WO2022044703A1 - 半導体デバイスの製造方法、半導体製造装置の洗浄方法、及び洗浄液の清浄度の測定方法 - Google Patents

半導体デバイスの製造方法、半導体製造装置の洗浄方法、及び洗浄液の清浄度の測定方法 Download PDF

Info

Publication number
WO2022044703A1
WO2022044703A1 PCT/JP2021/028460 JP2021028460W WO2022044703A1 WO 2022044703 A1 WO2022044703 A1 WO 2022044703A1 JP 2021028460 W JP2021028460 W JP 2021028460W WO 2022044703 A1 WO2022044703 A1 WO 2022044703A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical solution
crystal oscillator
cleaning
resonance frequency
contact
Prior art date
Application number
PCT/JP2021/028460
Other languages
English (en)
French (fr)
Inventor
暁彦 大津
幸寿 河田
祐継 室
正洋 吉留
哲也 上村
亮 西塔
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180053293.8A priority Critical patent/CN115989561A/zh
Priority to JP2022545581A priority patent/JP7390493B2/ja
Priority to KR1020237006907A priority patent/KR20230044277A/ko
Publication of WO2022044703A1 publication Critical patent/WO2022044703A1/ja
Priority to US18/173,048 priority patent/US20230243780A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/022Liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0426Bulk waves, e.g. quartz crystal microbalance, torsional waves

