んだ後に、導体700~701を巻線205~208に接続し、リアクトル100を構成する。
 図13は、リアクトル104にノーマルモード電流が流れた時の磁束を示す図である。図13を用いて、ノーマルモード電流が流れた時の磁気回路の振る舞いを説明する。
 ノーマルモード電流では、巻線206端子Aから電流508が流れ込み、巻線207の端子Eから電流509が流れ込む。なお、コア300の磁束の発生状態については、図6で説明した実施の形態1のノーマルモード電流時の磁束の発生状体と同様であるため、説明は繰返さない。
 図14は、リアクトル104にコモンモード電流が流れた時の磁束を示す図である。図14を用いて、コモンモード電流が流れた時の磁気回路の振る舞いを説明する。
 コモンモードで電流では、巻線206端子Aから電流510が流れ込み、巻線208の端子Hから電流511が流れ込む。なお、コア300の磁束の発生状態については、図7で説明した実施の形態1のコモンモード電流時の磁束の発生状体と同様であるため、説明は繰返さない。
 本実施の形態のように、巻線の巻き方向および巻数を同一にし、巻線の製造を容易にしつつ、巻線の端子間を導体700および701で接続することによって、実施の形態1および2と同様の効果を得ることができる。
 実施の形態4.
 図15は、実施の形態4に係るコア312の断面図である。コア312は、離れて配置された第1部材301Aおよび第2部材302Aと、各々が第1部材301Aと第2部材302Aとを接続する第1脚部131A、第2脚部132A、第3脚部133Aとを含む。
 コア312の第1部材301Aおよび第2部材302Aは、それぞれ、E型断面のコア片313,314を含む。
 コア片313~314の断面は、E文字形状である。図15に示すコア312の構成では、磁束が90°に曲がる部分にコアギャップを設けないため、漏れ磁束が低減する。このコア312に対して、実施の形態1~3の巻線を巻き回してリアクトルを構成する。コアギャップから漏れる漏れ磁束が低減するため、漏れ磁束が巻線に鎖交することによって発生する巻線の渦電流損を低減でき、巻線の小型化が可能となる。
 実施の形態5.
 図16は、実施の形態5に係るコア321の断面図である。コア321は、離れて配置された第1部材301Bおよび第2部材302Bと、各々が第1部材301Bと第2部材302Bとを接続する第1脚部131B、第2脚部132B、第3脚部133Bとを含む。
 コア321の第1部材301Bは、2つのコア片315,317を含み、第2部材302Bは、2つのコア片316,318を含む。コア片315~318の各断面は、U文字形状である。
 コア片315とコア片316とは対向するように配置され、中空の矩形状のコア319が構成される。コア片317とコア片318とは対向するように配置され、中空の矩形状のコア320が構成される。コア319とコア320との間には、ギャップ部材412が挿入され、コア321が構成される。
 U文字形状の断面を有するコア片315~318は、実施の形態1~4で用いられる第1部材301,301Aおよび第2部材302,302Aと比べて、小型化ができ、製造がし易い。これにより、さらに、製造コストが低減でき、製造時のばらつきが少なくなり、品質が向上する。
 本明細書の各実施の形態によれば、第1部材301、第2部材302、コア片303~311の間に挿入されるギャップ部材400~411の厚みで、ノーマルモードインダクタンスとコモンモードインダクタンスをそれぞれ高精度に、かつ広範囲に、構成可能なリアクトルを組み込んだ電力変換装置を提供できる。
 また、コア片製造時は、小型に分割しているため、製造時のプレス圧力および熱処理後の収縮などの影響を軽減でき、分割コアの製造がし易くなり製造コストが低減でき、製造時のばらつきが少なくなり、品質が向上する。
 さらに、コアギャップの箇所を増やすことができるため、1つあたりのコアギャップの長さを短くすることができ、コアギャップから漏れる磁束による巻線の渦電流損を低減し、巻線を小型化することができる。
 (まとめ)
 実施の形態1~5について、再び図面を参照して総括する。
 図4に示すように、本開示の電力変換装置は、コア300と第1導電部材121と第2導電部材122とを含むリアクトル100を備える。コア300は、離れて配置された第1部材301および第2部材302と、各々が第1部材301と第2部材302とを接続する第1脚部131、第2脚部132、第3脚部133とを含む。第1脚部131は、第2脚部132と第3脚部133との間に配置される。第1導電部材121は、第1脚部131に巻き回される第1巻線201と、第1巻線201に直列接続され、第2脚部132に巻き回される第2巻線202とを含む。第2導電部材122は、第1脚部に巻き回される第3巻線203と、第3巻線203に直列接続され、第3脚部133に巻き回される第4巻線204とを含む。第1脚部131は、軟磁性材料で構成され、複数のギャップが設けられ、コア片306,307,308からなる第1コア部材と、各々が非磁性体で構成され、第1コア部材の複数のギャップにそれぞれ配置される複数の第1ギャップ部材404,405,406,407とを含む。
