WO2022054620A1 - 薬液の供給方法、パターン形成方法 - Google Patents

薬液の供給方法、パターン形成方法 Download PDF

Info

Publication number
WO2022054620A1
WO2022054620A1 PCT/JP2021/031672 JP2021031672W WO2022054620A1 WO 2022054620 A1 WO2022054620 A1 WO 2022054620A1 JP 2021031672 W JP2021031672 W JP 2021031672W WO 2022054620 A1 WO2022054620 A1 WO 2022054620A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical solution
group
gas
mass
filter
Prior art date
Application number
PCT/JP2021/031672
Other languages
English (en)
French (fr)
Inventor
正洋 吉留
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020237008019A priority Critical patent/KR20230047474A/ko
Priority to JP2022547508A priority patent/JPWO2022054620A1/ja
Priority to CN202180054694.5A priority patent/CN116075780A/zh
Publication of WO2022054620A1 publication Critical patent/WO2022054620A1/ja
Priority to US18/177,742 priority patent/US20230229078A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0048Photosensitive materials characterised by the solvents or agents facilitating spreading, e.g. tensio-active agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Definitions

  • the present invention relates to a method for supplying a chemical solution and a method for forming a pattern.
  • Patent Document 1 describes an invention relating to a method for manufacturing a semiconductor device in which a resin solution is pressurized and supplied using helium gas when a resin film is formed by a spin coating method.
  • the present inventors refer to the method described in Patent Document 1, and among the supply methods for delivering a chemical solution through a pipeline provided in a device for a semiconductor device, the present inventors deliver the chemical solution by pressurizing with a gas.
  • a supply method having a gas pumping step it was found that there is room for further improvement in the amount of impurities eluted in the chemical solution sent from the pipeline by the gas pumping step.
  • [1] It is a method of supplying a chemical solution containing an organic solvent through a pipeline provided in a device for a semiconductor device, and has a gas pressure feeding step of delivering the chemical solution by pressurizing with a gas.
  • [3] The method for supplying a chemical solution according to [1] or [2], wherein the amount of water contained in the gas is 0.005 to 0.5 mass ppm with respect to the total mass of the gas.
  • [4] The method for supplying a chemical solution according to any one of [1] to [3], wherein the amount of water contained in the gas is 0.01 to 0.03 mass ppm with respect to the total mass of the gas.
  • [5] The method for supplying a chemical solution according to any one of [1] to [4], wherein the purity of the gas is 99.999% by volume or more.
  • [6] The method for supplying a chemical solution according to any one of [1] to [5], wherein the gas comprises at least one selected from the group consisting of nitrogen and argon.
  • the organic solvents are propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl methoxypropionate, ethyl propionate, cyclopentanone, cyclohexanone, ⁇ -butyrolactone, Diisoamyl ether, butyl acetate, isoamyl acetate, isopropanol, 4-methyl-2-pentanol, 1-hexanol, dimethylsulfoxide, n-methyl-2-pyrrolidone, diethylene glycol, ethylene glycol, dipropylene glycol, propylene glycol, ethylene carbonate
  • the drug solution according to any one of [1] to [6], which is at least one selected from the group consisting of propylene carbonate, sulfolane, cycloheptanone, 2-heptanone,
  • the chemical solution preparation step of preparing the chemical solution in the storage tank communicating with the pipeline is further provided, and the gas pumping step introduces the gas into the storage tank and passes it from the storage tank into the pipeline.
  • the total content of the Fe component, Cr component, Ni component and Al component in the chemical solution filtered by the purification step is 0.04 to 1200 mass ppt with respect to the total mass of the chemical solution.
  • the total content of the Fe component, Cr component, Ni component and Al component in the chemical solution filtered by the purification step is 0.2 to 400 mass ppt with respect to the total mass of the chemical solution, [9] or.
  • the total content of the Fe component, Cr component, Ni component and Al component in the chemical solution filtered by the purification step is 0.2 to 60 mass ppt with respect to the total mass of the chemical solution, [9] to The method for supplying a chemical solution according to any one of [11].
  • the chemical solution according to any one of [9] to [12], wherein the water content in the chemical solution filtered by the purification step is 0.0005 to 0.03% by mass with respect to the total mass of the chemical solution.
  • Supply method [14]
  • the chemical solution according to any one of [9] to [13] wherein the water content in the chemical solution filtered by the purification step is 0.001 to 0.02% by mass with respect to the total mass of the chemical solution. Supply method.
  • It has a developing step of developing with a developing solution to form a resist pattern and a rinsing step of bringing the rinsing solution into contact with the substrate on which the resist pattern is formed.
  • a pattern forming method wherein at least one selected from the group consisting of a rinse solution is a drug solution supplied by the supply method according to any one of [1] to [19].
  • the present invention it is possible to provide a method for supplying a chemical solution capable of suppressing the amount of impurities eluted from the pipeline into the chemical solution in the gas pressure feeding step of delivering the chemical solution using gas. Further, according to the present invention, it is possible to provide a pattern forming method.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-” as the lower limit value and the upper limit value.
  • the “content” of the component means the total content of the two or more kinds of components.
  • the term “preparation” includes not only synthesizing or blending a specific material, but also procuring a predetermined material by purchase or the like.
  • ppm means “parts-per-million ( 10-6 )”
  • ppb means “parts-per-billion ( 10-9 )
  • ppt means “ppt”. It means “parts-per-trillion ( 10-12 )”.
  • the term "radiation” means, for example, far ultraviolet rays, extreme ultraviolet rays (EUV), X-rays, electron beams, and the like. Further, in the present specification, light means active light rays or radiation. Unless otherwise specified, the term “exposure” as used herein includes not only exposure with far ultraviolet rays, X-rays, EUV, etc., but also drawing with particle beams such as electron beams or ion beams.
  • the method for supplying a chemical solution according to the present invention is a method for supplying a chemical solution containing an organic solvent through a pipeline provided in an apparatus for a semiconductor device.
  • This supply method has a gas pressure feeding step of delivering a chemical solution through a pipeline by pressurizing with a gas, and the amount of water contained in the gas is 0.01 to 1 mass ppm with respect to the total mass of the gas. It is characterized by being.
  • the present invention By setting the value to a predetermined lower limit or higher, a small amount of water dissolves from the gas into the chemical solution, and the present invention suppresses electrostatic breakdown that causes the elution of impurities in the wetted portion of the pipeline and other members.
  • the present invention is also described as "excellent in the effect of the present invention” that the effect of suppressing the amount of impurities eluted from the pipeline into the chemical solution in the gas pumping step is excellent.
  • the supply device (hereinafter, also simply referred to as “supply device”) used in this supply method is a device for a semiconductor device.
  • the term "for semiconductor devices” means that it is used in the manufacture of semiconductor devices.
  • the supply device may be a device that constitutes a part of a known manufacturing device for semiconductor devices or a processing device, and is preferably a device incorporated in a coater / developer.
  • FIG. 1 is a schematic diagram showing an example of the configuration of this device.
  • the supply device 10 shown in FIG. 1 is a device for a semiconductor device, and is a storage tank 11, a gas pipe 12, a pipe line 13, an intermediate tank 14, a pipe line 15, a discharge unit 16, and a pipe line. It includes a pump 17 and a filter unit 20 arranged on the 15 and a gas filter 21 arranged on the gas pipe 12.
  • F 1 and F 2 indicate the moving direction of the liquid (chemical solution) in the supply device 10
  • G indicates the moving direction of the pumping gas in the supply device 10.
  • the storage tank 11 is a container having a function of storing a chemical solution.
  • a gas pipe 12 and a pipeline 13 that penetrate the top of the storage tank 11 and communicate with the inside of the storage tank 11 are connected to the storage tank 11. Further, the storage tank 11 is provided with a chemical solution introduction port (not shown) for introducing the chemical solution.
  • the gas pipe 12 is connected to a gas supply unit (not shown) and a storage tank 11. As indicated by the arrow G, the gas sent from the gas supply unit passes through the inside of the gas pipe 12 and is introduced into the inside of the storage tank 11 from the gas introduction port 12a arranged near the top of the storage tank 11.
  • the gas filter 21 is a filter that is arranged on the gas pipe 12 and has a function of removing water and / or impurities contained in the gas flowing inside the gas pipe 12.
  • the pipeline 13 is connected to the storage tank 11 and the intermediate tank 14.
  • the upstream end of the pipeline 13 penetrates the top of the storage tank 11 and extends to the vicinity of the bottom of the storage tank 11.
  • the downstream end of the pipeline 13 penetrates the top of the intermediate tank 14 and extends to the upper part of the intermediate tank 14.
  • the chemical solution stored in the storage tank 11 is sent to the intermediate tank 14 through the pipeline 13 as indicated by the arrow F1.
  • the delivery of the chemical solution is performed by a gas pressure feeding step of introducing a pressure feeding gas into the storage tank 11 to pressurize the chemical solution, as will be described later.
  • pipeline when the term "pipeline” is used in the present specification, it means all sites where a chemical solution may exist between the storage tank 11 and the discharge portion 16 unless otherwise specified.
  • the intermediate tank 14 is a container having a function of temporarily storing the chemical solution sent from the storage tank 11.
  • a pipeline 15 communicating with the discharge portion 16 is connected to the bottom of the intermediate tank 14.
  • the chemical solution stored in the intermediate tank 14 is discharged from the discharge unit 16 through the pipeline 15 as indicated by the arrow F2.
  • the pump 17 provided on the pipeline 15 has a function of delivering the chemical solution stored in the intermediate tank 14 to the discharge unit 16.
  • the filter unit 20 contains a filter cartridge having a filter, and the filter unit 20 has a function of filtering a chemical solution passing through a pipeline 15 using a filter.
  • the filter and the filter cartridge constituting the filter unit 20 known filters and filter cartridges can be used.
  • the filter included in the filter unit will be described in detail in the purification step described later.
  • the chemical solution supplied by the supply device 10 is discharged from the discharge unit 16.
  • the use of the discharged chemical solution is not particularly limited, and when the discharge unit 16 has a function of discharging the chemical solution, the chemical solution may be discharged from the discharge unit 16 onto the wafer to perform various treatments, or the chemical solution may be transported. And / or the storage container for storage and the discharge unit 16 may be connected, and the chemical solution may be filled in the storage container.
  • the material constituting the storage tank 11 and the intermediate tank 14 (hereinafter, both of them are also simply collectively referred to as “containers”) included in the supply device 10 is not particularly limited, and may be an organic substance, an inorganic substance, or a combination thereof. good. Specific examples thereof include resin, glass, metal, or a composite thereof (for example, a form having a glass lining or a resin lining on a metal substrate). These can be arbitrarily selected according to the type of the chemical solution to be contained. Among them, it is preferable that at least a part of the wetted portion of the container (more preferably the entire wetted portion, more preferably the entire container) contains a corrosion resistant material described later as a component.
  • the container As a form in which at least a part of the wetted portion of the container contains a corrosion-resistant material as a component, for example, when the container contains a corrosion-resistant material as a material component, the container is arranged on the substrate and the substrate.
  • examples thereof include a stainless steel container, a container made of polytetrafluoroethylene, and a lining container having a coating layer made of polytetrafluoroethylene on the inner wall surface of a substrate made of stainless steel, which will be described later.
  • the "wet contact portion” refers to a portion of the container that may come into contact with the chemical solution contained in the container.
  • the corrosion-resistant material is at least one selected from the group consisting of non-metal materials and metal materials, and the metal material is preferably an electropolished metal material.
  • the non-metal material is not particularly limited, and a known material can be used.
  • the non-metal material include polyethylene resins, polypropylene resins, and polyolefin resins such as polyethylene-polypropylene resin; tetrafluoroethylene resin, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, and tetrafluoroethylene-.
  • a fluorine-containing resin such as, but a fluorine-containing resin is preferable, and polytetrafluoroethylene (PTFE) is more preferable.
  • the metal material is not particularly limited, and known materials can be used.
  • the metal material include metal materials in which the total content of chromium and nickel is more than 25% by mass with respect to the total mass of the metal material, and among them, 30% by mass or more is preferable.
  • the upper limit of the total content of chromium and nickel in the metal material is not particularly limited, but is preferably 90% by mass or less.
  • the metal material include stainless steel, carbon steel, alloy steel, nickel chrome molybdenum steel, chrome steel, chrome molybdenum steel, manganese steel, and nickel-chromium alloy, and stainless steel is preferable.
  • the stainless steel is not particularly limited, and known stainless steel can be used. Among them, an alloy containing 8% by mass or more of nickel is preferable, and an austenitic stainless steel containing 8% by mass or more of nickel is more preferable.
  • the austenitic stainless steel include SUS (Steel Use Stainless) 304 (Ni content 8% by mass, Cr content 18% by mass), SUS304L (Ni content 9% by mass, Cr content 18% by mass), SUS316 ( Ni content 10% by mass, Cr content 16% by mass), and SUS316L (Ni content 12% by mass, Cr content 16% by mass).
  • the nickel-chromium alloy is not particularly limited, and known nickel-chromium alloys can be used. Of these, nickel-chromium alloys having a nickel content of 40 to 75% by mass and a chromium content of 1 to 30% by mass are preferable. Examples of the nickel-chromium alloy include Hastelloy (trade name, the same shall apply hereinafter), Monel (trade name, the same shall apply hereinafter), and Inconel (trade name, the same shall apply hereinafter).
  • Hastelloy C-276 Ni content 63% by mass, Cr content 16% by mass
  • Hastelloy-C Ni content 60% by mass, Cr content 17% by mass
  • Hastelloy C- 22 Ni content 61% by mass, Cr content 22% by mass
  • the nickel-chromium alloy may further contain at least one selected from the group consisting of boron, silicon, tungsten, molybdenum, copper, and cobalt, in addition to the above alloy, if necessary. good.
  • the method for electrolytically polishing a metal material is not particularly limited, and for example, the methods described in paragraphs 0011 to 0014 of JP2015-227501 and paragraphs 0036 to 0042 of JP2008-264929 are used. Can be mentioned.
  • the content of chromium in the passivation layer on the surface of the metallic material is higher than that of the chromium in the matrix due to electropolishing. Therefore, it is presumed that it is possible to prepare a chemical solution with a reduced impurity content because the metal component containing a metal atom does not easily flow out from the device whose wetted part is made of an electrolytically polished metal material. Will be done.
  • the metal material may be buffed.
  • the method of buffing is not particularly limited, and a known method can be used.
  • the size of the abrasive grains used for finishing the buffing is not particularly limited, but # 400 or less is preferable because the unevenness of the surface of the metal material tends to be smaller.
  • the buffing is preferably performed before the electrolytic polishing.
  • the material constituting the pipeline 13 and the pipeline 15 included in the supply device 10 is not particularly limited, and known pipes can be used.
  • Examples of the piping include a form including a pipe, a pump, a valve, and the like.
  • the wetted parts of the pipelines 13 and 15 are preferably formed from the corrosion resistant material described above.
  • the supply device that can be used in the present supply method is not limited to the supply device 10 having the configuration described above.
  • the supply device that can be used in this supply method may have a configuration other than the configuration described above.
  • the supply device 10 shown in FIG. 1 includes only one filter unit 20 on the pipeline 15, but the supply device may include a plurality of filters. In that case, the plurality of filters included in the supply device may be arranged in series or in parallel with respect to the transfer direction of the chemical solution.
  • the supply device 10 shown in FIG. 1 has a configuration in which the purified chemical solution flowing out of the filter unit 20 is transferred to the discharge unit 16, but the supply device transfers the chemical solution flowing out of the filter unit 20 to the intermediate tank 14. It may have a configuration in which it is returned and passed through the filter unit 20 again.
  • Such a filtration method is called circulation filtration. From the viewpoint of productivity and from the viewpoint of preventing impurities and the like trapped in the filter from being mixed into the chemical solution again, it is preferable to pass the chemical solution through the filter only once without performing circulation filtration.
  • the filter unit 20 included in the supply device 10 includes a filter and a filter cartridge, but a filter not housed in the filter cartridge may be used.
  • the feeding device may have, for example, a mode in which the chemical solution is passed through a filter formed in a flat plate shape.
  • the supply device may be provided with one or more filters on the pipeline connecting the storage tank and the intermediate tank, and when the plurality of filters are provided, the plurality of filters are used with respect to the transfer direction of the chemical solution. , May be arranged in series or may be arranged in parallel.
  • the supply device may pass the chemical solution only once through the filter provided on the pipeline connecting the storage tank and the intermediate tank, and also provides a return path for returning the chemical solution from the downstream side of the filter to the storage tank. Then, the chemical solution may be passed through the filter a plurality of times.
  • the feeder may not be equipped with a filter. In this supply method, it is preferable to perform the chemical solution purification step described later using a supply device provided with a filter, in that the content of impurities in the chemical solution can be further reduced.
  • the chemical solution supplied by this supply method is not particularly limited as long as it contains an organic solvent, and a known chemical solution used for processing such as manufacturing of a semiconductor device can be used.
  • the chemical solution contains an organic solvent.
  • the content of the organic solvent in the chemical solution is not particularly limited, but is preferably 98% by mass or more, more preferably 99% by mass or more, still more preferably 99.9% by mass or more, based on the total mass of the chemical solution.
  • the upper limit is not particularly limited, but is preferably 99.999% by mass or less.
  • One type of organic solvent may be used alone, or two or more types may be used in combination. When two or more kinds of organic solvents are used in combination, the total content is preferably within the above range.
  • the organic solvent is intended to be a liquid organic compound contained in a content exceeding 10,000 mass ppm per component with respect to the total mass of the above-mentioned chemical solution. That is, in the present specification, the liquid organic compound contained in excess of 10,000 mass ppm with respect to the total mass of the chemical solution corresponds to an organic solvent.
  • a liquid is intended to be a liquid at 25 ° C. and under atmospheric pressure.
  • the type of the organic solvent is not particularly limited, and a known organic solvent can be used.
  • the organic solvent include alkylene glycol monoalkyl ether carboxylate, alkylene glycol monoalkyl ether, lactic acid alkyl ester, alkyl alkoxypropionate, cyclic lactone (preferably 4 to 10 carbon atoms), and monoketone which may have a ring.
  • examples thereof include polar organic solvents such as compounds (preferably 4 to 10 carbon atoms), alkylene carbonates, alkyl alkoxyacetates, and alkyl pyruvates, and non-polar organic solvents such as liquid unsubstituted hydrocarbons.
  • liquid unsubstituted hydrocarbon examples include linear, branched or cyclic substituted hydrocarbons having 5 to 12 carbon atoms, such as n-pentane, n-hexane, n-heptane, n-octane, and n.
  • n-pentane such as n-pentane, n-hexane, n-heptane, n-octane, and n.
  • n-decane, n-undecane, n-dodecane isopentane, neopentane 5-ethyl-3-methyloctane, cyclopentane, cyclohexane, methylcyclopentane, 1ethyl-3-methylcyclohexane, or a combination thereof
  • n-hexane is more preferred.
  • the organic solvent for example, those described in JP-A-2016-057614, JP-
  • organic solvent examples include propylene glycol monomethyl ether (PGMM), propylene glycol monoethyl ether (PGME), propylene glycol monopropyl ether (PGMP), propylene glycol monomethyl ether acetate (PGMEA), ethyl lactate (EL), and methyl methoxypropionate.
  • PGMM propylene glycol monomethyl ether
  • PGME propylene glycol monoethyl ether
  • PGMP propylene glycol monopropyl ether
  • PGMEA propylene glycol monomethyl ether acetate
  • EL ethyl lactate
  • MCM cyclopentanone
  • CyPn cyclohexanone
  • ⁇ BL diisoamyl ether
  • DIAE butyl acetate
  • iAA isoamyl acetate
  • IPA isopropanol
  • MIBC 4-Methyl-2-pentanol
  • MIBC 1-hexanol, dimethylsulfoxide (DMSO), n-methyl-2-pyrrolidone
  • DEG diethylene glycol
  • EG ethylene glycol
  • DPG dipropylene glycol
  • PG Propylene glycol
  • EC ethylene carbonate
  • PC propylene carbonate
  • sulfolane cycloheptanone
  • MAK methylethylketone
  • MEK methylethylketone
  • the type and content of the organic compound (including the organic solvent and the organic impurities described later) contained in the chemical solution can be measured by using a gas chromatograph mass spectrometer (GC-MS: Gas Chromatography-Mass Spectroscopy). The measurement conditions are as described in the examples.
  • GC-MS Gas Chromatography-Mass Spectroscopy
  • the chemical solution may contain components other than the above.
  • Other components include, for example, organic impurities, water, and metal components.
  • the chemical solution may contain organic impurities.
  • the content of organic impurities in the chemical solution is not particularly limited, but is preferably 10,000 mass ppm or less, more preferably 1000 mass ppm or less, based on the total mass of the chemical solution.
  • the lower limit is not particularly limited, but is preferably 0.1 mass ppm or more.
  • the organic impurity means an organic compound different from the organic solvent and contained in a content of 10,000 mass ppm or less with respect to the total mass of the chemical solution. That is, in the present specification, the organic compound contained in the content of 10,000 mass ppm or less with respect to the total mass of the chemical solution corresponds to an organic impurity and does not correspond to an organic solvent.
  • each of the plurality of organic compounds is contained in the chemical solution in a content of 10,000 mass ppm or less with respect to the total mass of the chemical solution, each of them corresponds to an organic impurity.
  • Organic impurities are often mixed or added to the chemical solution in the process of synthesizing, purifying and / or transferring the organic solvent contained in the chemical solution.
  • organic impurities include plasticizers, antioxidants, and compounds derived from them (eg, decomposition products).
  • the plasticizer may be eluted into the organic solvent from the wetted parts of each unit (reaction part, distillation column, filter unit, etc.) of the equipment (purification equipment) used for purification. be.
  • the antioxidant may be intentionally added to the organic solvent, or may be mixed in the commercially available organic solvent when purchased and used.
  • the organic impurities of these components those having a high boiling point (hereinafter, also referred to as “high boiling point organic impurities”) are hard to volatilize, so that they tend to remain as organic residue particles on the surface of the substrate, which causes defects in semiconductor devices.
  • the content of high boiling point organic impurities (particularly, organic impurities having a boiling point of 250 ° C. or higher) in the chemical solution is preferably 1 mass ppm or less, more preferably 50 mass ppb or less, and 10 mass ppb with respect to the total mass of the chemical solution. The following is more preferable.
  • the lower limit is not particularly limited, but is preferably 10 mass ppt or more.
  • High boiling point organic impurities include dioctyl phthalate (DOP, boiling point 385 ° C.), diisononyl phthalate (DINP, boiling point 403 ° C.), dioctyl adipate (DOA, boiling point 335 ° C.), dibutyl phthalate (DBP, boiling point 340 ° C.). And ethylene propylene rubber (EPDM, boiling point 300-450 ° C.).
  • the content of dioctyl phthalate (DOP) in the chemical solution is preferably 0.001 to 10 mass ppb with respect to the total mass of the chemical solution, in that the impurity removing performance of the filter used in the purification step described later is more excellent. 0.01 to 5 mass ppb is more preferable, and 0.01 to 1 mass ppb is further preferable.
  • the chemical solution may contain a metal component.
  • the "metal component” consists of a metal present as particles in the chemical solution (ie, “metal particles”) and a metal present as ions (ie, "metal ions”).
  • the metal particles also mean a compound in which a metal such as an oxide and a sulfide of a simple substance of a metal or an alloy is bonded to another non-metal element, in addition to particles composed of a simple substance of a metal or an alloy.
  • the metal ion means an ion of a simple substance of a metal and a complex ion (for example, an ammine complex, a cyano complex, a halogeno complex, a hydroxy complex, etc.).
  • the "content of metal component” means the content of only the metal component containing the metal element M when the metal component (metal particles and metal ions) containing a certain metal element M is present. means.
  • the metal component contains two or more kinds of metal elements
  • the metal component is calculated as the content of the metal component only for the metal element having the highest content. That is, the content of the metal component containing two or more kinds of metal elements does not overlap with the content of the two or more metal components. More specifically, the content of the metal component containing Fe and Cr is not included in both the content of the Fe component and the content of the Cr component.
  • the “content of Fe component” refers to metal particles (Fe particles) having the highest Fe content among metal elements and metal ions (Fe) having the highest Fe content among metal elements. Ion) means the total content.
  • the “Cr component content” is the total content of the metal particles (Cr particles) having the highest Cr content among the metal elements and the metal ions (Cr ions) having the highest Cr content among the metal elements. Means quantity.
  • the "Ni component content” is the total content of the metal particles (Ni particles) having the highest Ni content among the metal elements and the metal ions (Ni ions) having the highest Ni content among the metal elements.
  • “Content of Al component” is the total content of metal particles (Al particles) having the highest Al content among metal elements and metal ions (Al ions) having the highest Al content among metal elements. Means quantity.
  • the total content of the Fe component, Cr component, Ni component and Al component (hereinafter, these components are also referred to as "specific metal components") in the chemical solution is a point in which the impurity removal performance of the filter used in the purification step described later is more excellent. Therefore, 0.04 to 1200 mass ppt is preferable, 0.2 to 400 mass ppt is more preferable, and 0.2 to 60 mass ppt is further preferable with respect to the total mass of the chemical solution.
  • the total content of the specific metal component in the chemical solution is not more than the above upper limit value, static electricity tends to be accumulated in the filter and the removal performance of the filter is improved, while the total content of the specific metal component is more than the above lower limit value. It is presumed that this is because electrostatic breakdown in the wetted portion of the filter is suppressed and the removal performance of the filter is improved.
  • the total content of all metal components in the chemical solution is preferably 5000 mass ppt (5 mass ppb) or less, and more preferably 500 mass ppt or less.
  • the lower limit is not particularly limited and may be equal to or lower than the detection limit. Further, the content of each metal component other than the specific metal component in the chemical solution is preferably 50% by mass or less, and more preferably 10% by mass or less.
  • the lower limit is not particularly limited and may be below the detection limit, preferably 0.001 mass ppt or more.
  • the type and content of the metal component in the chemical solution can be measured by the SP-ICP-MS method (Single Nano Particle Inductively Coupled Plasma Mass Spectrometry).