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, a method for cleaning a semiconductor manufacturing apparatus, and a method for measuring the cleanliness of a cleaning liquid.
  • the semiconductor device manufacturing process includes various processes such as a lithography process, an etching process, an ion implantation process, and a peeling process.
  • Various chemicals such as a developing solution, a rinsing solution, a pre-wet solution, and a stripping solution used in the manufacturing process of such a semiconductor device are required to have high purity.
  • the measurement using the surface inspection device (SP-5; manufactured by KLA Tencor) described in Patent Document 1 has a complicated measurement procedure itself, a long working time, and lacks versatility. Therefore, it is not preferable from an industrial point of view to measure the purity of the drug solution by performing the above-mentioned measurement every time the drug solution is manufactured, and there has been a demand for a method for controlling the purity of the drug solution to be manufactured more easily. ..
  • an object of the present invention to provide a method for manufacturing a semiconductor device for controlling the purity of a chemical solution containing an organic solvent more easily, and a method for cleaning the semiconductor manufacturing apparatus. Another object of the present invention is to provide a simpler method for measuring the cleanliness of a cleaning liquid.
  • one aspect of the present invention is a step 1 in which the vibrator is brought into contact with a chemical solution containing an organic solvent as a main component, and the amount of change in the resonance frequency of the vibrator due to the contact of the chemical solution is obtained.
  • It provides a method for manufacturing a semiconductor device, which comprises a step 3 used for manufacturing.
  • the manufacture of the semiconductor device in step 3 preferably includes a lithography step using a chemical solution.
  • step 1 it is preferable that the chemical solution is circulated and supplied to the vibrator, and the vibrator and the chemical liquid are brought into contact with each other to obtain the amount of change in the resonance frequency of the vibrator due to the contact of the chemical liquid. Step 1 is preferably carried out while keeping the temperature of the chemical solution constant.
  • the chemical solution of step 1 contains at least one metal element selected from the group consisting of Na, K, Ca, Fe, Cu, Mg, Mn, Li, Al, Cr, Ni, Ti and Zn, and is a metal element.
  • the total content is preferably 0.01 mass ppq to 10 mass ppb.
  • the oscillator is composed of an adsorption layer that adsorbs impurities in the chemical solution and a crystal oscillator sensor that includes a crystal oscillator. It is preferable to have a detection unit for detecting the amount of change in the resonance frequency of the crystal oscillator due to the contact of the crystal oscillator.
  • step 1 the chemical solution is sent to the crystal oscillator sensor to supply the chemical solution to the crystal oscillator sensor. It is preferable to have a step of contacting with. It is preferable to flow the chemical solution through the crystal oscillator sensor in one direction to bring the chemical solution into contact with the crystal oscillator sensor. In step 1, it is preferable that at least a part of the wetted portion in contact with the chemical solution is made of a fluororesin.
  • One aspect of the present invention is the step 1 in which the vibrator is brought into contact with a chemical solution containing an organic solvent as a main component to obtain the amount of change in the resonance frequency of the vibrator due to the contact of the chemical solution, and the amount of change in the resonance frequency of the chemical solution is Step 2 for confirming whether the change in resonance frequency based on the preset purity of the chemical solution is included in the allowable range, and step 3 for using the chemical solution confirmed in step 2 for cleaning the semiconductor manufacturing apparatus. It provides a method for cleaning a semiconductor manufacturing apparatus.
  • the cleaning of the semiconductor manufacturing apparatus in step 3 preferably includes a step of feeding the chemical solution to the liquid feeding section of the semiconductor manufacturing apparatus. It is preferable to have a concentration step of concentrating the chemical solution before the step 1.
  • step 1 it is preferable that the chemical solution is circulated and supplied to the vibrator, and the vibrator and the chemical liquid are brought into contact with each other to obtain the amount of change in the resonance frequency of the vibrator due to the contact of the chemical liquid.
  • Step 1 is preferably carried out while keeping the temperature of the chemical solution constant.
  • the chemical solution of step 1 contains at least one metal element selected from the group consisting of Na, K, Ca, Fe, Cu, Mg, Mn, Li, Al, Cr, Ni, Ti and Zn, and is a metal element.
  • the total content is preferably 0.01 mass ppq to 10 mass ppb.
  • the oscillator is composed of an adsorption layer that adsorbs impurities in the chemical solution and a crystal oscillator sensor that includes a crystal oscillator. It is preferable to have a detection unit for detecting the amount of change in the resonance frequency of the crystal oscillator due to the contact of the crystal oscillator. It has a supply unit that supplies the chemical solution to the crystal oscillator sensor and brings the chemical solution into contact with the crystal oscillator sensor.
  • step 1 the chemical solution is sent to the crystal oscillator sensor to supply the chemical solution to the crystal oscillator sensor. It is preferable to have a step of contacting with. It is preferable to flow the chemical solution through the crystal oscillator sensor in one direction to bring the chemical solution into contact with the crystal oscillator sensor. In step 1, it is preferable that at least a part of the wetted portion in contact with the chemical solution is made of a fluororesin.
  • One aspect of the present invention is the step 1 in which the transducer is brought into contact with a chemical solution containing an organic solvent as a main component to obtain the amount of change in the resonance frequency of the transducer due to the contact of the chemical solution, and the amount of change in the resonance frequency of the chemical solution is Step 2 to confirm whether the change in resonance frequency based on the preset purity of the chemical solution is included in the allowable range, and step 3 to use the chemical solution confirmed in step 2 for cleaning the semiconductor manufacturing apparatus.
  • a cleaning solution having a step 4 of taking out a part of the chemical solution used for cleaning in step 3 and a step 5 of confirming whether the amount of change in the resonance frequency of the chemical solution taken out in step 4 is within an allowable range. It provides a method for measuring cleanliness.
  • step 1 it is preferable to have a concentration step of concentrating the chemical solution before the step 1. It is preferable to have a step of cleaning the oscillator before the step 1.
  • step 1 it is preferable that the chemical solution is circulated and supplied to the vibrator, and the vibrator and the chemical liquid are brought into contact with each other to obtain the amount of change in the resonance frequency of the vibrator due to the contact of the chemical liquid.
  • Step 1 is preferably carried out while keeping the temperature of the chemical solution constant.
  • the chemical solution of step 1 contains at least one metal element selected from the group consisting of Na, K, Ca, Fe, Cu, Mg, Mn, Li, Al, Cr, Ni, Ti and Zn, and is a metal element.
  • the total content is preferably 0.01 mass ppq to 10 mass ppb.
  • the oscillator is composed of an adsorption layer that adsorbs impurities in the chemical solution and a crystal oscillator sensor that includes a crystal oscillator. It is preferable to have a detection unit for detecting the amount of change in the resonance frequency of the crystal oscillator due to the contact of the crystal oscillator.
  • step 1 the chemical solution is sent to the crystal oscillator sensor to supply the chemical solution to the crystal oscillator sensor. It is preferable to have a step of contacting with. It is preferable to flow the chemical solution through the crystal oscillator sensor in one direction to bring the chemical solution into contact with the crystal oscillator sensor. In step 1, it is preferable that at least a part of the wetted portion in contact with the chemical solution is made of a fluororesin.
  • the present invention it is possible to more easily provide a method for manufacturing a semiconductor device for controlling the purity of a chemical solution containing an organic solvent, and a method for cleaning a semiconductor manufacturing apparatus. Further, the present invention can provide a simpler method for measuring the cleanliness of a cleaning liquid.
  • preparation means to prepare a specific material by synthesizing or blending it, or to procure a predetermined material by purchasing or the like.
  • ppm means “parts-per-million ( 10-6 )
  • ppb means “parts-per-billion ( 10-9 )
  • ppt means “parts-per”. It means “ -trillion ( 10-12 )” and “ppq” means “parts-per-quadrillion (10-15)”.
  • Angles such as “angle represented by a specific numerical value”, “parallel”, and “orthogonal” include, unless otherwise specified, an error range generally acceptable in the art.
  • a chemical solution whose purity such as the amount of impurities is controlled is used for manufacturing a semiconductor device or cleaning a semiconductor manufacturing apparatus. Further, the present invention utilizes the control of purity such as the amount of impurities in the chemical solution for measuring the cleanliness of the cleaning solution.
  • the semiconductor manufacturing apparatus examples include a coater developer, a spin coater, a semiconductor wafer cleaning apparatus, a developing apparatus, and the like.
  • a specific semiconductor manufacturing apparatus will be described, but the present invention is not limited to the semiconductor manufacturing apparatus shown below.
  • FIG. 1 is a schematic diagram showing a first example of the semiconductor manufacturing apparatus according to the embodiment of the present invention.
  • the semiconductor manufacturing apparatus 60 shown in FIG. 1 is an apparatus for applying a resist liquid to the surface 86a of the semiconductor wafer 86.
  • the semiconductor manufacturing apparatus 60 includes a resist liquid supply unit 61a that supplies the resist liquid to the surface 86a of the semiconductor wafer 86 installed in the coating unit 80, and a rinse liquid supply unit 61b that supplies the rinse liquid to the surface 86a of the semiconductor wafer 86. And a back rinse portion 61c for supplying the rinse liquid to the back surface 86b of the semiconductor wafer 86.
  • the resist liquid supply unit 61a has, for example, a tank 62a, a pump 64a, a temperature controller 66a, a filter 68a, and a nozzle 70.
  • the tank 62a, the pump 64a, the temperature controller 66a, and the filter 68a are connected by a pipe 69a, and the nozzle 70 is connected to the end of the pipe 69a.
  • the tank 62a stores the resist liquid.
  • the pump 64a supplies the resist liquid in the tank 62a from the nozzle 70 to the surface 86a of the semiconductor wafer 86 through the temperature controller 66a and the filter 68a.
  • the temperature regulator 66a adjusts the temperature of the resist liquid.
  • the filter 68a removes impurities in the resist solution.
  • the resist liquid supply unit 61a may have a sackback in order to prevent the resist liquid from dropping.
  • the rinsing liquid supply unit 61b has, for example, a tank 62b, a pump 64b, a temperature controller 66b, a filter 68b, and a nozzle 71.
  • the tank 62b, the pump 64b, the temperature controller 66b, and the filter 68b are connected by a pipe 69b, and the nozzle 71 is connected to the end of the pipe 69b.
  • the rinse liquid supply unit 61b is different from the resist liquid supply unit 61a except that the rinse liquid is supplied to the end of the surface 86a of the semiconductor wafer 86 instead of the resist liquid and the nozzle 71 is arranged at a different position. It has the same configuration as the resist liquid supply unit 61a.
  • the rinse liquid is stored in the tank 62b.
  • the pump 64b supplies the rinsing liquid in the tank 62b from the nozzle 71 to the surface 86a of the semiconductor wafer 86 through the temperature controller 66b and the filter 68b.
  • the temperature regulator 66b adjusts the temperature of the rinsing liquid.
  • the rinsing liquid supply unit 61b may have a sackback in order to prevent the rinsing liquid from dropping.
  • the back rinse unit 61c has the same configuration as the rinse liquid supply unit 61b except for the arrangement position of the nozzle 72.
  • the tank 62c, pump 64c, temperature regulator 66c, filter 68c, pipe 69c and nozzle 72 of the back rinse unit 61c are the tank 62b, pump 64b, temperature controller 66b, filter 68b, pipe 69b and nozzle of the rinse liquid supply unit 61b. It has the same configuration as 71.
  • the rinse liquid is stored in the tank 62c, and the rinse liquid in the back rinse portion 61c is also referred to as a back rinse liquid.
  • the form of the tanks 62a, 62b, 62c is not particularly limited, and can be arbitrarily selected from the form used as a container for accommodating the chemical solution according to the amount of the chemical solution to be accommodated and the like.
  • the container may be, for example, a bottle-shaped container having a capacity of several hundred mL to about 20 L (eg, "Pure Bottle (manufactured by Kodama Resin Industry Co., Ltd.)"; a drum or a pail having a capacity of about 20 to about 200 L (eg).
  • “Pure Drum” and “Pure Pale” are both manufactured by Kodama Resin Industry Co., Ltd.); Tote with a capacity of about 1000 L (Example: “Power Tote” manufactured by Kodama Resin Industry Co., Ltd.); Tank container with a capacity of approximately 15,000 to 25,000 L ( Examples include “ISO containers” whose size is defined by the international standard ISO.)
  • the tank is not limited to the above, and the capacity and shape of the tank can be changed arbitrarily. Is.
  • the type of the pump is not particularly limited, and examples thereof include a positive displacement pump, a mixed flow pump, an axial flow pump, and a centrifugal pump.
  • the temperature regulators 66a, 66b, 66c are not particularly limited, and may be provided on the outside of the pipe or may be a so-called in-line type heater provided on the inside of the pipe.
  • the coating unit 80 has a storage container 82.
  • a support base 83 on which the semiconductor wafer 86 is placed is provided in the storage container 82.
  • the support base 83 fixes the semiconductor wafer 86 by, for example, vacuum suction.
  • the drive shaft 84 is provided on the support base 83.
  • the drive shaft 84 is connected to the motor 85.
  • the drive shaft 84 is rotated by the motor 85, the support base 83 is rotated, and the semiconductor wafer 86 is rotated.
  • the nozzle 70 for supplying the resist liquid is arranged on the support base 83.
  • the nozzle 71 for supplying the rinsing liquid is arranged at a position on the peripheral edge of the semiconductor wafer 86.
  • the nozzle 72 is arranged so as to face the nozzle 71.
  • the resist liquid is dropped from the nozzle 70 onto the surface 86a of the fixed semiconductor wafer 86. Then, the semiconductor wafer 86 is rotated by the motor 85 at a predetermined rotation speed. A resist film is formed on the surface 86a of the semiconductor wafer 86 by utilizing centrifugal force. Next, the rinse liquid is continuously supplied from the nozzle 71 until the resist film on the peripheral edge of the rotating semiconductor wafer 86 is removed, and the resist film on the peripheral edge of the semiconductor wafer 86 is removed. Further, when forming the resist film, the resist liquid may wrap around the back surface 86b of the semiconductor wafer 86.
  • the rinsing liquid is supplied from the nozzle 72 to the back surface 86b of the semiconductor wafer 86 to remove the resist liquid.
  • the semiconductor wafer 86 is removed from the support base 83, and the semiconductor wafer 86 is conveyed to, for example, a prebake portion of a photoresist by an automatic transfer mechanism (not shown). The next step is carried out.
  • a resist liquid and a rinse liquid are used.
  • the rinse liquid is controlled by measuring the amount of change in the resonance frequency as described later.
  • the amount of change in the resonance frequency correlates with the amount of impurities in the rinse liquid.
  • a rinsing solution in which the purity such as the amount of impurities is controlled can be used more easily.
  • a chemical solution in which the amount of change in the resonance frequency is controlled as described later is used for cleaning the semiconductor manufacturing apparatus. In this way, the chemical solution whose purity such as the amount of impurities is controlled can be more easily used for cleaning.
  • FIG. 2 is a schematic diagram showing a second example of the semiconductor manufacturing apparatus according to the embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a cleaning portion of the semiconductor wafer of the second example of the semiconductor manufacturing apparatus according to the embodiment of the present invention. It is a figure.
  • the semiconductor manufacturing apparatus 90 shown in FIG. 2 is a cleaning apparatus for a semiconductor wafer 86.
  • the semiconductor manufacturing apparatus 90 includes a tank 92, a pump 94, a temperature controller 96, a filter 98, a nozzle 100, and a cleaning unit 110.
  • the tank 92, the pump 94, the temperature controller 96, and the filter 98 are connected by a pipe 99, and the nozzle 100 is connected to the end of the pipe 99.
  • the tank 92 stores the cleaning liquid.
  • the pump 94 supplies the cleaning liquid in the tank 92 from the nozzle 100 to the surface 86a of the semiconductor wafer 86 through the temperature controller 96 and the filter 98.
  • the temperature controller 96 adjusts the temperature of the cleaning liquid.
  • the filter 98 removes impurities in the cleaning liquid.
  • the cleaning unit 110 has a storage container 112.
  • a support 114 on which the semiconductor wafer 86 is placed is provided in the storage container 112.
  • the support 114 fixes the semiconductor wafer 86 by vacuum suction or the like.
  • the drive shaft 115 is provided on the support base 114.
  • the drive shaft 115 is connected to the motor 116.
  • the drive shaft 115 is rotated by the motor 116, the support 114 is rotated, and the semiconductor wafer 86 is rotated.
  • the nozzle 100 for supplying the cleaning liquid is arranged on the support base 114.
  • the semiconductor manufacturing apparatus 90 rotates the semiconductor wafer 86 by a motor 116 at a predetermined rotation speed. While rotating the semiconductor wafer 86, the semiconductor wafer 86 is cleaned by supplying the cleaning liquid from the nozzle 100 to the surface 86a of the semiconductor wafer 86 through the temperature controller 96 and the filter 98 by the pump 94.
  • a cleaning liquid is used.
  • the cleaning liquid is controlled by measuring the amount of change in the resonance frequency as described later.
  • the amount of change in the resonance frequency correlates with the amount of impurities in the cleaning liquid.
  • the cleaning liquid whose purity is controlled can be used more easily.
  • a chemical solution in which the amount of change in the resonance frequency is controlled as described later is used for cleaning the semiconductor manufacturing apparatus.
  • a cleaning liquid in which the purity such as the amount of impurities is controlled can be used more easily.
  • the semiconductor manufacturing apparatus is not limited to the above, and may be a developing apparatus that removes an unexposed portion after pattern-exposing the resist film.
  • the developing apparatus stores the developing solution in the tank 92.
  • the developer is supplied to the resist film on the surface 86a of the semiconductor wafer 86 without rotating the semiconductor wafer 86 having the resist film formed on the surface 86a.
  • the semiconductor wafer 86 is rotated to spread the developer over the entire surface of the resist film. After the developer spreads over the entire surface of the resist film, the rotation of the semiconductor wafer 86 is stopped. The unexposed area is dissolved and removed with a developing solution.
  • the semiconductor wafer 86 is rotated at a higher speed than spreading the developer over the entire surface of the resist film to remove the developer. As a result, an exposure pattern is formed on the resist film.
  • the developer remaining on the semiconductor wafer 86 may be removed by using, for example, pure water while maintaining the rotation of the semiconductor wafer 86.
  • the semiconductor manufacturing apparatus may be capable of performing a rinsing step following development.
  • the rinsing step is a step of applying a rinsing solution to the resist film after the developing step.
  • gas pressure feeding may be used without using a pump for transporting the liquid in the tank.
  • a configuration without a temperature controller or a filter The arrangement order of the pump, the temperature controller, and the filter is not particularly limited. Further, a configuration having a plurality of filters and the like may be used.
  • flushing cleaning is performed by flowing a chemical solution from the tank.
  • the parts to be cleaned are all parts from the tank to the nozzle. That is, the liquid feeding pipe, the wetted surface inside the pump, the wetted surface inside the temperature controller, the inner wall of the filter housing and the filter itself, the wetted portion of the nozzle, and the wetted portion of the tank.
  • a chemical solution containing an organic solvent as a main component is used in a method for manufacturing a semiconductor device, a method for cleaning a semiconductor manufacturing apparatus, and a method for measuring the cleanliness of the cleaning solution.
  • the chemical solution is used in, for example, a developing solution, a rinsing solution, and a pre-wet solution.
  • the chemical solution is used for an edge rinse solution, a back rinse solution, a resist stripping solution and thinner for dilution.
  • the pre-wet liquid is supplied on the semiconductor wafer before forming the resist film, makes it easy to spread the resist liquid on the semiconductor wafer 86, and forms a uniform resist film by supplying a smaller amount of the resist liquid. Is what is used for.
  • the above-mentioned edge rinsing liquid is a rinsing liquid that is supplied to the peripheral portion of the semiconductor wafer and used for removing the resist film on the peripheral portion of the semiconductor wafer.
  • nBA butyl acetate
  • Butyl acetate (nBA) can also be used for cleaning pipes, cleaning liquids for semiconductor wafers, and the like, in addition to developing solutions.
  • MIBC 4-methyl-2-pentanol
  • MIBC 4-methyl-2-pentanol
  • PGMEA Propylene glycol monomethyl ether acetate
  • IPA isopropanol
  • Cyclohexanone (CHN) is used as the pre-wet solution.
  • FIG. 4 is a schematic view showing an example of a measuring device according to an embodiment of the present invention
  • FIG. 5 is a schematic cross-sectional view showing a first example of a crystal oscillator sensor according to an embodiment of the present invention
  • the measuring device 10 shown in FIG. 4 is a device that senses impurities in a chemical solution containing an organic solvent.
  • the measuring device 10 can be used to control the purity of the target chemical solution.
  • the measuring device 10 includes a flow cell unit 12, an oscillation unit 14, a detection unit 15, a calculation unit 16, a memory 18, a supply unit 20, and a control unit 22.
  • the measuring device 10 further includes a display unit 23, an output unit 24, and an input unit 25.
  • the control unit 22 controls the operations of the flow cell unit 12, the oscillation unit 14, the detection unit 15, the calculation unit 16, the memory 18, and the supply unit 20. Further, the control unit 22 controls each component of the measuring device 10 based on the operation control of the display unit 23 and the output unit 24 and the input information from the input unit 25.
  • the flow cell unit 12 maintains the temperature of the crystal oscillator sensor 26 including the adsorption layer 34 (see FIG. 5) and the crystal oscillator 27 (see FIG. 5) that adsorb impurities, and the target chemical solution supplied to the flow cell unit 12. It has a temperature adjusting unit 28 for the purpose.
  • the flow cell unit 12 will be described in detail later.
  • the oscillation unit 14 is electrically connected to the crystal oscillator sensor 26.
  • the oscillating unit 14 vibrates the crystal oscillator 27 at a resonance frequency.
  • the oscillating unit 14 applies a high-frequency signal of a sine wave to the crystal oscillator sensor 26 as a frequency signal, and has an oscillating circuit (not shown).
  • the detection unit 15 is electrically connected to the oscillation unit 14.
  • the detection unit 15 measures the resonance frequency of the crystal oscillator 27 and detects the amount of change in the resonance frequency of the crystal oscillator due to contact with the target chemical solution.
  • the detection unit 15 may detect the difference in the amount of change in the plurality of resonance frequencies obtained by using the plurality of adsorption layers, which will be described later.
  • the detection unit 15 takes in the frequency signal of the oscillation unit 14, samples the frequency signal every second, for example, and stores it in the memory 18 as time-series data.
  • the memory 18 stores the measurement time and the frequency tolerance.
  • the detection unit 15 measures the resonance frequency of the crystal oscillator 27 based on the measurement time and the frequency tolerance, and detects the amount of change in the resonance frequency of the crystal oscillator due to the contact of the target chemical solution.
  • the measurement time is the time required to obtain the amount of change in the resonance frequency due to the contact of impurities with the adsorption layer 34.
  • the measurement time is not particularly limited and is appropriately determined according to the supply flow rate of the target drug solution and the like. For example, 10 minutes or more is preferable, and 30 minutes or more is preferable.
  • the upper limit is not particularly limited, but from the viewpoint of productivity, 3 hours or less is preferable, and 2 hours or less is more preferable.
  • the frequency tolerance is a threshold value for determining whether or not the value that is an index of frequency stabilization has become a sufficiently small value corresponding to stabilization when determining whether or not the frequency is stable.
  • the frequency tolerance is appropriately set according to, for example, the set measurement sensitivity. For example, when the resonance frequency is 30 MHz, the error range allowed in the measurement time when the measurement sensitivity is 5 Hz is, for example, It is set to 0.5 Hz. This corresponds to 0.0167 ppm. The permissible value corresponding to this error range is 1.67 ⁇ 10-8 (0.0167 ppm) or less.
  • the detection unit 15 detects the frequency by, for example, a frequency counter which is a known circuit.
  • a frequency signal is analog-digitally converted and processed by a carrier move to generate a rotation vector that rotates at the frequency of the frequency signal, and this rotation vector is generated.
  • the frequency may be detected by using a method such as finding the speed of. In the detection unit 15, it is preferable to use such digital processing because the frequency detection accuracy is high.
  • the calculation unit 16 reads out the permissible range of the change amount of the resonance frequency based on the purity of the target chemical solution stored in the memory 18 in advance, and the permissible range of the change amount of the resonance frequency stored in the memory 18 and the detection unit.
  • the purity of the chemical solution is controlled by comparing it with the amount of change in the resonance frequency obtained in 15. For example, by the above comparison, if it is within the permissible range, the display unit 23 indicates that the purity of the chemical solution is within the permissible range. On the other hand, if it exceeds the permissible range, the display unit 23 indicates that the purity of the chemical solution exceeds the permissible range.
  • the memory 18 stores the above-mentioned change amount of the resonance frequency based on the preset purity of the target chemical solution and its allowable range.
  • the memory 18 may store the resonance frequency of the crystal oscillator and the like. As will be described later, in a configuration in which a plurality of electrodes are provided on the crystal oscillator, the difference between the resonance frequency of each electrode and the resonance frequency between the electrodes may be stored.
  • the amount of change in the resonance frequency stored in the memory 18 for example, as shown in FIG. 6, a calibration curve L showing the relationship between the amount of impurities in the specific target chemical solution and the resonance frequency of the crystal transducer 27 is obtained.
  • the relationship between the amount of impurities in the specific target chemical solution and the amount of change in the resonance frequency can be obtained.
  • the allowable range for the calibration curve L the allowable range of the change amount of the resonance frequency can be set.