 以上のように、コアの1つの脚部の複数か所にコアギャップを配置することによって、1か所当たりのコアギャップ長は短くなる。これによって、コアの漏れ磁束による巻線の誘導加熱の影響を緩和でき、低損失化による巻線の小型化が可能となる。
 好ましくは、図3に示すように、第2脚部132は、軟磁性材料で構成され、複数のギャップが設けられ、コア片303,304,305からなる第2コア部材と、各々が非磁性体で構成され、第2コア部材の複数のギャップにそれぞれ配置される複数の第2ギャップ部材400,401,402,403とを含む。第3脚部は、軟磁性材料で構成され、複数のギャップが設けられ、コア片309,310,311からなる第3コア部材と、各々が非磁性体で構成され、第3コア部材の複数のギャップにそれぞれ配置される複数の第3ギャップ部材408,409,410,411とを含む。
 以上のようにリアクトルを構成することによって、コモンモードインダクタンスとノーマルモードインダクタンスの値を高精度に、かつ広範囲に、1つのリアクトルで構成することが可能となる。このため、ノーマルモードリアクトルとコモンモードリアクトルの2種類のリアクトルを実装する必要がなく、電力変換装置の小型化が見込める。
 好ましくは、図5に示すように、第1巻線201および第3巻線203の少なくとも一部は、複数の第1ギャップ部材404,405,406,407の少なくとも1つを覆うように巻き回される。
 これにより、コアギャップから漏れる磁束を巻線でシールドすることができ、リアクトルの外部への漏れ磁束を減らすことができる。
 好ましくは、図6に示すように、第1導電部材121と第2導電部材122とにノーマルモードの電流500,501が流れる場合、第1巻線201が発生する磁束605と第3巻線203が発生する磁束604とが相殺するように、第1巻線201と第3巻線203とが各々巻き回される。
 言い換えると、第1導電部材121と第2導電部材122とにノーマルモード電流500,501が流れる場合、第1巻線201が発生する磁束605の向きと第3巻線203が発生する磁束604の向きとが逆向きになるように、第1巻線201と第3巻線203とが各々巻き回される。
 さらに言い換えると、第1導電部材121と第2導電部材122とにノーマルモード電流500,501が流れる場合、第1巻線201が発生する磁束605の向きと第3巻線203が発生する磁束604の向きとが互いに打ち消し合う向きとなるように、第1巻線201と第3巻線203とが各々巻き回される。
 好ましくは、図4、図6に示すように、第1巻線201が第1脚部131に巻き回される巻き数と、第3巻線203が第1脚部131に巻き回される巻き数とは同じである。なお、これらの巻き数が同じであることが好ましいが、多少違っていても良い。
 このような構成とすることによって、ノーマルモードインダクタンスを第2巻線202および第4巻線204のターン数で決定することができる。
 好ましくは、図15に示すように、第1部材301Aおよび第2部材302Aは、それぞれ、E型断面のコア片313,314を含む。
 このような構成とすることによって、コーナー部分のコアギャップがなくなる。このため、コアギャップから漏れる漏れ磁束が低減し、漏れ磁束が巻線に鎖交することで発生する巻線の渦電流損を低減でき、巻線の小型化が可能となる。
 好ましくは、図16に示すように、第1部材301Bは、U型断面の第1コア片315とU型断面の第2コア片317とを含み、第2部材302Bは、U型断面の第1コア片316とU型断面の第2コア片318とを含む。
 このようにU型断面のコア片にすることで、小型化ができ、さらに、製造がし易く、製造コストが低減でき、製造時のばらつきが少なくなり、品質が向上する。
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 たとえば、コア300、312、315、321を構成するコア片の個数およびギャップ部材の個数は、本明細書の実施の形態で示した個数でなくとも、請求の範囲であると意図される。
 1 電力変換装置、10,11 入力端子、12,13 出力端子、14 接地端子、20,21,22 平滑コンデンサ、30 スイッチング回路、31~34 半導体素子、100,103,104 リアクトル、101 ノーマルモードインダクタンス、102 コモンモードインダクタンス、121 第1導電部材、122 第2導電部材、131,131A,131B 第1脚部、132,132A,132B 第2脚部、133,133A,133B 第3脚部、201,202,203,204,205,206,207,208 巻線、300,312,319,320,321 コア、301,301A,301B 第1部材、302,302A,302B 第2部材、303~311,313~318 コア片、400~412 ギャップ部材、500~511 電流、600~637 磁束、700,701 導体、A,B,C,D,E,F,G,H 端子。