  • the SP-ICP-MS method uses the same equipment as the ordinary ICP-MS method (inductively coupled plasma mass spectrometry), and differs only in data analysis. Data analysis of the SP-ICP-MS method can be performed by commercially available software.
  • the content of the metal component to be measured is measured regardless of its existence form. Therefore, the total mass of the metal particles to be measured and the metal ions is quantified as the content of the metal component.
  • an Agilent 8800 triple quadrupole ICP-MS inductively coupled plasma mass spectrometry, for semiconductor analysis, option # 200
  • Agilent Technologies is described in Examples. It can be measured by the above method.
  • the chemical solution may contain water.
  • the water content (water content) in the chemical solution is not particularly limited, but is 0.0005 to 0.03% by mass with respect to the total mass of the chemical solution in that the removal performance of the filter used in the purification step described later is more excellent. Is preferable, 0.001 to 0.02% by mass is more preferable, and 0.001 to 0.01% by mass is further preferable.
  • the amount of water in the chemical solution is not more than the above upper limit, the amount of metal components eluted into the chemical solution from members such as pipelines is reduced, static electricity is likely to be accumulated in the filter, and the removal performance of the filter is improved, while the water content is improved. It is presumed that when the amount is equal to or more than the above lower limit value, electrostatic breakdown in the wetted portion of the filter is suppressed and the removal performance of the filter is improved.
  • the water content in the chemical solution means the water content measured using a device based on the Karl Fischer water content measurement method.
  • the method for preparing the above-mentioned chemical solution is not particularly limited, but in order to prepare a chemical solution in which the content of organic impurities, metal components and water in the chemical solution is within a desired range, the purified solution containing an organic solvent is used. On the other hand, it is preferable to carry out the following purification steps to prepare a drug solution.
  • the timing of carrying out the purification step is not particularly limited, and may be either before or after the production of the organic solvent contained in the chemical solution.
  • the chemical solution contains two or more kinds of organic solvents
  • the individual organic solvents may be purified and then mixed, or each organic solvent may be mixed and then purified.
  • the purification step may be performed before mixing the two or more kinds of organic solvents, or may be performed after mixing. It may be carried out only once, or it may be carried out twice or more.
  • the "refined liquid” is a purification target in the purification process.
  • the purification step for example, an ion exchange treatment for performing an ion exchange treatment of the liquid to be purified, a dehydration treatment for dehydrating the liquid to be purified, an organic impurity removal treatment for removing organic impurities from the liquid to be purified, and removing metal ions.
  • a filtering process using a metal ion adsorption member can be mentioned.
  • an ionic component for example, a metal component
  • an ion exchange means such as an ion exchange resin
  • an ion exchange resin is used as the ion exchange resin.
  • a cation exchange resin or an anion exchange resin is provided on a single bed, a cation exchange resin and an anion exchange resin are provided on a double bed, and a cation exchange resin and an anion exchange resin are mixed. It may be any of the ones provided in.
  • the ion exchange resin it is preferable to use a dry resin containing as little water as possible in order to reduce the elution of water from the ion exchange resin.
  • a dry resin a commercially available product can be used, and 15JS-HG / DRY (trade name, dry cation exchange resin, moisture content of 2% or less) manufactured by Organo Corporation, and MSPS2-1 / DRY (trade name, mixed) can be used.
  • Floor resin moisture content of 10% or less
  • the dehydration treatment water in the liquid to be purified can be removed. Further, when zeolite described later (particularly, molecular sieve (trade name) manufactured by Union Showa Co., Ltd.) is used in the dehydration treatment, olefins can also be removed.
  • the dehydrating means used for the dehydration treatment include a dehydration membrane, a water adsorbent insoluble in the liquid to be purified, an aeration replacement device using a dry inert gas, and a heating or vacuum heating device. When a dehydrated membrane is used, membrane dehydration is performed by osmotic vaporization (PV) or vapor permeation (VP).
  • PV osmotic vaporization
  • VP vapor permeation
  • the dehydrated membrane is configured as, for example, a permeable membrane module.
  • a membrane made of a polymer-based material such as polyimide-based, cellulose-based, polyvinyl alcohol-based, or an inorganic-based material such as zeolite can be used.
  • the water adsorbent is used by adding it to the liquid to be purified.
  • the water adsorbent include zeolite, diphosphorus pentoxide, silica gel, calcium chloride, sodium sulfate, magnesium sulfate, anhydrous zinc chloride, fuming sulfuric acid, and soda lime.
  • organic impurity removing treatment high boiling point organic impurities and the like (including organic substances having a boiling point of 300 ° C. or higher) contained in the liquid to be purified can be removed.
  • the organic impurity removing means for example, it can be carried out by an organic impurity adsorbing member provided with an organic impurity adsorbing filter capable of adsorbing organic impurities.
  • the organic impurity adsorption member often includes the organic impurity adsorption filter and a base material for fixing the impurity adsorption filter.
  • the organic impurity adsorption filter has an organic substance skeleton capable of interacting with organic impurities on the surface from the viewpoint of improving the adsorption performance of organic impurities (in other words, the surface is modified by the organic substance skeleton capable of interacting with organic impurities. (Being) is preferable. It should be noted that the fact that the surface has an organic skeleton capable of interacting with organic impurities means that the surface of the base material constituting the organic impurity adsorption filter described later is provided with the organic skeleton capable of interacting with the organic impurities. Take as an example.
  • Examples of the organic substance skeleton capable of interacting with organic impurities include a chemical structure capable of reacting with organic impurities and capturing the organic impurities in an organic impurity adsorption filter. More specifically, when the organic impurity contains dioctyl phthalate, diisononyl phthalate, dioctyl adipate, or dibutyl phthalate, the organic skeleton includes a benzene ring skeleton. When the organic impurity contains ethylene propylene rubber, the organic skeleton includes an alkylene skeleton.
  • the organic skeleton may be an alkyl group.
  • the base material (material) constituting the organic impurity adsorption filter include cellulose carrying activated carbon, diatomaceous earth, nylon, polyethylene, polypropylene, polystyrene, and fluororesin.
  • the organic impurity removing filter a filter in which activated carbon described in JP-A-2002-273123 and JP-A-2013-150979 is adhered to a non-woven fabric can also be used.
  • the organic impurity removing treatment is not limited to the mode using the organic impurity adsorption filter capable of adsorbing the organic impurities as described above, and may be, for example, a mode of physically supplementing the organic impurities.
  • Organic impurities having a relatively high boiling point of 250 ° C. or higher are often coarse (for example, compounds having 8 or more carbon atoms), and therefore can be physically supplemented by using a filter having a pore size of about 1 nm. Is.
  • organic impurity removing filter having a pore diameter of 1 nm
  • dioctyl phthalate cannot pass through the pores of the filter and is physically captured by the filter and removed from the liquid to be purified.
  • organic impurities can be removed not only by chemical interaction but also by physical removal methods.
  • a filter having a pore diameter of 3 nm or more is used as a "filter member”, and a filter having a pore diameter of less than 3 nm is used as an "organic impurity removing filter”.
  • Examples of the filtering process using the metal ion adsorption member include filtering using a metal ion adsorption member provided with a metal ion adsorption filter.
  • the metal ion adsorption member includes at least one metal ion adsorption filter, and may have a configuration in which a plurality of metal ion adsorption filters are stacked according to a target purification level.
  • the metal ion adsorption member often includes the metal ion adsorption filter and a base material for fixing the metal ion adsorption filter.
  • the metal ion adsorption filter has a function of adsorbing metal ions in the liquid to be purified.
  • the metal ion adsorption filter is preferably a filter capable of ion exchange.
  • the metal ion to be adsorbed is not particularly limited, but Fe, Cr, Ni, Pb or Al is preferable from the viewpoint of easily causing defects in the semiconductor device.
  • the metal ion adsorption filter preferably has an acid group on the surface from the viewpoint of improving the adsorption performance of metal ions. Examples of the acid group include a sulfo group and a carboxyl group.
  • the base material (material) constituting the metal ion adsorption filter include cellulose, diatomaceous earth, nylon, polyethylene, polypropylene, polystyrene, and fluororesin.
  • the purification process performed in the purification step is not limited to the above process.
  • distillation treatment using a distillation apparatus, filtration treatment for removing coarse particles, and adsorption purification treatment of metal components using silicon carbide described in International Publication No. WO2012 / 043496 and The purification treatment selected from the group may be carried out.
  • each of the above treatments may be performed individually, or a plurality of the above treatments may be performed in combination.
  • each of the above processes may be performed once or a plurality of times.
  • a commercially available high-purity grade product of an organic solvent particularly, a product having a low content of organic impurities, metal components and water
  • a commercially available high-purity grade product of an organic solvent particularly, a product having a low content of organic impurities, metal components and water
  • the chemical solution may be subjected to static elimination treatment to reduce the charging potential of the chemical solution before use in this supply method.
  • the static elimination treatment is not particularly limited, and a known static elimination method can be used.
  • a method of bringing the chemical solution into contact with the conductive material can be mentioned.
  • the contact time for contacting the chemical solution with the conductive material is preferably 0.001 to 60 seconds, more preferably 0.001 to 1 second, still more preferably 0.01 to 0.1 seconds.
  • Conductive materials include stainless steel, gold, platinum, diamond, and glassy carbon. Examples of the method of bringing the chemical solution into contact with the conductive material include a method of arranging a grounded mesh made of the conductive material inside the pipeline and passing the chemical solution through the arranged mesh.
  • the preparation of the chemical solution is preferably carried out in a hermetically sealed state and in an atmosphere of an inert gas where water is unlikely to be mixed into the chemical solution. It is more preferable to carry out in an inert gas atmosphere. This is because, in an inert gas atmosphere of ⁇ 70 ° C. or lower, the water concentration in the gas phase is 2% by mass or less, so that the possibility of water contamination in the chemical solution is low.
  • the chemical solution may be temporarily stored in a container until it is used in this supply method.
  • the container for storing the above-mentioned chemical solution is not particularly limited, and a known container can be used.
  • a container having a high degree of cleanliness in the container and less elution of impurities is preferable for semiconductor device manufacturing applications.
  • Specific examples of the containers that can be used include, but are not limited to, the "clean bottle” series manufactured by Aicello Chemical Corporation and the "pure bottle” manufactured by Kodama Resin Industry.
  • the inside of the container is washed before containing the chemical solution.
  • the above-mentioned chemical solution itself or a diluted solution of the above-mentioned chemical solution is preferable.
  • the chemical solution may be bottling into a container such as a gallon bottle or a coated bottle after preparation, and may be transported and / or stored.
  • the gallon bottle may or may not be made of glass material.
  • the inside of the container may be replaced with an inert gas (nitrogen, argon, etc.) having a purity of 99.99995% by volume or more for the purpose of preventing changes in the components in the chemical solution.
  • an inert gas nitrogen, argon, etc.
  • a gas having a low water content is preferable.
  • the temperature during transportation and storage may be room temperature (25 ° C.), but the temperature may be controlled in the range of ⁇ 20 ° C. to 30 ° C. to prevent deterioration.
  • This supply method includes a gas pressure feeding step of delivering a chemical solution by pressurizing with a gas.
  • a gas pressure feeding step of delivering a chemical solution by pressurizing with a gas.
  • the position in the pipeline for introducing the pumping gas may be a position other than the inside of the storage tank as long as the chemical solution can be delivered in the pipeline by pressurizing the chemical solution, for example, a pipe. It may be inside the roads 13 and 15.
  • the gas used in the gas pumping step of this supply method (hereinafter, also referred to as “pressing gas”) has a water content of 0.00001 to 1 mass ppm with respect to the total mass of the pumping gas.
  • pressing gas has a water content of 0.00001 to 1 mass ppm with respect to the total mass of the pumping gas.
  • the content of impurities (particularly organic impurities) contained in the chemical liquid pumped by the gas pumping step can be reduced.
  • the water content of the pumping gas to 0.00001% by mass or more, the content of impurities (particularly organic impurities) contained in the chemical liquid pumped in the gas pumping step can be reduced.
  • the present inventors presume that it is possible to suppress the electrostatic breakdown of the wetted portion caused by the accumulation of static electricity in the wetted portion of a member such as a pipeline.
  • the water content of the pumping gas is preferably 0.005 to 0.5 mass ppm, more preferably 0.01 to 0.3 mass ppm, and 0. 01 to 0.03 mass ppm is more preferable.
  • the purity of the pumping gas is preferably 99.9% by volume (3N) or more, preferably 99.99% by volume, in that the effect of the present invention is more excellent and the content of impurities in the chemical solution can be further reduced.
  • % (5N) or more is more preferable.
  • the upper limit is not particularly limited and may be equal to or higher than the detection limit.
  • the purity of the pumping gas is the gas at 25 ° C. and atmospheric pressure with respect to the content of the components excluding water (water vapor) from the pumping gas, and is relative to the total volume of the pumping gas. It means the volume ratio (percentage) of the content of the gas contained in the content of 99% by volume or more (in the case of two or more types, the total content). That is, in the present specification, the component contained in a content of less than 1% by volume with respect to the total volume of the pumping gas corresponds to an impurity gas.
  • the type of the pumping gas examples include an inert gas such as nitrogen, argon and helium, and dry air.
  • the inert gas is preferable because the elution of impurities from the pipeline can be further suppressed.
  • argon is more preferred, and argon is even more preferred.
  • the above gas may be used alone or in combination of two or more.
  • API-MS Atmospheric Pressure Ionization Mass Spectrometer
  • the method for preparing the pumping gas in which the water content used in this supply method is within the above range is not particularly limited, but is a gas refining step of removing water (steam) contained in the raw material gas to prepare the pumping gas. It is preferable to do.
  • a gas refining step in the supply device 10 shown in FIG. 1, a pumping gas was prepared and prepared by passing a raw material gas through a gas filter 21 arranged on a gas pipe 12.
  • An embodiment of introducing the pumping gas into the storage tank 11 can be mentioned.
  • the gas filter used in the gas refining step include an in-line gas filter such as the “Wafergard® III NF-750” in-line gas filter manufactured by Entegris.
  • the raw material gas may be refined in advance to prepare the pumping gas.
  • the method for purifying the raw material gas in advance is not particularly limited, and examples thereof include a method of treating the raw material gas with a known adsorbent such as molecular sieve, alumina, silica gel, and silica alumina.
  • the gas supply pressure and flow rate in the gas pressure feeding process are not particularly limited, and may be appropriately set according to the liquid feeding conditions and the pressure resistance of each member such as the storage tank, the gas pipe, and the control valve.
  • the pressure of the gas pressurizing the chemical solution is preferably 0.01 to 0.34 MPa.
  • the supply device used in this supply method may be provided with a section for transferring the drug solution in the pipeline by using a pump provided on the pipeline. That is, the present supply method may include a pump transfer step of transferring the drug solution using a pump.
  • the section in the pipeline where the pump transfer process is performed may overlap with or be different from the section in the pipeline where the gas pumping process is performed (gas pumping section).
  • the pipeline 13 connecting the storage tank 11 to the intermediate tank 14 is the gas pumping section
  • the pipeline 15 connecting the intermediate tank 14 to the discharge port 16 is the pump transfer section. Is.
  • the discharge unit having a function of discharging the chemical solution to the wafer among the pipelines provided in the supply device.
  • the section including the downstream end of the pipeline connected to the pump transfer section is the pump transfer section. That is, it is preferable that the discharge from the supply device is performed by using a pump.
  • the type of pump used in the pump transfer step include an electric submersible pump (electrical pump), a diaphragm pump, and a centrifugal pump (magnet pump and the like).
  • the position where the pump is provided is not particularly limited and may be either upstream or downstream of the filter on the pipeline, but the upstream side is preferable. Further, the number of pumps used in one pump transfer section may be one or a combination of two or more.
  • the supply pressure of the chemical solution in the pump transfer step is not particularly limited, but the pressure inside the pipeline on the upstream side of the filter is preferably 0.00010 to 1.0 MPa, preferably 0.01 to 0.34 MPa. More preferred. Further, since the filtration pressure affects the filtration accuracy, it is preferable that the pulsation of the supply pressure of the chemical solution to the filter is as small as possible. As a method of reducing the pulsation of the supply pressure of the chemical solution, a method of using a regulating valve and / or a damper arranged in the pipeline on the upstream side of the filter can be mentioned.
  • the supply device used in this supply method may have a filter having a function of filtering and purifying the chemical solution on the pipeline. good. That is, the present supply method may include a purification step of filtering the chemical solution in the pipeline using a filter.
  • the present supply method preferably has the above-mentioned purification step.
  • This supply method is a method for supplying a chemical solution having the above-mentioned gas pumping step.
  • a filter using a pumping gas having a specified water content and filtering the chemical solution, impurities in the filter are filtered. This is because the removal performance is improved and the content of impurities in the purified chemical solution can be further reduced.
  • the mechanism for improving the impurity removal performance of the filter is not clear, the amount of water dissolved in the chemical solution from the gas is reduced by performing the gas pumping process using a gas in which the amount of water is reduced to a specific range.
  • the present supply method has a purification step of filtering the chemical solution delivered by the gas pressure feeding step using a filter. ..
  • the purification step is performed as follows.
  • the chemical solution stored in the intermediate tank 14 is sent by the pump 17 to the filter unit 20 having a filter via the pipeline 15.
  • the filter unit 20 When passing through the filter included in the filter cartridge housed in the filter unit 20, the chemical solution is filtered and purified.
  • the purified chemical solution flowing out of the filter cartridge 20 is discharged from the discharge port 16 through the pipeline 15.
  • the number of filters used in the purification step may be one or more. When a plurality of filters are used, they may be arranged in series or in parallel with respect to the transfer direction of the chemical solution. Further, the purified chemical solution that has passed through the filter may be returned to the storage tank or the intermediate tank, and the chemical solution may be repeatedly passed through the filter for circulation filtration. From the viewpoint of productivity and the viewpoint of suppressing the mixing of impurities, the chemical solution may be passed through the filter only once without performing circulation filtration.
  • the pore size of the filter is not particularly limited, and may be any hole diameter normally used for filtering chemicals.
  • the pore diameter of the filter is preferably 20 nm or less, more preferably 5 nm or less, still more preferably 2 nm or less.
  • the lower limit is not particularly limited, but 1 nm or more is preferable.
  • the pore diameter of at least one filter is within the above range.
  • the pore size of the filter is defined by the bubble point of isopropanol (IPA) or HFE-7200 (“Novec 7200”, manufactured by 3M, Hydrofluoroether, C4 F 9 OC 2 H 5 ). It means the determined hole diameter.
  • the material constituting the filter is not particularly limited, and is, for example, a polyolefin (including high density and ultrahigh molecular weight) such as polyethylene (PE) and polypropylene (PP); nylon (including nylon 6 and nylon 66). ) And the like; polyimide; polyamideimide; polyester such as polyethylene terephthalate; polyether sulfone; cellulose; polytetrafluoroethylene (PTFE) and fluororesin such as perfluoroalkoxyalkane; and the above polymer (or resin). Derivatives of.
  • a polyolefin including high density and ultrahigh molecular weight
  • PE polyethylene
  • PP polypropylene
  • nylon including nylon 6 and nylon 66.
  • polyimide polyamideimide
  • polyester such as polyethylene terephthalate
  • polyether sulfone polyether sulfone
  • cellulose polytetrafluoroethylene (PTFE) and fluororesin such as perfluoroalkoxyal
  • a material consisting of at least one selected from the group consisting of polyolefin, polyamide, polyimide, polyamideimide, polyester, polysulfone, cellulose, fluororesin, and derivatives thereof is preferable, and the content of impurities in the chemical solution is controlled.
  • Polyethylene, polypropylene, nylon or fluororesin is more preferred, and polyimide is even more preferred, in that it can be further reduced.
  • Examples of the material constituting the filter include diatomaceous earth and glass.
  • the material constituting the filter may be a derivative of the above polymer.
  • the derivative include those in which an ion exchange group is introduced into the polymer by a chemical modification treatment.
  • the ion exchange group include a cation exchange group such as a sulfonic acid group, a carboxy group and a phosphate group, and an anion exchange group such as a secondary, tertiary and quaternary ammonium group.
  • the method for introducing the ion exchange group into the polymer is not particularly limited, and examples thereof include a method in which a compound having an ion exchange group and a polymerizable group is reacted with the polymer to graft the polymer.
  • a polyolefin polyethylene, polypropylene, etc.
  • ionizing radiation ⁇ -ray, ⁇ -ray, ⁇ -ray, X-ray, electron beam, etc.
  • the irradiated polyolefin is immersed in a monomer-containing solution to graft-polymerize the monomer.
  • a product in which this monomer is bonded to the polyolefin as a graft polymerization side chain is produced.
  • a polyolefin fiber having this monomer as a side chain is brought into contact with an anion exchange group or a compound having a cation exchange group, and the two are reacted to introduce an ion exchange group into the graft-polymerized side chain monomer.
  • no ion exchange group is introduced into the polyolefin fiber which is the main chain, and the ion exchange group is introduced into the monomer of the side chain graft-polymerized on the main chain.
  • the filter may have a configuration in which a woven fabric or a non-woven fabric having an ion exchange group formed by a radiation graft polymerization method is combined with a conventional glass wool, a woven fabric, or a non-woven fabric.
  • the filter may have a surface treatment other than chemical modification.
  • the surface treatment method is not particularly limited, and a known method can be used. Examples of the surface treatment method include plasma treatment, hydrophobic treatment, coating, gas treatment, and sintering.
  • Plasma treatment is preferable because the surface of the filter becomes hydrophilic.
  • the water contact angle on the surface of the filter hydrophilized by plasma treatment is not particularly limited, but the static contact angle at 25 ° C. measured by a contact angle meter is preferably 60 ° or less, preferably 50 ° or less. More preferably, it is more preferably 30 ° or less.
  • the pore structure of the filter is not particularly limited, and may be appropriately selected depending on the form of impurities contained in the chemical solution.
  • the pore structure of the filter means the pore size distribution, the positional distribution of the pores in the filter, the shape of the pores, and the like, which differ depending on the method of manufacturing the filter.
  • the porous film formed by sintering powder such as resin and the fiber film formed by methods such as electrospinning, electroblowing, and melt blowing have different pore structures.
  • the critical surface tension of the filter is not particularly limited and can be appropriately selected according to the impurities to be removed.
  • the temperature at which the chemical solution is passed through the filter is preferably 0 to 50 ° C, more preferably 0 to 25 ° C.
  • the filtration rate of the chemical solution passing through the filter is preferably 0.6 L / min / m 2 or more, preferably 0.75 L / min / m 2 or more, in terms of the flow rate (L / min) per filter area of the filter. Is more preferable, and 1.0 L / min / m 2 or more is further preferable.
  • the filter has a differential pressure resistance that guarantees filter performance (the filter does not break), and if this value is large, the filtration speed can be increased by increasing the filtration pressure.
  • the upper limit of the filtration rate depends on the differential pressure resistance of the filter, but is preferably 10.0 L / min / m 2 or less.
  • the supply device used in the present supply method has a cleaning step of cleaning the wetted portion of each member in the apparatus before implementing the present supply method. By cleaning each member (particularly the filter), the content of impurities in the supplied chemical solution can be further reduced.
  • the cleaning step for example, a method of using a cleaning liquid instead of the chemical liquid and transferring the cleaning liquid in the pipeline according to the method described in the above-mentioned gas pressure feeding step or pump transfer step can be mentioned.
  • the filter cleaning method include a method of immersing the filter in the cleaning liquid, a method of passing the cleaning liquid through the filter, and a method of combining these.
  • the cleaning liquid is not particularly limited, but an organic solvent is preferable.
  • the organic solvent used as the cleaning solution is as described as the organic solvent contained in the above-mentioned chemical solution, including its preferred embodiment.
  • the cleaning solution used in the cleaning step may be the same as or different from the chemical solution delivered in the gas pressure feeding step, but is preferably the same as the chemical solution in that a rinsing treatment using the chemical solution is not required. ..
  • the method for transferring the cleaning liquid in the cleaning step is not particularly limited, and the cleaning liquid may be flowed into the inside of the pipeline or passed through the filter according to the method described as the gas pressure feeding step and / or the pump transfer step above. can.
  • the supply pressure of the cleaning liquid when the cleaning liquid is passed through the filter is not particularly limited, and for example, the pressure on the upstream side of the filter inside the pipeline may be 0.0001 to 1.0 MPa.
  • the flow rate of the cleaning liquid passed through the filter in the cleaning step is preferably 0.6 to 10.0 L / min / m 2 in terms of the flow rate (L / min) per filtration area of the filter.
  • the temperature of the cleaning liquid used in the cleaning step is preferably 0 to 50 ° C.
  • the number of cleaning steps may be only once or may be two or more.
  • the present supply method, purification of the chemical solution, and the accompanying steps such as opening the container, cleaning the container and the device, accommodating the chemical solution, and analysis are all performed in a clean room.
  • the clean room preferably meets the clean room standards described in ISO (International Organization for Standardization) 14644-1, and more preferably one of ISO class 1, ISO class 2, ISO class 3, and ISO class 4. It is more preferable to satisfy ISO class 1 or ISO class 2, and it is particularly preferable to satisfy ISO class 1.
  • the chemical solution supplied by this supply method is preferably used for manufacturing a semiconductor device.
  • the chemical solution can be used in any step for manufacturing a semiconductor device, and for example, in a wiring forming process including photolithography (including a lithography step, an etching step, an ion implantation step, a peeling step, and the like).
  • Photolithography including a lithography step, an etching step, an ion implantation step, a peeling step, and the like.
  • Specific uses of the chemical solution include a pre-wet solution, a developing solution, a rinsing solution, a stripping solution, a CMP slurry, and a rinsing solution after CMP (p-CMP rinsing solution).
  • the chemical solution may be diluted with another organic solvent and / or a solvent such as water before use.
  • a solvent such as water
  • additives such as abrasive grains and an oxidizing agent may be added to the chemical solution.
  • the chemical solution can also be used as a solvent for diluting the CMP slurry.
  • the chemical solution may be used for only one of the above-mentioned uses, or may be used for two or more uses.
  • the chemical solution supplied by this supply method is preferably used as a treatment solution in a pattern forming method having the following steps.
  • E A rinsing step in which a rinsing liquid is brought into contact with a substrate on which a resist pattern is formed.