  • the amount of impurities on the calibration curve L shown in FIG. 6 is, for example, the amount of impurities measured using a surface inspection device. More specifically, after applying a predetermined amount of the target chemical solution and a predetermined substrate (for example, a silicon wafer), the number of defects on the substrate coated with the target chemical solution is measured using a surface inspection device. , The number of defects obtained can be used as the amount of impurities.
  • a surface inspection device there is a device that irradiates a substrate coated with a target chemical solution with a laser beam, detects a laser beam scattered by a defect existing on the substrate, and detects impurities existing on the substrate. Be done. By measuring while rotating the substrate during irradiation with the laser beam, the coordinate position of the defect can be determined from the rotation angle of the substrate and the radial position of the laser beam. Examples of such a device include "SP-5" manufactured by KLA Tencor, but in addition to this, a surface inspection device (typically "SP-5") having a resolution higher than that of "SP-5". It may be a successor machine, etc.).
  • the display unit 23 displays the amount of change in the resonance frequency obtained by the calculation unit 16, and is composed of, for example, a display.
  • the display is not particularly limited as long as it can display characters and images, and a liquid crystal display device or the like is used. Further, what is displayed on the display unit 23 is not limited to the amount of change in the obtained resonance frequency, but may be a resonance frequency, and as will be described later, a plurality of resonances obtained by using a plurality of adsorption layers. The difference in the amount of change in frequency may be used, and various setting items and input information set by the measuring device 10 may be displayed.
  • the output unit 24 displays the obtained change amount of the resonance frequency, the resonance frequency, or the like on the medium.
  • the output unit 24 is composed of a printer or the like.
  • the output unit 24 can obtain an information display unit on which the resonance frequency information of the chemical solution of the set described later is displayed.
  • the input unit 25 is various input devices for inputting various information such as a mouse and a keyboard according to an operator's instruction. For example, the setting of the measuring device 10 and the recall of data from the memory 18 are performed via the input unit 25.
  • the input unit 25 also includes an interface for inputting information to be stored in the memory 18, and the information is stored in the memory 18 through an external storage medium or the like.
  • the measuring device 10 only needs to be able to obtain the obtained change amount of the resonance frequency, and is not necessarily required to have a configuration other than obtaining the change amount of the resonance frequency. From this, for example, the calculation unit 16 is necessary in the management method, but is not always necessary in the measuring device 10 for obtaining the amount of change in the resonance frequency.
  • the flow cell unit 12 is a sensing unit that senses impurities in a chemical solution containing an organic solvent.
  • the flow cell unit 12 is connected to the supply unit 20 by using a first tube 29a and a second tube 29b.
  • the target chemical solution passes through the first tube 29a by the supply unit 20, the target chemical solution is supplied to the crystal oscillator, the target chemical solution is passed through the second tube 29b, and the target chemical solution is collected.
  • the supply unit 20 allows the target chemical solution to pass through the first tube 29a and the second tube 29b without coming into contact with the target chemical solution, and for example, a peristaltic pump is used.
  • the supply unit 20 is not particularly limited as long as it can supply the liquid without coming into contact with the target drug solution, and for example, a syringe pump can be used.
  • the temperature control unit 28 has, for example, a Pelche element.
  • the temperature of the target drug solution is maintained by the Pelche element.
  • the temperature of the target chemical solution can be kept constant, and the viscosity of the target chemical solution can be kept within a constant range. Fluctuations in purity measurement conditions can be reduced. Therefore, it is preferable to keep the temperature of the target chemical solution constant and measure the amount of change in the resonance frequency.
  • the configuration of the temperature adjusting unit 28 is not particularly limited as long as the temperature of the target chemical solution can be maintained. When the temperature of the target chemical solution is kept constant, the temperature is preferably ⁇ 0.5 ° C., more preferably ⁇ 0.3 ° C., and even more preferably ⁇ 0.1 ° C. with respect to the set temperature.
  • the crystal oscillator sensor 26 has a crystal oscillator 27.
  • the crystal oscillator 27 has, for example, a disk shape, and an electrode 30 is provided on the front surface 27a of the crystal oscillator 27, and an electrode 31 is provided on the back surface 27b. Is provided.
  • An adsorption layer 34 for adsorbing impurities is provided on the surface 27a of the crystal oscillator 27 and on the surface 30a of the electrode 30.
  • the target chemical solution containing an organic solvent as a main component is brought into contact with the adsorption layer 34.
  • As the crystal oscillator 27, for example, an AT-cut type crystal oscillator is used as the crystal oscillator 27.
  • the AT-cut type crystal oscillator is an oscillator cut out at an angle of 35 ° 15'from the Z axis of the artificial quartz.
  • the crystal oscillator sensor 26 is not limited to the configuration shown in FIG.
  • the oscillating unit 14 is electrically connected to the electrode 30 and the electrode 31.
  • the oscillating unit 14 applies a high-frequency signal of a sine and cosine to the electrode 30 and the electrode 31 as a frequency signal, and has, for example, an oscillating circuit.
  • the crystal oscillator 27 vibrates at the resonance frequency due to the oscillating unit 14.
  • the resonance frequency of the crystal oscillator 27 is, for example, 27 MHz or 30 MHz.
  • the adsorption layer 34 is composed of, for example, Si, Au, SiO 2 , SiOC, Cu, Co, W, Ti, TiN, Ta, TaN and at least one of the photosensitive resin compositions.
  • the types of impurities that are easily adsorbed differ depending on the material that constitutes the adsorption layer.
  • the surface inspection device is used to measure the number of defects.
  • the substrate to which the chemical solution is applied and the adsorption layer are made of the same material. That is, when the Si layer is used as the adsorption layer, it is preferable to use a Si substrate (silicon wafer) as the substrate.
  • the adsorption layer 34 can be formed by a vapor phase method such as a sputtering method, a CVD (chemical vapor deposition) method, a coating method, or the like.
  • the type of the photosensitive resin composition is not particularly limited, and examples thereof include known photosensitive resin compositions.
  • Examples of the components contained in the photosensitive resin composition include a resin having a group that produces a polar group by the action of an acid, and a photoacid generator.
  • the above-mentioned photosensitive resin composition may further contain a basic compound, a hydrophobic resin and the like.
  • the resonance frequency of the crystal oscillator 27 changes depending on the amount of impurities adsorbed on the adsorption layer 34.
  • the amount of change in the resonance frequency can be obtained.
  • the amount of change ⁇ F in the resonance frequency of the crystal oscillator 27 can be expressed by the following equation called the Sauerbrey equation.
  • F 0 is the resonance frequency
  • ⁇ m is the amount of change in mass
  • is the density of the crystal
  • is the shear stress of the crystal
  • A is the area of the electrode. From the following equation, the mass detection sensitivity can be increased, that is, the measurement accuracy of impurities can be increased by increasing the resonance frequency F0 of the crystal oscillator.
  • FIG. 7 is a schematic diagram showing an example of a flow cell unit of the measuring device according to the embodiment of the present invention.
  • the crystal oscillator sensor 26 is arranged on the temperature adjusting unit 28 via the sealing unit 43.
  • a seal portion 42 is provided on the crystal oscillator sensor 26 along the periphery of the crystal oscillator 27.
  • the block 40 is arranged on the seal portion 42.
  • the block 40 is provided with a supply path 40a for supplying the target chemical solution to the crystal oscillator sensor 26.
  • the supply path 40a is connected to the first tube 29a.
  • the block 40 is provided with a discharge path 40b for discharging the target chemical solution from the crystal oscillator sensor 26.
  • the discharge path 40b is connected to the second tube 29b. That is, the flow cell unit 12 is arranged on the crystal oscillator sensor 26 via the seal portion 42 arranged on the crystal oscillator sensor 26 and the seal portion 42, and supplies the target chemical solution to the crystal oscillator sensor 26.
  • the block 40 provided with the passage 40a and the discharge passage 40b for discharging the target chemical solution from the crystal oscillator sensor 26, and the first tube 29a connected to the supply passage 40a and the second tube 29b connected to the discharge passage 40b. It further has a liquid feeding unit made of.
  • the target chemical solution that has passed through the first tube 29a and the supply path 40a is supplied to the region 44 formed by being surrounded by the crystal oscillator sensor 26, the seal portion 42, and the block 40.
  • the seal portion 42 is arranged on the outside of the region 44.
  • the target chemical solution comes into contact with the adsorption layer 34 on the surface 30a of the electrode 30 of the crystal oscillator 27 of the crystal oscillator sensor 26. Further, the target chemical solution passes through the discharge path 40b and the second tube 29b, and is discharged from the region 44.
  • the circulation line is composed of the first tube 29a and the discharge path 40b, and the second tube 29b and the discharge path 40b.
  • the movement of the target drug solution between the first tube 29a and the supply path 40a and the second tube 29b and the discharge path 40b is performed by the supply unit 20 (see FIG. 4) as described above.
  • the seal portion 42 and the seal portion 43 have the same size, and are composed of, for example, an O-ring.
  • the target chemical solution is not supplied to the region 45 formed by being surrounded by the crystal oscillator sensor 26, the seal portion 43, and the temperature adjusting portion 28.
  • the flow cell unit 12 by forming at least a part of the wetted portion in contact with the target chemical solution with a fluororesin, elution to the target chemical solution can be suppressed and a decrease in purity measurement accuracy can be suppressed, which is preferable.
  • the surface formed by being surrounded by the above-mentioned crystal oscillator sensor 26, the seal portion 42, and the block 40 and forming the region 44 for holding the target chemical solution on the crystal oscillator sensor 26 is a target. It corresponds to a part of the wetted part that comes into contact with the chemical solution.
  • the portion of the liquid feeding section that feeds the target drug solution to the crystal oscillator sensor is also a wetted portion. It is preferable that at least a part of these wetted parts is made of a fluororesin.
  • Examples of the liquid feeding unit include a supply line that feeds liquid in one direction and a circulation line that circulates and supplies the target chemical liquid to the crystal oscillator sensor. More specifically, the wetted part touches the surface 40c in contact with the area 44 of the block 40 of the flow cell unit 12, and the area 44 of the seal part 42 that holds the target chemical liquid arranged on the crystal oscillator sensor 26 in the area 44.
  • the surface 42a, the supply path 40a of the block 40, and the discharge path 40b of the block 40 which are portions.
  • the inside of the first tube 29a and the inside of the second tube 29b are also wetted parts in contact with the target chemical solution, and the portions of the first tube 29a and the second tube 29b in contact with the target chemical solution are made of a fluororesin. It is preferable to do so. Among them, at least a part of the wetted portion in contact with the target chemical solution of the seal portion 42, the wetted portion in contact with the target chemical solution of the block 40, and the wetted portion in contact with the target chemical solution of the liquid feeding portion is composed of a fluororesin. Is preferable.
  • the fluorine-based resin may be any resin containing a fluorine atom.
  • the fluorine-based resin is not particularly limited as long as it is a resin (polymer) containing a fluorine atom, and a known fluorine-based resin can be used.
  • the fluororesin include polytetrafluoroethylene (PTFE, tensile strength: 20 to 35 MPa, shore D hardness: 50 to 55), perfluoroalkoxyalkane, polychlorotrifluoroethylene, polyvinylidene fluoride, and ethylene tetrafluoroethylene.
  • Examples thereof include copolymers, ethylene chlorotrifluoroethylene copolymers, perfluoroethylene propene copolymers, tetrafluoroethylene perfluoroalkyl vinyl ether copolymers, and cyclized polymers of perfluoro (butenyl vinyl ether) (Cytop®). ..
  • the tensile strength of the above-mentioned fluororesin is 20 to 60 MPa. Is preferable. Further, the shore D hardness of the above-mentioned fluororesin is preferably 60 to 80. Examples of the fluororesin constituting the wetted portion in contact with the target chemical solution of the block 40 include perfluoroalkoxy alkane (PFA, tensile strength: 25 to 35 MPa, shore D hardness: 62 to 66), ethylene tetrafluoroethylene copolymer (ETFE,).
  • PFA perfluoroalkoxy alkane
  • ETFE ethylene tetrafluoroethylene copolymer
  • the tensile strength is measured according to JIS (Japanese Industrial Standards) K 7161.
  • the shore D hardness is measured according to JIS K 7215.
  • the fluorine-based resin constituting the wetted part (the part in contact with the target chemical) in contact with the target chemical in the liquid feeding part that sends the target chemical to the region 44 includes a fluorine atom, a carbon atom, and a fluorine atom and a carbon atom. It is preferable to have a repeating unit containing other atoms other than the above (hereinafter, also simply referred to as “specific repeating unit”). Examples of the above-mentioned other atom include a hydrogen atom and a chlorine atom. That is, the specific repeating unit preferably contains a fluorine atom, a carbon atom, and at least one other atom selected from the group consisting of a hydrogen atom and a chlorine atom.
  • fluororesin constituting the portion of the liquid feeding portion in contact with the target chemical solution examples include a ternary copolymer (THV soft fluororesin) of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride, polyvinylidene fluoride, and ethylene. Tetrafluoroethylene copolymer or polychlorotrifluoroethylene is preferable.
  • TSV soft fluororesin ternary copolymer
  • Tetrafluoroethylene copolymer or polychlorotrifluoroethylene is preferable.
  • the method for measuring the tensile strength and the shore D hardness is as described above.
  • the portion of the seal portion 42 that holds the target chemical solution arranged on the crystal oscillator sensor 26 in contact with the target chemical solution is preferably made of a fluororesin.
  • the tensile strength of the fluororesin constituting the portion of the sealing portion 42 in contact with the target chemical solution is preferably 20 to 40 MPa.
  • the shore D hardness of the fluororesin constituting the portion of the seal portion 42 in contact with the target chemical solution is preferably 56 to 70.
  • the flexural modulus of the fluororesin constituting the portion of the seal portion 42 in contact with the target chemical solution is preferably 0.5 to 3 GPa.
  • the vibration of the crystal oscillator sensor 26 is not hindered and is more stable. Can be carried out.
  • the method for measuring the tensile strength and the shore D hardness is as described above.
  • the method for measuring the flexural modulus is according to JIS K 7171.
  • fluororesin constituting the portion of the seal portion 42 in contact with the target chemical solution examples include perfluoroalkoxyalkane, perfluoroethylenepropene copolymer, ethylenechlorotrifluoroethylene copolymer, ethylenetetrafluoroethylene copolymer, and polychlorotrifluoroethylene.
  • polyvinylidene fluoride is preferable.
  • the supply unit 20 circulates the target drug solution by using the first tube 29a and the second tube 29b, but the present invention is not limited to this, and a method of flowing the target drug solution in one direction may be used. .. In this case, for example, a syringe pump can be used.
  • the circulation flow rate of the target chemical solution is preferably 0.01 to 1000 ml / s.
  • the circulation flow rate is 0.01 to 1000 ml / s, a sufficient amount of impurities to be detected can be attached to the surface of the adsorption layer 34.
  • the arrangement of the crystal oscillator sensor 26 in the flow cell unit 12 is not particularly limited.
  • step 1 in which the vibrator is brought into contact with a chemical solution containing an organic solvent as a main component to obtain the amount of change in the resonance frequency of the vibrator due to the contact of the chemical solution, and the amount of change in the resonance frequency of the chemical solution is It has a step 2 for confirming whether the change amount of the resonance frequency based on the preset purity of the chemical solution is included in the allowable range, and a step 3 for using the chemical solution confirmed in the step 2 for manufacturing a semiconductor device. ..
  • step 1 there may be a step of preparing a chemical solution containing an organic solvent as a main component.
  • the target chemical solution sends the target chemical solution to the crystal oscillator sensor and brings them into contact with each other, as in the above-mentioned measuring device.
  • the target chemical solution may be adhered to the crystal oscillator sensor by flowing the target chemical solution in one direction. Further, the target chemical solution may be circulated and supplied to the crystal oscillator, and the circulating flow rate of the target chemical solution may be 0.01 to 1000 ml / s.
  • a chemical solution is circulated and supplied.
  • a chemical solution containing an organic solvent whose purity is controlled is prepared, and the target chemical solution is stored in the supply unit 20 of the measuring device 10.
  • the target chemical solution contains impurities.
  • the target chemical solution is supplied from the supply unit 20 to the flow cell unit 12 through the supply passage 40a of the first tube 29a and the block 40 to the region 44, and passes through the discharge passage 40b and the second tube 29b of the block 40.
  • the solution is returned to the supply unit 20, passed through the supply path 40a of the first tube 29a and the block 40 again, and supplied to the region 44 repeatedly.
  • the target chemical solution is circulated and supplied to the crystal oscillator 27 and brought into contact with the adsorption layer 34 of the crystal oscillator 27. At this time, it is preferable to keep the temperature of the target chemical solution constant.
  • a sinusoidal high-frequency signal is applied as a frequency signal from the oscillating unit 14 to the crystal oscillator sensor 26, the crystal oscillator 27 is vibrated at a resonance frequency before the target chemical solution is supplied, and resonance occurs before the target chemical solution is supplied.
  • the frequency is obtained by the detection unit 15. Then, for example, after supplying the target chemical solution to the crystal oscillator 27 for a predetermined time, the detection unit 15 obtains the resonance frequency and then obtains the amount of change in the resonance frequency (step 1). That is, the amount of change in the resonance frequency can be obtained by carrying out the method for measuring the chemical solution having step 1.
  • the amount of change in the resonance frequency obtained by the detection unit 15 is output to the calculation unit 16 and stored in the calculation unit 16.
  • step 1 has a step of sending the target chemical solution to the crystal oscillator sensor 26 to bring the target chemical solution into contact with the crystal oscillator sensor 26.
  • the calculation unit 16 reads out the permissible range of the change amount of the resonance frequency based on the purity of the target chemical solution stored in the memory 18 in advance, and the permissible range of the change amount of the resonance frequency stored in the memory 18 and the detection unit. It is confirmed whether it is included in the permissible range by comparing it with the amount of change in the resonance frequency obtained in step 15 (step 2). As a result, the purity of the chemical solution is controlled. For example, by the above comparison, if it is within the permissible range, the display unit 23 indicates that the purity of the chemical solution is within the permissible range.
  • the display unit 23 indicates that the purity of the chemical solution exceeds the permissible range. In this way, the purity of the chemical solution can be easily obtained, and the purity of the target chemical solution can be controlled based on the obtained purity. This makes it possible to control the quality of the chemical solution.
  • the amount of change in the resonance frequency stored in the memory 18 and its allowable range can be obtained, for example, based on the calibration curve L shown in FIG. 6 as described above.
  • the chemical solution confirmed to be included in the allowable range of the change in the resonance frequency is used for manufacturing the semiconductor device (step 3).
  • butyl acetate (nBA) is stored in the tank 92 as a developing solution.
  • Butyl acetate (nBA) is supplied as a developing solution to an exposed resist film (not shown) formed on the semiconductor wafer 86, and then the semiconductor wafer 86 is rotated to apply the developing solution to the entire surface of the resist film. spread.
  • the resist film is a negative resist film, the unexposed portion is dissolved and removed with a developing solution.
  • the resist film is a positive resist film, the exposed portion is dissolved and removed with a developing solution.
  • the semiconductor wafer 86 is rotated at a higher speed than spreading the developer over the entire surface of the resist film to remove the developer. As a result, an exposure pattern is formed on the resist film. While maintaining the rotation of the semiconductor wafer 86, for example, pure water may be used to remove the developer remaining on the semiconductor wafer 86.
  • the semiconductor wafer 86 is transferred to the next processing step. In this way, it is used for manufacturing semiconductor devices. For example, by using it for developing a resist film, it can be developed without impurities or the like in the resist film.
  • the development of the resist film is one step of the lithography process. Further, when forming the resist film, it is also possible to use a rinsing liquid in which the amount of change in the resonance frequency is within an allowable range.
  • the formation of this resist film is also one step of the lithography process.
  • concentration is preferably 3 times or more, more preferably 100 times or more.
  • the upper limit of concentration is 10,000 times.
  • the concentration of the chemical solution is performed, for example, by heating and vaporizing the chemical solution.
  • the measurement accuracy of the amount of change in the resonance frequency can be further improved, and a higher correlation between the amount of impurities in the chemical solution and the amount of change in the resonance frequency can be obtained.
  • the washing step of the vibrator it is preferable to use the same kind of chemical solution to be measured for cleaning the vibrator.
  • the chemical solution used for cleaning preferably has 3 or less defects as measured by a surface inspection device (SP-5; manufactured by KLA Tencor).
  • the semiconductor device includes the following.
  • the semiconductor device is not particularly limited, and is, for example, a logic LSI (Large Scale Integration) (for example, ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), ASSP (Application Specific Standard Product), etc.).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • ASSP Application Specific Standard Product
  • Microprocessor for example, CPU (Central Processing Unit), GPU (Graphics Processing Unit), etc.), memory (for example, DRAM (Dynamic Random Access Memory), HMC (Hybrid Memory Cube), MRAM (Magnetic RAM) and PCM (Phase-Change Memory), ReRAM (Resistive RAM: Resistive Random Memory), FeRAM (Ferroelectric RAM: Ferroelectric RAM), Flash Memory (NAND (Not AND) Flash), etc.), LED (Light Emitting) Diode), (for example, microflash of mobile terminal, in-vehicle, projector light source, LCD backlight, general lighting, etc.), power device, analog IC (Integrated Circuit), (for example, DC (Direct Current) -DC (Direct) Current) converters, isolated gate bipolar transistors (IGBTs), etc.), MEMS (Micro Electro Mechanical Systems), (eg, acceleration sensors, pressure sensors, oscillators, gyro sensors, etc.), wireless (eg, GPS (Global Positioning System), FM (Fre
  • the chemical solution whose purity is controlled by sensing impurities in the chemical solution containing an organic solvent is used for cleaning the semiconductor manufacturing equipment.
  • the cleaning method for the semiconductor manufacturing equipment consists of step 1 in which the vibrator is brought into contact with a chemical solution containing an organic solvent as a main component to obtain the amount of change in the resonance frequency of the vibrator due to the contact of the chemical solution, and the amount of change in the resonance frequency of the chemical solution.
  • Step 2 to confirm whether the chemical solution is included in the allowable range of the change in resonance frequency based on the preset purity of the chemical solution
  • step 3 to use the chemical solution confirmed in step 2 for cleaning the semiconductor manufacturing apparatus.
  • step 1 there may be a step of preparing a chemical solution containing an organic solvent as a main component.
  • the method for cleaning the semiconductor manufacturing apparatus is the same as the method for manufacturing the semiconductor device described above, except that the chemical solution confirmed in step 2 is used for cleaning the semiconductor manufacturing apparatus (step 3).
  • the semiconductor manufacturing apparatus 90 shown in FIG. 3 is cleaned.
  • isopropanol (IPA) is stored in the tank 92 as a cleaning liquid.
  • Isopropanol (IPA) is supplied as a cleaning liquid onto the semiconductor wafer 86, and then the semiconductor wafer 86 is rotated to spread the cleaning liquid over the entire surface of the semiconductor wafer 86 for cleaning.
  • the semiconductor wafer 86 is removed and transferred to the next step.
  • the isopropanol (IPA) confirmed in step 2 is stored in the tank 92, and the isopropanol (IPA) is passed through the pump 94, the temperature controller 96, the filter 98, and the nozzle 100 to pass the nozzle. Isopropanol (IPA) is discharged from 100. In this way, the semiconductor manufacturing apparatus 90 is cleaned.
  • the method for measuring the cleanliness of the cleaning liquid is step 1 in which the transducer and the chemical solution containing an organic solvent as a main component are brought into contact with each other to obtain the amount of change in the resonance frequency of the transducer due to the contact of the chemical solution, and the change in the resonance frequency of the chemical solution.
  • the method for measuring the cleanliness of the cleaning liquid includes a step 4 in which the chemical solution confirmed in step 2 is used for cleaning the semiconductor manufacturing apparatus (step 3) and then a part of the chemical solution used for cleaning in step 3 is taken out.
  • the method is the same as the above-mentioned cleaning method for the semiconductor manufacturing apparatus, except that the process 5 includes a step 5 for confirming whether the amount of change in the resonance frequency of the chemical solution taken out in the step 4 is included in the allowable range.
  • the method for measuring the cleanliness of the cleaning liquid can measure the degree of cleaning of the semiconductor manufacturing equipment in the cleaning method of the semiconductor manufacturing equipment, and can grasp the degree of contamination of the semiconductor manufacturing equipment.
  • the isopropanol (IPA) confirmed in step 2 as the cleaning liquid the isopropanol (IPA) being washed is taken out (step). 4).
  • the amount of change in the resonance frequency of isopropanol (IPA) taken out in step 4 is measured. It is confirmed whether the amount of change in the resonance frequency is included in the allowable range (step 5).
  • Isopropanol (IPA) during washing is taken out, but the frequency of taking out is not particularly limited, and for example, 1/10 of the total amount used for washing is taken out.
  • isopropanol (IPA) used as a cleaning liquid is taken out in order to measure the amount of change in the resonance frequency, but the amount of the washing liquid to be taken out is not particularly limited, and is, for example, several tens of milliliters to several. It is about 100 ml.
  • step 5 if the amount of change in the resonance frequency is included in the allowable range, cleaning is completed. on the other hand.
  • step 5 if the amount of change in the resonance frequency exceeds the permissible range, the cleaning is not sufficient and the cleaning is continued.