Claims (9)

  1.  コアと、
     第1導電部材と、
     第2導電部材とを備え、
     前記コアは、
     離れて配置された第1部材および第2部材と、
     各々が前記第1部材と前記第2部材とを接続する第1脚部、第2脚部、第3脚部とを含み、
     前記第1脚部は、前記第2脚部と前記第3脚部との間に配置され、
     前記第1導電部材は、
     前記第1脚部に巻き回される第1巻線と、
     前記第1巻線に直列接続され、前記第2脚部に巻き回される第2巻線とを含み、
     前記第2導電部材は、
     前記第1脚部に巻き回される第3巻線と、
     前記第3巻線に直列接続され、前記第3脚部に巻き回される第4巻線とを含み、
     前記第1脚部は、
     軟磁性材料で構成され、複数のギャップが設けられた第1コア部材と、
     各々が非磁性体で構成され、前記第1コア部材の前記複数のギャップにそれぞれ配置される複数の第1ギャップ部材とを含む、電力変換装置。
  2.  前記第2脚部は、
     軟磁性材料で構成され、複数のギャップが設けられた第2コア部材と、
     各々が非磁性体で構成され、前記第2コア部材の複数のギャップにそれぞれ配置される複数の第2ギャップ部材とを含み、
     前記第3脚部は、
     軟磁性材料で構成され、複数のギャップが設けられた第3コア部材と、
     各々が非磁性体で構成され、前記第3コア部材の複数のギャップにそれぞれ配置される複数の第3ギャップ部材とを含む、請求項1に記載の電力変換装置。
  3.  前記第1巻線および前記第3巻線の少なくとも一部は、前記複数の第1ギャップ部材の少なくとも1つを覆うように巻き回される、請求項1に記載の電力変換装置。
  4.  前記第1導電部材と前記第2導電部材とにノーマルモード電流が流れる場合、前記第1巻線が発生する磁束と前記第3巻線が発生する磁束とが相殺するように、前記第1巻線と前記第3巻線とが各々巻き回される、請求項1に記載の電力変換装置。
  5.  前記第1部材および前記第2部材の各々は、E型断面のコア片を含む、請求項1に記載の電力変換装置。
  6.  前記第1部材および前記第2部材の各々は、U型断面の第1コア片とU型断面の第2コア片とを含む、請求項1に記載の電力変換装置。
  7.  前記第1導電部材と前記第2導電部材とにノーマルモード電流が流れる場合、前記第1巻線が発生する磁束の向きと前記第3巻線が発生する磁束の向きとが逆向きになるように、前記第1巻線と前記第3巻線とが各々巻き回される、請求項1~6のいずれか1項に記載の電力変換装置。
  8.  前記第1導電部材と前記第2導電部材とにノーマルモード電流が流れる場合、前記第1巻線が発生する磁束の向きと前記第3巻線が発生する磁束の向きとが互いに打ち消し合う向きとなるように、前記第1巻線と前記第3巻線とが各々巻き回される、請求項1~7のいずれか1項に記載の電力変換装置。
  9.  前記第1巻線が前記第1脚部に巻き回される巻き数と、前記第3巻線が前記第1脚部に巻き回される巻き数とは同じである、請求項1~8のいずれか1項に記載の電力変換装置。
PCT/JP2021/029607 2020-08-28 2021-08-11 電力変換装置 WO2022044803A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/006,207 US20230260691A1 (en) 2020-08-28 2021-08-11 Power Conversion Device
JP2022545629A JPWO2022044803A1 (ja) 2020-08-28 2021-08-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020144519 2020-08-28
JP2020-144519 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022044803A1 true WO2022044803A1 (ja) 2022-03-03