  • a pattern forming method comprising the above steps (A) to (E), wherein at least one selected from the group consisting of the pre-wet solution, the developing solution and the rinsing solution is the above-mentioned chemical solution. Is more preferred.
  • each step of the pattern forming method will be described.
  • the pre-wet step is a step of bringing the pre-wet liquid into contact with the substrate.
  • the substrate is not particularly limited, and a known substrate used for semiconductor manufacturing can be used. Examples of the substrate include an inorganic substrate such as silicon, SiO 2 , or SiN, or a coated inorganic substrate such as SOG (Spin On Glass). Further, the substrate may be a substrate with an antireflection film provided with an antireflection film. As the antireflection film, a known organic or inorganic antireflection film can be used.
  • the method of contacting the pre-wet liquid on the substrate is not particularly limited, and a known coating method can be used. Above all, spin coating is preferable as a coating method in that a uniform resist film can be formed with a smaller amount of resist composition in the resist film forming step described later.
  • the thickness of the pre-wet liquid layer formed on the substrate using the pre-wet liquid is preferably 0.001 to 10 ⁇ m, more preferably 0.005 to 5 ⁇ m.
  • Pre-wet liquid As the pre-wet liquid, a pre-wet liquid containing an organic solvent is preferable.
  • the organic solvent contained in the pre-wet liquid is at least one selected from the group consisting of, for example, a hydrocarbon solvent, a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent, and an ether solvent.
  • An organic solvent is preferable, a hydrocarbon solvent, an ether solvent, or a ketone solvent is more preferable, and a hydrocarbon solvent or an ether solvent is further preferable.
  • the chemical solution supplied by this supply method can be used as the above-mentioned pre-wet solution.
  • the surface tension of the pre-wet liquid is preferably higher than the surface tension of the resist composition to be applied.
  • the pre-wet nozzle usually moves to the upper part of the center of the wafer. Then, the pre-wet liquid is supplied to the wafer by opening and closing the valve. With the wafer stopped, a predetermined amount of the above pre-wet liquid is supplied from the pre-wet nozzle to the center of the wafer. After that, the wafer was rotated at a first speed V1 of, for example, about 500 rpm (rotation per minute), the pre-wet liquid on the wafer was diffused over the entire surface of the wafer, and the entire surface of the wafer was wetted by the pre-wet liquid. It becomes a state.
  • the upper limit of the first speed V1 is not particularly limited, but is preferably 3000 rpm or less.
  • the resist composition may be a resist composition for ArF exposure, a resist composition for EUV exposure, or a resist composition for KrF exposure.
  • the pre-wet liquid may be a pre-wet liquid used by being applied to a substrate to which the resist composition for ArF exposure is applied, or may be applied to a substrate to which the resist composition for EUV exposure is applied.
  • the pre-wet liquid used may be used, or the pre-wet liquid used by applying the resist composition for KrF exposure to the substrate to which the resist composition is applied may be used.
  • the resist film forming step (described later) is started.
  • the rotation speed of the wafer is increased from the first speed V1 to, for example, a second speed V2 of about 2000 to 4000 rpm.
  • the rotation of the wafer which was at the first speed V1 before the start of the resist film forming step, is then gradually accelerated so that the speed fluctuates continuously and smoothly.
  • the acceleration of the rotation of the wafer gradually increases from zero, for example.
  • the acceleration of the rotation of the wafer is gradually reduced, and the rotation speed of the wafer smoothly converges to the second speed V2.
  • the rotation speed of the wafer fluctuates in an S-shape from the first speed V1 to the second speed V2.
  • the resist composition supplied to the center of the wafer is diffused over the entire surface of the wafer by centrifugal force, and the resist composition is applied to the surface of the wafer.
  • the interval from the completion of the (A) pre-wet step to the start of application of the resist composition in the (B) resist film forming step is not particularly limited, but is preferably 7 seconds or less.
  • the pre-wet liquid may be reused. That is, the pre-wet liquid used in the pre-wet step can be recovered and further used in the pre-wet step of another wafer.
  • the pre-wet liquid is reused, it is preferable to prepare the content of impurity metals, organic impurities, water and the like contained in the recovered pre-wet liquid.
  • the above-mentioned preparation method is as described above as a method for producing a pre-wet liquid.
  • the resist film forming step is a step of forming a resist film on the substrate after the pre-wet step by using the resist composition (preferably, applying the resist composition).
  • the substrate after the pre-wet process is a substrate having a pre-wet liquid layer, and is also called a pre-wet substrate.
  • the form of the resist composition will be described.
  • the resist composition that can be used in the resist film forming step is not particularly limited, and a known resist composition can be used.
  • the resist composition may be, for example, for positive type development or negative type development. Further, there is no limitation on the light exposed to the resist film formed by using the resist composition.
  • the resist composition may be a resist composition for ArF exposure, a resist composition for EUV exposure, or KrF. It may be a resist composition for exposure.
  • the resist composition is a resin containing a repeating unit containing a group that decomposes by the action of an acid to generate a polar group (carboxyl group, phenolic hydroxyl group, etc.) (hereinafter, “acid-degradable resin” in the present specification.
  • resist compositions are preferable.
  • -A resist composition containing a resin represented by the formula (I) described later-A resist composition containing an acid-degradable resin having a phenolic hydroxyl group described later-A hydrophobic resin described later and an acid-decomposable resin are used.
  • Resist composition contained in the following, each component of the resist composition will be described.
  • the polar group is protected by an acid-eliminating group (acid-eliminating group).
  • the acid-removing group include -C (R 36 ) (R 37 ) (R 38 ), -C (R 36 ) (R 37 ) (OR 39 ), and -C (R 01 ) (R). 02 ) (OR 39 ) and the like.
  • R 36 to R 39 each independently represent an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • R 36 and R 37 may be coupled to each other to form a ring.
  • R 01 and R 02 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • Examples of the acid-decomposable resin include a resin P having an acid-decomposable group represented by the formula (AI).
  • Xa 1 represents a hydrogen atom or an alkyl group which may have a substituent.
  • T represents a single bond or a divalent linking group.
  • Ra 1 to Ra 3 independently represent an alkyl group (linear or branched chain) or a cycloalkyl group (monocyclic or polycyclic). Two of Ra 1 to Ra 3 may be bonded to form a cycloalkyl group (monocyclic or polycyclic).
  • Examples of the alkyl group represented by Xa 1 which may have a substituent include a methyl group and a group represented by ⁇ CH2 - R11 .
  • R 11 represents a halogen atom (fluorine atom or the like), a hydroxyl group, or a monovalent organic group.
  • Xa 1 is preferably a hydrogen atom, a methyl group, a trifluoromethyl group or a hydroxymethyl group.
  • Examples of the divalent linking group of T include an alkylene group, an -COO-Rt- group, an -O-Rt- group and the like.
  • Rt represents an alkylene group or a cycloalkylene group.
  • T is preferably a single bond or a -COO-Rt- group.
  • Rt is preferably an alkylene group having 1 to 5 carbon atoms, and more preferably ⁇ CH 2 -group, ⁇ (CH 2 ) 2 -group, or ⁇ (CH 2 ) 3 -group.
  • alkyl group of Ra 1 to Ra 3 those having 1 to 4 carbon atoms are preferable.
  • Examples of the cycloalkyl group of Ra 1 to Ra 3 include a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, or a polyboronyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, an adamantyl group, or the like.
  • a cycloalkyl group of the ring is preferred.
  • the cycloalkyl group formed by the bond of Ra 1 to Ra 3 is a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, or a norbornyl group, a tetracyclodecanyl group or a tetracyclododecanyl.
  • a polycyclic cycloalkyl group such as a group or an adamantyl group is preferable.
  • a monocyclic cycloalkyl group having 5 to 6 carbon atoms is more preferable.
  • the cycloalkyl group formed by bonding two Ra 1 to Ra 3 is, for example, a group in which one of the methylene groups constituting the ring has a hetero atom such as an oxygen atom or a hetero atom such as a carbonyl group. It may be replaced.
  • Ra 1 is a methyl group or an ethyl group
  • Ra 2 and Ra 3 are bonded to form the above-mentioned cycloalkyl group.
  • Each of the above groups may have a substituent, and examples of the substituent include an alkyl group (1 to 4 carbon atoms), a halogen atom, a hydroxyl group, an alkoxy group (1 to 4 carbon atoms), and a carboxy group. And an alkoxycarbonyl group (2 to 6 carbon atoms) and the like, preferably 8 or less carbon atoms.
  • the total content of the repeating units represented by the formula (AI) is preferably 20 to 90 mol% and more preferably 25 to 85 mol% with respect to all the repeating units in the resin P. , 30-80 mol%, more preferably.
  • Rx and Xa 1 each independently represent a hydrogen atom, CH 3 , CF 3 , or CH 2 OH.
  • Rxa and Rxb each represent an alkyl group having 1 to 4 carbon atoms.
  • Z represents a substituent including a polar group, and if there are a plurality of them, they are independent of each other.
  • p represents 0 or a positive integer.
  • the substituent containing a polar group represented by Z include a hydroxyl group, a cyano group, an amino group, an alkylamide group, a sulfonamide group, and a linear or branched alkyl group or cyclo having these groups.
  • Alkyl groups can be mentioned.
  • the resin P preferably contains a repeating unit Q having a lactone structure.
  • the repeating unit Q having a lactone structure preferably has a lactone structure in the side chain, and more preferably, for example, a repeating unit derived from a (meth) acrylic acid derivative monomer.
  • the repeating unit Q having a lactone structure may be used alone or in combination of two or more, but it is preferably used alone.
  • the content of the repeating unit Q having a lactone structure with respect to all the repeating units of the resin P is, for example, 3 to 80 mol%, and is preferably 3 to 60 mol%.
  • the lactone structure a 5- to 7-membered lactone structure is preferable, and a structure in which another ring structure is condensed in such a form that a bicyclo structure or a spiro structure is formed in the 5- to 7-membered lactone structure is more preferable.
  • the lactone structure it is preferable to have a repeating unit having a lactone structure represented by any of the following formulas (LC1-1) to (LC1-17).
  • a lactone structure represented by the formula (LC1-1), the formula (LC1-4), the formula (LC1-5), or the formula (LC1-8) is more preferable, and the lactone structure is represented by the formula (LC1-4).
  • the lactone structure to be obtained is more preferable.
  • the lactone structural moiety may have a substituent (Rb 2 ).
  • Preferred substituents (Rb 2 ) include an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, and a carboxy group. , Halogen atom, hydroxyl group, cyano group, acid-degradable group and the like.
  • n 2 represents an integer from 0 to 4. When n 2 is 2 or more, the plurality of substituents (Rb 2 ) may be the same or different, or the plurality of substituents (Rb 2 ) may be bonded to each other to form a ring. ..
  • the resin P is a repeating unit represented by the formula (a), a repeating unit represented by the formula (b), a repeating unit represented by the formula (c), a repeating unit represented by the formula (d), and a repeating unit.
  • a resin consisting of repeating units selected from the group consisting of repeating units represented by the formula (e) (hereinafter, this resin is also referred to as "resin represented by the formula (I)") is preferable.
  • the resin represented by the following formula (I) is a resin whose solubility in a developing solution containing an organic solvent as a main component is reduced by the action of an acid, and contains an acid-degradable group.
  • the resin represented by the formula (I) may be a resin consisting substantially only of the repeating units represented by the formulas (a) to (e).
  • the resin represented by the formula (I) contains 0 to 5 mol% of other repeating units other than the repeating units represented by the formulas (a) to (e) with respect to all the repeating units of the resin. It may be contained in the range (more preferably in the range of 0 to 1 mol%).
  • the above formula (I) is a repeating unit (a) (repeating unit represented by the formula (a)), a repeating unit (b) (repeating unit represented by the formula (b)), and a repeating unit (c) (formula). It is composed of a repeating unit represented by (c)), a repeating unit (d) (repeating unit represented by the formula (d)) and a repeating unit (e) (repeating unit represented by the formula (e)).
  • R x1 to R x5 each independently represent a hydrogen atom or an alkyl group which may contain a substituent.
  • R 1 to R 4 independently represent monovalent substituents
  • p 1 to p 4 independently represent 0 or a positive integer.
  • Ra represents a linear or branched-chain alkyl group.
  • T 1 to T 5 each independently represent a single bond or a divalent linking group.
  • R 5 represents a monovalent organic group.
  • a to e represent mol% (mol% of each repeating unit with respect to the total 100 mol% of the repeating units (a) to (e)), respectively, 0 ⁇ a ⁇ 100, 0 ⁇ b ⁇ 100, respectively.
  • a + b + c + d + e 100
  • the repeating unit (e) has a structure different from any of the repeating units (a) to (d).
  • Examples of the alkyl group represented by R x1 to R x5 which may contain a substituent, include a methyl group and a group represented by -CH2 - R11 .
  • R 11 represents a halogen atom (fluorine atom or the like), a hydroxyl group, or a monovalent organic group.
  • Each of R x1 to R x5 is preferably a hydrogen atom, a methyl group, a trifluoromethyl group, or a hydroxymethyl group independently.
  • examples of the divalent linking group represented by T 1 to T 5 include an alkylene group, an -COO-Rt- group, an -O-Rt- group and the like.
  • Rt represents an alkylene group or a cycloalkylene group.
  • T 1 to T 5 are preferably single bonds or -COO-Rt- groups independently of each other.
  • Rt is preferably an alkylene group having 1 to 5 carbon atoms, and more preferably ⁇ CH 2 -group, ⁇ (CH 2 ) 2 -group, or ⁇ (CH 2 ) 3 -group.
  • Ra represents a linear or branched alkyl group.
  • a methyl group, an ethyl group, a t-butyl group and the like can be mentioned. Of these, a linear or branched alkyl group having 1 to 4 carbon atoms is preferable.
  • R 1 to R 4 each independently represent a monovalent substituent. Examples of R 1 to R 4 include, but are not limited to, a hydroxyl group, a cyano group, and a linear or branched alkyl group or cycloalkyl group having a hydroxyl group, a cyano group, or the like.
  • p1 to p4 each independently represent 0 or a positive integer.
  • R 5 represents a monovalent organic group.
  • the R5 is not particularly limited, but is, for example, a monovalent organic group having a sulton structure, tetrahydrofuran, dioxane, 1,4-thioxane, dioxolane, and 2,4,6-trioxabicyclo [3.3].
  • a monovalent organic group having a cyclic ether such as octane, or an acid-degradable group (for example, a quaternized adamantyl group in which the carbon at the position bonded to the -COO group is replaced with an alkyl group) Can be mentioned.
  • the repeating unit (b) is preferably formed from the monomers described in paragraphs 0014 to 0018 of JP-A-2016-138219.
  • a to e represent mol% (mol% of each repeating unit with respect to the total 100 mol% of the repeating units (a) to (e)), and 0 ⁇ a ⁇ 100, respectively.
  • a + b + c + d + e 100
  • a + b is preferably 20 to 90 mol%, more preferably 25 to 85 mol%, still more preferably 30 to 80 mol%.
  • the content of the repeating unit having an acid-degradable group with respect to all the repeating units is preferably 20 to 90 mol%, more preferably 25 to 85 mol%, still more preferably 30 to 80 mol%.
  • c + d content of the repeating unit having a lactone structure with respect to all the repeating units is preferably 3 to 80 mol%, more preferably 3 to 60 mol%.
  • each of the repeating units (a) to the repeating unit (e) may be used alone or in combination of two or more types of each repeating unit.
  • the total content is within the above range.
  • the weight average molecular weight (Mw) of the resin represented by the formula (I) is usually preferably 1,000 to 200,000, more preferably 2,000 to 20,000, still more preferably 3,000 to 15,000. ..
  • the weight average molecular weight is a polystyrene-equivalent value obtained by a gel permeation chromatography (GPC) method using tetrahydrofuran (THF) as a developing solvent.
  • the content of the resin represented by the above formula (I) is usually preferably 30 to 99% by mass, more preferably 50 to 95% by mass, based on the total solid content of the resist composition. preferable.
  • the resin P may contain a repeating unit having a phenolic hydroxyl group.
  • the repeating unit having a phenolic hydroxyl group include a repeating unit represented by the following general formula (I).
  • R 41 , R 42 and R 43 each independently represent a hydrogen atom, an alkyl group, a halogen atom, a cyano group or an alkoxycarbonyl group.
  • R 42 may be bonded to Ar 4 to form a ring, in which case R 42 represents a single bond or an alkylene group.
  • X 4 represents a single bond, -COO-, or -CONR 64- , and R 64 represents a hydrogen atom or an alkyl group.
  • L 4 represents a single bond or an alkylene group.
  • Ar 4 represents a (n + 1) -valent aromatic ring group, and represents a (n + 2) -valent aromatic ring group when combined with R 42 to form a ring.
  • N represents an integer from 1 to 5.
  • the alkyl group of R 41 , R 42 and R 43 in the general formula (I) may have a substituent, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and sec-butyl.
  • a substituent such as a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and sec-butyl.
  • An alkyl group having 20 or less carbon atoms such as a group, a hexyl group, a 2-ethylhexyl group, an octyl group and a dodecyl group is preferable, an alkyl group having 8 or less carbon atoms is more preferable, and an alkyl group having 3 or less carbon atoms is further preferable.
  • the cycloalkyl group of R 41 , R 42 and R 43 in the general formula (I) may be a monocyclic type or a polycyclic type.
  • a monocyclic cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group and a cyclohexyl group, which may have a substituent, is preferable.
  • Examples of the halogen atom of R 41 , R 42 and R 43 in the general formula (I) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom is preferable.
  • the alkyl group contained in the alkoxycarbonyl group of R 41 , R 42 and R 43 in the general formula (I) is preferably the same as the alkyl group in R 41 , R 42 and R 43 .
  • each of the above groups examples include an alkyl group, a cycloalkyl group, an aryl group, an amino group, an amide group, a ureido group, a urethane group, a hydroxyl group, a carboxyl group, a halogen atom, an alkoxy group, a thioether group and an acyl group.
  • Asyloxy group, alkoxycarbonyl group, cyano group, nitro group and the like, and the substituent has preferably 8 or less carbon atoms.
  • Ar 4 represents an (n + 1) -valent aromatic ring group.
  • the divalent aromatic ring group when n is 1 may have a substituent, for example, an arylene group having 6 to 18 carbon atoms such as a phenylene group, a tolylen group, a naphthylene group and an anthrasenylene group, and an arylene group having 6 to 18 carbon atoms.
  • arylene group having 6 to 18 carbon atoms such as a phenylene group, a tolylen group, a naphthylene group and an anthrasenylene group
  • an arylene group having 6 to 18 carbon atoms such as a phenylene group, a tolylen group, a naphthylene group and an anthrasenylene group
  • arylene group having 6 to 18 carbon atoms such as a phenylene group, a tolylen group, a naphthylene group and an anthrasenylene group
  • (n + 1) -valent aromatic ring group when n is an integer of 2 or more, (n-1) arbitrary hydrogen atoms are removed from the above-mentioned specific example of the divalent aromatic ring group.
  • n is an integer of 2 or more
  • (n-1) arbitrary hydrogen atoms are removed from the above-mentioned specific example of the divalent aromatic ring group.
  • the (n + 1) -valent aromatic ring group may further have a substituent.
  • Examples of the substituent that the above-mentioned alkyl group, cycloalkyl group, alkoxycarbonyl group, alkylene group and (n + 1) -valent aromatic ring group can have are R 41 , R 42 and R 43 in the general formula (I).
  • the above-mentioned alkyl groups; alkoxy groups such as methoxy group, ethoxy group, hydroxyethoxy group, propoxy group, hydroxypropoxy group and butoxy group; aryl groups such as phenyl group can be mentioned.
  • the alkyl group of R 64 in ⁇ CONR 64- may have a substituent, a methyl group, an ethyl group, a propyl group, and the like.
  • Examples thereof include an alkyl group having 20 or less carbon atoms such as an isopropyl group, an n-butyl group, a sec-butyl group, a hexyl group, a 2-ethylhexyl group, an octyl group and a dodecyl group, and an alkyl group having 8 or less carbon atoms is preferable.
  • a single bond, -COO- or -CONH- is preferable, and a single bond or -COO- is more preferable.
  • an alkylene group having 1 to 8 carbon atoms such as a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group and an octylene group, which may have a substituent, is preferable.
  • an aromatic ring group having 6 to 18 carbon atoms which may have a substituent is preferable, and a benzene ring group, a naphthalene ring group or a biphenylene ring group is more preferable.
  • the repeating unit represented by the general formula (I) preferably has a hydroxystyrene structure. That is, Ar 4 is preferably a benzene ring group.
  • repeating unit having a phenolic hydroxyl group the repeating unit represented by the following general formula (p1) is preferable.
  • R in the general formula (p1) represents a linear or branched alkyl group having a hydrogen atom, a halogen atom or 1 to 4 carbon atoms.
  • the plurality of Rs may be the same or different.
  • a hydrogen atom is preferable as R in the general formula (p1).
  • Ar in the general formula (p1) represents an aromatic ring, and may have a substituent having 6 to 18 carbon atoms such as a benzene ring, a naphthalene ring, an anthracene ring, a fluorene ring, and a phenanthrene ring.
  • Heterocycles such as a hydrogen ring and, for example, a thiophene ring, a furan ring, a pyrrole ring, a benzothiophene ring, a benzofuran ring, a benzopyrol ring, a triazine ring, an imidazole ring, a benzoimidazole ring, a triazole ring, a thiadiazole ring and a thiazole ring. Included are aromatic ring heterocycles. Of these, the benzene ring is preferable.
  • M in the general formula (p1) represents an integer of 1 to 5, and 1 is preferable.
  • a 1 or 2.
  • the content of the repeating unit having a phenolic hydroxyl group is preferably 0 to 50 mol%, more preferably 0 to 45 mol%, still more preferably 0 to 40 mol%, based on all the repeating units in the resin P.
  • the resin P may further contain a repeating unit containing an organic group having a polar group, particularly a repeating unit having an alicyclic hydrocarbon structure substituted with a polar group. This improves substrate adhesion and developer affinity.
  • a repeating unit containing an organic group having a polar group particularly a repeating unit having an alicyclic hydrocarbon structure substituted with a polar group.
  • an adamantyl group, a diamantyl group or a norbornane group is preferable.
  • As the polar group a hydroxyl group or a cyano group is preferable.
  • repeating units having a polar group are given below, but the present invention is not limited thereto.
  • the content thereof is preferably 1 to 50 mol%, more preferably 1 to 30 mol%, based on all the repeating units in the resin P. It is preferable, 5 to 25 mol% is more preferable, and 5 to 20 mol% is particularly preferable.
  • the resin P may contain a repeating unit having a group (photoacid generating group) that generates an acid by irradiation with active light or radiation.
  • a repeating unit having a group that generates an acid by irradiation with active light or radiation include a repeating unit represented by the following formula (4).
  • R 41 represents a hydrogen atom or a methyl group.
  • L 41 represents a single bond or a divalent linking group.
  • L 42 represents a divalent linking group.
  • W represents a structural site that is decomposed by irradiation with active light or radiation to generate an acid in the side chain.
  • examples of the repeating unit represented by the formula (4) include the repeating units described in paragraphs [0094] to [0105] of JP-A-2014-0413327.
  • the content of the repeating unit having a photoacid generating group is preferably 1 to 40 mol% with respect to all the repeating units in the resin P, and 5 to 35. More preferably mol%, more preferably 5-30 mol%.
  • the resin P may contain a repeating unit represented by the following formula (VI).
  • R 61 , R 62 and R 63 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group, or an alkoxycarbonyl group.
  • R 62 may be bonded to Ar 6 to form a ring, in which case R 62 represents a single bond or an alkylene group.
  • X 6 represents a single bond, -COO-, or -CONR 64- .
  • R 64 represents a hydrogen atom or an alkyl group.
  • L 6 represents a single bond or an alkylene group.
  • Ar 6 represents a (n + 1) -valent aromatic ring group, and when combined with R 62 to form a ring, represents a (n + 2) -valent aromatic ring group.
  • Y 2 represents a group desorbed by the action of a hydrogen atom or an acid independently when n ⁇ 2. However, at least one of Y 2 represents a group that is eliminated by the action of an acid.
  • n represents an integer of 1 to 4.
  • L 1 and L 2 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a group in which an alkylene group and an aryl group are combined.
  • M represents a single bond or a divalent linking group.
  • Q represents an alkyl group, a cycloalkyl group which may contain a hetero atom, an aryl group which may contain a hetero atom, an amino group, an ammonium group, a mercapto group, a cyano group or an aldehyde group.
  • At least two of Q, M, and L1 may be combined to form a ring (preferably a 5- or 6-membered ring).
  • the repeating unit represented by the above formula (VI) is preferably the repeating unit represented by the following formula (3).
  • Ar 3 represents an aromatic ring group.
  • R 3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxy group, an acyl group or a heterocyclic group.
  • M 3 represents a single bond or a divalent linking group.
  • Q3 represents an alkyl group, a cycloalkyl group, an aryl group or a heterocyclic group. At least two of Q 3 , M 3 and R 3 may be combined to form a ring.
  • the aromatic ring group represented by Ar 3 is the same as Ar 6 in the above formula (VI) when n in the above formula (VI) is 1, a phenylene group or a naphthylene group is more preferable, and a phenylene group is further preferable. ..
  • the resin P may contain a repeating unit represented by the following formula (4).
  • R 41 , R 42 and R 43 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group or an alkoxycarbonyl group.
  • R 42 may be bonded to L 4 to form a ring, in which case R 42 represents an alkylene group.
  • L 4 represents a single bond or a divalent linking group, and when forming a ring with R 42 , represents a trivalent linking group.
  • R 44 and R 45 represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxy group, an acyl group or a heterocyclic group.
  • M 4 represents a single bond or a divalent linking group.
  • Q4 represents an alkyl group, a cycloalkyl group, an aryl group or a heterocyclic group. At least two of Q 4 , M 4 and R 44 may be combined to form a ring.
  • R 41 , R 42 and R 43 are synonymous with R 41 , R 42 and R 43 in the above formula (IA), and the preferred range is also the same.
  • L 4 is synonymous with T in the above formula (AI), and the preferred range is also the same.
  • R44 and R45 are synonymous with R3 in the above formula ( 3 ), and the preferred range is also the same.