  • step 5 cleaning is repeated until the amount of change in the resonance frequency is within the allowable range. In this way, by measuring the amount of change in the resonance frequency of the cleaning liquid during cleaning, the degree of cleaning of the semiconductor manufacturing equipment, that is, the degree of contamination of the semiconductor manufacturing equipment can be grasped.
  • FIG. 8 is a schematic diagram showing a second example of the crystal oscillator sensor according to the embodiment of the present invention
  • FIG. 9 is a schematic cross-sectional view showing the second example of the crystal oscillator sensor according to the embodiment of the present invention. be.
  • FIG. 10 is a schematic diagram showing a third example of the crystal oscillator sensor according to the embodiment of the present invention
  • FIG. 11 is a schematic cross-sectional view showing the third example of the crystal oscillator sensor according to the embodiment of the present invention. be.
  • the crystal oscillator sensor 26 shown in FIGS. 7 to 11 the same components as those of the crystal oscillator sensor 26 shown in FIG.
  • the crystal oscillator sensor 26 shown in FIG. 5 has a configuration in which one electrode 30 is provided on the surface 27a of the crystal oscillator 27, but the present invention is not limited to this.
  • the first electrode 50 and the second electrode 51 may be provided on the surface 27a of the crystal oscillator 27.
  • the first electrode 50 and the second electrode 51 are formed of, for example, a rectangular conductive layer, and are arranged in parallel with each other at intervals.
  • the first electrode 50 and the second electrode 51 are in a state of being electrically insulated from each other.
  • the first adsorption layer 35 is provided on the surface 50a of the first electrode 50
  • the second adsorption layer 36 is provided on the surface 51a of the second electrode 51.
  • the first electrode 50 and the electrode 31 are electrically connected to the first oscillation unit 14a.
  • the second electrode 51 and the electrode 31 are electrically connected to the second oscillation unit 14b.
  • the first oscillation unit 14a and the second oscillation unit 14b are provided in the oscillation unit 14, and independently of each other, the first electrode 50 and the electrode 31 and the second electrode 51 and the electrode 31 are used.
  • a high frequency signal of a sine wave can be applied as a frequency signal, whereby the crystal oscillator 27 can be oscillated at a resonance frequency.
  • the first oscillation unit 14a and the second oscillation unit 14b are electrically connected to the detection unit 15, respectively.
  • the detection unit 15 has a switch unit (not shown) for switching the connection between the first oscillation unit 14a and the second oscillation unit 14b.
  • the switch unit alternately takes in the frequency signal of the first oscillation unit 14a and the frequency signal of the second oscillation unit 14b into the detection unit 15.
  • the detection unit 15 can obtain the resonance frequency of the first electrode 50 and the resonance frequency of the second electrode 51 independently of each other.
  • the first adsorption layer 35 on the surface 50a of the first electrode 50 and the second adsorption layer 36 on the surface 51a of the second electrode 51 may be the same or different from each other.
  • the difference in resonance frequency between the first electrode 50 and the second electrode 51 is used, and the difference is set to the preset purity of the target chemical solution. Purity can be easily estimated depending on whether or not the change amount of the resonance frequency is included in the allowable range. As a result, the purity of the chemical solution can be easily obtained, the purity can be easily controlled, and the quality of the chemical solution can be easily controlled.
  • at least one of the first adsorption layer 35 and the second adsorption layer 36 is an Au layer. By forming the Au layer, one of the first electrode 50 and the second electrode 51 can be used as a reference electrode.
  • the electrode 52 may be provided on the surface 27a of the crystal oscillator 27.
  • the electrode 52 has a first electrode portion 52a, a second electrode portion 52b, and a connecting portion 52c that connects the first electrode portion 52a and the second electrode portion 52b at one end.
  • the first electrode portion 52a and the second electrode portion 52b are formed of, for example, a rectangular conductive layer, and are arranged in parallel with each other at intervals.
  • the first electrode portion 52a and the second electrode portion 52b are electrically connected to each other.
  • the adsorption layer 34 is provided on the electrode 52.
  • the first electrode portion 52a and the electrode 31 are electrically connected to the first oscillation unit 14a.
  • the second electrode portion 52b and the electrode 31 are electrically connected to the second oscillation unit 14b.
  • the first oscillation unit 14a and the second oscillation unit 14b are provided in the oscillation unit 14, and independently of each other, the first electrode 50 and the electrode 31 and the second electrode 51 and the electrode 31 are used.
  • a high frequency signal of a sine wave can be applied as a frequency signal, whereby the crystal oscillator 27 can be oscillated at a resonance frequency.
  • the first oscillation unit 14a and the second oscillation unit 14b are electrically connected to the detection unit 15, respectively.
  • the detection unit 15 has a switch unit (not shown) for switching the connection between the first oscillation unit 14a and the second oscillation unit 14b.
  • the switch unit alternately takes in the frequency signal of the first oscillation unit 14a and the frequency signal of the second oscillation unit 14b into the detection unit 15.
  • the detection unit 15 can independently obtain the resonance frequency of the first electrode unit 52a and the resonance frequency of the second electrode unit 52b.
  • the adsorption layer 34 is provided on the first electrode portion 52a and the second electrode portion 52b, but the first electrode portion 52a and the second electrode portion 52b are provided. And may be different from each other. If they are different, the purity can be easily estimated by using the difference in resonance frequency between the first electrode portion 52a and the second electrode portion 52b. As a result, the purity of the chemical solution can be easily obtained, the purity can be easily controlled, and the quality of the chemical solution can be easily controlled. It is preferable to form an Au layer on at least one of the first electrode portion 52a and the second electrode portion 52b. By forming the Au layer, one of the first electrode portion 52a and the second electrode portion 52b can be used as a reference electrode.
  • the present invention is basically configured as described above. Although the method for manufacturing a semiconductor device, the method for cleaning a semiconductor manufacturing apparatus, and the method for measuring the cleanliness of a cleaning liquid of the present invention have been described in detail above, the present invention is not limited to the above-described embodiment, and the gist of the present invention is described. Of course, various improvements or changes may be made as long as they do not deviate.
  • the target drug solution used in the present invention contains an organic solvent as a main component.
  • the organic solvent is intended to be a liquid organic compound contained in a content exceeding 10,000 mass ppm per component with respect to the total mass of the above-mentioned chemical solution. That is, in the present specification, the liquid organic compound contained in excess of 10,000 mass ppm with respect to the total mass of the above-mentioned chemical solution corresponds to an organic solvent. Further, in the present specification, the liquid means that it is a liquid at 25 ° C. and under atmospheric pressure.
  • the fact that the organic solvent is the main component in the chemical solution means that the content of the organic solvent in the chemical solution is 98.0% by mass or more with respect to the total mass of the chemical solution, and exceeds 99.0% by mass. Is preferable, 99.90% by mass or more is more preferable, and more than 99.95% by mass is further preferable. The upper limit is less than 100% by mass.
  • One type of organic solvent may be used alone, or two or more types may be used. When two or more kinds of organic solvents are used, the total content is preferably within the above range.
  • the type of organic solvent is not particularly limited, and known organic solvents can be used.
  • the organic solvent may have, for example, an alkylene glycol monoalkyl ether carboxylate, an alkylene glycol monoalkyl ether, a lactic acid alkyl ester, an alkyl alkoxypropionate, a cyclic lactone (preferably 4 to 10 carbon atoms), or a monoketone compound having a ring.
  • alkylene carbonate alkyl alkoxyacetate, alkyl pyruvate, dialkyl sulfoxide, cyclic sulfone, dialkyl ether, monohydric alcohol, glycol, alkyl acetate ester, N-alkylpyrrolidone and the like can be mentioned. ..
  • organic solvent examples include propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone (CHN), ethyl lactate (EL), propylene carbonate (PC), isopropanol (IPA), 4-methyl-2.
  • PGMEA propylene glycol monomethyl ether acetate
  • PGME propylene glycol monomethyl ether
  • CHN cyclohexanone
  • EL ethyl lactate
  • PC propylene carbonate
  • IPA isopropanol
  • MIBC -Pentanol
  • nBA butyl acetate
  • propylene glycol monoethyl ether propylene glycol monopropyl ether, methyl methoxypropionate, cyclopentanone, ⁇ -butyrolactone
  • diisoamyl ether isoamyl acetate, dimethylsulfoxide
  • Examples of using two or more kinds of organic solvents include the combined use of PGMEA and PGME, and the combined use of PGMEA and PC.
  • the type and content of the organic solvent in the chemical solution can be measured using a gas chromatograph mass spectrometer.
  • the chemical solution may contain impurities other than the organic solvent. As described above, the resonance frequency changes as impurities are adsorbed on the adsorption layer.
  • impurities include metal impurities and organic impurities.
  • the metal impurities are intended as metal ions and metal impurities contained in a chemical solution as a solid (elemental metal, particulate metal-containing compound, etc.).
  • the type of metal contained in the metal impurities is not particularly limited, and for example, Na (sodium), K (potassium), Ca (calcium), Fe (iron), Cu (copper), Mg (magnesium), Mn (manganesium).
  • the metal impurities may be components that are inevitably contained in each component (raw material) contained in the chemical solution, or may be components that are inevitably contained during the manufacture, storage, and / or transfer of the chemical solution, or are intentional. May be added to.
  • the chemical solution contains metal impurities, the content thereof is not particularly limited, and may be 0.01 mass ppq to 500 mass ppb with respect to the total mass of the chemical solution.
  • the organic impurity is a compound different from the organic solvent which is the main component contained in the chemical solution, and contains an organic substance having a content of 10,000 mass ppm or less with respect to the total mass of the above-mentioned chemical solution.
  • the organic substance contained in the content of 10,000 mass ppm or less with respect to the total mass of the above-mentioned chemical solution corresponds to an organic impurity and does not correspond to an organic solvent.
  • an organic impurity composed of a plurality of kinds of compounds is contained in a chemical solution, if each compound corresponds to the above-mentioned organic substance contained in a content of 10,000 mass ppm or less, each of them corresponds to an organic impurity. Water is not included in the organic impurities.
  • the organic impurities may be added to the chemical solution or may be inevitably mixed in the chemical solution in the manufacturing process of the chemical solution.
  • Examples of cases in which organic impurities are inevitably mixed in the chemical solution manufacturing process include cases where organic impurities are contained in a raw material (for example, an organic solvent) used in the chemical solution manufacturing process and mixing in the chemical solution manufacturing process (for example,). Contamination), etc., but are not limited to these.
  • the total content of organic impurities in the above-mentioned chemical solution is not particularly limited, and may be 0.1 to 5000 mass ppm with respect to the total mass of the chemical solution.
  • the organic impurities one type may be used alone, or two or more types may be used in combination. When two or more kinds of organic impurities are used in combination, the total content is preferably within the above range.
  • organic impurities examples include dibutylhydroxytoluene (BHT), distearylthiodipropionate (DSTP), 4,4'-butylidenebis- (6-t-butyl-3-methylphenol), and 2,2'-methylenebis.
  • BHT dibutylhydroxytoluene
  • DSTP distearylthiodipropionate
  • 4,4'-butylidenebis- (6-t-butyl-3-methylphenol 4,2'-methylenebis.
  • antioxidants such as the antioxidants described in JP-A-2015-200775
  • unreacted raw materials structural isomers produced during the production of organic solvents.
  • by-products; eluents from members and the like constituting the organic solvent production apparatus for example, plasticizers eluted from rubber members such as O-rings); and the like.
  • the chemical solution may contain water.
  • the type of water is not particularly limited, and for example, distilled water, ion-exchanged water, and pure water can be used.
  • Water may be added to the chemical solution, or may be inevitably mixed in the chemical solution in the process of producing the chemical solution. Examples of cases in which water is inevitably mixed in the chemical solution manufacturing process include cases where water is contained in a raw material (for example, an organic solvent) used in the chemical solution manufacturing process and mixing in the chemical solution manufacturing process (for example, contamination). ) Etc. can be mentioned.
  • the content of water in the chemical solution is not particularly limited, but is generally preferably 2.0% by mass or less, more preferably 1.0% by mass or less, and further less than 0.5% by mass, based on the total mass of the chemical solution. preferable.
  • the lower limit is not particularly limited, but it is often about 0.01% by mass. In manufacturing, it is difficult to keep the water content below the above value.
  • the method for preparing the above-mentioned chemical solution is not particularly limited, and examples thereof include a method of procuring an organic solvent by purchase and the like, and a method of reacting raw materials to obtain an organic solvent.
  • the chemical solution it is preferable to prepare one having a small content of impurities as described above (for example, one having an organic solvent content of 99% by mass or more). Examples of commercially available products of such organic solvents include those called "high-purity grade products".
  • the chemical solution may be purified. Examples of the purification method include distillation and filtration.
  • the chemical solution of step 1 contains at least one metal element selected from the group consisting of Na, K, Ca, Fe, Cu, Mg, Mn, Li, Al, Cr, Ni, Ti and Zn, and is a metal element.
  • the total content is preferably 0.01 mass ppq to 10 mass ppb. If it exceeds 10 mass ppb, no correlation can be obtained and the coefficient of determination becomes small in the index such as the surface inspection device (SP-5; manufactured by KLA Tencor) and the mass ppb by ICP-MS or the like.
  • the amount of change in the resonance frequency by the crystal oscillator sensor has a correlation with the number of defects obtained by using the above-mentioned surface inspection device (SP-5), and the coefficient of determination is large.
  • the chemical solution can be managed without causing dielectric breakdown in the fluorine material which is the contact surface and without generating foreign matter.
  • the content of Na, K, Ca, Fe, Cu, Mg, Mn, Li, Al, Cr, Ni, Ti and Zn in the chemical solution was ICP-MS (trade name, manufactured by PerkinElmer) using NexION350 (trade name, manufactured by PerkinElmer). It can be measured using the inductively coupled plasma mass spectrometry) method.
  • the specific measurement conditions by the ICP-MS method are as follows.
  • the detected amount is measured at the peak intensity with respect to the standard solution having a known concentration, converted into the mass of the metal component, and the content of the metal component (total metal content) in the treatment liquid used for the measurement is calculated.
  • the content of the metal component was measured by an ordinary ICP-MS method.
  • the software for ICP-MS is used as the software used for the analysis of the metal component.
  • Example 1 The oscillator was washed with the following cleaning chemicals.
  • the cleaning chemicals used should be of the same type as the chemicals to be measured, and the number of defects confirmed to be 3 or less by measurement using a surface inspection device (SP-5; manufactured by KLA Tencor) in advance. used.
  • SP-5 surface inspection device
  • ⁇ 44 was brought into contact with the crystal oscillator sensor to evaluate the amount of change in the resonance frequency of the crystal oscillator.
  • the chemical solution temperature is adjusted by the temperature adjusting unit so that the temperature is constant at 23 ° C. ( ⁇ 0.1 ° C.), and each chemical solution is circulated in the flow cell unit at a circulation flow rate of 20 ml / s for 60 minutes.
  • the amount of change (Hz) in the resonance frequency of the crystal oscillator was obtained.
  • the resonance frequency of the crystal oscillator before contact with the chemical solution was 27 MHz.
  • at least a part of the wetted part was made of a fluororesin. Specifically, the wetted portion (the portion in contact with the target chemical solution) of the block 40 shown in FIG.
  • the wetted portion (the portion in contact with the target chemical solution) of the liquid feeding portion is made of THV soft fluororesin.
  • the wetted portion (the portion in contact with the target chemical solution) of the seal portion 42 that retains the target chemical solution in the region is polyvinylidene fluoride (PVDF, tensile strength: 30 to 70 MPa, Shore D hardness: 64 to 79). It is configured. Further, as shown in FIG.
  • the wetted portion (the portion in contact with the target chemical solution) of the seal portion 42 that retains the target chemical solution in the region is a perfluoroalkoxy alkane (PFA, tensile strength: 25 to 35 MPa, Shore D hardness: 62 to 66). It is composed of.
  • PFA perfluoroalkoxy alkane
  • the amount of impurities eluted from the measuring device in the target chemical solution was measured using LC / MS (Thermo LC / MSQE plus).
  • Example 2 was the same as Example 1 except that the oscillator was not cleaned with the cleaning chemical solution as compared with Example 1.
  • Example 3 was the same as Example 1 except that the drug solution was concentrated three times as compared with Example 1. In Example 3, the chemical solution was heated, vaporized, and concentrated three times.
  • Example 4 is the same as Example 1 except that the temperature is not adjusted as compared with Example 1.
  • Example 5 In Example 5, compared to Example 1, the frequency change of the oscillator was measured in a state where the oscillator was immersed without circulating the chemical solution (circulation flow rate 0 mL / s), but Example 1 Same as.
  • the number of defects represents the amount of impurities in the chemical solution remaining on the silicon wafer, and the smaller the value, the smaller the amount of impurities in the chemical solution.
  • Tables 1 and 2 The above evaluation was performed in a clean room satisfying class 2 or higher cleanliness defined by the international standard ISO 14644-1: 2015 established by the International Organization for Standardization.
  • the "chemical solution” column indicates the chemical solution used in each example.
  • the amounts of impurities differ between the chemical solutions 1 to 20 containing nBA (butyl acetate).
  • the symbols of the chemicals in Tables 1 and 2 represent the following chemicals.
  • nBA Butyl Acetate
  • MIBC 4-Methyl-2-pentanol
  • PGMEA Propylene Glycol Monomethyl Ether Acetate
  • IPA Isopropanol CHN: Cyclohexanone
  • Example 1 points are plotted against the amount of change in the resonance frequency of all the chemicals (the amount of change in the resonance frequency of the vibrator (Hz)) and the number of defects (evaluation of the surface inspection device (number / wafer)).
  • a calibration curve passing through the points was created by the minimum square method, and the determination coefficient ( R2 ) was calculated.
  • Example 1 is 0.992
  • Example 2 is 0.985
  • Example 3 is. It was calculated as 0.99, 0.980 in Example 4, and 0.968 in Example 5.
  • Example 4 as a result of not adjusting the temperature, the temperature during measurement fluctuated in the range of 23 ° C. ⁇ 3 ° C. From Examples 1 and 4, the coefficient of determination of Example 1 was larger, indicating the effectiveness of temperature control. It is presumed that the coefficient of adhesion of impurities in the chemical solution to the oscillator differs depending on the temperature and the generation of organic impurities due to the temperature change affects the value of the amount of change in the resonance frequency. From Examples 1 and 5, the coefficient of determination of Example 1 was larger, indicating the effectiveness of circulating the drug solution. It was found that when the chemical solution is circulated, the chances of foreign matter in the chemical solution coming into contact with the vibrator increase and it becomes easier to adsorb, so that it becomes easier to catch and manage the change in the resonance frequency.
  • a resist film having a resist pattern could be formed.
  • a silicon wafer having a diameter of about 300 mm (12 inches) was prewet using each chemical solution.
  • the resist resin composition was rotationally applied onto the pre-wet silicon wafer. Then, it was heated and dried on a hot plate at a temperature of 150 ° C. for 90 seconds to form a resist film having a thickness of 90 nm.
  • An ArF excimer laser scanner manufactured by ASML, manufactured by ASML
  • ASML ArF excimer laser scanner
  • a mask having a line-and-space pattern such that the line width of the pattern formed after reduced projection exposure and development is 45 nm and the space width is 45 nm with respect to this resist film.
  • XT 1700i, wavelength 193 nm
  • the resist resin composition used was as shown below.
  • resist resin composition The resist resin composition will be described.
  • the resist resin composition was obtained by mixing the following components.
  • Acid-degradable resin represented by the following formula (weight average molecular weight (Mw) 7500): the numerical value described in each repeating unit means mol%): 100 parts by mass.
  • Quencher shown below 5 parts by mass (Mass ratio was 0.1: 0.3: 0.3: 0.2 in order from the left).
  • the polymer type has a weight average molecular weight (Mw) of 5000.
  • the numerical value described in each repeating unit means a molar ratio.
  • Hydrophobic resin shown below: 4 parts by mass (mass ratio was (1) :( 2) 0.5: 0.5).
  • the hydrophobic resin of the formula (1) has a weight average molecular weight (Mw) of 7000
  • the hydrophobic resin of the formula (2) has a weight average molecular weight (Mw) of 8000. ..
  • the numerical value described in each repeating unit means the molar ratio.
  • Example B The chemical solution 1 of Example A described above was used as a cleaning solution for the coating and developing apparatus. The amount of change in the resonance frequency of the cleaning liquid after cleaning was measured. As the oscillator, the oscillator of Example 1 was used, and the amount of change in the resonance frequency was measured in the same manner as in Example 1 described above. Hereinafter, a method for measuring the cleanliness of the cleaning liquid will be described.
  • a coating developer contaminated with foreign matter was used.
  • the degree of contamination of the contaminated coating and developing apparatus was examined by sending the chemical solution 1 before cleaning and discharging the chemical solution 1.
  • the number of defects is a value obtained by measuring the number of defects existing on each substrate using a surface inspection device (SP-5; manufactured by KLA Tencor).
  • SP-5 surface inspection device
  • a total of 2 gallons of the chemical solution 1 was sent to the coating and developing apparatus, and the coating and developing apparatus was flushed and washed. At the time of flushing cleaning, the chemical solution used for cleaning and discharged was collected every 0.2 gallons from the coating and developing apparatus.
  • the collected chemical solution was evaluated for defect evaluation of the surface inspection device after cleaning using a surface inspection device (SP-5; manufactured by KLA Tencor), and the amount of change in the resonance frequency was measured.
  • SP-5 surface inspection device
  • Table 3 results shown in Table 3 below were obtained for the post-cleaning surface inspection device defect evaluation and the amount of change in the resonance frequency.
  • Example C [Evaluation using a crystal oscillator sensor (Part 2)] The above-mentioned is described except that the crystal oscillator sensor in which the adsorption layer 34 shown in FIG. 5 is a SiO 2 layer, a SiOC layer, a Cu layer, a Co layer, a Ti layer, a W layer, a TiN layer, a Ta layer, and a TaN layer is prepared.
  • the amount of change in the resonance frequency was measured according to the same procedure as in [Evaluation using a crystal oscillator sensor (1)].
  • the resonance frequency of the crystal oscillators of each layer before being brought into contact with the chemical solution was 27 MHz.
  • Tables 4-21 The results are summarized in Tables 4-21. The above evaluation was performed in a clean room satisfying class 2 or higher cleanliness defined by the international standard ISO 14644-1: 2015 established by the International Organization for Standardization.
  • Tables 4 to 21 the results using the adsorption layer and the substrate of the same metal species are shown side by side.
  • the result of [evaluation using a crystal oscillator sensor (2)] using "SiO 2 layer” as an adsorption layer and the result of using a SiO 2 substrate [ The result of the evaluation (2)] using the surface inspection device is shown.
  • the amount of change in the resonance frequency and the number of defects are highly correlated, and the amount of change in the resonance frequency is large.
  • the number of defects tended to increase.
  • the coefficient of determination is 0.95 or more for the correlation with the number of pattern defects or the number of defects in the defect evaluation of the surface inspection device after cleaning, and the change in resonance frequency even when various layers other than the Si layer are used. It was confirmed that the amount was more highly correlated with the number of pattern defects or the number of defects.
  • Example D> The amount of change in the resonance frequency was measured according to the same procedure as in the above-mentioned [Evaluation using a crystal oscillator sensor (1)] except that the Au layer was used instead of the Si layer. Next, the amount of change in the resonance frequency obtained by using the Au layer was subtracted from the amount of change in the resonance frequency obtained by using the Si layer, and the difference was obtained. The results are shown in Table 22.
  • the column "Amount of change in resonance frequency (Hz) of oscillator (Si-Au adsorption layer)" represents the difference obtained by subtracting the amount of change in the resonance frequency of the Au layer from the amount of change in the resonance frequency of the Si layer. ..
  • a surface inspection device (SP-5; manufactured by KLA Tencor) was used according to the same procedure as the above-mentioned [Evaluation using a surface inspection device (1)]. , The number of defects present on each substrate was measured. The results are shown in Table 23. The above evaluation was performed in a clean room satisfying class 2 or higher cleanliness defined by the international standard ISO 14644-1: 2015 established by the International Organization for Standardization.
  • the coefficient of determination of the correlation with the number of pattern defects or the number of defects in the defect evaluation of the surface inspection device after cleaning is 0.95 or more. It was confirmed that when the Au layer was used as a reference, the amount of change in the resonance frequency and the number of pattern defects or the number of defects had a higher correlation.
  • Measuring device 12 Flow cell unit 14 Oscillator 14a First oscillation unit 14b Second oscillation unit 15 Detection unit 16 Calculation unit 20 Supply unit 18 Memory 22 Control unit 26 Crystal oscillator sensor 27 Crystal oscillator 27a Front surface 27b Back surface 28 Temperature control unit 29a First tube 29b Second tube 30 Electrode 30a Surface 31 Electrode 34 Adsorption layer 40 Block 40a Supply path 40b Discharge path 40c, 42a Surface 42, 43 Sealed part 44 Region 45 Region 50 First electrode 51 Second electrode 52 Electrode 52a First electrode part 52b Second electrode part 52c Connecting part 60, 90 Semiconductor manufacturing equipment 61a Resist liquid supply part 61b Rinse liquid supply part 61c Back rinse part 62a, 62b, 62c, 92 Tanks 64a, 64b, 64c , 94 Pump 66a, 66b, 66c, 96 Temperature controller 69a, 69b, 69c, 99 Piping 68a, 68b, 68c, 98 Filter 70,