Family

ID=80353222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029607 WO2022044803A1 (ja) 2020-08-28 2021-08-11 電力変換装置

Country Status (3)

Country Link
US (1) US20230260691A1 (ja)
JP (1) JPWO2022044803A1 (ja)
WO (1) WO2022044803A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04307907A (ja) * 1991-04-05 1992-10-30 Murata Mfg Co Ltd コイル
JPH04355906A (ja) * 1991-02-20 1992-12-09 Yokogawa Electric Corp チョ―クコイル及びスイッチング電源装置のノイズ低減装置
US6617814B1 (en) * 2001-04-11 2003-09-09 Rockwell Automation Technologies, Inc. Integrated DC link choke and method for suppressing common-mode voltage in a motor drive
JP2007073903A (ja) * 2005-09-09 2007-03-22 Toyota Industries Corp 有芯コイル
US20190096571A1 (en) * 2017-09-15 2019-03-28 University Of Florida Research Foundation, Incorporated Integrated common mode and differential mode inductors with low near magnetic field emission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355906A (ja) * 1991-02-20 1992-12-09 Yokogawa Electric Corp チョ―クコイル及びスイッチング電源装置のノイズ低減装置
JPH04307907A (ja) * 1991-04-05 1992-10-30 Murata Mfg Co Ltd コイル
US6617814B1 (en) * 2001-04-11 2003-09-09 Rockwell Automation Technologies, Inc. Integrated DC link choke and method for suppressing common-mode voltage in a motor drive
JP2007073903A (ja) * 2005-09-09 2007-03-22 Toyota Industries Corp 有芯コイル
US20190096571A1 (en) * 2017-09-15 2019-03-28 University Of Florida Research Foundation, Incorporated Integrated common mode and differential mode inductors with low near magnetic field emission

Also Published As

Publication number Publication date
US20230260691A1 (en) 2023-08-17
JPWO2022044803A1 (ja) 2022-03-03

Similar Documents

Publication Publication Date Title
US6768408B2 (en) Method of configuring common mode/differential mode choke
CN105529175A (zh) 磁性部件及其制造方法
JP3814776B2 (ja) コモンモードチョークコイル
JPH05291046A (ja) インダクタ
WO2016092826A1 (ja) アンテナ装置及び電子機器
US11688541B2 (en) Integrated magnetic component
JP3818465B2 (ja) インダクタンス素子
CN102360725A (zh) 差模、共模一体磁集成电感器
KR100299893B1 (ko) 트랜스
JPH11144971A (ja) コイル部品およびそれを用いた電源装置
CN110114846B (zh) 磁芯、线圈组件以及包括线圈组件的电子组件
JP6490355B2 (ja) リアクトル部品及びリアクトル
WO2022044803A1 (ja) 電力変換装置
JPH0864432A (ja) 電磁装置
CN107768122B (zh) 用于低电磁干扰的耦合感应器
JP5947011B2 (ja) 線輪部品
JPH06290975A (ja) コイル部品並びにその製造方法
KR101093112B1 (ko) 다중의 독립형 자기회로를 갖는 인덕터
JP6856059B2 (ja) インダクタ
JP2022034593A (ja) コイル部品
JP2001167935A (ja) チョークコイル
JP3142060B2 (ja) ノイズフィルタ
JP2021019104A (ja) リアクトル装置
JP2010219193A (ja) インダクタンス素子及びノイズフィルタ
JP7420092B2 (ja) 絶縁トランス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861231

Country of ref document: EP

Kind code of ref document: A1