  • M 4 has the same meaning as M 3 in the above formula (3), and the preferred range is also the same.
  • Q4 has the same meaning as Q3 in the above formula (3), and the preferred range is also the same.
  • Examples of the ring formed by combining at least two of Q 4 , M 4 and R 44 include a ring formed by combining at least two of Q 3 , M 3 and R 3 , and the same applies to the preferred range. Is.
  • the resin P may contain a repeating unit represented by the following formula (BZ).
  • AR represents an aryl group.
  • Rn represents an alkyl group, a cycloalkyl group or an aryl group.
  • Rn and AR may be combined with each other to form a non-aromatic ring.
  • R 1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group or an alkyloxycarbonyl group.
  • the content of the repeating unit having an acid-decomposable group in the resin P is preferably 5 to 80 mol%, preferably 5 to 75 mol% with respect to all the repeating units in the resin P. Is more preferable, and 10 to 65 mol% is further preferable.
  • the resin P may contain a repeating unit represented by the following formula (V) or the following formula (VI).
  • R 6 and R 7 independently have a hydrogen atom, a hydroxy group, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an alkoxy group or an acyloxy group, a cyano group, a nitro group, an amino group, and the like. It represents a halogen atom, an ester group (-OCOR or -COOR: R is an alkyl group having 1 to 6 carbon atoms or a fluorinated alkyl group), or a carboxyl group. n 3 represents an integer from 0 to 6. n 4 represents an integer from 0 to 4.
  • X4 is a methylene group, an oxygen atom or a sulfur atom.
  • repeating unit represented by the formula (V) or the formula (VI) are shown below, but the present invention is not limited thereto.
  • the resin P may further contain a repeating unit having a silicon atom in the side chain.
  • the repeating unit having a silicon atom in the side chain include a (meth) acrylate-based repeating unit having a silicon atom, a vinyl-based repeating unit having a silicon atom, and the like.
  • the repeating unit having a silicon atom in the side chain is typically a repeating unit having a group having a silicon atom in the side chain, and examples of the group having a silicon atom include a trimethylsilyl group, a triethylsilyl group, and a triphenyl.
  • Cyril group tricyclohexylsilyl group, tristrimethylsiloxysilyl group, tristrimethylsilylsilyl group, methylbistrimethylsilylsilyl group, methylbistrimethylsiloxysilyl group, dimethyltrimethylsilylsilyl group, dimethyltrimethylsiloxysilyl group, and cyclic as shown below.
  • linear polysiloxane, cage type, ladder type or random type silsesquioxane structure and the like can be mentioned.
  • R and R 1 each independently represent a monovalent substituent. * Represents a bond.
  • repeating unit having the above group for example, a repeating unit derived from an acrylate or methacrylate compound having the above group, or a repeating unit derived from a compound having the above group and a vinyl group is preferable.
  • the repeating unit having a silicon atom is preferably a repeating unit having a silsesquioxane structure, whereby it is ultrafine (for example, a line width of 50 nm or less) and has a high aspect ratio (for example, a cross-sectional shape). In the formation of a pattern having a film thickness / line width of 3 or more), very excellent tilting performance can be exhibited.
  • silsesquioxane structure examples include a cage-type silsesquioxane structure, a ladder-type silsesquioxane structure (ladder-type silsesquioxane structure), and a random-type silsesquioxane structure.
  • the cage-type silsesquioxane structure is preferable.
  • the cage-type silsesquioxane structure is a silsesquioxane structure having a cage-like skeleton.
  • the cage-type silsesquioxane structure may be a complete cage-type silsesquioxane structure or an incomplete cage-type silsesquioxane structure, but may be a complete cage-type silsesquioxane structure.
  • the ladder-type silsesquioxane structure is a silsesquioxane structure having a ladder-like skeleton.
  • the random type silsesquioxane structure is a silsesquioxane structure having a random skeleton.
  • the cage-type silsesquioxane structure is preferably a siloxane structure represented by the following formula (S).
  • R represents a monovalent organic group.
  • the plurality of Rs may be the same or different.
  • the organic group is not particularly limited, and specific examples thereof include a hydroxy group, a nitro group, a carboxy group, an alkoxy group, an amino group, a mercapto group, and a blocked mercapto group (for example, a mercapto group blocked (protected) with an acyl group). ), Acrylic group, imide group, phosphino group, phosphinyl group, silyl group, vinyl group, hydrocarbon group which may have a hetero atom, (meth) acrylic group-containing group, epoxy group-containing group and the like.
  • heteroatom of the hydrocarbon group which may have the heteroatom include an oxygen atom, a nitrogen atom, a sulfur atom and a phosphorus atom.
  • hydrocarbon group of the hydrocarbon group which may have the heteroatom examples include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and a group combining these.
  • the aliphatic hydrocarbon group may be linear, branched or cyclic. Specific examples of the aliphatic hydrocarbon group include a linear or branched alkyl group (particularly 1 to 30 carbon atoms) and a linear or branched alkenyl group (particularly 2 to 30 carbon atoms). ), A linear or branched alkynyl group (particularly, 2 to 30 carbon atoms) and the like.
  • aromatic hydrocarbon group examples include aromatic hydrocarbon groups having 6 to 18 carbon atoms such as a phenyl group, a tolyl group, a xylyl group and a naphthyl group.
  • the content thereof is preferably 1 to 30 mol%, more preferably 5 to 25 mol%, based on all the repeating units in the resin P. 5 to 20 mol% is more preferable.
  • the weight average molecular weight of the resin P is preferably 1,000 to 200,000, more preferably 3,000 to 20,000, and 5,000 to 15,000 as a polystyrene conversion value by the GPC (Gel permeation chromatography) method. More preferred.
  • GPC Gel permeation chromatography
  • the degree of dispersion is usually 1 to 5, preferably 1 to 3, more preferably 1.2 to 3.0, and even more preferably 1.2 to 2.0.
  • the content of the resin P is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass, based on the total solid content. Further, in the resist composition, the resin P may be used alone or in combination of two or more.
  • the resist composition preferably contains a photoacid generator.
  • the photoacid generator is not particularly limited, and a known photoacid generator can be used.
  • the content of the photoacid generator in the resist composition is not particularly limited, but is preferably 0.1 to 20% by mass with respect to the total solid content of the resist composition. More preferably, it is 0.5 to 20% by mass.
  • the photoacid generator may be used alone or in combination of two or more. When two or more photoacid generators are used in combination, the total content is preferably within the above range.
  • photoacid generator examples include those described in JP-A-2016-057614, JP-A-2014-219664, JP-A-2016-138219, and JP-A-2015-135379.
  • the resist composition may contain a citric acid (acid diffusion control agent).
  • the quencher is not particularly limited, and a known quencher can be used.
  • the citric acid is, for example, a basic compound and has a function of suppressing the unintentional decomposition of the acid-degradable resin by the acid diffused from the exposed region in the unexposed region.
  • the content of the quencher in the resist composition is not particularly limited, but is preferably 0.1 to 15% by mass, more preferably 0.5 to 8% by mass, based on the total solid content of the resist composition.
  • the quencher may be used alone or in combination of two or more. When two or more types of quenchers are used in combination, the total content is preferably within the above range.
  • quencher examples include those described in JP-A-2016-057614, JP-A-2014-219664, JP-A-2016-138219, and JP-A-2015-135379.
  • the resist composition may contain a hydrophobic resin.
  • Hydrophobic resins are preferably designed to be unevenly distributed on the surface of the resist film, but unlike surfactants, they do not necessarily have to have hydrophilic groups in the molecule, and polar and non-polar substances are uniformly mixed. It does not have to contribute to doing so.
  • the effects of adding the hydrophobic resin include controlling the static and dynamic contact angles of the resist film surface with respect to water, and suppressing outgas.
  • the hydrophobic resin has one or more of "fluorine atom”, “silicon atom”, and " CH3 partial structure contained in the side chain portion of the resin” from the viewpoint of uneven distribution on the film surface layer. It is preferable to have two or more kinds, and it is more preferable to have two or more kinds. Further, the hydrophobic resin preferably has a hydrocarbon group having 5 or more carbon atoms. These groups may be present in the main chain of the resin or may be substituted with side chains.
  • the hydrophobic resin contains a fluorine atom and / or a silicon atom
  • the fluorine atom and / or the silicon atom in the hydrophobic resin may be contained in the main chain of the resin and may be contained in the side chain. You may.
  • the partial structure having a fluorine atom is preferably an alkyl group having a fluorine atom, a cycloalkyl group having a fluorine atom, or an aryl group having a fluorine atom.
  • the alkyl group having a fluorine atom (preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms) is a linear or branched alkyl group in which at least one hydrogen atom is substituted with a fluorine atom. Further, it may have a substituent other than a fluorine atom.
  • the cycloalkyl group having a fluorine atom is a monocyclic or polycyclic cycloalkyl group in which at least one hydrogen atom is substituted with a fluorine atom, and may further have a substituent other than the fluorine atom.
  • the aryl group having a fluorine atom include a phenyl group and a group in which at least one hydrogen atom of an aryl group such as a naphthyl group is substituted with a fluorine atom, and further has a substituent other than the fluorine atom. May be good.
  • Examples of repeating units having a fluorine atom or a silicon atom include those exemplified in paragraph [0519] of US2012 / 0251948A1.
  • the hydrophobic resin contains a CH3 partial structure in the side chain portion.
  • the CH 3 partial structure of the side chain portion in the hydrophobic resin includes the CH 3 partial structure of an ethyl group, a propyl group and the like.
  • the methyl group directly bonded to the main chain of the hydrophobic resin (for example, the ⁇ -methyl group of a repeating unit having a methacrylic acid structure) contributes to the uneven distribution of the surface of the hydrophobic resin due to the influence of the main chain. Since it is small, it is not included in the above CH3 partial structure.
  • hydrophobic resin the description in paragraphs [0348] to [0415] of JP-A-2014-010245 can be referred to, and these contents are incorporated in the present specification.
  • hydrophobic resin the resins described in JP-A-2011-248019, JP-A-2010-175859, and JP-A-2012-032544 can also be preferably used.
  • hydrophobic resin examples include resins represented by the following formulas (1b) to (5b).
  • the content of the hydrophobic resin is preferably 0.01 to 20% by mass, more preferably 0.1 to 15% by mass, based on the total solid content of the composition. ..
  • the resist composition may contain a solvent.
  • the solvent is not particularly limited, and a known solvent can be used.
  • the solvent contained in the resist composition may be the same as or different from the organic solvent contained in the pre-wet liquid.
  • the chemical solution supplied by this supply method can be used as a solvent contained in the resist composition.
  • the content of the solvent in the resist composition is not particularly limited, but is preferably contained so that the total solid content of the resist composition is adjusted to 0.1 to 20% by mass, and 0.5 to 10% by mass. It is more preferable that it is contained so as to be adjusted to%.
  • the solvent one type may be used alone, or two or more types may be used in combination. When two or more kinds of solvents are used in combination, the total content is preferably within the above range.
  • Examples of the solvent include those described in JP-A-2016-057614, JP-A-2014-219664, JP-A-2016-138219, and JP-A-2015-135379.
  • the resist composition further comprises a surfactant, an acid growth agent, a dye, a plasticizer, a photosensitizer, a light absorber, an alkali-soluble resin other than the above, and / or a dissolution inhibitor, if necessary. Etc. may be contained.
  • a resist film (resist composition film) on a substrate using a resist composition
  • a resist composition by dissolving each component as described above in a solvent, and filter as necessary. After filtering, it is applied on a substrate (pre-wet substrate).
  • the pore size of the filter is preferably 0.1 micron or less, more preferably 0.05 micron or less, still more preferably 0.03 micron or less.
  • the filter is preferably made of polytetrafluoroethylene, polyethylene, or nylon.
  • the resist composition is applied onto the substrate by an appropriate coating method such as spin coating. Then, the applied resist composition is dried to form a resist film.
  • a method of heating and drying is used.
  • the heating can be performed by means provided in a normal exposure developer or the like, and may be performed by using a hot plate or the like.
  • the heating temperature is preferably 80 to 180 ° C, more preferably 80 to 150 ° C, even more preferably 80 to 140 ° C, and particularly preferably 80 to 130 ° C.
  • the heating time is preferably 30 to 1000 seconds, more preferably 60 to 800 seconds, still more preferably 60 to 600 seconds.
  • the film thickness of the resist film is, for example, 1 to 200 nm, preferably 10 to 100 nm.
  • an upper layer film (top coat film) may be formed on the upper layer of the resist film.
  • the upper layer film can be formed by using, for example, a composition for forming an upper layer film containing a hydrophobic resin, a photoacid generator, and a basic compound.
  • the exposure step is a step of exposing the resist film.
  • the method for exposing the resist film is not particularly limited, and a known method can be used. Examples of the method for exposing the resist film include a method of irradiating the resist film with active light rays or radiation through a predetermined mask. Further, in the case of the method of irradiating the resist film with an electron beam, the resist film may be irradiated without using a mask (this is also referred to as "direct drawing").
  • the active light or radiation used for exposure is not particularly limited, and examples thereof include KrF excimer laser, ArF excimer laser, extreme ultraviolet (EUV), electron beam (EB: Electron Beam), and the like. Extreme ultraviolet rays or electron beams are preferable.
  • the exposure may be immersion exposure.
  • the pattern forming method preferably further includes a PEB step of baking (PEB: Post Exposure Bake) the resist film after exposure before the exposure step and the developing step. Baking accelerates the reaction of the exposed area, resulting in better sensitivity and / or pattern shape.
  • the heating temperature is preferably 80 to 150 ° C, more preferably 80 to 140 ° C, still more preferably 80 to 130 ° C.
  • the heating time is preferably 30 to 1000 seconds, more preferably 60 to 800 seconds, still more preferably 60 to 600 seconds.
  • the heating can be performed by means provided in a normal exposure / developing machine, and may be performed by using a hot plate or the like.
  • the developing step is a step of developing an exposed resist film (hereinafter, also referred to as “resist film after exposure”) with a developing solution.
  • the developing method is not particularly limited, and a known developing method can be used. Examples of the developing method include a dip method, a paddle method, a spray method, a dynamic dispense method, and the like.
  • the pattern forming method may further include a step of substituting the developing solution with another solvent and stopping the development after the developing step.
  • the development time is not particularly limited, but is preferably 10 to 300 seconds, more preferably 10 to 120 seconds.
  • the temperature of the developing solution is preferably 0 to 50 ° C, more preferably 15 to 35 ° C.
  • the pattern forming method may have at least one developing step, and may have a plurality of developing steps.
  • the developer is not particularly limited, and a known developer can be used.
  • the developer include an alkaline developer and a developer containing an organic solvent (organic developer).
  • the chemical solution supplied by this supply method can be used as an organic solvent contained in an organic developer.
  • both development using a developing solution containing an organic solvent and development using an alkaline developing solution may be performed (so-called double development may be performed).
  • the pattern forming method further includes a rinsing step after the developing step.
  • the rinsing step is a step of cleaning the wafer including the developed resist film with a rinsing liquid.
  • the cleaning method is not particularly limited, and a known cleaning method can be used. Examples of the cleaning method include a rotary discharge method, a dip method, a spray method, and the like. Above all, it is preferable to wash by the rotary discharge method, and after washing, rotate the wafer at a rotation speed of 2000 to 4000 rpm to remove the rinse liquid from the substrate.
  • the rinsing time is preferably 10 to 300 seconds, more preferably 10 to 180 seconds, further preferably 20 to 120 seconds, and the temperature of the rinsing solution is preferably 0 to 50 ° C, more preferably 15 to 35 ° C.
  • the rinsing solution is preferably a rinsing solution containing an organic solvent.
  • the organic solvent contained in the rinsing solution for example, at least one organic solvent selected from the group consisting of a hydrocarbon solvent, a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent, and an ether solvent.
  • a solvent is preferable, and at least one selected from the group consisting of a hydrocarbon solvent, an ether solvent, and a ketone solvent is more preferable, and at least one selected from the group consisting of a hydrocarbon solvent and an ether solvent is at least selected.
  • One is more preferable. It is preferable to use the chemical solution supplied by this supply method as the rinse solution.
  • the pattern forming method may have a rinsing step after the developing step, but it has a rinsing step from the viewpoint of throughput (productivity). It does not have to be.
  • a pattern forming method without a rinsing step for example, the description in paragraphs 0014 to 0086 of JP-A-2015-216403 can be referred to, and the above contents are incorporated in the present specification.
  • MIBC methylisobutylcarbinol
  • the same liquid as the developing solution particularly butyl acetate
  • the pattern forming method may include other steps in addition to the steps already described. Examples of other steps include a cleaning step with a supercritical fluid, a heating step, and the like. Further, the pattern forming method may include a resist underlayer film forming step of forming a resist underlayer film using the resist underlayer film forming composition on the substrate after the pre-wet step.
  • the resist underlayer film forming step can be performed according to the method described in the above (B) resist film forming step. Further, the pre-wet step performed before the resist underlayer film forming step can be performed according to the method described in the above (A) pre-wet step.
  • the removal step by the supercritical fluid is a step of removing the developer and / or the rinse liquid adhering on the pattern by the supercritical fluid after the development treatment and / or the rinsing treatment.
  • the heating step is a step of heating the resist film in order to remove the solvent remaining in the pattern after the developing step, the rinsing step, or the removing step with the supercritical fluid.
  • the heating temperature is not particularly limited, but is preferably 40 to 160 ° C, more preferably 50 to 150 ° C, and even more preferably 50 to 110 ° C.
  • the heating time is not particularly limited, but is preferably 15 to 300 seconds, more preferably 15 to 180 seconds.
  • the pattern forming method may include a step of applying a BARC (Bottom of Anti-Reflection Coating) composition on a wafer before the (B) resist film forming step. Further, the BARC composition coating step may further include a step of removing the BARC composition unintentionally applied to the edge portion (edge portion) of the wafer.
  • BARC Bottom of Anti-Reflection Coating
  • the chemical solution can be suitably used for applications other than those for manufacturing semiconductor devices, and can also be used as a developing solution such as a polyimide, a resist for a sensor, a resist for a lens, and a rinsing solution.
  • the chemical solution can also be used as a solvent for medical use or cleaning use.
  • it can be suitably used for cleaning members such as containers, pipes, and substrates (for example, wafers and glass).
  • a supply device equipped with 20 was prepared. Further, a gas filter (“Wafergard III NF-750 in-line gas filter” manufactured by Entegris) was arranged on the upstream side of the storage tank 11 of the gas pipe 12.
  • the content of each type of metal component (metal ion and metal particle) in the chemical solution is as follows using ICP-MS (“Agilent 8800 Triple Quadrupole ICP-MS (for semiconductor analysis, option # 200)”). It was measured according to the conditions. A quartz torch, a coaxial PFA (perfluoroalkoxy alkane) nebulizer (for self-priming), and a platinum interface cone were used as the sample introduction system. The measurement parameters of the cool plasma condition are as follows.
  • filter In each example and each comparative example, a filter composed of the following materials was used. -Polytetrafluoroethylene (PTFE) ⁇ Polyethylene (PE) ⁇ Nylon
  • a commercially available organic solvent was prepared and purified using the following purification apparatus to prepare a chemical solution used in each Example and each Comparative Example.
  • a purification device equipped with a container, a discharge part, a pipe connecting the container and the discharge part, a filtration device arranged on the pipe, and a return pipe connecting the pipe on the downstream side of the filtration device and the container. did.
  • the filtration device is composed of a plurality of filter units arranged in series on the pipe and does not have a regulating valve.
  • the filtration device includes, for example, a filter unit having the following filters in order from the upstream side (primary side).
  • the return pipe has a function of returning the organic solvent that has passed through the filtration device to the container.
  • a pump placed on the pipe connecting the container and the filtration device was operated to deliver the organic solvent from the container to the filtration device.
  • the filtered organic solvent was returned to the container via the return pipe.
  • the filtered organic solvent was discharged from the discharge section to obtain a chemical solution used in each Example and each Comparative Example.
  • the type and number of filters provided in the filtration device in the above filtration treatment and the number of repetitions of the above filtration are appropriately changed to obtain a chemical solution having the composition shown in Table 1.
  • Example 1 A filter cartridge having a filter having a hole diameter of 2 nm was housed in a filter unit 20 arranged on the pipeline 15 of the supply device 10.
  • the material (filter material) constituting the filter was polytetrafluoroethylene (PTFE). After measuring the content of each of the specific metal component, water content and dioctyl phthalate in the chemical solution prepared by the above preparation method by the above measurement method, the chemical solution was stored in the storage tank 11.
  • Ar is sent into the gas pipe 12 as a raw material gas, passed through a gas filter to prepare a pumping gas, and the obtained pumping gas is passed from the top of the storage tank 11 to which the gas pipe 12 is connected to the storage tank 11. Introduced inside. As a result, the atmospheric pressure of the gas accumulated in the head space above the storage tank 11 was increased, and the liquid level of the chemical solution stored in the storage tank 11 was pressurized. Due to the pressure difference between the inside of the storage tank 11 and the inside of the intermediate tank 14 generated by pressurization, the chemical solution stored in the storage tank 11 was sent (pressed) to the intermediate tank 14 through the pipeline 13.
  • the pump 17 arranged on the pipeline 15 connecting the intermediate tank 14 and the discharge unit 16 was operated, and the chemical solution stored in the intermediate tank 14 was discharged from the discharge unit 16. At this time, by passing the chemical solution through the filter unit 20 arranged in the pipeline 15, the chemical solution was filtered as a purification step.
  • Examples 2 to 65, Comparative Examples 1 to 5 A chemical solution was supplied according to the method described in Example 1 except that the pumping gas, the chemical solution and the filter shown in Table 1 were used, and a purified chemical solution was obtained. The following evaluations were performed using the chemical solutions obtained in each Example and each Comparative Example.
  • the substrate was set in a spin discharge device, and while rotating the substrate, the chemical solution before carrying out each supply method was discharged to the surface of the substrate at a flow velocity of 1 mL / s. Then, the substrate was spin-dried. Using the above inspection device, the number of organic residues having a diameter of 19 nm or more existing on the substrate after the chemical solution was applied was measured (this is referred to as a measured value). The difference between the initial value and the measured value (measured value-initial value) was calculated and used as the amount of organic impurities A1 derived from the chemical solution before each supply method was carried out.
  • EDX Electronic dispersive X-ray
  • SEM Vision G6 manufactured by AMAT
  • Elemental analysis was performed by spectroscopy (energy dispersive X-ray analysis). By this method, it was confirmed that the particles measured as organic impurities did not contain metal components.
  • the amount of impurities eluted in the supply method of each Example and each comparative example using the formula (A1-A2). (Impurity / wafer) was calculated.
  • the calculated elution amount of impurities is shown in Table 1. The smaller the amount of impurities eluted, the more the supply method is such that the elution from the wetted portion such as the pipeline of the supply device to the chemical solution is suppressed.
  • the amount of organic impurities was used in the same manner as in the above-mentioned evaluation test of the amount of impurity elution using the chemical solution obtained by the above-mentioned supply method having the step of purifying the chemical solution using a filter.
  • the initial value and the measured value were measured according to the same method as described above, and it was confirmed that the measured particles were organic impurities containing no metal component, and the results were obtained.
  • the difference between the initial value and the measured value was calculated and used as the amount of organic impurities A3 derived from each chemical solution.
  • the calculated impurity removal rate (filter removal rate) is shown in Table 1. The higher the filter removal rate, the higher the performance of removing organic impurities by the purification process of the supply method.
  • Table 1 shows the composition of the pumping gas used in each Example and each Comparative Example, the composition of the chemical solution, the filter, and the above evaluation results.
  • the "Type” column of “Pressure gas” in Table 1 indicates the type of pumping gas used in each Example and each Comparative Example.
  • the “gas filter” column indicates the presence or absence of a gas filter in the supply device used in each Example and each Comparative Example. When the gas filter column is "Yes”, it means that the gas is passed through the gas filter provided on the gas pipe to prepare (refining) the gas for pumping, and when the gas filter column is "None", it means that the gas is prepared (refined). It means that the pumping gas shown in Table 1 was prepared by purifying in advance without purifying the pumping gas in the supply device.
  • the “moisture content (ppm)” column indicates the water content (unit: mass ppm) contained in the pumping gas used in each Example and each Comparative Example.
  • the “purity” column indicates the purity of the pumping gas used in each Example and each Comparative Example. That is, in the notation of "2N”, “3N” and “5N” in the “purity” column, the purity of the pumping gas used is 99% by volume (2N), 99.9% by volume (3N) and 99.9% by volume, respectively. , 99.999% by volume (5N).
  • the "organic solvent” column of "chemical solution” in Table 1 indicates the type of organic solvent used in each Example and each Comparative Example.
  • the content of the organic solvent contained in the chemical solutions of each Example and each Comparative Example was 99.5% by mass or more.
  • the "Specified metal content (ppt)" column the Fe component (Fe particles and Fe ions), the Cr component (Cr particles and Cr ions), the Ni component (Ni particles and Ni ions), and the Al component (Al component) with respect to the total mass of the chemical solution are displayed.
  • the total content (unit: mass ppt) of (Al particles and Al ions) is shown.
  • the content of metal components other than the specific metal component contained in the chemical solution used in each example was measured.
  • the contents of the other metal components were all 10 mass ppt or less with respect to the total mass of the chemical solution.
  • the “moisture content (%)” column indicates the water content (unit: mass%) with respect to the total mass of the chemical solution used in each Example and each Comparative Example.
  • the “DOP (ppb)” column shows the content of dioctyl phthalate (unit: mass ppb) with respect to the total mass of the drug solution used in each Example and each Comparative Example.
  • the “material” column of "filter” in Table 1 indicates the material of the filter material constituting the filter used in the purification process of the chemical solution in the above supply device, and the “pore diameter” column indicates the pore diameter of each filter.
  • the methods for supplying the chemicals of Examples 1 to 65 are more effective in suppressing the amount of organic impurities eluted from the pipeline into the chemicals than the methods of supplying the chemicals of Comparative Examples 1 to 5. It was confirmed to be excellent.