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Signal Processing (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

より簡便に有機溶媒を含む薬液の純度を管理する半導体デバイスの製造方法、及び半導体製造装置の洗浄方法、及びより簡便な洗浄液の清浄度の測定方法を提供する。半導体デバイスの製造方法は、振動子と、有機溶媒を主成分とする薬液とを接触させ、薬液の接触による振動子の共振周波数の変化量を得る工程1と、薬液の共振周波数の変化量が、予め設定された薬液の純度に基づく共振周波数の変化量の許容範囲に含まれるかを確認する工程2と、工程2で確認された薬液を、半導体デバイスの製造に使用する工程3とを有する。

Description

半導体デバイスの製造方法、半導体製造装置の洗浄方法、及び洗浄液の清浄度の測定方法
 本発明は、半導体デバイスの製造方法、半導体製造装置の洗浄方法、及び洗浄液の清浄度の測定方法に関する。
 半導体デバイスの製造工程には、リソグラフィ工程、エッチング工程、イオン注入工程、及び、剥離工程等の様々な工程が含まれている。このような半導体デバイスの製造工程において使用される現像液、リンス液、プリウェット液、及び、剥離液等の各種薬液は、高純度であることが求められる。
 高純度の薬液の特性を評価する方法の一つとして、高純度の薬液を基板上に塗布して、基板上の欠陥数を測定することにより、その薬液の特性を評価する方法がある。
 例えば、特許文献1においては、表面検査装置(SP-5;KLA  Tencor製)を用いて、上述の評価を行っている。
国際公開第2017/169834号
 一方で、特許文献1に記載される表面検査装置(SP-5;KLA  Tencor製)を用いた測定は、測定手順自体が煩雑であり、かつ、作業時間も長く、汎用性に欠ける。
 そのため、薬液を製造するたびに、上述の測定を行い、薬液の純度を測定することが、工業的な点から好ましくなく、より簡便に製造される薬液の純度を管理する方法が求められていた。
 本発明は、上述の実情に鑑みて、より簡便に有機溶媒を含む薬液の純度を管理する半導体デバイスの製造方法、及び半導体製造装置の洗浄方法を提供することを課題とする。
 また、本発明は、より簡便な洗浄液の清浄度の測定方法を提供することも課題とする。
 上述の目的を達成するために、本発明の一態様は、振動子と、有機溶媒を主成分とする薬液とを接触させ、薬液の接触による振動子の共振周波数の変化量を得る工程1と、薬液の共振周波数の変化量が、予め設定された薬液の純度に基づく共振周波数の変化量の許容範囲に含まれるかを確認する工程2と、工程2で確認された薬液を、半導体デバイスの製造に使用する工程3とを有する、半導体デバイスの製造方法を提供するものである。
 工程3の半導体デバイスの製造は、薬液を使用するリソグラフィ工程を有することが好ましい。
 工程1の前に、薬液を濃縮する濃縮工程を有することが好ましい。
 工程1の前に、振動子を洗浄する工程を有することが好ましい。
 工程1は、薬液を振動子に循環して供給し、振動子と薬液とを接触させて、薬液の接触による振動子の共振周波数の変化量を得ることが好ましい。
 工程1は、薬液の温度を一定に保持して実施されることが好ましい。
 工程1の薬液は、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、Ti及びZnから成る群より選択される少なくとも1種の金属元素を含み、金属元素の合計含有量が0.01質量ppq~10質量ppbであることが好ましい。
 振動子は、薬液中の不純物を吸着する吸着層及び水晶振動子を含む水晶振動子センサで構成されており、振動子を共振周波数で振動させる発振部と、水晶振動子センサに接続され、薬液の接触による水晶振動子の共振周波数の変化量を検出する検出部とを有することが好ましい。
 薬液を水晶振動子センサに供給して、薬液を水晶振動子センサに接触させる供給部を有しており、工程1は、薬液を水晶振動子センサに送液して、薬液と水晶振動子センサとを接触させる工程を有することが好ましい。
 薬液を水晶振動子センサに一方向に流して、薬液と水晶振動子センサとを接触させることが好ましい。
 工程1において、薬液と接する接液部の少なくとも一部は、フッ素系樹脂で構成されることが好ましい。
 本発明の一態様は、振動子と、有機溶媒を主成分とする薬液とを接触させ、薬液の接触による振動子の共振周波数の変化量を得る工程1と、薬液の共振周波数の変化量が、予め設定された薬液の純度に基づく共振周波数の変化量の許容範囲に含まれるかを確認する工程2と、工程2で確認された薬液を、半導体製造装置の洗浄に使用する工程3とを有する、半導体製造装置の洗浄方法を提供するものである。
 工程3の半導体製造装置の洗浄は、薬液を半導体製造装置の送液部に送液する工程を有することが好ましい。
 工程1の前に、薬液を濃縮する濃縮工程を有することが好ましい。
 工程1の前に、振動子を洗浄する工程を有することが好ましい。
 工程1は、薬液を振動子に循環して供給し、振動子と薬液とを接触させて、薬液の接触による振動子の共振周波数の変化量を得ることが好ましい。
 工程1は、薬液の温度を一定に保持して実施されることが好ましい。
 工程1の薬液は、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、Ti及びZnから成る群より選択される少なくとも1種の金属元素を含み、金属元素の合計含有量が0.01質量ppq~10質量ppbであることが好ましい。
 振動子は、薬液中の不純物を吸着する吸着層及び水晶振動子を含む水晶振動子センサで構成されており、振動子を共振周波数で振動させる発振部と、水晶振動子センサに接続され、薬液の接触による水晶振動子の共振周波数の変化量を検出する検出部とを有することが好ましい。
 薬液を水晶振動子センサに供給して、薬液を水晶振動子センサに接触させる供給部を有しており、工程1は、薬液を水晶振動子センサに送液して、薬液と水晶振動子センサとを接触させる工程を有することが好ましい。
 薬液を水晶振動子センサに一方向に流して、薬液と水晶振動子センサとを接触させることが好ましい。
 工程1において、薬液と接する接液部の少なくとも一部は、フッ素系樹脂で構成されることが好ましい。
 本発明の一態様は、振動子と、有機溶媒を主成分とする薬液とを接触させ、薬液の接触による振動子の共振周波数の変化量を得る工程1と、薬液の共振周波数の変化量が、予め設定された薬液の純度に基づく共振周波数の変化量の許容範囲に含まれるかを確認する工程2と、工程2で確認された薬液を、半導体製造装置の洗浄に使用する工程3と、工程3の洗浄に使用された薬液の一部を取り出す工程4と、工程4で取り出された薬液の共振周波数の変化量が、許容範囲に含まれるかを確認する工程5とを有する、洗浄液の清浄度の測定方法を提供するものである。
 工程1の前に、薬液を濃縮する濃縮工程を有することが好ましい。
 工程1の前に、振動子を洗浄する工程を有することが好ましい。
 工程1は、薬液を振動子に循環して供給し、振動子と薬液とを接触させて、薬液の接触による振動子の共振周波数の変化量を得ることが好ましい。
 工程1は、薬液の温度を一定に保持して実施されることが好ましい。
 工程1の薬液は、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、Ti及びZnから成る群より選択される少なくとも1種の金属元素を含み、金属元素の合計含有量が0.01質量ppq~10質量ppbであることが好ましい。
 振動子は、薬液中の不純物を吸着する吸着層及び水晶振動子を含む水晶振動子センサで構成されており、振動子を共振周波数で振動させる発振部と、水晶振動子センサに接続され、薬液の接触による水晶振動子の共振周波数の変化量を検出する検出部とを有することが好ましい。
 薬液を水晶振動子センサに供給して、薬液を水晶振動子センサに接触させる供給部を有しており、工程1は、薬液を水晶振動子センサに送液して、薬液と水晶振動子センサとを接触させる工程を有することが好ましい。
 薬液を水晶振動子センサに一方向に流して、薬液と水晶振動子センサとを接触させることが好ましい。
 工程1において、薬液と接する接液部の少なくとも一部は、フッ素系樹脂で構成されることが好ましい。
 本発明によれば、より簡便に有機溶媒を含む薬液の純度を管理する半導体デバイスの製造方法、及び半導体製造装置の洗浄方法を提供できる。
 また、本発明は、より簡便な洗浄液の清浄度の測定方法を提供できる。
本発明の実施形態の半導体製造装置の第1の例を示す模式図である。 本発明の実施形態の半導体製造装置の第2の例を示す模式図である。 本発明の実施形態の半導体製造装置の第2の例の半導体ウエハの洗浄部を示す模式図である。 本発明の実施形態の測定装置の一例を示す模式図である。 本発明の実施形態の水晶振動子センサの第1の例を示す模式的断面図である。 不純物量と水晶振動子の共振周波数との関係を示す検量線の一例を示すグラフである。 本発明の実施形態の測定装置のフローセルユニットの一例を示す模式図である。 本発明の実施形態の水晶振動子センサの第2の例を示す模式図である。 本発明の実施形態の水晶振動子センサの第2の例を示す模式的断面図である。 本発明の実施形態の水晶振動子センサの第3の例を示す模式図である。 本発明の実施形態の水晶振動子センサの第3の例を示す模式的断面図である。
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の半導体デバイスの製造方法、半導体製造装置の洗浄方法、及び洗浄液の清浄度の測定方法を詳細に説明する。
 なお、以下に説明する図は、本発明を説明するための例示的なものであり、以下に示す図に本発明が限定されるものではない。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値α~数値βとは、εの範囲は数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
 「準備」というときには、特定の材料を合成ないし調合等して備えることのほか、購入等により所定の物を調達することを含む意味である。
 また、「ppm」は「parts-per-million(10-6)」を意味し、「ppb」は「parts-per-billion(10-9)」を意味し、「ppt」は「parts-per-trillion(10-12)」を意味し、「ppq」は「parts-per-quadrillion(10-15)」を意味する。
 「具体的な数値で表された角度」、「平行」、及び「直交」等の角度は、特に記載がなければ、該当する技術分野で一般的に許容される誤差範囲を含む。
 本発明は、不純物量等の純度が管理された薬液を、半導体デバイスの製造、又は半導体製造装置の洗浄に使用する。
 また、本発明は、薬液の不純物量等の純度の管理を、洗浄液の清浄度の測定に利用する。以下、半導体製造装置等について説明する。半導体製造装置としては、例えば、コーターデベロッパー、スピンコーター、半導体ウエハの洗浄装置及び現像装置等がある。以下、具体的な半導体製造装置について説明するが、本発明は、以下に示す半導体製造装置に限定されるものではない。
[半導体製造装置の第1の例]
 図1は本発明の実施形態の半導体製造装置の第1の例を示す模式図である。
 図1に示す半導体製造装置60は、半導体ウエハ86の表面86aに、レジスト液を塗布する装置である。
 半導体製造装置60は、レジスト液を、塗布部80に設置された半導体ウエハ86の表面86aに供給するレジスト液供給部61aと、リンス液を半導体ウエハ86の表面86aに供給するリンス液供給部61bと、リンス液を半導体ウエハ86の裏面86bに供給するバックリンス部61cとを有する。
 レジスト液供給部61aは、例えば、タンク62aと、ポンプ64aと、温度調整器66aと、フィルタ68aと、ノズル70とを有する。タンク62aと、ポンプ64aと、温度調整器66aと、フィルタ68aとは配管69aにより接続されており、配管69aの端部にノズル70が接続されている。
 タンク62aは、レジスト液を貯留するものある。ポンプ64aは、タンク62a内のレジスト液を、温度調整器66aと、フィルタ68aとを通して、ノズル70から半導体ウエハ86の表面86aにレジスト液を供給するものである。
 温度調整器66aは、レジスト液の温度を調整するものである。フィルタ68aはレジスト液内の不純物を取り除くものである。レジスト液供給部61aは、レジスト液のポタ落ちを防ぐためにサックバックを有してもよい。
 リンス液供給部61bは、例えば、タンク62bと、ポンプ64bと、温度調整器66bと、フィルタ68bと、ノズル71とを有する。タンク62bと、ポンプ64bと、温度調整器66bと、フィルタ68bとは配管69bにより接続されており、配管69bの端部にノズル71が接続されている。
 リンス液供給部61bは、レジスト液供給部61aに比して、レジスト液に変えてリンス液を半導体ウエハ86の表面86aの端部に供給する点、ノズル71の配置位置が異なる点以外は、レジスト液供給部61aと同じ構成である。
 タンク62bにリンス液が貯留される。ポンプ64bは、タンク62b内のリンス液を、温度調整器66bと、フィルタ68bとを通して、ノズル71から半導体ウエハ86の表面86aにリンス液を供給するものである。温度調整器66bは、リンス液の温度を調整するものである。
 リンス液供給部61bは、リンス液のポタ落ちを防ぐためにサックバックを有してもよい。
 バックリンス部61cは、ノズル72の配置位置以外は、リンス液供給部61bと同じ構成である。
 バックリンス部61cのタンク62c、ポンプ64c、温度調整器66c、フィルタ68c、配管69c及びノズル72は、リンス液供給部61bのタンク62b、ポンプ64b、温度調整器66b、フィルタ68b、配管69b及びノズル71と同じ構成である。
 タンク62cには、リンス液が貯留されるが、バックリンス部61cにおけるリンス液のことをバックリンス液ともいう。
 タンク62a、62b、62cの形態としては特に制限されず、薬液を収容するための容器として使用される形態から、収容すべき薬液の量等に応じて、任意に選択できる。容器としては、例えば、容量が数百mL~約20Lのボトル状のもの(例:「ピュアボトル(コダマ樹脂工業株式会社製)」;容量が約20~約200Lのドラム、又は、ペール(例:「ピュアドラム」「ピュアペール」いずれもコダマ樹脂工業株式会社製);容量が1000L程度のトート(例:「パワートート」コダマ樹脂工業株式会社製);容量が約15000~25000Lのタンクコンテナ(国際標準規格ISOで大きさ等の定めがある「ISOコンテナ」等が挙げられる。)等が挙げられる。タンクは、上述のものに制限されず、タンクの容量、及び形状等は任意で変更可能である。
 ポンプ64a、64b、64cにおいて、ポンプの種類は特に制限されず、例えば、容積式ポンプ、斜流ポンプ、軸流ポンプ、及び遠心ポンプが挙げられる。
 温度調整器66a、66b、66cは、特に限定されるものではなく、配管の外側に設けてもよく、配管の内側に設ける、いわゆるインラインタイプのヒータでもよい。
 塗布部80は、収納容器82を有する。収納容器82内に、半導体ウエハ86が載置される支持台83が設けられている。支持台83は、半導体ウエハ86を、例えば、真空吸着等により固定する。また、支持台83に駆動軸84が設けられている。駆動軸84はモータ85に接続されている。モータ85により、駆動軸84が回転され、支持台83が回転されて半導体ウエハ86が回転する。
 レジスト液を供給するノズル70は、支持台83上に配置されている。リンス液を供給するノズル71は、半導体ウエハ86の周縁部の位置に配置されている。ノズル72は、ノズル71に対向して配置されている。
 半導体製造装置60では、固定された半導体ウエハ86の表面86aに、ノズル70からレジスト液を滴下する。そして、半導体ウエハ86をモータ85により、定められた回転数で回転させる。遠心力を利用して半導体ウエハ86の表面86aにレジスト膜を形成する。次に、回転している半導体ウエハ86の周縁部のレジスト膜が除去されるまで、ノズル71からリンス液を供給し続けて、半導体ウエハ86の周縁部のレジスト膜を除去する。
 また、レジスト膜を形成する際に、レジスト液が、半導体ウエハ86の裏面86bに回り込むことがある。この場合、ノズル72からリンス液を、半導体ウエハ86の裏面86bに供給して、レジスト液を除去する。
 半導体ウエハ86の表面86aにレジスト膜を形成した後、支持台83から半導体ウエハ86を外し、自動搬送機構(図示せず)により、半導体ウエハ86を、例えば、フォトレジストのプレベーク部に搬送し、次工程を実施する。
 半導体製造装置60では、レジスト液及びリンス液を使用する。リンス液は、後述のように共振周波数の変化量が測定されて管理されたものである。共振周波数の変化量は、リンス液の不純物量と相関がある。このように、不純物量等の純度が管理されたリンス液を、より簡便に用いることができる。
 また、半導体製造装置60では、後述のように共振周波数の変化量が管理された薬液を、半導体製造装置の洗浄に使用する。このように、不純物量等の純度が管理された薬液を、より簡便に洗浄に用いることができる。
 更には、後述のように共振周波数の変化量が管理された薬液を用いて洗浄した後に、洗浄に使用された薬液の一部を取り出し、取り出された薬液の共振周波数の変化量が、許容範囲に含まれるかを確認する。なお、取り出された薬液の共振周波数の変化量が、許容範囲に含まれる場合には、洗浄を終了する。
 取り出された薬液の共振周波数の変化量が、許容範囲に含まれない場合には、再度薬液を用いて洗浄する。取り出された薬液の共振周波数の変化量が、許容範囲に含まれるまで繰り返し洗浄を行う。これにより、不純物量を管理した洗浄を行うことができる。
[半導体製造装置の第2の例]
 図2は本発明の実施形態の半導体製造装置の第2の例を示す模式図であり、図3は本発明の実施形態の半導体製造装置の第2の例の半導体ウエハの洗浄部を示す模式図である。
 図2に示す半導体製造装置90は、半導体ウエハ86の洗浄装置である。
 半導体製造装置90は、タンク92と、ポンプ94と、温度調整器96と、フィルタ98と、ノズル100と、洗浄部110とを有する。
 タンク92と、ポンプ94と、温度調整器96と、フィルタ98とは配管99により接続されており、配管99の端部にノズル100が接続されている。
 タンク92は、洗浄液を貯留するものある。ポンプ94は、タンク92内の洗浄液を、温度調整器96と、フィルタ98とを通して、ノズル100から半導体ウエハ86の表面86aに洗浄液を供給するものである。
 温度調整器96は、洗浄液の温度を調整するものである。フィルタ98は洗浄液内の不純物を取り除くものである。
 図3に示すように洗浄部110は、収納容器112を有する。収納容器112内に、半導体ウエハ86が載置される支持台114が設けられている。支持台114は、半導体ウエハ86を真空吸着等により固定する。また、支持台114に駆動軸115が設けられている。駆動軸115はモータ116に接続されている。モータ116により、駆動軸115が回転され、支持台114が回転されて半導体ウエハ86が回転する。
 洗浄液を供給するノズル100は、支持台114上に配置されている。
 半導体製造装置90は、半導体ウエハ86をモータ116により、定められた回転数で回転させる。半導体ウエハ86を回転させながら、ポンプ94により、温度調整器96及びフィルタ98を通して、ノズル100から洗浄液を、半導体ウエハ86の表面86aに供給することにより半導体ウエハ86を洗浄する。
 半導体製造装置90では、洗浄液を使用する。洗浄液は、後述のように共振周波数の変化量が測定されて管理されたものである。共振周波数の変化量は、洗浄液の不純物量と相関がある。このように、純度が管理された洗浄液を、より簡便に用いることができる。
 また、半導体製造装置90では、後述のように共振周波数の変化量が管理された薬液を、半導体製造装置の洗浄に使用する。このように、不純物量等の純度が管理された洗浄液を、より簡便に用いることができる。
 更には、後述のように共振周波数の変化量が管理された薬液を用いて洗浄した後に、洗浄に使用された薬液の一部を取り出し、取り出された薬液の共振周波数の変化量が、許容範囲に含まれるかを確認する。なお、取り出された薬液の共振周波数の変化量が、許容範囲に含まれる場合には、洗浄を終了する。
 取り出された薬液の共振周波数の変化量が、許容範囲に含まれない場合には、再度薬液を用いて洗浄する。取り出された薬液の共振周波数の変化量が、許容範囲に含まれるまで繰り返し洗浄を行う。これにより、不純物量を管理した洗浄を行うことができる。
 なお、半導体製造装置は、上述のものに限定されるものではなく、レジスト膜をパターン露光した後、未露光部を除去する現像装置でもよい。現像装置は、図2に示す半導体製造装置90において、タンク92内に現像液を貯留する。次に、表面86a上にレジスト膜が形成された半導体ウエハ86を回転させることなく、半導体ウエハ86の表面86a上のレジスト膜に現像液を供給する。次に、半導体ウエハ86を回転させて現像液をレジスト膜全面に広げる。レジスト膜全面に現像液が広がった後、半導体ウエハ86の回転を停止する。現像液により未露光部を溶解させて除去する。
 次に、半導体ウエハ86を、現像液をレジスト膜全面に広げるよりも高速に回転させて現像液を取り除く。これにより、レジスト膜に露光パターン状のパターンを形成する。なお、半導体ウエハ86の回転を維持したまま、例えば、純水を用いて半導体ウエハ86上に残った現像液を取り除いてもよい。
 更に、半導体製造装置は、現像に続いて行うリンス工程が行えるものであってもよい。リンス工程は、現像工程後に、レジスト膜に続けてリンス液を塗布する工程である。
 また、半導体製造装置において、タンク内の液体の搬送にポンプを用いることなく、例えば、ガス圧送を利用する構成でもよい。また、温度調整器、又はフィルタがない構成もある。ポンプ、温度調整器、フィルタの配置順も特に、限定されるものではない。更には、フィルタ等が複数ある構成でもよい。
 半導体製造装置を洗浄する場合、タンクから、薬液を流してフラッシング洗浄を行う。洗浄する部位は、タンクからノズルに至る全ての部分である。すなわち、送液配管、ポンプ内部の接液面、温度調整器内部の接液面、フィルタのハウジング内壁及びフィルタそのもの、ノズルの接液部、及びタンクの接液部である。
[薬液の用途]
 有機溶媒を主成分とする薬液が、半導体デバイスの製造方法、半導体製造装置の洗浄方法、及び洗浄液の清浄度の測定方法に用いられる。具体的には、薬液は、例えば、現像液、リンス液、プリウェット液に用いられる。これ以外に、薬液は、エッジリンス液、バックリンス液、レジスト剥離液及び希釈用シンナーに用いられる。
 プリウェット液は、レジスト膜を形成する前に、半導体ウエハ上に供給するものであり、レジスト液を半導体ウエハ86上に広げやすくし、より少量のレジスト液の供給で均一なレジスト膜を形成するために使用されるものである。
 上述のエッジリンス液とは、リンス液において、半導体ウエハの周縁部に供給して、半導体ウエハの周縁部のレジスト膜の除去に利用されるリンス液のことをいう。
 例えば、現像液には、酢酸ブチル(nBA)が用いられる。酢酸ブチル(nBA)は、現像液以外に、配管の洗浄、又は半導体ウエハの洗浄液等の用途に用いることもできる。
 また、リンス液には、4-メチル-2-ペンタノール(MIBC)が用いられる。洗浄液には、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、イソプロパノール(IPA)が用いられる。プリウェット液には、シクロヘキサノン(CHN)が用いられる。
 以下、薬液の測定装置について説明する。
[測定装置]
 図4は本発明の実施形態の測定装置の一例を示す模式図であり、図5は本発明の実施形態の水晶振動子センサの第1の例を示す模式的断面図である。
 図4に示す測定装置10は、有機溶媒を含む薬液中の不純物を感知する装置である。測定装置10は、対象薬液の純度の管理に利用できる。
 測定装置10は、フローセルユニット12と、発振部14と、検出部15と、算出部16と、メモリ18と、供給部20と、制御部22とを有する。測定装置10は、更に、表示部23と、出力部24と、入力部25とを有する。
 制御部22は、フローセルユニット12、発振部14、検出部15、算出部16、メモリ18、及び、供給部20の動作を制御するものである。また、制御部22は、表示部23及び出力部24の動作の制御、ならびに、入力部25からの入力情報に基づき、測定装置10の各構成部を制御する。
 フローセルユニット12は、不純物を吸着する吸着層34(図5参照)及び水晶振動子27(図5参照)を含む水晶振動子センサ26と、フローセルユニット12に供給された対象薬液の液温を維持するための温度調整部28とを有する。フローセルユニット12については、後に詳細に説明する。
 水晶振動子センサ26に発振部14が電気的に接続されている。発振部14は、水晶振動子27を共振周波数で振動させるものである。発振部14は、水晶振動子センサ26に、正弦波の高周波信号を周波数信号として印加するものであり、発振回路(図示せず)を有する。
 また、発振部14に検出部15が電気的に接続されている。検出部15は、水晶振動子27の共振周波数を測定し、かつ対象薬液の接触による水晶振動子の共振周波数の変化量を検出するものである。なお、検出部15は、後述する、複数の吸着層を用いることによって得られる複数の共振周波数の変化量の差分を検出してもよい。
 検出部15は、発振部14の周波数信号を取り込み、周波数信号を、例えば、1秒毎にサンプリングして、時系列データとしてメモリ18に記憶させる。なお、メモリ18には、測定時間及び周波数許容値が記憶される。検出部15は、測定時間及び周波数許容値に基づき、水晶振動子27の共振周波数を測定し、かつ対象薬液の接触による水晶振動子の共振周波数の変化量を検出する。
 測定時間とは、吸着層34に不純物が接触したことによる共振周波数の変化量を得るために必要な時間である。測定時間は、特に限定されるものではなく、対象薬液の供給流量等に応じて適宜決定されるものであり、例えば、10分以上が好ましく、30分以上が好ましい。上限は特に制限されないが、生産性の点から、3時間以下が好ましく、2時間以下がより好ましい。
 周波数許容値は、周波数が安定したかどうかを判断する時に、周波数の安定化の指標となる値が安定化に相当する十分小さな値になったか否かを判定するためのしきい値である。周波数許容値は、例えば、設定された測定感度に応じて適宜設定されるものであり、例えば、共振周波数が30MHzの場合、測定感度が5Hzの時に測定時間において許容される誤差範囲は、例えば、0.5Hzに設定される。これは、0.0167ppmに相当する。この誤差範囲に対応する許容値は1.67×10-8(0.0167ppm)以下となる。
 検出部15では、例えば、公知の回路である周波数カウンターにより周波数を検出する。これ以外に、例えば、特開2006-258787号に記載されているように、周波数信号をアナログデジタル変換し、キャリアムーブにより処理して周波数信号の周波数で回転する回転ベクトルを生成し、この回転ベクトルの速度を求めるといった手法を利用した周波数を検出してもよい。検出部15においては、このようなディジタル処理を利用した方が周波数の検出精度が高いため好ましい。
 算出部16は、メモリ18に記憶された予め設定された対象薬液の純度に基づく共振周波数の変化量の許容範囲を読み出し、メモリ18に記憶された共振周波数の変化量の許容範囲と、検出部15で得られた共振周波数の変化量とを比較して、薬液の純度を管理する。例えば、上述の比較により、許容範囲内であれば、薬液の純度が許容範囲内であることを表示部23に表示する。一方、許容範囲を超えていれば、薬液の純度が許容範囲を超えていることを表示部23に表示する。これ以外に、許容範囲内であれば、薬液の純度が許容範囲内であることを出力部24に出力してもよい。一方、許容範囲を超えていれば、薬液の純度が許容範囲を超えていることを出力部24に出力してもよい。
 メモリ18は、上述の、予め設定された対象薬液の純度に基づく共振周波数の変化量及びその許容範囲が記憶されるものである。メモリ18は、これ以外に、水晶振動子の共振周波数等が記憶されていてもよい。後述のように、水晶振動子に複数の電極を設けた構成において、電極毎の共振周波数、及び電極間の共振周波数の差分が記憶されていてもよい。
 なお、メモリ18に記憶された共振周波数の変化量は、例えば、図6に示すように、特定の対象薬液の不純物量と、水晶振動子27の共振周波数との関係を示す検量線Lを求めておき、この検量線Lに基づいて、特定の対象薬液の不純物量と、共振周波数の変化量との関係を得ることができる。また、検量線Lに対して許容範囲を設定することにより、共振周波数の変化量の許容範囲を設定することができる。図6に示す検量線Lの不純物量は、例えば、表面検査装置を用いて測定された不純物量である。より具体的には、所定量の対象薬液と所定の基板(例えば、シリコンウエハ)上に塗布した後、対象薬液が塗布された基板上にある欠陥の数を表面検査装置を用いて計測して、得られる欠陥数を不純物量とすることができる。
 なお、表面検査装置としては、対象薬液が塗布された基板上にレーザー光線を照射し、基板上に存在する欠陥によって散乱されたレーザー光線を検出して、基板上に存在する不純物を検知する装置が挙げられる。レーザー光線の照射の際に、基板を回転させながら測定することにより、基板の回転角度と、レーザー光線の半径位置から、欠陥の座標位置を割り出すことができる。このような装置としては、KLA Tencor製の「SP-5」が挙げられるが、それ以外にも「SP-5」の分解能以上の分解能を有する表面検査装置(典型的には「SP-5」の後継機等)であってもよい。