Abstract

本発明は、薬液中における不純物の含有量をより低減できる薬液の供給方法を提供することを課題とする。また、本発明は、パターン形成方法を提供することも課題とする。 本発明の薬液の供給方法は、半導体デバイス用装置が備える管路内を通して、有機溶剤を含有する薬液を供給する、薬液の供給方法であって、ガスを用いて加圧することにより上記薬液を送出するガス圧送工程を有し、上記ガスに含まれる水分量が、上記ガスの全質量に対して0.00001~1質量ppmである。

Description

薬液の供給方法、パターン形成方法
 本発明は、薬液の供給方法、及び、パターン形成方法に関する。
 フォトリソグラフィを含む配線形成工程による半導体デバイスの製造の際、プリウェット液、レジスト液、現像液、リンス液、剥離液、化学機械的研磨(CMP:Chemical Mechanical Polishing)スラリー、及び、CMP後の洗浄液等として、溶剤(典型的には有機溶剤)を含有する薬液が用いられている。近年、10nmノード以下の半導体デバイスの製造が検討されており、ウェハ上に欠陥発生させにくい、より優れた欠陥抑制性能を有する薬液が求められている。
 そのような薬液を得るためには、精密ろ過により薬液中の不純物含有量を低減すること、更には、半導体デバイス用の装置内における薬液への不純物の溶出を抑制することが重要である。
 特許文献1には、スピンコート法によって樹脂膜を形成する際に、樹脂溶液をヘリウムガスを用いて加圧供給する半導体装置の製造法に関する発明が記載されている。
特開平11-162806号公報
 本発明者らは、特許文献1に記載された方法を参考にして、半導体デバイス用の装置が備える管路内を通して薬液を送出する供給方法のうち、ガスを用いて加圧することにより薬液を送出するガス圧送工程を有する供給方法について検討した結果、管路からガス圧送工程により送出される薬液に溶出する不純物の量について、更なる改善の余地があることを知見した。
 本発明は、ガスを用いて薬液を送出するガス圧送工程において、管路から薬液に溶出する不純物の量を抑制できる薬液の供給方法を提供することを課題とする。また、本発明は、パターン形成方法を提供することも課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。
 〔1〕
 半導体デバイス用装置が備える管路内を通して、有機溶剤を含有する薬液を供給する、薬液の供給方法であって、ガスを用いて加圧することにより上記薬液を送出するガス圧送工程を有し、上記ガスに含まれる水分量が、上記ガスの全質量に対して0.00001~1質量ppmである、薬液の供給方法。
 〔2〕
 上記ガスの純度が99.9体積%以上である、〔1〕に記載の薬液の供給方法。
 〔3〕
 上記ガスに含まれる水分量が、上記ガスの全質量に対して0.005~0.5質量ppmである、〔1〕又は〔2〕に記載の薬液の供給方法。
 〔4〕
 上記ガスに含まれる水分量が、上記ガスの全質量に対して0.01~0.03質量ppmである、〔1〕~〔3〕のいずれかに記載の薬液の供給方法。
 〔5〕
 上記ガスの純度が99.999体積%以上である、〔1〕~〔4〕のいずれかに記載の薬液の供給方法。
 〔6〕
 上記ガスが、窒素及びアルゴンからなる群より選択される少なくとも1つを含む、〔1〕~〔5〕のいずれかに記載の薬液の供給方法。
 〔7〕
 上記有機溶剤が、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、メトキシプロピオン酸メチル、プロピオン酸エチル、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、ジイソアミルエーテル、酢酸ブチル、酢酸イソアミル、イソプロパノール、4-メチル-2-ペンタノール、1-ヘキサノール、ジメチルスルホキシド、n-メチル-2-ピロリドン、ジエチレングリコール、エチレングリコール、ジプロピレングリコール、プロピレングリコール、炭酸エチレン、炭酸プロピレン、スルホラン、シクロヘプタノン、2-ヘプタノン、メチルエチルケトン、ヘキサン、及び、これらの組合せからなる群から選択される少なくとも1つである、〔1〕~〔6〕のいずれかに記載の薬液の供給方法。
 〔8〕
 上記管路に連通する貯留槽に上記薬液を準備する薬液準備工程を更に有し、上記ガス圧送工程が、上記貯留槽の内部に上記ガスを導入して、上記貯留槽から上記管路内を通して上記薬液を送出する工程である、〔1〕~〔7〕のいずれかに記載の薬液の供給方法。
 〔9〕
 上記ガス圧送工程により送出された薬液をフィルタを用いてろ過する精製工程を更に有する、〔1〕~〔8〕のいずれかに記載の薬液の供給方法。
 〔10〕
 上記精製工程によりろ過される上記薬液における、Fe成分、Cr成分、Ni成分及びAl成分の合計含有量が、上記薬液の全質量に対して0.04~1200質量pptである、〔9〕に記載の薬液の供給方法。
 〔11〕
 上記精製工程によりろ過される上記薬液における、Fe成分、Cr成分、Ni成分及びAl成分の合計含有量が、上記薬液の全質量に対して0.2~400質量pptである、〔9〕又は〔10〕に記載の薬液の供給方法。
 〔12〕
 上記精製工程によりろ過される上記薬液における、Fe成分、Cr成分、Ni成分及びAl成分の合計含有量が、上記薬液の全質量に対して0.2~60質量pptである、〔9〕~〔11〕のいずれかに記載の薬液の供給方法。
 〔13〕
 上記精製工程によりろ過される上記薬液における水分含有量が、上記薬液の全質量に対して0.0005~0.03質量%である、〔9〕~〔12〕のいずれかに記載の薬液の供給方法。
 〔14〕
 上記精製工程によりろ過される上記薬液における水分含有量が、上記薬液の全質量に対して0.001~0.02質量%である、〔9〕~〔13〕のいずれかに記載の薬液の供給方法。
 〔15〕
 上記精製工程によりろ過される上記薬液における水分含有量が、上記薬液の全質量に対して0.001~0.01質量%である、〔9〕~〔14〕のいずれかに記載の薬液の供給方法。
 〔16〕
 上記精製工程によりろ過される上記薬液におけるフタル酸ジオクチルの含有量が、上記薬液の全質量に対して0.001~10質量ppbである、〔9〕~〔15〕のいずれかに記載の薬液の供給方法。
 〔17〕
 上記精製工程によりろ過される上記薬液におけるフタル酸ジオクチルの含有量が、上記薬液の全質量に対して0.01~5質量ppbである、〔9〕~〔16〕のいずれかに記載の薬液の供給方法。
 〔18〕
 上記精製工程によりろ過される上記薬液におけるフタル酸ジオクチルの含有量が、上記薬液の全質量に対して0.01~1質量ppbである、〔9〕~〔17〕のいずれかに記載の薬液の供給方法。
 〔19〕
 原料ガスをガスフィルタを用いて精製するガス精製工程を更に有し、上記ガス精製工程で精製されたガスを上記ガス圧送工程において用いる、〔1〕~〔18〕のいずれかに記載の薬液の供給方法。
 〔20〕
 基板にプリウェット液を接触させるプリウェット工程と、レジスト組成物を用いて上記基板上にレジスト膜を形成するレジスト膜形成工程と、上記レジスト膜を露光する工程と、露光された上記レジスト膜を、現像液を用いて現像してレジストパターンを形成する現像工程と、上記レジストパターンが形成された基板にリンス液を接触させるリンス工程と、を有し、上記プリウェット液、上記現像液及び上記リンス液からなる群より選択される少なくとも1つが、〔1〕~〔19〕のいずれかに記載の供給方法により供給された薬液である、パターン形成方法。
 本発明によれば、ガスを用いて薬液を送出するガス圧送工程において、管路から薬液に溶出する不純物の量を抑制できる薬液の供給方法を提供できる。また、本発明によれば、パターン形成方法を提供できる。
薬液の供給方法に用いられる装置の一例を示す模式図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に制限されるものではない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、ある成分が2種以上存在する場合、その成分の「含有量」は、それら2種以上の成分の合計含有量を意味する。
 本明細書において「準備」というときには、特定の材料を合成又は調合して備えることのほか、購入等により所定の物を調達することを含む意味である。
 本明細書において、「ppm」は「parts-per-million(10-6)」を意味し、「ppb」は「parts-per-billion(10-9)」を意味し、「ppt」は「parts-per-trillion(10-12)」を意味する。
 本明細書における「放射線」とは、例えば、遠紫外線、極紫外線(EUV;Extreme ultraviolet)、X線、又は、電子線等を意味する。また、本明細書において光とは、活性光線又は放射線を意味する。本明細書における「露光」とは、特に断らない限り、遠紫外線、X線又はEUV等による露光のみならず、電子線又はイオンビーム等の粒子線による描画も露光に含める。
[薬液の供給方法]
 本発明に係る薬液の供給方法(以下、単に「本供給方法」とも記載する)は、半導体デバイス用の装置が備える管路内を通して、有機溶剤を含有する薬液を供給する方法である。本供給方法は、ガスを用いて加圧することにより管路内を通して薬液を送出するガス圧送工程を有し、ガスに含まれる水分量がガスの全質量に対して0.01~1質量ppmであることを特徴とする。
 上記薬液の供給方法により、ガス圧送工程において管路から薬液に溶出する不純物の量を抑制するメカニズムについて詳細は明らかではないが、水分量が特定の範囲に低減されたガスを使用してガス圧送工程を実施することにより、ガスから薬液に溶け込む水分量を低く抑え、管路及び他の部材の接液部から薬液への不純物の溶出及び/又は混入を抑制する一方で、ガスの水分量を所定の下限値以上とすることにより、わずかな量の水分がガスから薬液に溶け込み、管路及び他の部材の接液部において不純物の溶出を引き起こす静電破壊を抑制するものと、本発明者らは推測している。
 以下、本発明に関して、ガス圧送工程において管路から薬液に溶出する不純物の量を抑制する効果が優れることを、「本発明の効果が優れる」とも記載する。
 まず、本供給方法に用いる供給装置について説明し、次いで、本供給方法の各工程について説明する。
〔供給装置〕
 本供給方法に用いる供給装置(以下、単に「供給装置」ともいう)は、半導体デバイス用の装置である。本明細書において、「半導体デバイス用」とは、半導体デバイスの製造に用いられることを意味する。
 供給装置は、公知の半導体デバイス用製造装置又は処理装置の一部を構成する装置であってよく、コーター・デベロッパーに組み込まれた装置であることが好ましい。
 供給装置について、図面を参照しながら説明する。図1は、本装置の構成の一例を示す模式図である。
 図1に示す供給装置10は、半導体デバイス用の装置であって、貯留槽11と、ガス管12と、管路13と、中間槽14と、管路15と、排出部16と、管路15上に配置されたポンプ17及びフィルタユニット20と、ガス管12上に配置されたガスフィルタ21と、を備える。
 図1中、F及びFは、供給装置10における液体(薬液)の移動方向を示し、Gは、供給装置10における圧送用ガスの移動方向を示す。
 貯留槽11は、薬液を貯留する機能を有する容器である。貯留槽11には、貯留槽11の頂部を貫通して貯留槽11の内部と連通するガス管12及び管路13が接続されている。また、貯留槽11には、薬液を導入するための薬液導入口(図示しない)が設けられている。
 ガス管12は、図示しないガス供給部と貯留槽11とに接続されている。ガス供給部から送られたガスは、矢印Gが示すように、ガス管12の内部を通り、貯留槽11の頂部近傍に配置されたガス導入口12aから貯留槽11の内部に導入される。
 ガスフィルタ21は、ガス管12上に配置され、ガス管12の内部を流れるガスに含まれる水分及び/又は不純物を除去する機能を有するフィルタである。
 管路13は、貯留槽11と中間槽14とに接続されている。管路13の上流側の端部は、貯留槽11の頂部を貫通して、貯留槽11の底部近傍にまで延在している。管路13の下流側の端部は、中間槽14の頂部を貫通して、中間槽14の上部にまで延在している。
 貯留槽11に貯留された薬液は、矢印Fが示すように、管路13を通って中間槽14へと送られる。薬液の送出は、後述するように、貯留槽11内に圧送用ガスを導入して薬液を加圧するガス圧送工程により、行われる。
 なお、本明細書において「管路」と記載した場合、特に言及が無い限り、貯留槽11と排出部16との間において内部に薬液が存在し得る全ての部位を意味する。
 中間槽14は、貯留槽11から送られた薬液を一時的に貯留する機能を有する容器である。中間槽14の底部には、排出部16と連通する管路15が接続されている。
 中間槽14に貯留された薬液は、矢印Fが示すように、管路15を通って排出部16から排出される。ここで、管路15上に設けられたポンプ17は、中間槽14に貯留された薬液を排出部16に送出する機能を有する。
 フィルタユニット20には、フィルタを有するフィルタカートリッジが収納されており、フィルタユニット20は、管路15を通る薬液をフィルタを用いてろ過する機能を有する。フィルタユニット20を構成するフィルタ及びフィルタカートリッジとしては、公知のフィルタ及びフィルタカートリッジが使用できる。フィルタユニットが有するフィルタについては、後述する精製工程において詳しく説明する。
 供給装置10により供給される薬液は、排出部16より排出される。排出された薬液の用途は特に制限されず、排出部16が薬液を吐出する機能を有する場合、薬液を排出部16からウェハ上に吐出して各種の処理を行ってもよいし、薬液を輸送及び/又は保管するための保管容器と排出部16とを接続し、薬液を保管容器に充填してもよい。
 供給装置10が備える貯留槽11及び中間槽14(以下、これら両者を単に「容器」とも総称する)を構成する材料としては特に制限されず、有機物、無機物、又は、これらの組み合わせであってもよい。具体的には、樹脂、ガラス、金属、又は、これらの複合物(例えば、金属の基体にガラスライニング又は樹脂ライニングを有する形態)が挙げられる。これらは、収容する薬液の種類に応じて任意に選択できる。なかでも、容器の接液部の少なくとも一部(より好ましくは接液部の全部、更に好ましくは容器の全体)が、後述する耐腐食材料を成分として含有することが好ましい。
 なお、容器の接液部の少なくとも一部が耐腐食材料を成分として含有する形態としては、例えば、容器が耐腐食材料を材料成分として含有する場合、容器が基体と、基体上に配置された被覆層(ライニング)とを有するライニング容器であって、上記被覆層が材料成分として耐腐食材料を含有する場合(この場合、基体も材料成分として耐腐食材料を含有してもよい)等が挙げられる。
 より具体的には、後述するステンレス鋼製の容器、ポリテトラフルオロエチレン製の容器、及び、ステンレス鋼からなる基体の内壁面にポリテトラフルオロエチレンからなる被覆層を有するライニング容器等が挙げられる。
 なお、「接液部」とは、容器に収容した薬液と接触する可能性のある容器の部分をいう。
 耐腐食材料は、非金属材料、及び、金属材料からなる群から選択される少なくとも1種であり、金属材料としては電解研磨された金属材料が好ましい。
 上記非金属材料としては、特に制限されず、公知の材料が使用できる。
 非金属材料としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、及び、ポリエチレン-ポリプロピレン樹脂等のポリオレフィン系樹脂;四フッ化エチレン樹脂、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合体、四フッ化エチレン-六フッ化プロピレン共重合樹脂、四フッ化エチレン-エチレン共重合体樹脂、三フッ化塩化エチレン-エチレン共重合樹脂、フッ化ビニリデン樹脂、三フッ化塩化エチレン共重合樹脂、及び、フッ化ビニル樹脂等の含フッ素系樹脂等が挙げられるが、含フッ素系樹脂が好ましく、ポリテトラフルオロエチレン(PTFE)がより好ましい。
 上記金属材料としては、特に制限されず、公知の材料が使用できる。
 金属材料としては、例えば、クロム及びニッケルの含有量の合計が金属材料全質量に対して25質量%超である金属材料が挙げられ、なかでも、30質量%以上が好ましい。金属材料におけるクロム及びニッケルの含有量の合計の上限値としては特に制限されないが、90質量%以下が好ましい。
 金属材料としては、例えば、ステンレス鋼、炭素鋼、合金鋼、ニッケルクロムモリブデン鋼、クロム鋼、クロムモリブデン鋼、マンガン鋼、及びニッケル-クロム合金が挙げられ、ステンレス鋼が好ましい。
 ステンレス鋼としては、特に制限されず、公知のステンレス鋼が使用できる。なかでも、ニッケルを8質量%以上含有する合金が好ましく、ニッケルを8質量%以上含有するオーステナイト系ステンレス鋼がより好ましい。オーステナイト系ステンレス鋼としては、例えばSUS(Steel Use Stainless)304(Ni含有量8質量%、Cr含有量18質量%)、SUS304L(Ni含有量9質量%、Cr含有量18質量%)、SUS316(Ni含有量10質量%、Cr含有量16質量%)、及びSUS316L(Ni含有量12質量%、Cr含有量16質量%)が挙げられる。
 ニッケル-クロム合金としては、特に制限されず、公知のニッケル-クロム合金が使用できる。なかでも、ニッケル含有量が40~75質量%、クロム含有量が1~30質量%のニッケル-クロム合金が好ましい。
 ニッケル-クロム合金としては、例えば、ハステロイ(商品名、以下同じ。)、モネル(商品名、以下同じ)、及びインコネル(商品名、以下同じ)が挙げられる。より具体的には、ハステロイC-276(Ni含有量63質量%、Cr含有量16質量%)、ハステロイ-C(Ni含有量60質量%、Cr含有量17質量%)、及び、ハステロイC-22(Ni含有量61質量%、Cr含有量22質量%)が挙げられる。
 また、ニッケル-クロム合金は、必要に応じて、上記した合金の他に、更に、ホウ素、ケイ素、タングステン、モリブデン、銅、及びコバルトからなる群より選択される少なくとも1つを含有していてもよい。
 金属材料を電解研磨する方法としては特に制限されず、例えば、特開2015-227501号公報の0011~0014段落、及び、特開2008-264929号公報の0036~0042段落等に記載された方法が挙げられる。
 金属材料は、電解研磨されることにより表面の不動態層におけるクロムの含有量が、母相のクロムの含有量よりも多くなっているものと推測される。そのため、接液部が電解研磨された金属材料から形成された装置からは、薬液中に金属原子を含有する金属成分が流出しにくいため、不純物含有量が低減された薬液を調製できるものと推測される。
 なお、金属材料はバフ研磨されていてもよい。バフ研磨の方法は特に制限されず、公知の方法を用いることができる。バフ研磨の仕上げに用いられる研磨砥粒のサイズは特に制限されないが、金属材料の表面の凹凸がより小さくなりやすい点で、#400以下が好ましい。なお、バフ研磨は、電解研磨の前に行われることが好ましい。
 供給装置10が備える管路13及び管路15を構成する材料としては特に制限されず、公知の配管を用いることができる。配管としては、例えば、パイプ、ポンプ、及び弁等を備える形態が挙げられる。
 管路13及び15の接液部は、上記で説明した耐腐食材料から形成されることが好ましい。
 本供給方法に使用できる供給装置は、上記で説明した構成を有する供給装置10に制限されない。本供給方法に使用できる供給装置は、上記で説明した構成以外の構成を有していてもよい。
 例えば、図1に示す供給装置10は、管路15上に1つのフィルタユニット20のみを備えているが、供給装置は、複数のフィルタを備えていてもよい。その場合、供給装置が備える複数のフィルタは、薬液の移送方向に対して、直列に配置されていてもよく、並列に配置されていてもよい。
 また、図1に示す供給装置10は、フィルタユニット20から流出した精製後の薬液が排出部16に移送される構成を有するが、供給装置は、フィルタユニット20から流出した薬液を中間槽14に返送し、再度フィルタユニット20に通過させる構成を有していてもよい。このようなろ過の方法を循環ろ過という。
 生産性の観点、及び、フィルタに捕捉された不純物等が再度薬液に混入することを抑制する観点からは、循環ろ過を行わず、薬液をフィルタに1回のみ通過させることが好ましい。
 また、供給装置10が備えるフィルタユニット20は、フィルタ及びフィルタカートリッジを備えるが、フィルタカートリッジに収容されていないフィルタを用いてもよい。供給装置は、例えば、平板状に形成されたフィルタに薬液を通過させる態様を有していてもよい。
 また、供給装置は、貯留槽と中間槽とを接続する管路上に1つ又は複数のフィルタを備えていてもよく、複数のフィルタを備える場合、複数のフィルタは、薬液の移送方向に対して、直列に配置されていてもよく、並列に配置されていてもよい。供給装置は、貯留槽と中間槽とを接続する管路上に設けたフィルタに、薬液を1回のみ通過させてもよく、また、フィルタの下流側から貯留槽に薬液を返送する返送路を設けて、上記フィルタに薬液を複数回通過させてもよい。
 供給装置は、フィルタを備えていなくてもよい。薬液中の不純物の含有量をより低減できる点で、本供給方法は、フィルタを備える供給装置を用いて後述する薬液の精製工程を行うことが好ましい。
 次いで、本供給方法が有する各工程について、図1に示す供給装置10を使用して本供給方法を実施する態様を例に挙げて、説明する。
〔薬液準備工程〕
 まず、本供給方法により供給される薬液を、貯留槽11に導入する薬液準備工程を行う。
<薬液>
 本供給方法により供給される薬液は、有機溶剤を含有するものであれば特に制限されず、半導体デバイスの製造等の処理に用いられる公知の薬液が使用できる。
(有機溶剤)
 薬液は、有機溶剤を含有する。薬液における有機溶剤の含有量としては特に制限されないが、薬液の全質量に対して、98質量%以上が好ましく、99質量%以上がより好ましく、99.9質量%以上が更に好ましい。上限値は特に制限されないが、99.999質量%以下が好ましい。
 有機溶剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の有機溶剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 なお、本明細書において、有機溶剤とは、上記薬液の全質量に対して、1成分あたり10000質量ppmを超えた含有量で含有される液状の有機化合物を意図する。つまり、本明細書においては、上記薬液の全質量に対して10000質量ppmを超えて含有される液状の有機化合物は、有機溶剤に該当するものとする。
 なお、本明細書において液状とは、25℃、大気圧下において、液体であることを意図する。
 上記有機溶剤の種類は特に制限されず、公知の有機溶剤を用いることができる。
 有機溶剤としては、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、乳酸アルキルエステル、アルコキシプロピオン酸アルキル、環状ラクトン(好ましくは炭素数4~10)、環を有してもよいモノケトン化合物(好ましくは炭素数4~10)、アルキレンカーボネート、アルコキシ酢酸アルキル、及び、ピルビン酸アルキル等の極性有機溶剤、並びに、液状の非置換炭化水素等の非極性有機溶剤が挙げられる。
 液状の非置換炭化水素としては、炭素数5~12の直鎖状、分岐鎖状又は環状の被置換炭化水素が挙げられ、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、n-ウンデカン、n-ドデカン、イソペンタン、ネオペンタン5-エチル-3-メチルオクタン、シクロペンタン、シクロヘキサン、メチルシクロペンタン、1エチル-3-メチルシクロヘキサン、又は、これらの組合せが好ましく、n-ヘキサンがより好ましい。
 また、有機溶剤としては、例えば、特開2016-057614号公報、特開2014-219664号公報、特開2016-138219号公報、及び、特開2015-135379号公報に記載のものを用いてもよい。
 有機溶剤としては、プロピレングリコールモノメチルエーテル(PGMM)、プロピレングリコールモノエチルエーテル(PGME)、プロピレングリコールモノプロピルエーテル(PGMP)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、乳酸エチル(EL)、メトキシプロピオン酸メチル(MPM)、プロピオン酸エチル、シクロペンタノン(CyPn)、シクロヘキサノン(CyHe)、γ-ブチロラクトン(γBL)、ジイソアミルエーテル(DIAE)、酢酸ブチル(nBA)、酢酸イソアミル(iAA)、イソプロパノール(IPA)、4-メチル-2-ペンタノール(MIBC)、1-ヘキサノール、ジメチルスルホキシド(DMSO)、n-メチル-2-ピロリドン(NMP)、ジエチレングリコール(DEG)、エチレングリコール(EG)、ジプロピレングリコール(DPG)、プロピレングリコール(PG)、炭酸エチレン(EC)、炭酸プロピレン(PC)、スルホラン、シクロヘプタノン、2-ヘプタノン(MAK)、メチルエチルケトン(MEK)、ヘキサン、又は、これらの組合せが好ましい。
 中でも、PGMEA、プロピオン酸エチル、CyPn、CyHe、nBA、iAA、MAK、MEK、炭酸プロピレン、ヘキサン、又は、これらの組合せがより好ましい。
 なお、薬液に含有される有機化合物(有機溶剤及び後述する有機不純物を含む)の種類及び含有量は、ガスクロマトグラフ質量分析計(GC-MS:Gas Chromatography-Mass Spectroscopy)を用いて測定できる。測定条件は実施例に記載したとおりである。
 薬液は、上記以外の他の成分を含有してもよい。他の成分としては、例えば、有機不純物、水、及び、金属成分が挙げられる。
(有機不純物)
 薬液は有機不純物を含有してもよい。薬液中における有機不純物の含有量としては特に制限されないが、薬液の全質量に対して、10000質量ppm以下が好ましく、1000質量ppm以下がより好ましい。なお、下限値としては特に制限されないが、0.1質量ppm以上が好ましい。
 なお、本明細書において、有機不純物とは、有機溶剤とは異なる有機化合物であって、薬液の全質量に対して、10000質量ppm以下の含有量で含有される有機化合物を意味する。つまり、本明細書においては、薬液の全質量に対して10000質量ppm以下の含有量で含有される有機化合物は、有機不純物に該当し、有機溶剤には該当しない。
 なお、複数の有機化合物のそれぞれが薬液の全質量に対して10000質量ppm以下の含有量で薬液に含有されている場合は、それぞれが有機不純物に該当する。
 有機不純物は、薬液に含有される有機溶剤を合成、精製及び/又は移送する過程で、薬液に混入又は添加されることが多い。そのような有機不純物としては、例えば、可塑剤、酸化防止剤、及び、これらに由来する化合物(例えば分解生成物)が挙げられる。
 可塑剤は、有機溶剤の合成及び精製の過程で、精製に用いられる装置(精製装置)が有する各ユニット(反応部、蒸留塔及びフィルタユニット等)の接液部から有機溶剤に溶出することがある。
 また、酸化防止剤は、有機溶剤に意図的に添加される場合、又は、市販の有機溶剤を購入して使用する際に、それらに混入している場合がある。
 これらの成分の有機不純物のうち、沸点の高いもの(以下「高沸点有機不純物」とも記載する。)は、揮発しにくいため、基板表面に有機残渣粒子として残りやすく、半導体デバイスの欠陥の原因になりやすい。
 したがって、薬液における高沸点有機不純物(特に、沸点250℃以上の有機不純物)の含有量は、薬液の全質量に対して、1質量ppm以下が好ましく、50質量ppb以下がより好ましく、10質量ppb以下が更に好ましい。下限値は特に制限されないが、10質量ppt以上が好ましい。
 高沸点有機不純物としては、フタル酸ジオクチル(DOP、沸点385℃)、フタル酸ジイソノニル(DINP、沸点403℃)、アジピン酸ジオクチル(DOA、沸点335℃)、フタル酸ジブチル(DBP、沸点340℃)及びエチレンプロピレンゴム(EPDM、沸点300~450℃)が挙げられる。
 中でも、後述する精製工程で用いるフィルタの不純物除去性能がより優れる点で、薬液におけるフタル酸ジオクチル(DOP)の含有量が、薬液の全質量に対して、0.001~10質量ppbが好ましく、0.01~5質量ppbがより好ましく、0.01~1質量ppbが更に好ましい。
(金属成分)
 薬液は、金属成分を含有してもよい。
 本明細書において、「金属成分」とは、薬液中に粒子として存在する金属(即ち「金属粒子」)、及び、イオンとして存在する金属(即ち「金属イオン」)からなる。
 金属粒子とは、金属単体又は合金からなる粒子に加えて、金属単体又は合金の酸化物及び硫化物等の金属と他の非金属元素が結合した化合物も意味する。
 金属イオンとは、金属単体のイオン並びに錯イオン(例えば、アンミン錯体、シアノ錯体、ハロゲノ錯体、及び、ヒドロキシ錯体等)を意味する。
 本明細書において、「金属成分の含有量」とは、ある金属元素Mを含有する金属成分(金属粒子及び金属イオン)が存在する場合、その金属元素Mを含有する金属成分のみの含有量を意味する。
 金属成分が2種以上の金属元素を含有する場合、その金属成分は、最も含有量が多い金属元素についてのみ、金属成分の含有量として算出される。即ち、2種以上の金属元素を含有する金属成分の含有量が、2つ以上の金属成分の含有量に重複して含まれることは無い。より具体的には、Fe及びCrを含有する金属成分の含有量は、Fe成分の含有量及びCr成分の含有量の両者に包含されることは無い。
 本明細書において、「Fe成分の含有量」とは、金属元素のうちFeの含有量が最も多い金属粒子(Fe粒子)、及び、金属元素のうちFeの含有量が最も多い金属イオン(Feイオン)の合計含有量を意味する。「Cr成分の含有量」とは、金属元素のうちCrの含有量が最も多い金属粒子(Cr粒子)、及び、金属元素のうちCrの含有量が最も多い金属イオン(Crイオン)の合計含有量を意味する。「Ni成分の含有量」とは、金属元素のうちNiの含有量が最も多い金属粒子(Ni粒子)、及び、金属元素のうちNiの含有量が最も多い金属イオン(Niイオン)の合計含有量を意味する。「Al成分の含有量」とは、金属元素のうちAlの含有量が最も多い金属粒子(Al粒子)、及び、金属元素のうちAlの含有量が最も多い金属イオン(Alイオン)の合計含有量を意味する。
 薬液におけるFe成分、Cr成分、Ni成分及びAl成分(以下、これらの成分を「特定金属成分」ともいう。)の合計含有量は、後述する精製工程で用いるフィルタの不純物除去性能がより優れる点で、薬液の全質量に対して、0.04~1200質量pptが好ましく、0.2~400質量pptがより好ましく、0.2~60質量pptが更に好ましい。
 薬液における特定金属成分の合計含有量が上記の上限値以下であると、フィルタに静電気が溜まりやすくなり、フィルタの除去性能が向上する一方、特定金属成分の合計含有量が上記の下限値以上であると、フィルタの接液部における静電破壊を抑制し、フィルタの除去性能が向上するためと推測される。
 薬液における全ての金属成分の合計含有量は、5000質量ppt(5質量ppb)以下が好ましく、500質量ppt以下がより好ましい。下限は特に制限されず、検出限界以下であってもよい。
 また、薬液における特定金属成分以外の他の金属成分の各金属元素あたりの含有量は、50質量ppt以下が好ましく、10質量ppt以下がより好ましい。下限は特に制限されず、検出限界以下であってもよく、0.001質量ppt以上が好ましい。
 薬液における金属成分の種類及び含有量は、SP-ICP-MS法(Single Nano Particle Inductively Coupled Plasma Mass Spectrometry)で測定できる。
 ここで、SP-ICP-MS法とは、通常のICP-MS法(誘導結合プラズマ質量分析法)と同様の装置を用いるもので、データ分析のみが異なる。SP-ICP-MS法のデータ分析は、市販のソフトウエアにより実施できる。
 ICP-MS法では、測定対象とされた金属成分の含有量が、その存在形態に関わらず、測定される。従って、測定対象とされた金属粒子と、金属イオンの合計質量が、金属成分の含有量として定量される。
 SP-ICP-MS法の装置としては、例えば、アジレントテクノロジー社製、Agilent 8800 トリプル四重極ICP-MS(inductively coupled plasma mass spectrometry、半導体分析用、オプション#200)を用いて、実施例に記載した方法により測定できる。
(水)
 薬液は、水を含有してもよい。
 薬液における水分量(水の含有量)は、特に制限されないが、後述する精製工程で用いるフィルタの除去性能がより優れる点で、薬液の全質量に対して、0.0005~0.03質量%が好ましく、0.001~0.02質量%がより好ましく、0.001~0.01質量%が更に好ましい。
 薬液における水分量が上記の上限値以下であると、管路等の部材から薬液に溶出する金属成分の量が低減し、フィルタに静電気が溜まりやすくなり、フィルタの除去性能が向上する一方、水分量が上記の下限値以上であると、フィルタの接液部における静電破壊が抑制され、フィルタの除去性能が向上するためと推測される。
 薬液における水の含有量は、カールフィッシャー水分測定法を測定原理とする装置を用いて測定される水分含有量を意味する。
<薬液の調製>
 上記の薬液を調製する方法としては特に制限されないが、薬液中における有機不純物、金属成分及び水の含有量が所望の範囲にある薬液を調製するためには、有機溶剤を含有する被精製液に対して以下の精製工程を実施し、薬液を調製することが好ましい。
 精製工程を実施するタイミングは特に制限されず、薬液に含まれる有機溶剤の製造前及び製造後のいずれであってもよい。また、薬液が2種以上の有機溶剤を含有する場合、個々の有機溶剤を精製した後に混合してもよいし、各有機溶剤を混合した後に精製してもよい。
 精製工程は、2種以上の有機溶剤を混合する前に行ってもよく、混合後に行ってもよい。1回のみ実施されてもよいし、2回以上実施されてもよい。
 以下において、精製工程の一例を示す。以下の説明において「被精製液」とは、精製工程における精製対象である。
 精製工程として、例えば、被精製液のイオン交換処理を行うイオン交換処理、被精製液の脱水を行う脱水処理、被精製液の有機不純物除去を行う有機不純物除去処理、及び、金属イオンを除去する目的で金属イオン吸着部材を用いたフィルタリング処理が挙げられる。
 イオン交換処理によれば、被精製液中のイオン成分(例えば、金属成分等)を除去することができる。
 イオン交換処理では、イオン交換樹脂等のイオン交換手段が用いられる。イオン交換樹脂としては、カチオン交換樹脂又はアニオン交換樹脂を単床で設けたもの、カチオン交換樹脂とアニオン交換樹脂とを複床で設けたもの、及び、カチオン交換樹脂とアニオン交換樹脂とを混床で設けたもの、のいずれであってもよい。
 また、イオン交換樹脂としては、イオン交換樹脂からの水分溶出を低減させるために、極力水分を含まない乾燥樹脂を使用することが好ましい。このような乾燥樹脂としては、市販品を使用でき、オルガノ社製の15JS-HG・DRY(商品名、乾燥カチオン交換樹脂、水分2%以下)、及び、MSPS2-1・DRY(商品名、混床樹脂、水分10%以下)が挙げられる。
 脱水処理によれば、被精製液中の水を除去できる。また、脱水処理において後述するゼオライト(特に、ユニオン昭和社製のモレキュラーシーブ(商品名)等)を使用した場合には、オレフィン類も除去可能である。
 脱水処理に用いられる脱水手段としては、脱水膜、被精製液に不溶である水吸着剤、乾燥した不活性ガスを用いた曝気置換装置、及び、加熱又は真空加熱装置等が挙げられる。
 脱水膜を用いる場合には、浸透気化(PV)又は蒸気透過(VP)による膜脱水を行う。脱水膜は、例えば、透水性膜モジュールとして構成されるものである。脱水膜としては、ポリイミド系、セルロース系、ポリビニルアルコール系等の高分子系、又は、ゼオライト等の無機系の素材からなる膜を使用できる。
 水吸着剤は、被精製液に添加して用いられる。水吸着剤としては、ゼオライト、五酸化二リン、シリカゲル、塩化カルシウム、硫酸ナトリウム、硫酸マグネシウム、無水塩化亜鉛、発煙硫酸、及び、ソーダ石灰が挙げられる。
 有機不純物除去処理によれば、被精製液中に含まれる高沸点有機不純物等(沸点300℃以上の有機物も含む)を除去できる。
 有機不純物除去手段としては、例えば、有機不純物を吸着可能な有機不純物吸着フィルタを備えた有機不純物吸着部材により実施できる。なお、有機不純物吸着部材は、上記有機不純物吸着フィルタと上記不純物吸着フィルタを固定する基材とを備えることが多い。
 有機不純物吸着フィルタは、有機不純物の吸着性能が向上する観点から、有機不純物と相互作用可能な有機物骨格を表面に有すること(換言すると、有機不純物と相互作用可能な有機物骨格によって表面が修飾されていること)が好ましい。なお、有機不純物と相互作用可能な有機物骨格を表面に有する、とは、後述する有機不純物吸着フィルタを構成する基材の表面に上記有機不純物と相互作用可能な有機物骨格が付与されている形態が一例として挙げられる。
 有機不純物と相互作用可能な有機物骨格としては、例えば、有機不純物と反応して有機不純物を有機不純物吸着フィルタに捕捉できるような化学構造が挙げられる。より具体的には、有機不純物が、フタル酸ジオクチル、フタル酸ジイソノニル、アジピン酸ジオクチル、又は、フタル酸ジブチルを含む場合、有機物骨格としては、ベンゼン環骨格が挙げられる。また、有機不純物がエチレンプロピレンゴムを含む場合、有機物骨格としては、アルキレン骨格が挙げられる。また、有機不純物がn-長鎖アルキルアルコール(溶剤として1-長鎖アルキルアルコールを用いた場合の構造異性体)を含む場合、有機物骨格としては、アルキル基が挙げられる。
 有機不純物吸着フィルタを構成する基材(材質)としては、活性炭を担持したセルロース、ケイソウ土、ナイロン、ポリエチレン、ポリプロピレン、ポリスチレン、及び、フッ素樹脂が挙げられる。
 また、有機不純物除去フィルタには、特開2002-273123号公報及び特開2013-150979号公報に記載の活性炭を不織布に固着したフィルタも使用できる。
 また、上記有機不純物除去処理は、上述したような有機不純物を吸着可能な有機不純物吸着フィルタを用いた態様に制限されず、例えば有機不純物を物理的に補足する態様であってもよい。250℃以上の比較的高い沸点を有する有機不純物は粗大である場合が多く(例えば、炭素数8以上の化合物)、このため孔径が1nm程度のフィルタを用いることで物理的に補足することも可能である。
 例えば、フタル酸ジオクチルの構造は10Å(=1nm)よりも大きい。そのため、孔径が1nmの有機不純物除去フィルタを用いると、フタル酸ジオクチルはフィルタの孔を通過できないためフィルタによって物理的に捕捉され、被精製液中から除去される。
 このように、有機不純物は、化学的な相互作用だけでなく物理的な除去方法でも除去可能である。ただし、この場合には、3nm以上の孔径のフィルタが「ろ過部材」として用いられ、3nm未満の孔径のフィルタが「有機不純物除去フィルタ」として用いられる。
 金属イオン吸着部材を用いたフィルタリング処理としては、金属イオン吸着フィルタを備えた金属イオン吸着部材を用いたフィルタリングが挙げられる。
 金属イオン吸着部材は、金属イオン吸着フィルタを少なくとも1つ備えており、目的とする精製レベルに応じて金属イオン吸着フィルタを複数重ねた構成を有していてもよい。金属イオン吸着部材は、上記金属イオン吸着フィルタと上記金属イオン吸着フィルタを固定する基材とを備えることが多い。
 金属イオン吸着フィルタは、被精製液中の金属イオンを吸着する機能を備える。また、金属イオン吸着フィルタは、イオン交換可能なフィルタであることが好ましい。
 ここで、吸着対象となる金属イオンとしては、特に制限されないが、半導体デバイスの欠陥の原因になりやすいという観点から、Fe、Cr、Ni、Pb又はAlが好ましい。
 金属イオン吸着フィルタは、金属イオンの吸着性能が向上するという観点から、表面に酸基を有することが好ましい。酸基としては、スルホ基及びカルボキシル基等が挙げられる。
 金属イオン吸着フィルタを構成する基材(材質)としては、セルロース、ケイソウ土、ナイロン、ポリエチレン、ポリプロピレン、ポリスチレン、及び、フッ素樹脂等が挙げられる。
 精製工程において行う精製処理は、上記の処理に制限されない。例えば、蒸留装置を用いた蒸留処理、粗大な粒子を除去するためのろ過処理、及び、国際公開第WO2012/043496号に記載されている、炭化ケイ素を用いた金属成分の吸着精製処理、及びからなる群より選択される精製処理を行ってもよい。
 また、精製工程としては、上記各処理を単独で行ってもよいし、上記処理を複数組み合わせて行ってもよい。また、上記各処理は、1回行われてもよいし、複数回行われてもよい。
 なお、本供給方法においては、市販されている有機溶剤の高純度グレード品(特に、有機不純物、金属成分及び水の含有量が少ないもの)を使用してもよい。
(除電処理)
 薬液に対して、本供給方法での使用前に、薬液の帯電電位を低減させる除電処理を行ってもよい。
 除電処理としては特に制限されず、公知の除電方法を用いることができ、例えば、薬液を導電性材料に接触させる方法が挙げられる。
 薬液を導電性材料に接触させる接触時間は、0.001~60秒間が好ましく、0.001~1秒間がより好ましく、0.01~0.1秒間が更に好ましい。導電性材料としては、ステンレス鋼、金、白金、ダイヤモンド、及びグラッシーカーボンが挙げられる。
 薬液を導電性材料に接触させる方法としては、例えば、導電性材料からなる接地されたメッシュを管路内部に配置し、配置したメッシュに薬液を通す方法が挙げられる。
 薬液の調製は、密閉状態で、かつ、薬液に水の混入する可能性が低い不活性ガス雰囲気下で行われることが好ましく、水分の混入を極力抑えるために、露点温度が-70℃以下の不活性ガス雰囲気下で行うことがより好ましい。-70℃以下の不活性ガス雰囲気下では、気相中の水分濃度が2質量ppm以下であるため、薬液中に水分が混入する可能性が低くなるためである。
 上記薬液は、本供給方法で使用するまで一時的に容器内に保管してもよい。上記薬液を保管するための容器としては特に制限されず、公知の容器を用いることができる。
 上記薬液を保管する容器としては、半導体デバイス製造用途向けに、容器内のクリーン度が高く、不純物の溶出が少ないものが好ましい。
 使用可能な容器としては、具体的には、アイセロ化学(株)製の「クリーンボトル」シリーズ、及び、コダマ樹脂工業製の「ピュアボトル」が挙げられるが、これらに制限されない。
 容器は、薬液を収容する前にその内部が洗浄されることが好ましい。洗浄に用いる液体としては、上記薬液そのもの、又は、上記薬液を希釈したものが好ましい。上記薬液は、調製後にガロン瓶又はコート瓶等の容器にボトリングし、輸送及び/又は保管されてもよい。ガロン瓶はガラス材料を使用したものであってもそれ以外であってもよい。
 薬液中の成分の変化を防ぐ目的で、容器内を純度99.99995体積%以上の不活性ガス(窒素又はアルゴン等)で置換しておいてもよい。特に、含水率が少ないガスが好ましい。また、輸送及び保管の際の温度は、室温(25℃)でもよいが、変質を防ぐため、-20℃から30℃の範囲に温度制御してもよい。
〔ガス圧送工程〕
 本供給方法は、ガスを用いて加圧することにより薬液を送出するガス圧送工程を有する。
 図1に示す供給装置10では、ガス管12を通してガスを貯留槽11内に導入することにより、貯留槽11上部のヘッドスペースに溜まったガスの気圧が増大し、貯留槽11に貯留された薬液Lが加圧される。このように薬液Lが加圧され、貯留槽11の内部と中間槽14の内部とで圧力差が生じることにより、貯留槽11に貯留した薬液Lが管路13を通して中間槽14に送出(圧送)される。
 なお、圧送用ガスを導入する管路内の位置は、薬液を加圧することにより管路内における薬液の送出が可能である限り、貯留槽の内部以外の位置であってもよく、例えば、管路13及び15の内部であってもよい。
 本供給方法のガス圧送工程に用いるガス(以下、「圧送用ガス」ともいう)は、水分量が圧送用ガスの全質量に対して0.00001~1質量ppmである。上述の通り、水分量が特定の範囲に低減されたガスを使用することにより、ガス圧送工程により圧送される薬液に含まれる不純物(特に有機不純物)の含有量を低減できる。
 また、圧送用ガスの水分量を0.00001質量%以上とすることにより、ガス圧送工程で圧送される薬液に含まれる不純物(特に有機不純物)の含有量を低減できる。そのメカニズムの詳細は明らかではないが、本発明者らは、管路等の部材の接液部に静電気が溜まることによって生じる接液部の静電破壊を抑制できるためと推測している。
 上記の観点から、圧送用ガスの水分量は、圧送用ガスの全質量に対して、0.005~0.5質量ppmが好ましく、0.01~0.3質量ppmがより好ましく、0.01~0.03質量ppmが更に好ましい。
 また、本発明の効果がより優れ、薬液中の不純物の含有量をより低減できる点で、圧送用ガスの純度は、99.9体積%(3N)以上であることが好ましく、99.999体積%(5N)以上であることがより好ましい。
 上限は特に制限されず、検出限界以上であってもよい。
 なお、上記の圧送用ガスの純度は、圧送用ガスから水(水蒸気)を除いた成分の含有量に対する、25℃及び大気圧下において気体であり、かつ、圧送用ガスの全体積に対して99体積%以上の含有量で含有されるガスの含有量(2種類以上の場合、合計含有量)の体積比(百分率)を意味する。
 即ち、本明細書において、圧送用ガスの全体積に対して1体積%未満の含有量で含有される成分は、不純物ガスに該当するものとする。
 圧送用ガスの種類としては、例えば、窒素、アルゴン及びヘリウム等の不活性ガス、並びに、乾燥空気が挙げられ、管路からの不純物の溶出をより抑制できる点で、不活性ガスが好ましく、窒素又はアルゴンがより好ましく、アルゴンが更に好ましい。
 また、圧送用ガスとして、上記のガスを1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 圧送用ガスに含まれる水分量、圧送用ガスの純度、及び、圧送用ガスの種類は、大気圧イオン化質量分析計(API-MS:Atmospheric Pressure Ionization Mass Spectrometer)(例えば、日本エイピーアイ社製)を用いて、測定できる。
<ガス精製工程>
 本供給方法に使用する水分量が上記の範囲にある圧送用ガスの調製方法は、特に制限されないが、原料ガスに含まれる水(水蒸気)を除去して、圧送用ガスを調製するガス精製工程を行うことが好ましい。
 ガス精製工程のより具体的な態様としては、図1に示す供給装置10において、ガス管12上に配置されたガスフィルタ21に原料ガスを通過させることにより、圧送用ガスを調製し、調製した圧送用ガスを貯留槽11に導入する態様が挙げられる。
 ガス精製工程に使用されるガスフィルタとしては、例えば、Entegris社製「Wafergard(登録商標)III NF-750」インラインガスフィルタ等のインラインガスフィルタが挙げられる。
 また、供給装置に圧送用ガスを供給する前に、予め原料ガスを精製して圧送用ガスを準備してもよい。原料ガスを予め精製する方法としては、特に制限されず、例えば、モレキュラーシーブ、アルミナ、シリカゲル及びシリカアルミナ等の公知の吸着剤を用いて原料ガスを処理する方法が挙げられる。
 ガス圧送工程における、ガスの供給圧力及び流量は、特に制限されず、送液条件、並びに、貯留槽、ガス管及び制御弁等の各部材の圧力耐性に応じて適宜設定すればよい。
 ガス圧送工程におけるガスの供給圧力について、薬液を加圧しているガスの圧力は0.01~0.34MPaが好ましい。
<ポンプ移送工程>
 本供給方法に用いる供給装置は、管路上に設けたポンプを用いて管路内において薬液を移送する区間を設けてもよい。即ち、本供給方法は、ポンプを用いて薬液を移送するポンプ移送工程を有していてもよい。
 ポンプ移送工程を行う管路内の区間(ポンプ移送区間)は、ガス圧送工程を行う管路内の区間(ガス圧送区間)と重複していてもよく、異なっていてもよい。
 図1に示す供給装置10の例では、貯留槽11から中間槽14までを接続する管路13がガス圧送区間であり、中間槽14から排出口16までを接続する管路15がポンプ移送区間である。
 本供給方法が実施される供給装置が、薬液をウェハ上に吐出して各種の処理を行う処理装置である場合、供給装置が備える管路のうち、ウェハに薬液を吐出する機能を有する吐出部と接続する管路下流端を含む区間が、上記ポンプ移送区間であることが好ましい。即ち、供給装置からの吐出はポンプを用いて行われることが好ましい。薬液の移送をポンプを用いて行うことにより、ウェハに吐出する薬液の量をより正確に制御できる。
 ポンプ移送工程に用いるポンプの種類としては、例えば、電動式水中ポンプ(エレクトリカルポンプ)、ダイアフラムポンプ、及び、遠心式ポンプ(マグネットポンプ等)が挙げられる。
 ポンプ移送区間上にポンプ及びフィルタを設ける場合、ポンプを設ける位置は特に制限されず、管路上のフィルタよりも上流側及び下流側のいずれであってもよいが、上流側が好ましい。また、1つのポンプ移送区間において使用するポンプの個数は、1つであってもよく、2つ以上を組み合わせてもよい。
 ポンプ移送工程における薬液の供給圧力としては特に制限されないが、フィルタの上流側の管路内部の圧力が0.00010~1.0MPaであることが好ましく、0.01~0.34Mpaであることがより好ましい。
 また、ろ過圧力はろ過精度に影響を与えることから、フィルタに対する薬液の供給圧力の脈動は可能な限り少ない方が好ましい。薬液の供給圧力の脈動を低減する方法としては、フィルタの上流側の管路に配置された調整弁及び/又はダンパを使用する方法が挙げられる。
<精製工程>
 図1に示す供給装置10が、管路15上にフィルタユニット20を備えるように、本供給方法に用いる供給装置は、薬液をろ過して精製する機能を有するフィルタを管路上に備えていてもよい。即ち、本供給方法は、フィルタを用いて管路内の薬液をろ過する精製工程を有していてもよい。
 本供給方法は、上記精製工程を有することが好ましい。本供給方法は上記のガス圧送工程を有する薬液の供給方法であるところ、水分量が特定された圧送用ガスを使用して圧送された薬液をフィルタに通過させてろ過することにより、フィルタの不純物除去性能が向上し、精製後の薬液の不純物の含有量をより低減できるためである。
 フィルタの不純物除去性能が向上するメカニズムについて詳細は明らかではないが、水分量が特定の範囲に低減されたガスを使用してガス圧送工程を実施することにより、ガスから薬液に溶け込む水分量が低下し、管路及び他の部材の接液部から薬液への不純物の溶出が抑制された結果、フィルタに静電気が溜まりやすくなり、フィルタの不純物除去性能が向上する一方で、ガスの水分量を所定の下限値以上とすることにより、わずかな量の水分がガスから薬液に溶け込み、不純物の溶出及び/又は混入を引き起こすフィルタの静電破壊を抑制するものと、本発明者らは推測している。
 特に、上記のフィルタの除去性能が向上する効果がより顕著に発揮されることから、本供給方法は、ガス圧送工程により送出された薬液をフィルタを用いてろ過する精製工程を有することがより好ましい。
 供給装置10において、精製工程は以下のように行われる。
 中間槽14に貯留された薬液は、ポンプ17により管路15を経由してフィルタを有するフィルタユニット20へと送られる。フィルタユニット20に収納されたフィルタカートリッジが有するフィルタを通過する際に、薬液がろ過され、精製される。フィルタカートリッジ20から流出した精製後の薬液は、管路15を経て、排出口16から排出される。
 精製工程において使用するフィルタの数は、1つであっても複数であってもよい。複数のフィルタを使用する場合、薬液の移送方向に対して、直列に配置されていてもよく、並列に配置されていてもよい。
 また、フィルタを通過した精製後の薬液を貯留槽又は中間槽に返送し、薬液を繰り返しフィルタに通過させる循環ろ過を行ってもよい。生産性の観点及び不純物の混入を抑制する観点から、循環ろ過を行わず、薬液をフィルタに1回のみ通過させてもよい。
(フィルタ)
 以下、上記精製工程において薬液の精製(ろ過)に用いられるフィルタについて、詳しく説明する。
 フィルタの孔径は特に制限されず、薬液のろ過用として通常使用される孔径であればよい。フィルタの孔径としては、20nm以下が好ましく、5nm以下がより好ましく、2nm以下が更に好ましい。下限は特に制限されないが、1nm以上が好ましい。
 供給装置が複数のフィルタを備える場合、少なくとも1つのフィルタの孔径が、上記範囲内であることが好ましい。
 なお、本明細書においてフィルタの孔径とは、イソプロパノール(IPA)、又は、HFE-7200(「ノベック7200」、3M社製、ハイドロフロオロエーテル、COC)のバブルポイントによって決定される孔径を意味する。
 フィルタを構成する材料としては特に制限されないが、例えば、ポリエチレン(PE)、及び、ポリプロピレン(PP)等のポリオレフィン(高密度、及び、超高分子量を含む);ナイロン(ナイロン6及びナイロン66を含む)等のポリアミド;ポリイミド;ポリアミドイミド;ポリエチレンテレフタレート等のポリエステル;ポリエーテルスルフォン;セルロース;ポリテトラフルオロエチレン(PTFE)、及び、パーフルオロアルコキシアルカン等のフッ素樹脂;並びに、上記重合体(又は樹脂)の誘導体が挙げられる。
 中でも、ポリオレフィン、ポリアミド、ポリイミド、ポリアミドイミド、ポリエステル、ポリスルフォン、セルロース、フッ素樹脂、及び、これらの誘導体からなる群から選択される少なくとも1つからなる材料が好ましく、薬液中の不純物の含有量をより低減できる点で、ポリエチレン、ポリプロピレン、ナイロン又はフッ素樹脂がより好ましく、PTFEが更に好ましい。
 フィルタを構成する材料としては、ケイソウ土及びガラスも挙げられる。
 フィルタを構成する材料としては、上記重合体の誘導体であってもよい。誘導体としては、例えば、化学修飾処理により上記重合体にイオン交換基を導入したものが挙げられる。
 イオン交換基としては、スルホン酸基、カルボキシ基、及び、リン酸基等のカチオン交換基、並びに、2級、3級、及び、4級アンモニウム基等のアニオン交換基が挙げられる。イオン交換基を重合体に導入する方法としては特に制限されないが、イオン交換基と重合性基とを有する化合物を重合体と反応させ、重合体をグラフト化する方法が挙げられる。