 表示部23は、算出部16で得られた共振周波数の変化量を表示するものであり、例えば、ディスプレイで構成される。ディスプレイは、文字、及び画像を表示することができれば、特に限定されるものではなく、液晶表示装置等が用いられる。また、表示部23に表示されるものは、得られた共振周波数の変化量に限定されるものではなく、共振周波数でもよく、後述するように複数の吸着層を用いることによって得られる複数の共振周波数の変化量の差分でもよく、測定装置10で設定される各種の設定項目及び入力情報等を表示してもよい。
 出力部24は、得られた共振周波数の変化量又は共振周波数等を媒体に表示するものである。より具体的には、例えば、文字、記号及びバーコードのうち、少なくとも1つを用いて表示するものである。出力部24は、プリンタ等で構成される。出力部24により、後述のセットの薬液の共振周波数情報が表示された情報表示部を得ることができる。
 入力部25は、マウス及びキーボード等の各種情報をオペレータの指示により入力するための各種の入力デバイスである。入力部25を介して、例えば、測定装置10の設定、メモリ18からデータの呼び出し等がなされる。
 なお、入力部25には、メモリ18に記憶させる情報を入力するためのインターフェースも含まれ、外部記憶媒体等を通してメモリ18に情報が記憶される。
 なお、測定装置10は、得られた共振周波数の変化量を得ることができればよく、共振周波数の変化量を得ること以外の構成は必ずしも必要ではない。このことから、例えば、算出部16は管理方法では必要であるが、共振周波数の変化量を得る測定装置10では必ずしも必要ではない。
 フローセルユニット12は、有機溶媒を含む薬液中の不純物を感知する感知部である。フローセルユニット12は、供給部20に第1のチューブ29aと、第2のチューブ29bとを用いて接続されている。供給部20により、第1のチューブ29a内を対象薬液が通過して、水晶振動子に対象薬液が供給され、対象薬液を第2のチューブ29b内を通過させて、対象薬液を回収する。供給部20は対象薬液に接触することなく、対象薬液を第1のチューブ29a内及び第2のチューブ29b内を通過させるものであり、例えば、ペリスタルティック方式のポンプが用いられる。供給部20は対象薬液に接触することなく送液できれば、特に限定されるものではなく、例えば、シリンジポンプを用いることができる。
 温度調整部28は、例えば、ペルチェ素子を有する。ペルチェ素子により対象薬液の液温が維持される。これにより、対象薬液の温度を一定に保持することができ、対象薬液の粘度を一定の範囲とすることができる。純度の測定条件の変動を小さくすることができる。このため、対象薬液の温度を一定に保持して、共振周波数の変化量を測定することが好ましい。なお、対象薬液の液温を維持することができれば、温度調整部28の構成は特に限定されない。
 対象薬液の温度を一定に保持する場合、設定温度に対して±0.5℃の温度にすることが好ましく、±0.3℃がより好ましく、±0.1℃が更に好ましい。
[水晶振動子センサ]
 上述のように水晶振動子センサ26は水晶振動子27を有するが、水晶振動子27は、例えば、円盤状であり、水晶振動子27の表面27aに電極30が設けられ、裏面27bに電極31が設けられている。
 水晶振動子27の表面27aに電極30の表面30aに、不純物を吸着する吸着層34が設けられている。吸着層34に有機溶媒を主成分とする対象薬液が接触される。
 水晶振動子27には、例えば、ATカット型の水晶振動子が用いられる。ATカット型の水晶振動子とは、人工水晶のZ軸から35°15′の角度で切り出した振動子のことである。水晶振動子センサ26は、図5に示す構成に限定されるものではない。
 発振部14は電極30と電極31とに電気的に接続されている。発振部14は、電極30と電極31とに、正弦波の高周波信号を周波数信号として印加するものであり、例えば、発振回路を有する。発振部14により水晶振動子27が共振周波数で振動する。水晶振動子27の共振周波数としては、例えば、27MHz又は30MHzである。
 吸着層34は、例えば、Si、Au、SiO、SiOC、Cu、Co、W、Ti、TiN、Ta、TaN及び感光性樹脂組成物のうち、少なくとも1つの材料で構成される。吸着層を構成する材料によって、吸着しやすい不純物の種類が異なる。よって、例えば、対象薬液中の不純物量を上述した表面検査装置で求めて、その欠陥数と共振周波数の変化量とを関連づける場合には、表面検査装置で欠陥数を測定するために使用される薬液が塗布される基板と吸着層とは、同じ材料で構成されることが好ましい。つまり、吸着層としてSi層を用いた際には、基板としてはSi基板(シリコンウエハ)を使用することが好ましい。
 吸着層34は、スパッタ法、CVD(chemical vapor deposition)法等の気相法、又は塗布法等により形成することができる。
 なお、感光性樹脂組成物の種類は特に制限されず、公知の感光性樹脂組成物が挙げられる。感光性樹脂組成物に含まれる成分としては、例えば、酸の作用により極性基を生じる基を有する樹脂、及び、光酸発生剤が挙げられる。上述の感光性樹脂組成物は、更に、塩基性化合物、疎水性樹脂等を含んでいてもよい。
 水晶振動子センサ26では、吸着層34に吸着した不純物の量により、水晶振動子27の共振周波数が変化する。対象薬液と接触する前後の共振周波数を測定することにより、共振周波数の変化量を得ることができる。なお、水晶振動子27の共振周波数の変化量ΔFは、Sauerbrey式と呼ばれる下記式により表すことができる。下記式において、Fは共振周波数、Δmは質量変化量、ρは水晶の密度、μは水晶のせん断応力、Aは電極の面積である。下記式から、水晶振動子の共振周波数Fを大きくすることにより、質量検出感度を大きくすること、すなわち、不純物の測定精度を高くすることができる。
Figure JPOXMLDOC01-appb-M000001
[フローセルユニット]
 図7は本発明の実施形態の測定装置のフローセルユニットの一例を示す模式図である。
 フローセルユニット12は、例えば、温度調整部28上にシール部43を介して水晶振動子センサ26が配置されている。水晶振動子センサ26上に、水晶振動子27の周囲に沿ってシール部42が設けられている。シール部42上にブロック40が配置される。ブロック40には、対象薬液を水晶振動子センサ26に供給する供給路40aが設けられている。供給路40aは第1のチューブ29aに接続されている。また、ブロック40には、対象薬液を水晶振動子センサ26から排出する排出路40bが設けられている。排出路40bは第2のチューブ29bに接続されている。つまり、フローセルユニット12は、水晶振動子センサ26上に配置されたシール部42と、シール部42を介して水晶振動子センサ26上に配置され、対象薬液を水晶振動子センサ26に供給する供給路40a、及び、対象薬液を水晶振動子センサ26から排出する排出路40bが設けられたブロック40と、供給路40aに接続した第1のチューブ29a及び排出路40bに接続した第2のチューブ29bからなる送液部と、を更に有する。
 水晶振動子センサ26とシール部42とブロック40とにより囲まれて形成された領域44に、第1のチューブ29aと供給路40aとを通過した対象薬液が供給される。つまり、領域44の外側にシール部42が配置されている。これにより、対象薬液が水晶振動子センサ26の水晶振動子27の電極30の表面30a上の吸着層34に接触する。また、対象薬液は、排出路40bと第2のチューブ29bとを通過して、領域44から排出される。第1のチューブ29a及び排出路40b、ならびに第2のチューブ29b及び排出路40bにより循環ラインが構成される。
 第1のチューブ29a及び供給路40aと第2のチューブ29b及び排出路40bとにおける対象薬液の移動は、上述のように供給部20(図4参照)によりなされる。
 例えば、シール部42と、シール部43とは同じ大きさであり、例えば、Oリングで構成される。なお、水晶振動子センサ26とシール部43と温度調整部28とにより囲まれて形成された領域45には対象薬液が供給されない。
 また、フローセルユニット12において、対象薬液と接する接液部の少なくとも一部をフッ素系樹脂で構成することにより、対象薬液への溶出が抑制され、純度の測定精度の低下を抑制できるため好ましい。
 測定装置10において、上述の水晶振動子センサ26とシール部42とブロック40とにより囲まれて形成され、対象薬液を水晶振動子センサ26上に保持するための領域44を構成する面は、対象薬液と接する接液部の一部に該当する。領域44以外に、対象薬液を水晶振動子センサ26に接触させる供給部において、対象薬液を水晶振動子センサに送液する送液部中の対象薬液と接する部分も接液部である。これら接液部の少なくとも一部をフッ素系樹脂で構成することが好ましい。送液部としては、一方向に送液する供給ライン、対象薬液を水晶振動子センサに循環して供給する循環ラインが挙げられる。
 より具体的には、接液部は、フローセルユニット12のブロック40の領域44に接する面40c、水晶振動子センサ26上に配置される対象薬液を領域44に留めるシール部42の領域44に接する部分である面42a、ブロック40の供給路40a、及びブロック40の排出路40bである。また、第1のチューブ29a内、及び第2のチューブ29b内も対象薬液と接する接液部であり、第1のチューブ29a及び第2のチューブ29bにおいて対象薬液と接する部分はフッ素系樹脂で構成することが好ましい。
 なかでも、シール部42の対象薬液と接する接液部、ブロック40の対象薬液と接する接液部、及び、送液部の対象薬液と接する接液部の少なくとも一部がフッ素系樹脂で構成されることが好ましい。
 フッ素系樹脂は、フッ素原子を含む樹脂であればよい。
 フッ素系樹脂としては、フッ素原子を含有する樹脂(ポリマー)であれば特に制限されず、公知のフッ素系樹脂を用いることができる。フッ素系樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE、引張強度:20~35MPa、ショアD硬度:50~55)、パーフルオロアルコキシアルカン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、エチレンテトラフルオロエチレンコポリマー、エチレンクロロトリフルオロエチレンコポリマー、パーフルオロエチレンプロペンコポリマー、テトラフルオロエチレンパーフルオロアルキルビニルエーテルコポリマー、及び、パーフルオロ(ブテニルビニルエーテル)の環化重合体(サイトップ(登録商標))等が挙げられる。
 なかでも、フローセルユニット12のブロック40の対象薬液を接する接液部(対象薬液と接する部分)がフッ素系樹脂で構成される場合、上述のフッ素系樹脂の引張強度は、20~60MPaであることが好ましい。また、上述のフッ素系樹脂のショアD硬度は、60~80であることが好ましい。
 ブロック40の対象薬液と接する接液部を構成するフッ素系樹脂としては、パーフルオロアルコキシアルカン(PFA、引張強度:25~35MPa、ショアD硬度:62~66)、エチレンテトラフルオロエチレンコポリマー(ETFE、引張強度:38~42MPa、ショアD硬度:67~78)、パーフルオロエチレンプロペンコポリマー(FEP、引張強度:20~30MPa、ショアD硬度:60~65)、ポリクロロトリフルオロエチレン(PCTFE、引張強度:31~41MPa、ショアD硬度:75~80)、又は、ポリフッ化ビニリデン(PVDF、引張強度:30~70MPa、ショアD硬度:64~79)が好ましい。
 なお、引張強度の測定方法は、JIS(Japanese Industrial Standards) K 7161に準じて行う。
 ショアD硬度の測定方法は、JIS K 7215に準じて行う。
 また、領域44に対象薬液を送液する送液部の対象薬液を接する接液部(対象薬液を接する部分)を構成するフッ素系樹脂は、フッ素原子、炭素原子、並びに、フッ素原子及び炭素原子以外の他の原子を含む繰り返し単位(以下、単に「特定繰り返し単位」ともいう。)を有することが好ましい。上述の他の原子としては、例えば、水素原子、及び、塩素原子が挙げられる。つまり、特定繰り返し単位は、フッ素原子、炭素原子、並びに、水素原子及び塩素原子からなる群から選択される少なくとも1つの他の原子を含むことが好ましい。
 上述の送液部の対象薬液を接する部分を構成するフッ素系樹脂としては、テトラフルオロエチレンとヘキサフルオロプロピレンとフッ化ビニリデンとの三元共重合体(THV軟質フッ素樹脂)、ポリフッ化ビニリデン、エチレンテトラフルオロエチレンコポリマー、又は、ポリクロロトリフルオロエチレンが好ましい。
 引張強度及びショアD硬度の測定方法は、上述した通りである。
 水晶振動子センサ26上に配置される対象薬液を領域44に留めるシール部42の対象薬液と接する部分(領域44に接する部分である面42a)は、フッ素系樹脂で構成されることが好ましい。
 上述のシール部42の対象薬液を接する部分を構成するフッ素系樹脂の引張強度は、20~40MPaであることが好ましい。また、上述のシール部42の対象薬液を接する部分を構成するフッ素系樹脂のショアD硬度は、56~70であることが好ましい。また、上述のシール部42の対象薬液を接する部分を構成するフッ素系樹脂の曲げ弾性率は、0.5~3GPaであることが好ましい。
 上述のシール部42の対象薬液を接する部分を構成するフッ素系樹脂が上述の引張強度、ショアD硬度、及び、曲げ弾性率を満たす場合、水晶振動子センサ26の振動を阻害せず、より安定した測定を実施することができる。
 引張強度及びショアD硬度の測定方法は、上述した通りである。
 曲げ弾性率の測定方法は、JIS K 7171に準じて行う。
 上述のシール部42の対象薬液を接する部分を構成するフッ素系樹脂としては、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマー、エチレンクロロトリフルオロエチレンコポリマー、エチレンテトラフルオロエチレンコポリマー、ポリクロロトリフルオロエチレン、又は、ポリフッ化ビニリデンが好ましい。
 供給部20は、第1のチューブ29aと、第2のチューブ29bとを用いて、対象薬液を循環させているが、これに限定されるものではなく、対象薬液を一方向に流す方式でもよい。この場合、例えば、シリンジポンプを用いることができる。
 水晶振動子27に対して、対象薬液を循環させて供給する場合、対象薬液の循環流量が0.01~1000ml/sであることが好ましい。循環流量が0.01~1000ml/sであれば、検出するのに十分な量の不純物を吸着層34の表面に付着させることができる。
 対象薬液を1時間循環させた際の不純物の上昇量が1000質量ppt以下であれば、純度の測定精度が低下しないため好ましい。
 フローセルユニット12における水晶振動子センサ26の配置は、特に限定されるものではない。
[半導体デバイスの製造方法]
 有機溶媒を含む薬液中の不純物を感知して、純度が管理された薬液を、半導体デバイスの製造に利用する。
 半導体デバイスの製造方法は、振動子と、有機溶媒を主成分とする薬液とを接触させ、薬液の接触による振動子の共振周波数の変化量を得る工程1と、薬液の共振周波数の変化量が、予め設定された薬液の純度に基づく共振周波数の変化量の許容範囲に含まれるかを確認する工程2と、工程2で確認された薬液を、半導体デバイスの製造に使用する工程3とを有する。工程1の前に、有機溶媒を主成分とする薬液を用意する工程を有してもよい。
 上述の測定装置10に示すように、工程1において、対象薬液と接する接液部の少なくとも一部は、フッ素系樹脂で構成される。
 なお、半導体デバイスの製造方法においては、上述の測定装置と同様に、対象薬液は、対象薬液を水晶振動子センサに送液して接触させる。対象薬液は、対象薬液を水晶振動子センサに一方向に流して付着させてもよい。また、対象薬液を水晶振動子に循環して供給し、対象薬液の循環流量を0.01~1000ml/sとしてもよい。
 以下、半導体デバイスの製造方法について、上述の図4に示す測定装置10を例にして、より具体的に説明する。半導体デバイスの製造方法では、例えば、薬液を循環して供給する。
 上述のように、純度を管理する有機溶媒を含む薬液を用意し、測定装置10の供給部20に対象薬液を貯留する。対象薬液には、不純物が含まれる。
 次に、供給部20からフローセルユニット12に対象薬液を第1のチューブ29a及びブロック40の供給路40aを通過させて領域44に供給し、ブロック40の排出路40b及び第2のチューブ29bを通過させて供給部20に戻し、再度第1のチューブ29a及びブロック40の供給路40aを通過させて、領域44に供給することを繰り返し実施する。これにより、水晶振動子27に対象薬液を循環供給して、水晶振動子27の吸着層34に接触させる。このとき、対象薬液の温度を一定に保持することが好ましい。
 発振部14から、水晶振動子センサ26に正弦波の高周波信号を周波数信号として印加し、対象薬液の供給前に、水晶振動子27を共振周波数で振動させておき、対象薬液の供給前の共振周波数を検出部15で得る。その後、例えば、水晶振動子27に対象薬液を所定時間供給した後、検出部15で、共振周波数を得た後、共振周波数の変化量を得る(工程1)。つまり、工程1を有する薬液の測定方法を実施することにより、共振周波数の変化量を得ることができる。検出部15で得られた共振周波数の変化量を、算出部16に出力し、算出部16で記憶する。工程1は、対象薬液を水晶振動子センサ26に送液して、対象薬液と水晶振動子センサ26とを接触させる工程を有することが好ましい。
 算出部16は、メモリ18に記憶された予め設定された対象薬液の純度に基づく共振周波数の変化量の許容範囲を読み出し、メモリ18に記憶された共振周波数の変化量の許容範囲と、検出部15で得られた共振周波数の変化量とを比較して、許容範囲に含まれるかを確認する(工程2)。これにより、薬液の純度が管理される。例えば、上述の比較により、許容範囲内であれば、薬液の純度が許容範囲内であることを表示部23に表示する。一方、許容範囲を超えていれば、薬液の純度が許容範囲を超えていることを表示部23に表示する。
 このようにして、薬液の純度を容易に得ることができ、この得られた純度に基づき、対象薬液の純度を管理することができる。これにより、薬液の品質を管理することができる。
 なお、メモリ18に記憶された共振周波数の変化量、及びその許容範囲は、例えば、上述のように図6に示す検量線Lに基づいて得ることができる。
 次に、共振周波数の変化量の許容範囲に含まれることが確認された薬液を、半導体デバイスの製造に使用する(工程3)。例えば、図3に示す半導体製造装置60において、タンク92に、現像液として、例えば、酢酸ブチル(nBA)を貯留する。
 半導体ウエハ86上に形成された、露光済のレジスト膜(図示せず)に、酢酸ブチル(nBA)を現像液として供給し、次に、半導体ウエハ86を回転させて現像液をレジスト膜全面に広げる。レジスト膜がネガ型レジスト膜である場合には、現像液により未露光部を溶解させて除去する。なお、レジスト膜がポジ型レジスト膜である場合には、現像液により露光部を溶解させて除去する。
 次に、半導体ウエハ86を、現像液をレジスト膜全面に広げるよりも高速に回転させて現像液を取り除く。これにより、レジスト膜に露光パターン状のパターンを形成する。半導体ウエハ86の回転を維持したまま、例えば、純水を用いて半導体ウエハ86上に残った現像液を取り除いてもよい。
 現像後、次の処理工程に半導体ウエハ86を搬送する。このようにして、半導体デバイスの製造に利用する。例えば、レジスト膜の現像に利用することにより、レジスト膜に不純物等がない状態で現像できる。なお、レジスト膜の現像は、リソグラフィ工程の一工程である。
 また、レジスト膜の形成の際に、共振周波数の変化量が許容範囲に含まれるリンス液を利用することもできる。このレジスト膜の形成も、リソグラフィ工程の一工程である。
 なお、工程1の前に、薬液を濃縮する濃縮工程があってもよい。薬液を濃縮することにより、共振周波数の変化の信号強度を高めることができ、より高い感度で共振周波数の変化量の測定を行うことができる。濃縮は、3倍以上であることが好ましく、100倍以上がより好ましい。なお、濃縮の上限は10000倍である。
 薬液の濃縮は、例えば、薬液を加熱し、気化させることにより行われる。
 上述のように共振周波数の変化量を測定する場合、共振周波数の変化量の測定前に、例えば、工程1の前に、振動子を洗浄する工程を有することが好ましい。共振周波数の変化量の測定前に、振動子を洗浄することにより、共振周波数の変化量の測定精度を更に高めることができ、薬液の不純物量と共振周波数の変化量とのより高い相関関係を得ることができる。
 振動子の洗浄工程において、振動子の洗浄には、測定する薬液種と同種のものを用いることが好ましい。更に、洗浄に用いる薬液は、表面検査装置(SP-5;KLA Tencor製)を用いた測定により欠陥数が3個以下であることが好ましい。
 なお、半導体デバイスとしては、以下のものが例示される。
〔半導体デバイス〕
 半導体デバイスは、特に限定されるものではなく、例えば、ロジックLSI(Large Scale Integration)(例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、ASSP(Application Specific Standard Product)等)、マイクロプロセッサ(例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)等)、メモリ(例えば、DRAM(Dynamic Random Access Memory)、HMC(Hybrid Memory Cube)、MRAM(Magnetic RAM:磁気メモリ)とPCM(Phase-Change Memory:相変化メモリ)、ReRAM(Resistive RAM:抵抗変化型メモリ)、FeRAM(Ferroelectric RAM:強誘電体メモリ)、フラッシュメモリ(NAND(Not AND)フラッシュ)等)、LED(Light Emitting Diode)、(例えば、携帯端末のマイクロフラッシュ、車載用、プロジェクタ光源、LCDバックライト、一般照明等)、パワー・デバイス、アナログIC(Integrated Circuit)、(例えば、DC(Direct Current)-DC(Direct Current)コンバータ、絶縁ゲートバイポーラトランジスタ(IGBT)等)、MEMS(Micro Electro Mechanical Systems)、(例えば、加速度センサー、圧力センサー、振動子、ジャイロセンサ等)、ワイヤレス(例えば、GPS(Global Positioning System)、FM(Frequency Modulation)、NFC(Nearfield communication)、RFEM(RF Expansion Module)、MMIC(Monolithic Microwave Integrated Circuit)、WLAN(Wireless Local Area Network)等)、ディスクリート素子、BSI(Back Side Illumination)、CIS(Contact Image Sensor)、カメラモジュール、CMOS(Complementary Metal Oxide Semiconductor)、Passiveデバイス、SAW(Surface Acoustic Wave)フィルタ、RF(Radio Frequency)フィルタ、RFIPD(Radio Frequency Integrated Passive Devices)、BB(Broadband)等が挙げられる。
[半導体製造装置の洗浄方法]
 有機溶媒を含む薬液中の不純物を感知して、純度が管理された薬液を、半導体製造装置の洗浄に利用する。
 半導体製造装置の洗浄方法は、振動子と、有機溶媒を主成分とする薬液とを接触させ、薬液の接触による振動子の共振周波数の変化量を得る工程1と、薬液の共振周波数の変化量が、予め設定された薬液の純度に基づく共振周波数の変化量の許容範囲に含まれるかを確認する工程2と、工程2で確認された薬液を、半導体製造装置の洗浄に使用する工程3とを有する。工程1の前に、有機溶媒を主成分とする薬液を用意する工程を有してもよい。
 半導体製造装置の洗浄方法は、工程2で確認された薬液を、半導体製造装置の洗浄に使用している(工程3)点以外は、上述の半導体デバイスの製造方法と同じである。
 半導体製造装置の洗浄方法では、例えば、図3に示す半導体製造装置90を洗浄する。
 半導体製造装置90において、タンク92に、洗浄液として、例えば、イソプロパノール(IPA)を貯留する。半導体ウエハ86上に、イソプロパノール(IPA)を洗浄液として供給し、次に、半導体ウエハ86を回転させて洗浄液を、半導体ウエハ86の全面に広げて洗浄する。洗浄後、半導体ウエハ86を取り外し、次の工程に移送する。
 半導体ウエハ86の洗浄後に、タンク92に、工程2で確認された、イソプロパノール(IPA)を貯留し、イソプロパノール(IPA)をポンプ94、温度調整器96、フィルタ98及びノズル100を通過させて、ノズル100からイソプロパノール(IPA)を排出させる。このようにして半導体製造装置90を洗浄する。
[洗浄液の清浄度の測定方法]
 有機溶媒を含む薬液中の不純物を感知して、薬液の純度の管理を、洗浄液の清浄度の測定方法に利用する。
 洗浄液の清浄度の測定方法は、振動子と、有機溶媒を主成分とする薬液とを接触させ、薬液の接触による振動子の共振周波数の変化量を得る工程1と、薬液の共振周波数の変化量が、予め設定された薬液の純度に基づく共振周波数の変化量の許容範囲に含まれるかを確認する工程2と、工程2で確認された薬液を、半導体製造装置の洗浄に使用する工程3と、工程3の洗浄に使用された薬液の一部を取り出す工程4と、工程4で取り出された薬液の共振周波数の変化量が、許容範囲に含まれるかを確認する工程5とを有する。工程1の前に、有機溶媒を主成分とする薬液を用意する工程を有してもよい。
 洗浄液の清浄度の測定方法は、工程2で確認された薬液を、半導体製造装置の洗浄に使用した(工程3)後に、工程3の洗浄に使用された薬液の一部を取り出す工程4と、工程4で取り出された薬液の共振周波数の変化量が、許容範囲に含まれるかを確認する工程5とを有する点以外は、上述の半導体製造装置の洗浄方法と同じである。
 洗浄液の清浄度の測定方法は、半導体製造装置の洗浄方法における半導体製造装置の洗浄の程度を測定することができ、半導体製造装置の汚染度を把握することができる。
 上述のように、例えば、図3に示す半導体製造装置90において、洗浄液として、例えば、工程2で確認されたイソプロパノール(IPA)を用いて洗浄する際、洗浄中のイソプロパノール(IPA)を取り出す(工程4)。工程4で取り出されたイソプロパノール(IPA)の共振周波数の変化量を測定する。この共振周波数の変化量が、許容範囲に含まれるかを確認する(工程5)。洗浄中のイソプロパノール(IPA)を取り出すが、取り出す頻度は、特に限定されるものではなく、例えば、洗浄に使用する総量の1/10ずつ取り出す。
 工程4において、共振周波数の変化量を測定するために、洗浄液として用いたイソプロパノール(IPA)を取り出しているが、取り出す洗浄液の量は、特に限定されるものではなく、例えば、数十ミリリットル~数百ミリリットル程度である。
 例えば、工程5において、共振周波数の変化量が許容範囲に含まれていれば、洗浄を終了する。一方。工程5において、共振周波数の変化量が許容範囲を超えていれば、洗浄が十分ではなく洗浄を継続する。工程5において、共振周波数の変化量が許容範囲に含まれるまで繰り返し洗浄を行う。このように、洗浄中の洗浄液の共振周波数の変化量を測定することにより、半導体製造装置の洗浄の程度、すなわち、半導体製造装置の汚染度を把握できる。
[水晶振動子センサの他の例]
 図8は本発明の実施形態の水晶振動子センサの第2の例を示す模式図であり、図9は本発明の実施形態の水晶振動子センサの第2の例を示す模式的断面図である。図10は本発明の実施形態の水晶振動子センサの第3の例を示す模式図であり、図11は本発明の実施形態の水晶振動子センサの第3の例を示す模式的断面図である。図7~図11に示す水晶振動子センサ26において、図5に示す水晶振動子センサ26と同一構成物には同一符号を付して、その詳細な説明は省略する。
 図5に示す水晶振動子センサ26は、水晶振動子27の表面27aに電極30を1つ設ける構成であるが、これに限定されるものではない。図8及び図9に示すように、水晶振動子27の表面27aに、第1の電極50と第2の電極51とを設ける構成でもよい。第1の電極50と第2の電極51とは、例えば、長方形状の導電層で構成されており、間隔をあけて互いに平行に配置されている。第1の電極50と、第2の電極51とは、互いに電気的に絶縁された状態である。第1の電極50の表面50aに第1の吸着層35が設けられ、第2の電極51の表面51aに第2の吸着層36が設けられている。
 第1の電極50と電極31とが第1発振ユニット14aに電気的に接続されている。第2の電極51と電極31とが第2発振ユニット14bに電気的に接続されている。第1発振ユニット14aと第2発振ユニット14bとは発振部14に設けられたものであり、互いに独立して、第1の電極50及び電極31と、第2の電極51及び電極31とに、正弦波の高周波信号を周波数信号として印加することができ、これにより、水晶振動子27を共振周波数で振動させることができる。
 また、第1発振ユニット14aと第2発振ユニット14bは、それぞれ検出部15に電気的に接続されている。検出部15は、第1発振ユニット14aと第2発振ユニット14bとの接続を切換えるスイッチ部(図示せず)を有する。スイッチ部により、第1発振ユニット14aの周波数信号と、第2発振ユニット14bの周波数信号とが交互に検出部15に取り込まれる。これにより、検出部15では、第1の電極50における共振周波数と、第2の電極51における共振周波数とを、互いに独立して得ることができる。