 例えば、ポリオレフィン(ポリエチレン及びポリプロピレン等)を用いる場合、これに電離放射線(α線、β線、γ線、X線、及び、電子線等)を照射してポリオレフィンの分子鎖中に活性部分(ラジカル)を生成させる。この照射後のポリオレフィンをモノマー含有溶液に浸漬してモノマーをグラフト重合させる。その結果、このモノマーがポリオレフィンにグラフト重合側鎖として結合したものが生成する。このモノマーを側鎖として有するポリオレフィン繊維をアニオン交換基又はカチオン交換基を有する化合物と接触させ、両者を反応させることにより、グラフト重合された側鎖のモノマーにイオン交換基が導入されてなる最終生成物が得られる。この最終生成物においては、主鎖であるポリオレフィン繊維にはイオン交換基が導入されておらず、この主鎖にグラフト重合された側鎖のモノマーにイオン交換基が導入されている。
 また、フィルタは、放射線グラフト重合法によりイオン交換基を形成した織布、又は、不織布と、従来のガラスウール、織布、又は、不織布とを組み合わせた構成でもよい。
 また、フィルタは化学修飾以外の表面処理がされたものであってもよい。表面処理の方法としては特に制限されず、公知の方法が使用できる。表面処理の方法としては、例えば、プラズマ処理、疎水処理、コーティング、ガス処理、及び、焼結が挙げられる。
 プラズマ処理は、フィルタの表面が親水化するため、好ましい。プラズマ処理により親水化されたフィルタの表面における水接触角は、特に制限されないが、接触角計で測定した25℃における静的接触角が、60°以下であることが好ましく、50°以下であることがより好ましく、30°以下であることが更に好ましい。
 フィルタの細孔構造としては特に制限されず、薬液が含有する不純物の形態により適宜選択すればよい。フィルタの細孔構造とは、孔径分布、フィルタ中の細孔の位置的な分布、及び、細孔の形状等を意味し、これはフィルタの製造方法により異なる。
 例えば、樹脂等の粉末を焼結して形成される多孔質膜、及び、エレクトロスピニング、エレクトロブローイング、及び、メルトブローイング等の方法により形成される繊維膜では、それぞれ細孔構造が異なる。
 フィルタの臨界表面張力としては特に制限されず、除去すべき不純物に応じて適宜選択できる。
 精製工程において、薬液をフィルタに通過させる際の温度としては、0~50℃が好ましく、0~25℃がより好ましい。
 精製工程において、フィルタを通過する薬液のろ過速度としては、フィルタのろ過面積あたりの流量(L/分)で、0.6L/分/m以上が好ましく、0.75L/分/m以上がより好ましく、1.0L/分/m以上が更に好ましい。
 フィルタにはフィルタ性能(フィルタが壊れない)を保障する耐差圧が設定されており、この値が大きい場合にはろ過圧力を高めることでろ過速度を高めることができる。ろ過速度の上限はフィルタの耐差圧に依存するが、10.0L/分/m以下が好ましい。
<洗浄工程>
 本供給方法に使用する供給装置は、本供給方法を実施する前に、装置内の各部材の接液部を洗浄する洗浄工程を有することが好ましい。各部材(特にフィルタ)を洗浄することにより、供給される薬液の不純物の含有量をより低減できる。
 洗浄工程の具体的な方法としては、例えば、薬液に代えて洗浄液を用いて、上記のガス圧送工程又はポンプ移送工程に記載の方法に従って、管路内において洗浄液を移送させる方法が挙げられる。
 フィルタの洗浄方法としては、洗浄液にフィルタを浸漬する方法、洗浄液をフィルタに通液する方法、又は、これらを組み合わせた方法が挙げられる。
 洗浄液としては特に制限されないが、有機溶剤が好ましい。
 洗浄液として使用する有機溶剤については、その好ましい態様も含めて、上記の薬液が含有する有機溶剤として記載した通りである。
 洗浄工程で使用する洗浄液は、ガス圧送工程で送出する薬液と同一であってもよく、異なっていてもよいが、薬液を用いるリンス処理が不要である点で、薬液と同一であることが好ましい。
 洗浄工程における洗浄液の移送方法としては、特に制限されず、上記のガス圧送工程及び/又はポンプ移送工程として記載した方法に従い、洗浄液を管路内部に流し、或いは、洗浄液をフィルタに通過させることができる。
 洗浄工程において、フィルタに洗浄液を通過させる際の洗浄液の供給圧力は特に制限されず、例えば、管路内部のフィルタよりも上流側の圧力が、0.0001~1.0MPaであってよい。
 洗浄工程においてフィルタに通過させる洗浄液の流量は、フィルタのろ過面積あたりの流量(L/分)で0.6~10.0L/分/mが好ましい。
 洗浄工程に使用する洗浄液の温度は、0~50℃が好ましい。
 洗浄工程の回数は、1回のみであってもよく、2回以上であってもよい。
 本供給方法、並びに、薬液の精製、並びに、それに付随する、容器の開封、容器及び装置の洗浄、薬液の収容、及び、分析等の工程は、全てクリーンルームで行うことが好ましい。クリーンルームは、ISO(国際標準化機構)14644-1に記載のクリーンルーム基準を満たすことが好ましく、ISOクラス1、ISOクラス2、ISOクラス3、及び、ISOクラス4のいずれかを満たすことがより好ましく、ISOクラス1又はISOクラス2を満たすことが更に好ましく、ISOクラス1を満たすことが特に好ましい。
[薬液の用途]
 本供給方法により供給される薬液は、半導体デバイスの製造に使用されることが好ましい。上記薬液は、半導体デバイスを製造するためのいずれの工程にも用いることができ、例えば、フォトリソグラフィを含む配線形成プロセス(リソグラフィ工程、エッチング工程、イオン注入工程、及び、剥離工程等を含む)において、有機物を用いる処理に使用できる。薬液の具体的な用途としては、プリウェット液、現像液、リンス液、剥離液、CMPスラリー、及び、CMP後のリンス液(p-CMPリンス液)が挙げられる。
 上記薬液は、他の有機溶剤及び/又は水等の溶剤により希釈して使用してもよい。上記薬液をCMPスラリーとして使用する場合、例えば、上記薬液に砥粒及び酸化剤等の添加剤を加えればよい。また、上記薬液は、CMPスラリーを希釈する際の溶剤としても使用できる。
 薬液は、上記用途のうち、1つの用途のみに用いられてもよいし、2以上の用途に用いられてもよい。
〔パターン形成方法〕
 本供給方法により供給される薬液は、以下の工程を有するパターン形成方法において処理液として使用されることが好ましい。
(A)プリウェット液を基板上に接触させるプリウェット工程、
(B)プリウェット工程後の基板上に、レジスト組成物を用いてレジスト膜を形成するレジスト膜形成工程、
(C)レジスト膜を露光する露光工程、
(D)露光されたレジスト膜を現像液を用いて現像する現像工程、及び、
(E)レジストパターンが形成された基板にリンス液を接触させるリンス工程。
 上記の工程(A)~(E)を有するパターン形成方法であって、上記プリウェット液、上記現像液及び上記リンス液からなる群より選択される少なくとも1つが、上記の薬液であるパターン形成方法は、より好ましい。
 以下、パターン形成方法が有する各工程について説明する。
<(A)プリウェット工程>
 プリウェット工程は、基板上にプリウェット液を接触させる工程である。
 基板としては特に制限されず、半導体製造用として用いられる公知の基板を使用できる。基板としては、例えば、シリコン、SiO、若しくはSiN等の無機基板、又は、SOG(Spin On Glass)等の塗布系無機基板等が挙げられる。
 また、基板は、反射防止膜を備える、反射防止膜付き基板であってもよい。反射防止膜としては、公知の有機系又は無機系の反射防止膜を使用できる。
 基板上にプリウェット液を接触させる方法としては特に制限されず、公知の塗布方法を使用できる。中でも、後述するレジスト膜形成工程において、より少ないレジスト組成物で均一なレジスト膜が形成できる点で、塗布方法としてはスピン塗布が好ましい。
 プリウェット液を用いて基板上に形成されるプリウェット液層の厚みとしては0.001~10μmが好ましく、0.005~5μmがより好ましい。
(プリウェット液)
 プリウェット液としては、有機溶剤を含有するプリウェット液が好ましい。
 プリウェット液が含有する有機溶剤としては、例えば、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及び、エーテル系溶剤からなる群より選択される少なくとも1種の有機溶剤が好ましく、炭化水素系溶剤、エーテル系溶剤、又は、ケトン系溶剤がより好ましく、炭化水素系溶剤、又は、エーテル系溶剤が更に好ましい。
 本供給方法で供給された薬液は、上記のプリウェット液として使用できる。
 プリウェット液の表面張力は、塗布しようとするレジスト組成物の表面張力よりも高いことが好ましい。
 プリウェット液のウェハへの供給方法としては、通常、プリウェットノズルがウェハの中心部の上方まで移動する。そして、バルブの開閉によってプリウェット液がウェハへ供給される。
 ウェハが停止している状態で、プリウェットノズルから上記のプリウェット液が所定量、ウェハの中心部に供給される。その後、ウェハが例えば500rpm(rotation per minute)程度の第1の速度V1で回転され、ウェハ上のプリウェット液がウェハの表面の全面に拡散されて、ウェハの表面全体がプリウェット液により濡れた状態となる。
 なお、第1の速度V1の上限値としては、特に制限されないが3000rpm以下が好ましい。
 その後、レジスト組成物が繋がっているラインのバルブが開放されることによりレジストノズルからレジスト組成物の吐出が開始され、ウェハの中心部にレジスト組成物が供給され始める。
 上記レジスト組成物は、ArF露光用のレジスト組成物でもよく、EUV露光用のレジスト組成物でもよく、KrF露光用のレジスト組成物でもよい。つまり、プリウェット液は、ArF露光用のレジスト組成物が塗布される基板に対して塗布して用いられるプリウェット液でもよく、EUV露光用のレジスト組成物が塗布される基板に対して塗布して用いられるプリウェット液でもよく、KrF露光用のレジスト組成物が塗布される基板に対して塗布して用いられるプリウェット液でもよい。
 こうして、(B)レジスト膜形成工程(後述する)が開始される。このレジスト膜形成工程では、ウェハの回転速度が第1の速度V1から、例えば、2000~4000rpm程度の第2の速度V2まで上げられる。レジスト膜形成工程の開始前に第1の速度V1であったウェハの回転は、その後速度が連続的に滑らかに変動するように徐々に加速される。このとき、ウェハの回転の加速度は、例えば零から次第に増加する。そして、レジスト膜形成工程の終了時には、ウェハの回転の加速度が次第に減少され、ウェハの回転速度が第2の速度V2に滑らかに収束する。こうして、レジスト膜形成工程時においては、ウェハの回転速度が第1の速度V1から第2の速度V2にS字状に推移するように変動する。レジスト膜形成工程では、ウェハの中心部に供給されたレジスト組成物が遠心力によりウェハの表面の全面に拡散されて、ウェハの表面にレジスト組成物が塗布される。
 なお、このようなレジスト塗布時のウェハ回転速度の変動による省レジスト技術については、特開2009-279476号公報に詳細に記載されている。
 なお、(A)プリウェット工程が終了した後、(B)レジスト膜形成工程におけるレジスト組成物の塗布が始まるまでの間隔としては特に制限されないが、7秒間以下が好ましい。
 上記プリウェット液は、再利用されてもよい。すなわち、上記プリウェット工程で用いたプリウェット液を回収し、更に他のウェハのプリウェット工程に使用できる。
 プリウェット液を再利用する場合、回収したプリウェット液中に含有される、不純物金属、有機不純物、及び、水等の含有量を調製することが好ましい。なお、上記調製方法としては、プリウェット液の製造方法として既に説明したとおりである。
<(B)レジスト膜形成工程>
 レジスト膜形成工程は、プリウェット工程後の基板上に、レジスト組成物を用いて(好ましくは、レジスト組成物を塗布して)、レジスト膜を形成する工程である。
 プリウェット工程後の基板は、プリウェット液層を備える基板であり、プリウェット済み基板とも言う。
 以下では、まず、レジスト組成物の形態について説明する。
<レジスト組成物>
 上記レジスト膜形成工程において使用できるレジスト組成物としては特に制限されず、公知のレジスト組成物を使用できる。
 レジスト組成物は、例えば、ポジ型現像用でもネガ型現像用でもよい。また、レジスト組成物を用いて形成されるレジスト膜に露光する光に制限はなく、例えば、レジスト組成物は、ArF露光用のレジスト組成物でもよく、EUV露光用のレジスト組成物でもよく、KrF露光用のレジスト組成物でもよい。
 レジスト組成物としては、酸の作用により分解して極性基(カルボキシル基、及び、フェノール性水酸基等)を生じる基を含有する繰り返し単位を含有する樹脂(以下、本明細書において「酸分解性樹脂」ともいう。)と、活性光線又は放射線の照射により酸を発生する化合物(以下、本明細書において「光酸発生剤」ともいう。)と、を含有することが好ましい。
 なかでも、以下のレジスト組成物が好ましい。
・後述する式(I)で表される樹脂を含有するレジスト組成物
・後述するフェノール性水酸基を有する酸分解性樹脂を含有するレジスト組成物
・後述する疎水性樹脂と、酸分解性樹脂とを含有するレジスト組成物
以下では、レジスト組成物の各成分について説明する。
(酸分解性樹脂)
 酸分解性基において、極性基は酸で脱離する基(酸脱離性基)によって保護されている。酸脱離性基としては、例えば、-C(R36)(R37)(R38)、-C(R36)(R37)(OR39)、及び、-C(R01)(R02)(OR39)等が挙げられる。
 式中、R36~R39は、各々独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。R36とR37とは、互いに結合して環を形成してもよい。
 R01及びR02は、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。
 酸分解性樹脂としては、式(AI)で表される酸分解性基を有する樹脂Pが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(AI)に於いて、
 Xaは、水素原子、又は置換基を有していてもよいアルキル基を表す。
 Tは、単結合又は2価の連結基を表す。
 Ra~Raは、それぞれ独立に、アルキル基(直鎖状又は分岐鎖状)又はシクロアルキル基(単環又は多環)を表す。
 Ra~Raの2つが結合して、シクロアルキル基(単環又は多環)を形成してもよい。
 Xaにより表される、置換基を有していてもよいアルキル基としては、例えば、メチル基、及び-CH-R11で表される基が挙げられる。R11は、ハロゲン原子(フッ素原子等)、水酸基、又は1価の有機基を表す。
 Xaは、水素原子、メチル基、トリフルオロメチル基又はヒドロキシメチル基が好ましい。
 Tの2価の連結基としては、アルキレン基、-COO-Rt-基、及び、-O-Rt-基等が挙げられる。式中、Rtは、アルキレン基又はシクロアルキレン基を表す。
 Tは、単結合又は-COO-Rt-基が好ましい。Rtは、炭素数1~5のアルキレン基が好ましく、-CH-基、-(CH-基、又は、-(CH-基がより好ましい。
 Ra~Raのアルキル基としては、炭素数1~4のものが好ましい。
 Ra~Raのシクロアルキル基としては、シクロペンチル基、若しくはシクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、若しくはアダマンチル基等の多環のシクロアルキル基が好ましい。
 Ra~Raの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、若しくはシクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、若しくはアダマンチル基等の多環のシクロアルキル基が好ましい。炭素数5~6の単環のシクロアルキル基がより好ましい。
 Ra~Raの2つが結合して形成される上記シクロアルキル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、又はカルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
 式(AI)で表される繰り返し単位は、例えば、Raがメチル基又はエチル基であり、RaとRaとが結合して上述のシクロアルキル基を形成している態様が好ましい。
 上記各基は、置換基を有していてもよく、置換基としては、例えば、アルキル基(炭素数1~4)、ハロゲン原子、水酸基、アルコキシ基(炭素数1~4)、カルボキシ基、及びアルコキシカルボニル基(炭素数2~6)等が挙げられ、炭素数8以下が好ましい。
 式(AI)で表される繰り返し単位の合計としての含有量は、樹脂P中の全繰り返し単位に対し、20~90モル%であることが好ましく、25~85モル%であることがより好ましく、30~80モル%であることが更に好ましい。
 以下に、式(AI)で表される繰り返し単位の具体例を示すが、これに限定されるものではない。
 具体例中、Rx及びXaは、各々独立して、水素原子、CH、CF、又はCHOHを表す。Rxa及びRxbは、各々炭素数1~4のアルキル基を表す。Zは、極性基を含む置換基を表し、複数存在する場合は各々独立である。pは0又は正の整数を表す。Zにより表される極性基を含む置換基としては、例えば、水酸基、シアノ基、アミノ基、アルキルアミド基、スルホンアミド基、及びこれらの基を有する直鎖状又は分岐鎖状のアルキル基又はシクロアルキル基が挙げられる。
Figure JPOXMLDOC01-appb-C000002
(ラクトン構造を有する繰り返し単位)
 また、樹脂Pは、ラクトン構造を有する繰り返し単位Qを含有することが好ましい。
 ラクトン構造を有する繰り返し単位Qは、ラクトン構造を側鎖に有していることが好ましく、例えば(メタ)アクリル酸誘導体モノマーに由来する繰り返し単位であることがより好ましい。
 ラクトン構造を有する繰り返し単位Qは、1種単独で用いてもよく、2種以上を併用していてもよいが、1種単独で用いることが好ましい。
 上記樹脂Pの全繰り返し単位に対する、ラクトン構造を有する繰り返し単位Qの含有量は、例えば、3~80モル%が挙げられ、3~60モル%が好ましい。
 ラクトン構造としては、5~7員環のラクトン構造が好ましく、5~7員環のラクトン構造にビシクロ構造又はスピロ構造を形成する形で他の環構造が縮環している構造がより好ましい。
 ラクトン構造としては、下記式(LC1-1)~(LC1-17)のいずれかで表されるラクトン構造を有する繰り返し単位を有することが好ましい。ラクトン構造としては式(LC1-1)、式(LC1-4)、式(LC1-5)、又は式(LC1-8)で表されるラクトン構造がより好ましく、式(LC1-4)で表されるラクトン構造が更に好ましい。
Figure JPOXMLDOC01-appb-C000003
 ラクトン構造部分は、置換基(Rb)を有していてもよい。好ましい置換基(Rb)としては、炭素数1~8のアルキル基、炭素数4~7のシクロアルキル基、炭素数1~8のアルコキシ基、炭素数2~8のアルコキシカルボニル基、カルボキシ基、ハロゲン原子、水酸基、シアノ基、及び酸分解性基等が挙げられる。nは、0~4の整数を表す。nが2以上のとき、複数存在する置換基(Rb)は、同一でも異なっていてもよく、また、複数存在する置換基(Rb)同士が結合して環を形成してもよい。
 樹脂Pは、式(a)で表される繰り返し単位、式(b)で表される繰り返し単位、式(c)で表される繰り返し単位、式(d)で表される繰り返し単位、及び、式(e)で表される繰り返し単位からなる群から選択される繰り返し単位からなる樹脂(以後、この樹脂を「式(I)で表される樹脂」とも称する)であることが好ましい。
 下記式(I)で表される樹脂は、酸の作用により有機溶剤を主成分とする現像液に対する溶解性が減少する樹脂であり、酸分解性基を含有する。上記プリウェット液は、式(I)で表されるような樹脂に対する優れた溶解性を有するため、より少ないレジスト組成物を用いて均一なレジスト膜が得られやすい。以下、式(I)で表される樹脂について説明する。
 なお、式(I)で表される樹脂は、実質的に式(a)~(e)で表される繰り返し単位のみからなる樹脂であればよい。例えば、式(I)で表される樹脂は、式(a)~(e)で表される繰り返し単位以外のその他の繰り返し単位を、上記樹脂の全繰り返し単位に対して0~5モル%の範囲(より好ましくは0~1モル%の範囲)で含有してもよい。
・式(I)で表される樹脂
Figure JPOXMLDOC01-appb-C000004
 上記式(I)は、繰り返し単位(a)(式(a)で表される繰り返し単位)、繰り返し単位(b)(式(b)で表される繰り返し単位)、繰り返し単位(c)(式(c)で表される繰り返し単位)、繰り返し単位(d)(式(d)で表される繰り返し単位)及び繰り返し単位(e)(式(e)で表される繰り返し単位)から構成される。
 Rx1~Rx5は、それぞれ独立に、水素原子、又は、置換基を含有してもよいアルキル基を表す。
 R~Rは、それぞれ独立に、1価の置換基を表し、p~pは、それぞれ独立に、0、又は、正の整数を表す。
 Rは、直鎖状、又は、分岐鎖状のアルキル基を表す。
 T~Tは、それぞれ独立に、単結合、又は、2価の連結基を表す。
 Rは1価の有機基を表す。
 a~eは、モル%(上記繰り返し単位(a)~(e)の合計100モル%に対する各繰り返し単位のモル%)を表し、それぞれ独立に、0≦a≦100、0≦b≦100、0≦c<100、0≦d<100、及び、0≦e<100の範囲内の数を表す。ただし、a+b+c+d+e=100であり、a+b≠0である。
 ただし、式(I)中、上記繰り返し単位(e)は、上記繰り返し単位(a)~(d)のいずれとも異なる構造を有する。
 Rx1~Rx5により表される、置換基を含有してもよいアルキル基としては、例えば、メチル基、及び、-CH-R11で表される基が挙げられる。R11は、ハロゲン原子(フッ素原子等)、水酸基、又は、1価の有機基を表す。
 Rx1~Rx5は、それぞれ独立に、水素原子、メチル基、トリフルオロメチル基、又は、ヒドロキシメチル基が好ましい。
 式(I)中、T~Tにより表される2価の連結基としては、アルキレン基、-COO-Rt-基、及び、-O-Rt-基等が挙げられる。式中、Rtは、アルキレン基又はシクロアルキレン基を表す。
 T~Tは、それぞれ独立に、単結合又は-COO-Rt-基が好ましい。Rtは、炭素数1~5のアルキレン基が好ましく、-CH-基、-(CH-基、又は、-(CH-基がより好ましい。
 式(I)中、Rは、直鎖状又は分岐鎖状のアルキル基を表す。例えば、メチル基、エチル基、及びt-ブチル基等が挙げられる。なかでも、炭素数1~4の直鎖状又は分岐鎖状のアルキル基が好ましい。
 式(I)中、R~Rは、それぞれ独立に、1価の置換基を表す。R~Rとしては、特に限定されないが、例えば、水酸基、シアノ基、及び、水酸基又はシアノ基等を有する直鎖状若しくは分岐鎖状のアルキル基又はシクロアルキル基が挙げられる。
 式(I)中、p~pは、各々独立に、0又は正の整数を表す。なお、p~pの上限値は、各繰り返し単位において置換し得る水素原子の数に相当する。
 式(I)中、Rは、1価の有機基を表す。Rとしては、特に限定されないが、例えば、スルトン構造を有する1価の有機基、及び、テトラヒドロフラン、ジオキサン、1,4-チオキサン、ジオキソラン、及び2,4,6-トリオキサビシクロ[3.3.0]オクタン等の環状エーテルを有する1価の有機基、又は酸分解性基(例えば、-COO基と結合する位置の炭素がアルキル基で置換されて4級化されたアダマンチル基等)が挙げられる。
 また、式(I)中、上記繰り返し単位(b)は、特開2016-138219号公報の段落0014~0018に記載される単量体から形成されたものであることも好ましい。
 式(I)中、a~eは、モル%(上記繰り返し単位(a)~(e)の合計100モル%に対する各繰り返し単位のモル%)を表し、各々独立に、0≦a≦100、0≦b≦100、0≦c<100、0≦d<100、0≦e<100の範囲に含まれる数を表す。ただし、a+b+c+d+e=100であり、a+b≠0である。
 式(I)中、a+bは、20~90モル%が好ましく、25~85モル%がより好ましく、30~80モル%が更に好ましい。
 式(I)中、全繰り返し単位に対する、酸分解性基を有する繰り返し単位の含有量は、20~90モル%が好ましく、25~85モル%がより好ましく、30~80モル%が更に好ましい。
 また、式(I)中、c+d(全繰り返し単位に対する、ラクトン構造を有する繰り返し単位の含有量)は、3~80モル%が好ましく、3~60モル%がより好ましい。
 なお、繰り返し単位(a)~繰り返し単位(e)の各繰り返し単位はそれぞれ1種を単独で用いても、それぞれ2種以上の各繰り返し単位を併用してもよい。2種以上の繰各繰り返し単位を併用する場合には、合計含有量が、それぞれ上記範囲内であることが好ましい。
 式(I)で表される樹脂の重量平均分子量(Mw)は、通常1,000~200,000が好ましく、2,000~20,000がより好ましく、3,000~15,000が更に好ましい。なお、上記重量平均分子量は、展開溶媒としてテトラヒドロフラン(THF)を用いて、ゲルパーミエーションクロマトグラフィー(GPC:Gel Permeation Chromatography)法により求められるポリスチレン換算値である。
 また、上記レジスト組成物中、上記式(I)で表される樹脂の含有量は、レジスト組成物の全固形分を基準として、通常30~99質量%が好ましく、50~95質量%がより好ましい。
 (フェノール性水酸基を有する繰り返し単位)
 また、樹脂Pは、フェノール性水酸基を有する繰り返し単位を含有していてもよい。
 フェノール性水酸基を有する繰り返し単位としては、例えば、下記一般式(I)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式中、
 R41、R42及びR43は、各々独立に、水素原子、アルキル基、ハロゲン原子、シアノ基又はアルコキシカルボニル基を表す。但し、R42はArと結合して環を形成していてもよく、その場合のR42は単結合又はアルキレン基を表す。
 Xは、単結合、-COO-、又は-CONR64-を表し、R64は、水素原子又はアルキル基を表す。
 Lは、単結合又はアルキレン基を表す。
 Arは、(n+1)価の芳香環基を表し、R42と結合して環を形成する場合には(n+2)価の芳香環基を表す。
 nは、1~5の整数を表す。
 一般式(I)におけるR41、R42及びR43のアルキル基としては、置換基を有していてもよい、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基及びドデシル基など炭素数20以下のアルキル基が好ましく、炭素数8以下のアルキル基がより好ましく、炭素数3以下のアルキル基が更に好ましい。
 一般式(I)におけるR41、R42及びR43のシクロアルキル基としては、単環型でも、多環型でもよい。シクロアルキル基としては、置換基を有していてもよい、シクロプロピル基、シクロペンチル基及びシクロヘキシル基などの炭素数3~8個で単環型のシクロアルキル基が好ましい。
 一般式(I)におけるR41、R42及びR43のハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子が好ましい。