 第1の電極50の表面50a上の第1の吸着層35及び第2の電極51の表面51aに第2の吸着層36は、同じでもよく、互いに異なってもよい。第1の吸着層35と第2の吸着層36とが異なる場合、第1の電極50と第2の電極51との共振周波数の差分を利用し、差分が予め設定された対象薬液の純度に基づく共振周波数の変化量の許容範囲に含まれるか否かによって、純度を容易に推定することができる。これにより、より簡便に薬液の純度を容易に得ることができ、純度の管理が容易になり、薬液の品質を容易に管理することができる。第1の吸着層35及び第2の吸着層36のうち、少なくとも1つをAu層とすることが好ましい。Au層とすることにより、第1の電極50と第2の電極51とのうち、一方を参照電極として利用することができる。
 また、図10及び図11に示すように、水晶振動子27の表面27aに、電極52を設ける構成でもよい。電極52は、第1の電極部52aと、第2の電極部52bと、第1の電極部52aと第2の電極部52bとを一方の端で連結する連結部52cとを有する。第1の電極部52aと、第2の電極部52bとは、例えば、長方形状の導電層で構成されており、間隔をあけて互いに平行に配置されている。第1の電極部52aと、第2の電極部52bとは電気的に接続されている。電極52上に吸着層34が設けられている。
 第1の電極部52aと電極31とが第1発振ユニット14aに電気的に接続されている。第2の電極部52bと電極31とが第2発振ユニット14bに電気的に接続されている。第1発振ユニット14aと第2発振ユニット14bとは発振部14に設けられたものであり、互いに独立して、第1の電極50及び電極31と、第2の電極51及び電極31とに、正弦波の高周波信号を周波数信号として印加することができ、これにより、水晶振動子27を共振周波数で振動させることができる。
 また、第1発振ユニット14aと第2発振ユニット14bは、それぞれ検出部15に電気的に接続されている。検出部15は、第1発振ユニット14aと第2発振ユニット14bとの接続を切換えるスイッチ部(図示せず)を有する。スイッチ部により、第1発振ユニット14aの周波数信号と、第2発振ユニット14bの周波数信号とが交互に検出部15に取り込まれる。これにより、検出部15では、第1の電極部52aにおける共振周波数と、第2の電極部52bにおける共振周波数とを、互いに独立して得ることができる。
 図11に示す水晶振動子センサ26においても、第1の電極部52a及び第2の電極部52b上に吸着層34が設けられているが、第1の電極部52aと第2の電極部52bとで互いに異なっていてもよい。異なる場合、第1の電極部52aと第2の電極部52bとの共振周波数の差分を利用することにより、純度を容易に推定することができる。これにより、より簡便に薬液の純度を容易に得ることができ、純度の管理が容易になり、薬液の品質を容易に管理することができる。第1の電極部52a及び第2の電極部52bのうち、少なくとも1つにAu層を形成することが好ましい。Au層を形成することにより、第1の電極部52aと第2の電極部52bとのうち、一方を参照電極として利用することができる。
 本発明は、基本的に以上のように構成されるものである。以上、本発明の半導体デバイスの製造方法、半導体製造装置の洗浄方法、及び洗浄液の清浄度の測定方法について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。
[薬液]
 本発明で使用される対象薬液(以下、単に「薬液」ともいう。)は、有機溶媒を主成分として含む。
 本明細書において、有機溶媒とは、上述の薬液の全質量に対して、1成分あたり10000質量ppmを超えた含有量で含有される液状の有機化合物を意図する。つまり、本明細書においては、上述の薬液の全質量に対して10000質量ppmを超えて含有される液状の有機化合物は、有機溶媒に該当する。
 また、本明細書において液状とは、25℃、大気圧下において、液体であることを意味する。
 薬液中において有機溶媒が主成分であるとは、薬液中における有機溶媒の含有量が、薬液の全質量に対して、98.0質量%以上であることを意味し、99.0質量%超が好ましく、99.90質量%以上がより好ましく、99.95質量%超が更に好ましい。上限は、100質量%未満である。
 有機溶媒は1種を単独で用いても、2種以上を使用してもよい。2種以上の有機溶媒を使用する場合には、合計含有量が上記範囲内であるのが好ましい。
 有機溶媒の種類としては特に制限されず、公知の有機溶媒を使用できる。有機溶媒は、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、乳酸アルキルエステル、アルコキシプロピオン酸アルキル、環状ラクトン(好ましくは炭素数4~10)、環を有してもよいモノケトン化合物(好ましくは炭素数4~10)、アルキレンカーボネート、アルコキシ酢酸アルキル、ピルビン酸アルキル、ジアルキルスルホキシド、環状スルホン、ジアルキルエーテル、一価アルコール、グリコール、酢酸アルキルエステル、及び、N-アルキルピロリドン等が挙げられる。
 有機溶媒は、例えば、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、乳酸エチル(EL)、炭酸プロピレン(PC)、イソプロパノール(IPA)、4-メチル-2-ペンタノール(MIBC)、酢酸ブチル(nBA)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、メトキシプロピオン酸メチル、シクロペンタノン、γ-ブチロラクトン、ジイソアミルエーテル、酢酸イソアミル、ジメチルスルホキシド、N-メチルピロリドン、ジエチレングリコール、エチレングリコール、ジプロピレングリコール、プロピレングリコール、炭酸エチレン、スルフォラン、シクロヘプタノン、及び、2-ヘプタノンからなる群から選択される1種以上が好ましい。
 有機溶媒を2種以上使用する例としては、PGMEAとPGMEの併用、及び、PGMEAとPCの併用が挙げられる。
 なお、薬液中における有機溶媒の種類及び含有量は、ガスクロマトグラフ質量分析計を用いて測定できる。
 薬液は、有機溶媒以外に不純物を含む場合がある。上述したように、不純物が吸着層に吸着されることにより共振周波数が変化する。
 不純物としては、金属不純物及び有機不純物が挙げられる。
 金属不純物とは、金属イオン、及び、固体(金属単体、粒子状の金属含有化合物等)として薬液中に含まれる金属不純物を意図する。
 金属不純物に含まれる金属の種類は特に制限されず、例えば、Na(ナトリウム)、K(カリウム)、Ca(カルシウム)、Fe(鉄)、Cu(銅)、Mg(マグネシウム)、Mn(マンガン)、Li(リチウム)、Al(アルミニウム)、Cr(クロム)、Ni(ニッケル)、Ti(チタン)、及び、Zn(ジルコニウム)が挙げられる。
 金属不純物は、薬液に含まれる各成分(原料)に不可避的に含まれている成分でもよいし、薬液の製造、貯蔵、及び/又は、移送時に不可避的に含まれる成分でもよいし、意図的に添加してもよい。
 薬液が金属不純物を含む場合、その含有量は特に制限されず、薬液の全質量に対して、0.01質量ppq~500質量ppbが挙げられる。
 本明細書において、有機不純物とは、薬液に含まれる主成分である有機溶媒とは異なる化合物であって、上述の薬液の全質量に対して、10000質量ppm以下の含有量で含まれる有機物を意図する。つまり、本明細書においては、上述の薬液の全質量に対して10000質量ppm以下の含有量で含まれる有機物は、有機不純物に該当し、有機溶媒には該当しないものとする。
 なお、複数種の化合物からなる有機不純物が薬液に含まれる場合、各化合物が上述した10000質量ppm以下の含有量で含有される有機物に該当していれば、それぞれが有機不純物に該当する。
 なお、水は、有機不純物には含まれない。
 有機不純物は、薬液中に添加されてもよいし、薬液の製造工程において不可避的に薬液中に混合されるものであってもよい。薬液の製造工程において不可避的に混合される場合としては、例えば、有機不純物が、薬液の製造に用いる原料(例えば、有機溶媒)に含まれる場合、及び、薬液の製造工程で混合する(例えば、コンタミネーション)等が挙げられるが、これらに制限されない。
 上述の薬液中における有機不純物の合計含有量は特に制限されないが、薬液の全質量に対して、0.1~5000質量ppmが挙げられる。
 有機不純物は、1種を単独で用いても、2種以上を併用してもよい。2種以上の有機不純物を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 有機不純物としては、例えば、ジブチルヒドロキシトルエン(BHT)、ジステアリルチオジプロピオネート(DSTP)、4,4’-ブチリデンビス-(6-t-ブチル-3-メチルフェノール)、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、及び、特開2015-200775号公報に記載されている酸化防止剤等の酸化防止剤;未反応の原料;有機溶媒の製造時に生じる構造異性体及び副生成物;有機溶媒の製造装置を構成する部材等からの溶出物(例えば、Oリング等のゴム部材から溶出した可塑剤);等が挙げられる。
 薬液は、水を含んでいてもよい。水の種類は特に制限されず、例えば、蒸留水、イオン交換水、及び、純水を用いることができる。
 水は、薬液中に添加されてもよいし、薬液の製造工程において不可避的に薬液中に混合されるものであってもよい。薬液の製造工程において不可避的に混合される場合としては例えば、水が、薬液の製造に用いる原料(例えば、有機溶媒)に含まれる場合、及び、薬液の製造工程で混合する(例えば、コンタミネーション)等が挙げられる。
 薬液中における水の含有量は特に制限されないが、一般に、薬液の全質量に対して、2.0質量%以下が好ましく、1.0質量%以下がより好ましく、0.5質量%未満が更に好ましい。
 薬液中における水の含有量が1.0質量%以下であると、半導体チップの製造歩留まりがより優れる。
 なお、下限は特に制限されないが、0.01質量%程度の場合が多い。製造上、水の含有量を上述の数値以下にするのが難しい。
 上述の薬液を準備する方法は特に制限されず、例えば、有機溶媒を購入等により調達する、及び、原料を反応させて有機溶媒を得る等の方法が挙げられる。なお、薬液としては、すでに説明した不純物の含有量が少ないもの(例えば、有機溶媒の含有量が99質量%以上のもの)を準備することが好ましい。そのような有機溶媒の市販品としては、例えば、「高純度グレード品」と呼ばれるものが挙げられる。
 なお、必要に応じて、薬液に対しては、精製処理を施してもよい。
 精製方法としては、例えば、蒸留、及び、ろ過が挙げられる。
 工程1の薬液は、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、Ti及びZnから成る群より選択される少なくとも1種の金属元素を含み、金属元素の合計含有量が0.01質量ppq~10質量ppbであることが好ましい。
 10質量ppbを超えると、表面検査装置(SP-5;KLA Tencor製)、及びICP-MS等による質量ppbといった指標では、相関がとれず決定係数が小さくなる。一方、水晶振動子センサによる共振周波数の変化量は、上述の表面検査装置(SP-5)を用いて得られた欠陥数と相関関係があり、決定係数が大きい。
 0.01質量ppq~10質量ppbであれば、金属濃度が低くなり過ぎず、薬液の体積抵抗値が大きくならず、その結果、流動帯電が大きくならない。これにより、測定装置又は半導体製造装置において、接液面であるフッ素材料に絶縁破壊が生じず、異物が発生せずに、薬液を管理できる。
 薬液中のNa、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、Ti及びZnの含有量は、NexION350(商品名、PerkinElmer社製)を用いて、ICP-MS(inductively coupled plasma mass spectrometry)法を用いて測定できる。ICP-MS法による具体的な測定条件は、次の通りである。なお、濃度既知の標準液に対するピーク強度にて検出量を測定して、金属成分の質量に換算し、測定に使用した処理液中の金属成分の含有量(総メタル含有量)を算出する。
 金属成分の含有量は、通常のICP-MS法により測定した。具体的には、金属成分の分析に使用するソフトウェアとして、ICP-MS用のソフトウェアを用いる。
 上述の0.01質量ppqの測定について説明する。
 まず、1mLの薬液を、直径約300mm(12インチ)のシリコンウエハ上に液滴として塗布する。その後、無回転で乾燥させる。SP7で当該シリコンウエハの欠陥位置を測定後、FIB-SEM(サーモフィッシャー社製 HELIOS  G4-EXL)にて、SP7で取得した座標ファイルを基に欠陥部位近傍の断面を切り出す。
 FIB-SEM又はTEMにて、断面エッチングを行いながらEDXにより3次元の形状情報と元素情報を取得する。これらを全ての欠陥について行う。
 例えば、1mL(密度1g/cm)の薬液でFe13.5nm(SP7の限界)の球体状パーティクルが1つ発見された場合について考えると、原理的には質量比換算でおおよそ0.01質量ppqが原理的に測定できることになる。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
<例A>
[薬液の製造]
 まず、後述する例にて用いる薬液を準備した。具体的には、まず、純度99質量%以上の高純度グレードの有機溶媒試薬を購入した。その後、購入した試薬に対して、以下のフィルタを適宜組み合わせたろ過処理を施して、不純物量が異なる薬液1~44をそれぞれ調製した。
・IEX-PTFE(15nm):Entegris社製の15nm IEX PTFE
・PTEE(12nm):Entegris社製の12nm PTFE
・UPE(3nm):Entegris社製の3nm PEフィルタ
 なお、後述する薬液中の不純物量を調整するために、適宜、有機溶媒試薬の購入元を変更したり、純度グレードを変更したり、上述のろ過処理の前に蒸留処理を実施したりした。
[水晶振動子センサを用いた評価(その1)]
<例1>
 振動子を以下の洗浄用薬液で洗浄した。洗浄用薬液は、測定する薬液種と同種のものを用い、事前に、表面検査装置(SP-5;KLA Tencor製)を用いた測定により欠陥数が3個以下であることを確認したものを使用した。
 図5に示す吸着層がSi層である水晶振動子センサを用意して、上述の水晶振動子センサを有する図7に示すフローセルユニット12を有する測定装置(図4参照)を用いて、薬液1~44を水晶振動子センサと接触させて、水晶振動子の共振周波数の変化量の評価を実施した。具体的には、薬液温度は温度一定で23℃(±0.1℃)となるように温度調整部で調整して、フローセルユニット中にて各薬液を循環流量20ml/sで60分間にわたって循環させた際の水晶振動子の共振周波数の変化量(Hz)を得た。なお、薬液と接触させる前の水晶振動子の共振周波数は27MHzであった。
 なお、使用した測定装置においては、接液部の少なくとも一部がフッ素系樹脂で構成されていた。
 具体的には、フローセルユニットの図7に示すブロック40の接液部(対象薬液と接する部分)がパーフルオロエチレンプロペンコポリマー(FEP、引張強度:20~30MPa、ショアD硬度:60~65、曲げ弾性率:0.55~0.67GPa)で構成されている。また、送液部の接液部(対象薬液と接する部分)がTHV軟質フッ素樹脂で構成されている。
 また、図7に示す、対象薬液を領域に留めるシール部42の接液部(対象薬液と接する部分)がポリフッ化ビニリデン(PVDF、引張強度:30~70MPa、ショアD硬度:64~79)で構成されている。
 更に、図7に示す、対象薬液を領域に留めるシール部42の接液部(対象薬液と接する部分)がパーフルオロアルコキシアルカン(PFA、引張強度:25~35MPa、ショアD硬度:62~66)で構成されている。
 また、上述の共振周波数の変化量を測定する際に、対象薬液中に測定装置から溶出する不純物量をLC/MS(Thermo LC/MSQE plus)を用いて測定した。
<例2>
 例2は、例1に比して、洗浄用薬液を用いた振動子の洗浄を実施していない点以外は、例1と同じとした。
<例3>
 例3は、例1に比して、薬液を3倍に濃縮した点以外は、例1と同じとした。
 例3では、薬液を加熱し、気化させて、3倍に濃縮した。
<例4>
 例4は、例1に比して、温度調整を実施していない点以外は、例1と同じとした。
<例5>
 例5は、例1に比して、薬液を循環せず(循環流量0mL/s)に、振動子を浸漬させた状態において、振動子の周波数変化の測定を行った点以外は、例1と同じとした。
[表面検査装置を用いた評価(その1)]
 まず、直径約300mm(12インチ)のシリコンウエハを準備した。
 次に、表面検査装置(SP-5;KLA Tencor製)を用いて、上述のシリコンウエハ上に存在する欠陥の数を計測した(これを初期値とする。)。
 次に、東京エレクトロン株式会社製「CLEAN TRACK LITHIUS(商品名)」を用いて、各薬液1~44をシリコンウエハ上に1500rpm(revolution per minute)で回転塗布し、その後、シリコンウエハをスピン乾燥した。
 次に、上述の表面検査装置(SP-5)を用いて、薬液塗布後のシリコンウエハに存在する欠陥の数を計測した(これを計測値とする。)。次に、初期値と計測値の差を(計測値-初期値)を計算し、欠陥数とした。この欠陥数は、シリコンウエハ上に残った薬液の不純物の量を表しており、数値が小さいほど薬液中の不純物の量が少ないことを意味する。結果を表1及び表2にまとめて示す。
 なお、上述の評価は、国際標準化機構が定める国際標準ISO14644-1:2015で定めるクラス2以上の清浄度を満たすクリーンルームで行った。
 表1及び表2中、「薬液」欄は各例で使用した薬液を表す。例えば、nBA(酢酸ブチル)を含む薬液1~20では不純物の量が異なる。なお、表1及び表2中の薬液の記号は以下の薬液を表す。
nBA:酢酸ブチル
MIBC:4-メチル-2-ペンタノール
PGMEA:プロピレングリコールモノメチルエーテルアセテート
IPA:イソプロパノール
CHN:シクロヘキサノン
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 例1~5において、全ての薬液の共振周波数の変化量(振動子の共振周波数の変化量(Hz))及び欠陥数(表面検査装置評価(個数/ウエハ))に対する点をプロットして、プロットされた点を通る検量線を最小二乗法により作成して、決定係数(R)を算出したところ、表1に示すように例1は0.992、例2は0.985、例3は0.99、例4は0.980、例5は0.968と算出された。決定係数が1.000に近いほど、優れた結果に該当するが、表1及び表2の結果は共振周波数の変化量と欠陥数との間の相関関係が高いことを示していた。
 このように、表1及び表2に示すように、共振周波数の変化量と欠陥数とは相関性があり、共振周波数の変化量が大きい場合、欠陥数が大きくなる傾向があった。
 また、例1と例2とから、共振周波数の変化量の測定前に、振動子を洗浄することにより決定係数が大きくなり、測定前に振動子を洗浄することは有効であった。
 また、例1と例3とから、薬液を3倍に濃縮することにより、共振周波数の変化の信号強度が約3倍程度になった。このことから、より高い感度で共振周波数の測定を行うことができた。例3は決定係数Rが0.99であり、欠陥数と高い相関関係があった。
 例4は、温度調整を行わなかった結果、測定中の温度は23℃±3℃の範囲で振れていた。例1と例4とから、例1の方が決定係数が大きいことから、温度制御の有効性が示された。なお、温度によって、薬液中の不純物の振動子への付着係数が異なること、温度変化によって有機系不純物が生じたことが、共振周波数の変化量の値に影響を与えたものと推定される。
 例1と例5とから、例1の方が決定係数が大きいことから、薬液を循環させることの有効性が示された。薬液を循環させた方が、より薬液中の異物が振動子と接する機会が増加し、吸着し易くなることから、共振周波数の変化をより捉えやすくなり管理し易くなることが分かった。
 上述の例1の薬液1~44をプリウェット液として用いて、以下に示すリソグラフィ工程を行ったところ、レジストパターンを有するレジスト膜を形成できた。
(リソグラフィ工程)
 まず、直径約300mm(12インチ)のシリコンウエハに対して各薬液を用いてプリウェットを行った。次に、レジスト樹脂組成物をプリウェット済みシリコンウエハ上に回転塗布した。その後、ホットプレート上で温度150℃にて90秒間加熱乾燥を行い、90nmの厚みのレジスト膜を形成した。
 このレジスト膜に対し、縮小投影露光及び現像後に形成されるパターンのライン幅が45nm、スペース幅が45nmとなるような、ラインアンドスペースパターンを有するマスクを介して、ArFエキシマレーザースキャナー(ASML製、XT:1700i、波長193nm)を用いて、NA=1.20、Dipole(oσ/iσ)=0.981/0.859、Y偏光の露光条件でパターン露光した。照射後に温度120℃にて60秒間ベークした。その後、現像、及びリンスし、温度110℃にて60秒ベークして、ライン幅が45nm、スペース幅が45nmのレジストパターンを形成できた。
 レジスト樹脂組成物には、以下に示すものを用いた。
(レジスト樹脂組成物)
 レジスト樹脂組成物について説明する。レジスト樹脂組成物は、以下の各成分を混合して得た。
 酸分解性樹脂(下記式で表される樹脂(重量平均分子量(Mw)7500):各繰り返し単位に記載される数値はモル%を意味する。):100質量部
Figure JPOXMLDOC01-appb-C000004
 下記に示す光酸発生剤:8質量部
Figure JPOXMLDOC01-appb-C000005
 下記に示すクエンチャー:5質量部(質量比は、左から順に、0.1:0.3:0.3:0.2とした。)。なお、下記のクエンチャーのうち、ポリマータイプのものは、重量平均分子量(Mw)が5000である。また、各繰り返し単位に記載される数値はモル比を意味する。
Figure JPOXMLDOC01-appb-C000006
 下記に示す疎水性樹脂:4質量部(質量比は、(1):(2)=0.5:0.5とした。)。
 なお、下記の疎水性樹脂のうち、式(1)の疎水性樹脂は、重量平均分子量(Mw)は7000であり、式(2)の疎水性樹脂の重量平均分子量(Mw)は8000である。なお、各疎水性樹脂において、各繰り返し単位に記載される数値はモル比を意味する。
Figure JPOXMLDOC01-appb-C000007
 溶剤:
 PGMEA(プロピレングリコールモノメチルエーテルアセテート):3質量部
 シクロヘキサノン:600質量部
 γ-BL(γ-ブチロラクトン):100質量部
<例B>
 上述の例Aの薬液1を、塗布現像装置の洗浄液として用いた。洗浄後の洗浄液の共振周波数の変化量を測定した。振動子には、例1の振動子を用い、共振周波数の変化量は、上述の例1と同様にして測定した。以下、洗浄液の清浄度の測定方法について説明する。
(洗浄液の清浄度の測定方法)
 異物等により汚染された塗布現像装置を使用した。汚染された塗布現像装置の汚染の程度を、洗浄前に薬液1を送液して、排出されて薬液1を調べた。その結果、直径約300mm(12インチ)のシリコンウエハ上に欠陥数1000個以上発生することを確認した。
 なお、欠陥数は、表面検査装置(SP-5;KLA Tencor製)を用いて、各基板上に存在する欠陥の数を計測して得られた値である。
 薬液1を、合計2ガロンの薬液を塗布現像装置に送液して、塗布現像装置をフラッシング洗浄した。フラッシング洗浄に際し、塗布現像装置から、洗浄に使用されて排出された薬液を0.2ガロン毎に採取した。採取した薬液について、表面検査装置(SP-5;KLA Tencor製)を用いて、洗浄後表面検査装置欠陥評価を評価し、かつ共振周波数の変化量を測定した。
 2ガロンの薬液1を用いたフラッシング洗浄について、洗浄後表面検査装置欠陥評価と共振周波数の変化量は、下記表3に示す結果が得られた。
Figure JPOXMLDOC01-appb-T000008
 表3に示すように、送液量が増加することにより、シリコンウエハ上に残存する欠陥の量が減少することがわかった。また、洗浄後表面検査装置欠陥評価で表される洗浄後の欠陥数は、共振周波数の変化量とも相関があることから、表面検査装置を用いた評価を実施しなくても、共振周波数の変化量を測定することにより欠陥発生量、すなわち、半導体製造装置の汚染度を把握することができることがわかった。
<例C>
[水晶振動子センサを用いた評価(その2)]
 図5に示す吸着層34がSiO層、SiOC層、Cu層、Co層、Ti層、W層、TiN層、Ta層、TaN層の各層である水晶振動子センサを用意した以外は、上述の[水晶振動子センサを用いた評価(その1)]と同様の手順に従って、共振周波数の変化量を測定した。なお、薬液と接触させる前の各層の水晶振動子の共振周波数は、それぞれ27MHzであった。結果を表4~21にまとめて示す。
 なお、上述の評価は、国際標準化機構が定める国際標準ISO14644-1:2015で定めるクラス2以上の清浄度を満たすクリーンルームで行った。
[表面検査装置を用いた評価(その2)]
 まず、各種基板(SiO基板、SiOC基板、Cu基板、Co基板、Ti基板、W基板、TiN基板、Ta基板、TaN基板)を用意した。
 次に、表面検査装置(SP-5;KLA Tencor製)を用いて、各基板上に存在する欠陥の数を計測した(これを初期値とする。)。
 次に、東京エレクトロン株式会社製「CLEAN TRACK LITHIUS(商品名)」を用いて、各薬液1~44を基板上に1500rpmで回転塗布し、その後、基板をスピン乾燥した。
 次に、上述の表面検査装置(SP-5)を用いて、薬液塗布後の基板に存在する欠陥の数を計測した(これを計測値とする。)。次に、初期値と計測値の差を(計測値-初期値)を計算し、欠陥数とした。結果を表4~21にまとめて示す。
 なお、上述の評価は、国際標準化機構が定める国際標準ISO14644-1:2015で定めるクラス2以上の清浄度を満たすクリーンルームで行った。
 表4~21においては、同種の金属種の吸着層及び基板を用いた結果を並べて示す。例えば、表3中の「SiO」欄においては、吸着層として「SiO層」を用いた[水晶振動子センサを用いた評価(その2)]の結果と、SiO基板を用いた[表面検査装置を用いた評価(その2)]の結果とを示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 上述の表に示すように、同じ種類の金属種からなる吸着層と基板とを用いた場合には、共振周波数の変化量と欠陥数とは相関性が高く、共振周波数の変化量が大きい場合、欠陥数が大きくなる傾向があった。
 更には、パターン欠陥数、又は洗浄後表面検査装置欠陥評価における欠陥数との相関について、決定係数が0.95以上であり、Si層以外の各種の層を使用した場合でも、共振周波数の変化量と、パターン欠陥数又は欠陥数とは相関性がより高いことが確認された。
<例D>
 Si層の代わりAu層を用いた以外は、上述の[水晶振動子センサを用いた評価(その1)]と同様の手順に従って、共振周波数の変化量を測定した。
 次に、Si層を用いて得られた共振周波数の変化量からAu層を用いて得られた共振周波数の変化量を引き、差分を求めた。結果を表22に示す。
 表22中、「振動子(Si-Au吸着層)の共振周波数の変化量(Hz)」欄は、Si層の共振周波数の変化量からAu層の共振周波数の変化量を引いた差分を表す。
 また、Si層の代わりAu層を用いた以外は、上述の[表面検査装置を用いた評価(その1)]と同様の手順に従って、表面検査装置(SP-5;KLA Tencor製)を用いて、各基板上に存在する欠陥の数を計測した。結果を表23に示す。
 なお、上述の評価は、国際標準化機構が定める国際標準ISO14644-1:2015で定めるクラス2以上の清浄度を満たすクリーンルームで行った。
 Si層とAu層とを有する水晶振動子センサを用い、上述の例Bの薬液1~44をプリウェット液として用いたリソグラフィ工程を行い、その後、パターン上欠陥を評価した。
 また、Si層とAu層とを有する水晶振動子センサを用い、上述の例Cの薬液1~44を洗浄液として用いた。洗浄後の洗浄液の共振周波数の変化量を測定した。
 以上の結果も合わせて表22及び表23に示す。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 表23に示すように、Si層とAu層とを有する水晶振動子センサにおいても、パターン欠陥数、又は洗浄後表面検査装置欠陥評価における欠陥数との相関について、決定係数が0.95以上であり、Au層を参照として使用した場合、共振周波数の変化量と、パターン欠陥数又は欠陥数とは相関性がより高いことが確認された。
 10 測定装置
 12 フローセルユニット
 14 発振部
 14a 第1発振ユニット
 14b 第2発振ユニット
 15 検出部
 16 算出部
 20 供給部
 18 メモリ
 22 制御部
 26 水晶振動子センサ
 27 水晶振動子
 27a 表面
 27b 裏面
 28 温度調整部
 29a 第1のチューブ
 29b 第2のチューブ
 30 電極
 30a 表面
 31 電極
 34 吸着層
 40 ブロック
 40a 供給路
 40b 排出路
 40c、42a 面
 42、43 シール部
 44 領域
 45 領域
 50 第1の電極
 51 第2の電極
 52 電極
 52a 第1の電極部
 52b 第2の電極部
 52c 連結部
 60、90 半導体製造装置
 61a レジスト液供給部
 61b リンス液供給部
 61c バックリンス部
 62a、62b、62c、92 タンク
 64a、64b、64c、94 ポンプ
 66a、66b、66c、96 温度調整器
 69a、69b、69c、99 配管
 68a、68b、68c、98 フィルタ
 70、71、72、100 ノズル
 80 塗布部
 82、112 収納容器
 83、114 支持台
 84、115 駆動軸
 85、116 モータ
 86 半導体ウエハ
 86a 表面
 86b 裏面
 110 洗浄部
 L 検量線

Claims (32)

  1.  振動子と、有機溶媒を主成分とする薬液とを接触させ、前記薬液の接触による前記振動子の共振周波数の変化量を得る工程1と、
     前記薬液の共振周波数の変化量が、予め設定された前記薬液の純度に基づく共振周波数の変化量の許容範囲に含まれるかを確認する工程2と、
     前記工程2で確認された薬液を、半導体デバイスの製造に使用する工程3とを有する、半導体デバイスの製造方法。
  2.  前記工程3の前記半導体デバイスの製造は、前記薬液を使用するリソグラフィ工程を有する、請求項1に記載の半導体デバイスの製造方法。
  3.  前記工程1の前に、前記薬液を濃縮する濃縮工程を有する、請求項1又は2に記載の半導体デバイスの製造方法。
  4.  前記工程1の前に、前記振動子を洗浄する工程を有する、請求項1~3のいずれか1項に記載の半導体デバイスの製造方法。
  5.  前記工程1は、前記薬液を前記振動子に循環して供給し、前記振動子と前記薬液とを接触させて、前記薬液の接触による前記振動子の共振周波数の変化量を得る、請求項1~4のいずれか1項に記載の半導体デバイスの製造方法。
  6.  前記工程1は、前記薬液の温度を一定に保持して実施される、請求項1~5のいずれか1項に記載の半導体デバイスの製造方法。
  7.  前記工程1の前記薬液は、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、Ti及びZnから成る群より選択される少なくとも1種の金属元素を含み、前記金属元素の合計含有量が0.01質量ppq~10質量ppbである、請求項1~6のいずれか1項に記載の半導体デバイスの製造方法。
  8.  前記振動子は、前記薬液中の不純物を吸着する吸着層及び水晶振動子を含む水晶振動子センサで構成されており、
     前記振動子を共振周波数で振動させる発振部と、
     前記水晶振動子センサに接続され、前記薬液の接触による前記水晶振動子の共振周波数の変化量を検出する検出部とを有する、請求項1~7のいずれか1項に記載の半導体デバイスの製造方法。
  9.  前記薬液を前記水晶振動子センサに供給して、前記薬液を前記水晶振動子センサに接触させる供給部を有しており、
     前記工程1は、前記薬液を前記水晶振動子センサに送液して、前記薬液と前記水晶振動子センサとを接触させる工程を有する、請求項8に記載の半導体デバイスの製造方法。
  10.  前記薬液を前記水晶振動子センサに一方向に流して、前記薬液と前記水晶振動子センサとを接触させる、請求項8又は9に記載の半導体デバイスの製造方法。
  11.  前記工程1において、前記薬液と接する接液部の少なくとも一部は、フッ素系樹脂で構成される、請求項1~10のいずれか1項に記載の半導体デバイスの製造方法。
  12.  振動子と、有機溶媒を主成分とする薬液とを接触させ、前記薬液の接触による前記振動子の共振周波数の変化量を得る工程1と、
     前記薬液の共振周波数の変化量が、予め設定された前記薬液の純度に基づく共振周波数の変化量の許容範囲に含まれるかを確認する工程2と、
     前記工程2で確認された薬液を、半導体製造装置の洗浄に使用する工程3とを有する、
    半導体製造装置の洗浄方法。
  13.  前記工程3の前記半導体製造装置の前記洗浄は、前記薬液を前記半導体製造装置の送液部に送液する工程を有する、請求項12に記載の半導体製造装置の洗浄方法。
  14.  前記工程1の前に、前記薬液を濃縮する濃縮工程を有する、請求項12又は13に記載の半導体製造装置の洗浄方法。
  15.  前記工程1の前に、前記振動子を洗浄する工程を有する、請求項12~14のいずれか1項に記載の半導体製造装置の洗浄方法。
  16.  前記工程1は、前記薬液を前記振動子に循環して供給し、前記振動子と前記薬液とを接触させて、前記薬液の接触による前記振動子の共振周波数の変化量を得る、請求項12~15のいずれか1項に記載の半導体製造装置の洗浄方法。
  17.  前記工程1は、前記薬液の温度を一定に保持して実施される、請求項12~16のいずれか1項に記載の半導体製造装置の洗浄方法。
  18.  前記工程1の前記薬液は、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、Ti及びZnから成る群より選択される少なくとも1種の金属元素を含み、前記金属元素の合計含有量が0.01質量ppq~10質量ppbである、請求項12~17のいずれか1項に記載の半導体製造装置の洗浄方法。
  19.  前記振動子は、前記薬液中の不純物を吸着する吸着層及び水晶振動子を含む水晶振動子センサで構成されており、
     前記振動子を共振周波数で振動させる発振部と、
     前記水晶振動子センサに接続され、前記薬液の接触による前記水晶振動子の共振周波数の変化量を検出する検出部とを有する、請求項12~18のいずれか1項に記載の半導体製造装置の洗浄方法。
  20.  前記薬液を前記水晶振動子センサに供給して、前記薬液を前記水晶振動子センサに接触させる供給部を有しており、
     前記工程1は、前記薬液を前記水晶振動子センサに送液して、前記薬液と前記水晶振動子センサとを接触させる工程を有する、請求項19に記載の半導体製造装置の洗浄方法。
  21.  前記薬液を前記水晶振動子センサに一方向に流して、前記薬液と前記水晶振動子センサとを接触させる、請求項19又は20に記載の半導体製造装置の洗浄方法。
  22.  前記工程1において、前記薬液と接する接液部の少なくとも一部は、フッ素系樹脂で構成される、請求項12~21のいずれか1項に記載の半導体製造装置の洗浄方法。
  23.  振動子と、有機溶媒を主成分とする薬液とを接触させ、前記薬液の接触による前記振動子の共振周波数の変化量を得る工程1と、
     前記薬液の共振周波数の変化量が、予め設定された前記薬液の純度に基づく共振周波数の変化量の許容範囲に含まれるかを確認する工程2と、
     前記工程2で確認された薬液を、半導体製造装置の洗浄に使用する工程3と、
     前記工程3の洗浄に使用された薬液の一部を取り出す工程4と、
     前記工程4で取り出された前記薬液の共振周波数の変化量が、前記許容範囲に含まれるかを確認する工程5とを有する、洗浄液の清浄度の測定方法。
  24.  前記工程1の前に、前記薬液を濃縮する濃縮工程を有する、請求項23に記載の洗浄液の清浄度の測定方法。
  25.  前記工程1の前に、前記振動子を洗浄する工程を有する、請求項23又は24に記載の洗浄液の清浄度の測定方法。
  26.  前記工程1は、前記薬液を前記振動子に循環して供給し、前記振動子と前記薬液とを接触させて、前記薬液の接触による前記振動子の共振周波数の変化量を得る、請求項23~25のいずれか1項に記載の洗浄液の清浄度の測定方法。
  27.  前記工程1は、前記薬液の温度を一定に保持して実施される、請求項23~26のいずれか1項に記載の洗浄液の清浄度の測定方法。
  28.  前記工程1の前記薬液は、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、Ti及びZnから成る群より選択される少なくとも1種の金属元素を含み、前記金属元素の合計含有量が0.01質量ppq~10質量ppbである、請求項23~27のいずれか1項に記載の洗浄液の清浄度の測定方法。
  29.  前記振動子は、前記薬液中の不純物を吸着する吸着層及び水晶振動子を含む水晶振動子センサで構成されており、
     前記振動子を共振周波数で振動させる発振部と、
     前記水晶振動子センサに接続され、前記薬液の接触による前記水晶振動子の共振周波数の変化量を検出する検出部とを有する、請求項23~28のいずれか1項に記載の洗浄液の清浄度の測定方法。
  30.  前記薬液を前記水晶振動子センサに供給して、前記薬液を前記水晶振動子センサに接触させる供給部を有しており、
     前記工程1は、前記薬液を前記水晶振動子センサに送液して、前記薬液と前記水晶振動子センサとを接触させる工程を有する、請求項29に記載の洗浄液の清浄度の測定方法。
  31.  前記薬液を前記水晶振動子センサに一方向に流して、前記薬液と前記水晶振動子センサとを接触させる、請求項29又は30に記載の洗浄液の清浄度の測定方法。
  32.  前記工程1において、前記薬液と接する接液部の少なくとも一部は、フッ素系樹脂で構成される、請求項23~31のいずれか1項に記載の洗浄液の清浄度の測定方法。
     
PCT/JP2021/028460 2020-08-31 2021-07-30 半導体デバイスの製造方法、半導体製造装置の洗浄方法、及び洗浄液の清浄度の測定方法 WO2022044703A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180053293.8A CN115989561A (zh) 2020-08-31 2021-07-30 半导体器件的制造方法、半导体制造装置的清洗方法及清洗液的清洁度的测量方法
JP2022545581A JP7390493B2 (ja) 2020-08-31 2021-07-30 半導体デバイスの製造方法、半導体製造装置の洗浄方法、及び洗浄液の清浄度の測定方法
KR1020237006907A KR20230044277A (ko) 2020-08-31 2021-07-30 반도체 디바이스의 제조 방법, 반도체 제조 장치의 세정 방법, 및 세정액의 청정도의 측정 방법
US18/173,048 US20230243780A1 (en) 2020-08-31 2023-02-22 Method of manufacturing semiconductor device, method of washing semiconductor manufacturing apparatus, and method of measuring cleanliness of washing solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-145412 2020-08-31
JP2020145412 2020-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/173,048 Continuation US20230243780A1 (en) 2020-08-31 2023-02-22 Method of manufacturing semiconductor device, method of washing semiconductor manufacturing apparatus, and method of measuring cleanliness of washing solution

Publications (1)

Publication Number Publication Date
WO2022044703A1 true WO2022044703A1 (ja) 2022-03-03

Family

ID=80353099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028460 WO2022044703A1 (ja) 2020-08-31 2021-07-30 半導体デバイスの製造方法、半導体製造装置の洗浄方法、及び洗浄液の清浄度の測定方法

Country Status (6)

Country Link
US (1) US20230243780A1 (ja)
JP (1) JP7390493B2 (ja)
KR (1) KR20230044277A (ja)
CN (1) CN115989561A (ja)
TW (1) TW202217300A (ja)
WO (1) WO2022044703A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137483A (ja) * 2010-12-06 2012-07-19 Nippon Dempa Kogyo Co Ltd 感知センサ及び感知装置並びに感知方法
WO2016104433A1 (ja) * 2014-12-26 2016-06-30 倉敷紡績株式会社 珪素濃度又はエッチング選択比の測定方法及び測定装置
WO2018128159A1 (ja) * 2017-01-06 2018-07-12 富士フイルム株式会社 薬液の品質検査方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6703098B2 (ja) 2016-03-31 2020-06-03 富士フイルム株式会社 半導体製造用処理液、及び、パターン形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137483A (ja) * 2010-12-06 2012-07-19 Nippon Dempa Kogyo Co Ltd 感知センサ及び感知装置並びに感知方法
WO2016104433A1 (ja) * 2014-12-26 2016-06-30 倉敷紡績株式会社 珪素濃度又はエッチング選択比の測定方法及び測定装置
WO2018128159A1 (ja) * 2017-01-06 2018-07-12 富士フイルム株式会社 薬液の品質検査方法

Also Published As

Publication number Publication date
KR20230044277A (ko) 2023-04-03
CN115989561A (zh) 2023-04-18
JPWO2022044703A1 (ja) 2022-03-03
JP7390493B2 (ja) 2023-12-01
US20230243780A1 (en) 2023-08-03
TW202217300A (zh) 2022-05-01

Similar Documents

Publication Publication Date Title
JP6818037B2 (ja) 半導体チップの製造方法、キット
TWI796300B (zh) 藥液、藥液收容體、藥液的填充方法及藥液的保管方法
TWI763770B (zh) 藥液的製造方法及藥液的製造裝置
US10884338B2 (en) Chemical liquid, chemical liquid storage body, manufacturing method of chemical liquid, and manufacturing method of chemical liquid storage body
WO2018043697A1 (ja) 有機溶剤の精製方法および有機溶剤の精製装置
JP6757412B2 (ja) 溶液、溶液収容体、感活性光線性又は感放射線性樹脂組成物、パターン形成方法、半導体デバイスの製造方法
JP2023179725A (ja) 管理方法、測定方法、測定装置、水晶振動子センサ、および、セット
US20160293471A1 (en) Method and system for positioning wafer in semiconductor manufacturing fabrication
WO2022044703A1 (ja) 半導体デバイスの製造方法、半導体製造装置の洗浄方法、及び洗浄液の清浄度の測定方法
TWI771479B (zh) 藥液的純化方法及藥液
JP7029459B2 (ja) 薬液収容体
TW201934980A (zh) 分析方法、藥液及藥液的製造方法
WO2022054620A1 (ja) 薬液の供給方法、パターン形成方法
TWI834622B (zh) 藥液的純化方法
TW201921175A (zh) 藥液的純化方法
JPWO2020040003A1 (ja) 薬液、薬液収容体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545581

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237006907

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861131

Country of ref document: EP

Kind code of ref document: A1