 一般式(I)におけるR41、R42及びR43のアルコキシカルボニル基に含まれるアルキル基としては、上記R41、R42及びR43におけるアルキル基と同様のものが好ましい。
 上記各基における置換基としては、例えば、アルキル基、シクロアルキル基、アリール基、アミノ基、アミド基、ウレイド基、ウレタン基、ヒドロキシル基、カルボキシル基、ハロゲン原子、アルコキシ基、チオエーテル基、アシル基、アシロキシ基、アルコキシカルボニル基、シアノ基、及び、ニトロ基等が挙げられ、置換基の炭素数は8以下が好ましい。
 Arは、(n+1)価の芳香環基を表す。nが1である場合における2価の芳香環基は、置換基を有していてもよく、例えば、フェニレン基、トリレン基、ナフチレン基及びアントラセニレン基などの炭素数6~18のアリーレン基、並びに、チオフェン、フラン、ピロール、ベンゾチオフェン、ベンゾフラン、ベンゾピロール、トリアジン、イミダゾール、ベンゾイミダゾール、トリアゾール、チアジアゾール及びチアゾール等のヘテロ環を含む芳香環基が挙げられる。
 nが2以上の整数である場合における(n+1)価の芳香環基の具体例としては、2価の芳香環基の上記した具体例から、(n-1)個の任意の水素原子を除してなる基が挙げられる。
 (n+1)価の芳香環基は、更に置換基を有していてもよい。
 上述したアルキル基、シクロアルキル基、アルコキシカルボニル基、アルキレン基及び(n+1)価の芳香環基が有し得る置換基としては、例えば、一般式(I)におけるR41、R42及びR43で挙げたアルキル基;メトキシ基、エトキシ基、ヒドロキシエトキシ基、プロポキシ基、ヒドロキシプロポキシ基及びブトキシ基等のアルコキシ基;フェニル基等のアリール基が挙げられる。
 Xにより表わされる-CONR64-(R64は、水素原子、アルキル基を表す)におけるR64のアルキル基としては、置換基を有していてもよい、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基及びドデシル基など炭素数20以下のアルキル基が挙げられ、炭素数8以下のアルキル基が好ましい。
 Xとしては、単結合、-COO-又は-CONH-が好ましく、単結合又は-COO-がより好ましい。
 Lにおけるアルキレン基としては、置換基を有していてもよい、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基及びオクチレン基等の炭素数1~8個のアルキレン基が好ましい。
 Arとしては、置換基を有していてもよい炭素数6~18の芳香環基が好ましく、ベンゼン環基、ナフタレン環基又はビフェニレン環基がより好ましい。
 一般式(I)で表される繰り返し単位は、ヒドロキシスチレン構造を備えていることが好ましい。即ち、Arは、ベンゼン環基であることが好ましい。
 フェノール性水酸基を有する繰り返し単位としては、下記一般式(p1)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000006
 一般式(p1)におけるRは、水素原子、ハロゲン原子又は1~4個の炭素原子を有する直鎖状若しくは分岐鎖状のアルキル基を表す。複数のRは、各々同じでも異なっていてもよい。一般式(p1)中のRとしては水素原子が好ましい。
 一般式(p1)におけるArは芳香族環を表し、例えば、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環及びフェナントレン環などの炭素数6~18の置換基を有していてもよい芳香族炭化水素環、並びに、例えば、チオフェン環、フラン環、ピロール環、ベンゾチオフェン環、ベンゾフラン環、ベンゾピロール環、トリアジン環、イミダゾール環、ベンゾイミダゾール環、トリアゾール環、チアジアゾール環及びチアゾール環等のヘテロ環を含む芳香環ヘテロ環が挙げられる。中でも、ベンゼン環が好ましい。
 一般式(p1)におけるmは、1~5の整数を表し、1が好ましい。
 以下、フェノール性水酸基を有する繰り返し単位の具体例を示すが、これに限定されるものではない。式中、aは1又は2を表す。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 フェノール性水酸基を有する繰り返し単位の含有量は、樹脂P中の全繰り返し単位に対し、0~50モル%が好ましく、0~45モル%がより好ましく、0~40モル%が更に好ましい。
(極性基を有する有機基を含有する繰り返し単位)
 樹脂Pは、極性基を有する有機基を含有する繰り返し単位、特に、極性基で置換された脂環炭化水素構造を有する繰り返し単位を更に含有していてもよい。
 これにより基板密着性、現像液親和性が向上する。極性基で置換された脂環炭化水素構造の脂環炭化水素構造としてはアダマンチル基、ジアマンチル基又はノルボルナン基が好ましい。極性基としては、水酸基又はシアノ基が好ましい。
 極性基を有する繰り返し単位の具体例を以下に挙げるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000010
 樹脂Pが、極性基を有する有機基を含有する繰り返し単位を含有する場合、その含有量は、樹脂P中の全繰り返し単位に対し、1~50モル%が好ましく、1~30モル%がより好ましく、5~25モル%が更に好ましくは、5~20モル%が特に好ましい。
(活性光線又は放射線の照射により酸を発生する基(光酸発生基)を有する繰り返し単位)
 樹脂Pは、活性光線又は放射線の照射により酸を発生する基(光酸発生基)を有する繰り返し単位を含有していてもよい。
 活性光線又は放射線の照射により酸を発生する基(光酸発生基)を有する繰り返し単位としては、例えば、下記式(4)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 R41は、水素原子又はメチル基を表す。L41は、単結合又は2価の連結基を表す。L42は、2価の連結基を表す。Wは、活性光線又は放射線の照射により分解して側鎖に酸を発生させる構造部位を表す。
 以下に、式(4)で表される繰り返し単位の具体例を示すが、これに限定されない。
Figure JPOXMLDOC01-appb-C000012
 そのほか、式(4)で表される繰り返し単位としては、例えば、特開2014-041327号公報の段落[0094]~[0105]に記載された繰り返し単位が挙げられる。
 樹脂Pが光酸発生基を有する繰り返し単位を含有する場合、光酸発生基を有する繰り返し単位の含有量は、樹脂P中の全繰り返し単位に対し、1~40モル%が好ましく、5~35モル%がより好ましく、5~30モル%が更に好ましい。
 樹脂Pは、下記式(VI)で表される繰り返し単位を含有していてもよい。
Figure JPOXMLDOC01-appb-C000013
 式(VI)中、
 R61、R62及びR63は、各々独立に、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基、又はアルコキシカルボニル基を表す。但し、R62はArと結合して環を形成していてもよく、その場合のR62は単結合又はアルキレン基を表す。
 Xは、単結合、-COO-、又は-CONR64-を表す。R64は、水素原子又はアルキル基を表す。
 Lは、単結合又はアルキレン基を表す。
 Arは、(n+1)価の芳香環基を表し、R62と結合して環を形成する場合には(n+2)価の芳香環基を表す。
 Yは、n≧2の場合には各々独立に、水素原子又は酸の作用により脱離する基を表す。但し、Yの少なくとも1つは、酸の作用により脱離する基を表す。
 nは、1~4の整数を表す。
 酸の作用により脱離する基Yとしては、下記式(VI-A)で表される構造が好ましい。
Figure JPOXMLDOC01-appb-C000014
 L及びLは、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、又はアルキレン基とアリール基とを組み合わせた基を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、アルキル基、ヘテロ原子を含んでいてもよいシクロアルキル基、ヘテロ原子を含んでいてもよいアリール基、アミノ基、アンモニウム基、メルカプト基、シアノ基又はアルデヒド基を表す。
 Q、M、Lの少なくとも2つが結合して環(好ましくは、5員若しくは6員環)を形成してもよい。
 上記式(VI)で表される繰り返し単位は、下記式(3)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 式(3)において、
 Arは、芳香環基を表す。
 Rは、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルコキシ基、アシル基又はヘテロ環基を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、アルキル基、シクロアルキル基、アリール基又はヘテロ環基を表す。
 Q、M及びRの少なくとも二つが結合して環を形成してもよい。
 Arが表す芳香環基は、上記式(VI)におけるnが1である場合の、上記式(VI)におけるArと同様であり、フェニレン基又はナフチレン基がより好ましく、フェニレン基が更に好ましい。
 以下に式(VI)で表される繰り返し単位の具体例を示すが、これに限定されない。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 樹脂Pは、下記式(4)で表される繰り返し単位を含有していてもよい。
Figure JPOXMLDOC01-appb-C000018
 式(4)中、
 R41、R42及びR43は、各々独立に、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基又はアルコキシカルボニル基を表す。R42はLと結合して環を形成していてもよく、その場合のR42はアルキレン基を表す。
 Lは、単結合又は2価の連結基を表し、R42と環を形成する場合には3価の連結基を表す。
 R44及びR45は、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルコキシ基、アシル基又はヘテロ環基を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、アルキル基、シクロアルキル基、アリール基又はヘテロ環基を表す。
 Q、M及びR44の少なくとも二つが結合して環を形成してもよい。
 R41、R42及びR43は、上記の式(IA)中のR41、R42及びR43と同義であり、また好ましい範囲も同様である。
 Lは、上記の式(AI)中のTと同義であり、また好ましい範囲も同様である。
 R44及びR45は、上記の式(3)中のRと同義であり、また好ましい範囲も同様である。
 Mは、上記の式(3)中のMと同義であり、また好ましい範囲も同様である。
 Qは、上記の式(3)中のQと同義であり、また好ましい範囲も同様である。
 Q、M及びR44の少なくとも二つが結合して形成される環としては、Q、M及びRの少なくとも二つが結合して形成される環があげられ、また好ましい範囲も同様である。
 以下に式(4)で表される繰り返し単位の具体例を示すが、これに限定されない。
Figure JPOXMLDOC01-appb-C000019
 また、樹脂Pは、下記式(BZ)で表される繰り返し単位を含有していてもよい。
Figure JPOXMLDOC01-appb-C000020
 式(BZ)中、ARは、アリール基を表す。Rnは、アルキル基、シクロアルキル基又はアリール基を表す。RnとARとは互いに結合して非芳香族環を形成してもよい。
 Rは、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基又はアルキルオキシカルボニル基を表す。
 以下に、式(BZ)により表される繰り返し単位の具体例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 樹脂Pにおける酸分解性基を有する繰り返し単位の含有量(複数種類含有する場合はその合計)は、上記樹脂P中の全繰り返し単位に対して5~80モル%が好ましく、5~75モル%がより好ましく、10~65モル%が更に好ましい。
 樹脂Pは、下記式(V)又は下記式(VI)で表される繰り返し単位を含有していてもよい。
Figure JPOXMLDOC01-appb-C000023
 式中、
 R及びRは、それぞれ独立に、水素原子、ヒドロキシ基、炭素数1~10の直鎖状、分岐状又は環状のアルキル基、アルコキシ基又はアシロキシ基、シアノ基、ニトロ基、アミノ基、ハロゲン原子、エステル基(-OCOR又は-COOR:Rは炭素数1~6のアルキル基又はフッ素化アルキル基)、又はカルボキシル基を表す。
 nは0~6の整数を表す。
 nは0~4の整数を表す。
 Xはメチレン基、酸素原子又は硫黄原子である。
 式(V)又は式(VI)で表される繰り返し単位の具体例を下記に示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000024
 樹脂Pは、更に、側鎖に珪素原子を有する繰り返し単位を含有していてもよい。側鎖に珪素原子を有する繰り返し単位としては、例えば、珪素原子を有する(メタ)アクリレート系繰り返し単位、珪素原子を有するビニル系繰り返し単位などが挙げられる。側鎖に珪素原子を有する繰り返し単位は、典型的には、側鎖に珪素原子を有する基を有する繰り返し単位であり、珪素原子を有する基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基、トリシクロヘキシルシリル基、トリストリメチルシロキシシリル基、トリストリメチルシリルシリル基、メチルビストリメチルシリルシリル基、メチルビストリメチルシロキシシリル基、ジメチルトリメチルシリルシリル基、ジメチルトリメチルシロキシシリル基、及び、下記のような環状もしくは直鎖状ポリシロキサン、又はカゴ型あるいははしご型もしくはランダム型シルセスキオキサン構造などが挙げられる。式中、R、及び、Rは各々独立に、1価の置換基を表す。*は、結合手を表す。
Figure JPOXMLDOC01-appb-C000025
 上記の基を有する繰り返し単位としては、例えば、上記の基を有するアクリレート又はメタクリレート化合物に由来する繰り返し単位、又は、上記の基とビニル基とを有する化合物に由来する繰り返し単位が好ましい。
 珪素原子を有する繰り返し単位は、シルセスキオキサン構造を有する繰り返し単位であることが好ましく、これにより、超微細(例えば、線幅50nm以下)であり、かつ、断面形状が高アスペクト比(例えば、膜厚/線幅が3以上)のパターンの形成において、非常に優れた倒れ性能を発現することができる。
 シルセスキオキサン構造としては、例えば、カゴ型シルセスキオキサン構造、はしご型シルセスキオキサン構造(ラダー型シルセスキオキサン構造)、及び、ランダム型シルセスキオキサン構造が挙げられる。なかでも、カゴ型シルセスキオキサン構造が好ましい。
 ここで、カゴ型シルセスキオキサン構造とは、カゴ状骨格を有するシルセスキオキサン構造である。カゴ型シルセスキオキサン構造は、完全カゴ型シルセスキオキサン構造であっても、不完全カゴ型シルセスキオキサン構造であってもよいが、完全カゴ型シルセスキオキサン構造であることが好ましい。
 はしご型シルセスキオキサン構造とは、はしご状骨格を有するシルセスキオキサン構造である。
 ランダム型シルセスキオキサン構造とは、骨格がランダムのシルセスキオキサン構造である。
 上記カゴ型シルセスキオキサン構造は、下記式(S)で表されるシロキサン構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000026
 上記式(S)中、Rは、1価の有機基を表す。複数あるRは、同一であっても、異なってもよい。
 上記有機基は特に制限されないが、具体例としては、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アミノ基、メルカプト基、ブロック化メルカプト基(例えば、アシル基でブロック(保護)されたメルカプト基)、アシル基、イミド基、ホスフィノ基、ホスフィニル基、シリル基、ビニル基、ヘテロ原子を有していてもよい炭化水素基、(メタ)アクリル基含有基及びエポキシ基含有基などが挙げられる。
 上記ヘテロ原子を有していてもよい炭化水素基のヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子及びリン原子などが挙げられる。
 上記ヘテロ原子を有していてもよい炭化水素基の炭化水素基としては、例えば、脂肪族炭化水素基、芳香族炭化水素基、又はこれらを組み合わせた基などが挙げられる。
 上記脂肪族炭化水素基は、直鎖状、分岐鎖状及び環状のいずれであってもよい。上記脂肪族炭化水素基の具体例としては、直鎖状又は分岐鎖状のアルキル基(特に、炭素数1~30)、直鎖状又は分岐鎖状のアルケニル基(特に、炭素数2~30)、直鎖状又は分岐鎖状のアルキニル基(特に、炭素数2~30)などが挙げられる。
 上記芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基及びナフチル基などの炭素数6~18の芳香族炭化水素基などが挙げられる。
 樹脂Pが、上記側鎖に珪素原子を有する繰り返し単位を有する場合、その含有量は、樹脂P中の全繰り返し単位に対し、1~30モル%が好ましく、5~25モル%がより好ましくは、5~20モル%が更に好ましい。
 樹脂Pの重量平均分子量は、GPC(Gel permeation chromatography)法によりポリスチレン換算値として、1,000~200,000が好ましく、3,000~20,000がより好ましく、5,000~15,000が更に好ましい。重量平均分子量を、1,000~200,000とすることにより、耐熱性及びドライエッチング耐性の劣化を防ぐことができ、且つ現像性が劣化したり、粘度が高くなって製膜性が劣化したりすることを防ぐことができる。
 分散度(分子量分布)は、通常1~5であり、1~3が好ましく、1.2~3.0がより好ましく、1.2~2.0が更に好ましい。
 レジスト組成物において、樹脂Pの含有量は、全固形分中、50~99.9質量%が好ましく、60~99.0質量%がより好ましい。
 また、レジスト組成物において、樹脂Pは、1種で使用してもよいし、複数併用してもよい。
(光酸発生剤)
 上記レジスト組成物は、光酸発生剤を含有することが好ましい。光酸発生剤としては特に制限されず、公知の光酸発生剤を使用できる。
 レジスト組成物中における光酸発生剤の含有量としては特に制限されないが、レジスト組成物の全固形分に対して、0.1~20質量%が好ましく。0.5~20質量%がより好ましい。光酸発生剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の光酸発生剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 光酸発生剤としては、例えば、特開2016-057614号公報、特開2014-219664号公報、特開2016-138219号公報、及び、特開2015-135379号公報に記載のものが挙げられる。
(クエンチャー)
 上記レジスト組成物は、クエンチャー(酸拡散制御剤)を含有してもよい。クエンチャーとしては特に制限されず、公知のクエンチャーを使用できる。
 クエンチャーは例えば塩基性化合物であって、未露光領域において、露光領域から拡散した酸によって、酸分解性樹脂が意図せず分解するのを抑制する機能を有する。
 レジスト組成物中におけるクエンチャーの含有量としては特に制限されないが、レジスト組成物の全固形分に対して、0.1~15質量%が好ましく、0.5~8質量%がより好ましい。クエンチャーは、1種を単独で用いても、2種以上を併用してもよい。2種以上のクエンチャーを併用する場合には、合計含有量が上記範囲内であることが好ましい。
 クエンチャーとしては、例えば、特開2016-057614号公報、特開2014-219664号公報、特開2016-138219号公報、及び、特開2015-135379号公報に記載のものが挙げられる。
(疎水性樹脂)
 上記レジスト組成物は、疎水性樹脂を含有していてもよい。
 疎水性樹脂はレジスト膜の表面に偏在するように設計されることが好ましいが、界面活性剤とは異なり、必ずしも分子内に親水基を有する必要はなく、極性物質及び非極性物質を均一に混合することに寄与しなくてもよい。
 疎水性樹脂を添加することの効果として、水に対するレジスト膜表面の静的及び動的な接触角の制御、並びに、アウトガスの抑制等が挙げられる。
 疎水性樹脂は、膜表層への偏在化の観点から、“フッ素原子”、“珪素原子”、及び、“樹脂の側鎖部分に含まれたCH部分構造”のいずれか1種以上を有することが好ましく、2種以上を有することがより好ましい。また、上記疎水性樹脂は、炭素数5以上の炭化水素基を有することが好ましい。これらの基は樹脂の主鎖中に有していても、側鎖に置換していてもよい。
 疎水性樹脂が、フッ素原子及び/又は珪素原子を含む場合、疎水性樹脂における上記フッ素原子及び/又は珪素原子は、樹脂の主鎖中に含まれていてもよく、側鎖中に含まれていてもよい。
 疎水性樹脂がフッ素原子を含んでいる場合、フッ素原子を有する部分構造としては、フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基、又は、フッ素原子を有するアリール基が好ましい。
 フッ素原子を有するアルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~4)は、少なくとも1つの水素原子がフッ素原子で置換された直鎖状又は分岐鎖状のアルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
 フッ素原子を有するシクロアルキル基は、少なくとも1つの水素原子がフッ素原子で置換された単環又は多環のシクロアルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
 フッ素原子を有するアリール基としては、フェニル基、及び、ナフチル基等のアリール基の少なくとも1つの水素原子がフッ素原子で置換されたものが挙げられ、更にフッ素原子以外の置換基を有していてもよい。
 フッ素原子又は珪素原子を有する繰り返し単位の例としては、US2012/0251948A1の段落[0519]に例示されたものが挙げられる。
 また、上記したように、疎水性樹脂は、側鎖部分にCH部分構造を含むことも好ましい。
 ここで、疎水性樹脂中の側鎖部分が有するCH部分構造は、エチル基、及び、プロピル基等が有するCH部分構造を含むものである。
 一方、疎水性樹脂の主鎖に直接結合しているメチル基(例えば、メタクリル酸構造を有する繰り返し単位のα-メチル基)は、主鎖の影響により疎水性樹脂の表面偏在化への寄与が小さいため、上記のCH部分構造に含まれないものとする。
 疎水性樹脂に関しては、特開2014-010245号公報の段落[0348]~[0415]の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 疎水性樹脂としては、この他にも特開2011-248019号公報、特開2010-175859号公報、及び、特開2012-032544号公報に記載の樹脂も好ましく使用できる。
 疎水性樹脂としては、例えば、以下の式(1b)~式(5b)で表される樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000027
 レジスト組成物が疎水性樹脂を含有する場合、疎水性樹脂の含有量は、組成物の全固形分に対して、0.01~20質量%が好ましく、0.1~15質量%がより好ましい。
(溶剤)
 レジスト組成物は、溶剤を含有してもよい。溶剤としては特に制限されず、公知の溶剤を使用できる。
 レジスト組成物に含有される溶剤は、プリウェット液に含有される有機溶剤と同一でも異なってもよい。
 本供給方法で供給された薬液は、レジスト組成物に含有される溶剤として使用できる。
 レジスト組成物中における溶剤の含有量としては特に制限されないが、レジスト組成物の全固形分が、0.1~20質量%に調整されるよう含有されることが好ましく、0.5~10質量%に調整されるよう含有されることがより好ましい。溶剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の溶剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 溶剤としては、例えば、特開2016-057614号公報、特開2014-219664号公報、特開2016-138219号公報、及び、特開2015-135379号公報に記載のものが挙げられる。
(その他の添加剤)
 また、上記レジスト組成物は、必要に応じて更に、界面活性剤、酸増殖剤、染料、可塑剤、光増感剤、光吸収剤、上記以外のアルカリ可溶性樹脂、及び/又は、溶解阻止剤等を含有してもよい。
 レジスト組成物を用いて基板上にレジスト膜(レジスト組成物膜)を形成するためには、上述したような各成分を溶剤に溶解する等してレジスト組成物を調製し、必要に応じてフィルタ濾過した後、基板(プリウェット済み基板)上に塗布する。フィルタのポアサイズは、0.1ミクロン以下が好ましく、0.05ミクロン以下がより好ましく、0.03ミクロン以下が更に好ましい。また、フィルタは、ポリテトラフロロエチレン製、ポリエチレン製、又は、ナイロン製が好ましい。
 レジスト組成物は、基板上に、スピン塗布等の適当な塗布方法により塗布される。その後、塗布されたレジスト組成物を乾燥して、レジスト膜が形成される。
 乾燥方法としては、加熱して乾燥する方法が用いられる。加熱は通常の露光現像機等に備わっている手段で行うことができ、ホットプレート等を用いて行ってもよい。
 加熱温度は、80~180℃が好ましく、80~150℃がより好ましく、80~140℃が更に好ましく、80~130℃が特に好ましい。加熱時間は、30~1000秒間が好ましく、60~800秒間がより好ましく、60~600秒間が更に好ましい。
 レジスト膜の膜厚は、例えば1~200nmであり、10~100nmが好ましい。
 なお、レジスト膜形成方法及び/又はパターン形成方法においては、レジスト膜の上層に上層膜(トップコート膜)を形成してもよい。上層膜は、例えば、疎水性樹脂、光酸発生剤、及び、塩基性化合物を含有する上層膜形成用組成物を用いて形成できる。
<(C)露光工程>
 露光工程は、レジスト膜を露光する工程である。レジスト膜を露光する方法としては特に制限されず、公知の方法を使用できる。
 レジスト膜を露光する方法としては、例えばレジスト膜に、所定のマスクを通して活性光線又は放射線を照射する方法が挙げられる。また、レジスト膜に電子ビームを照射する方法の場合は、マスクを介さないで照射してもよい(これを、「直描」ともいう。)。
 露光に用いられる活性光線又は放射線としては特に制限されないが、例えば、KrFエキシマレーザー、ArFエキシマレーザー、極紫外線(EUV:Extreme Ultra Violet)、及び、電子線(EB:Electron Beam)等が挙げられ、極紫外線又は電子線が好ましい。露光は液浸露光であってもよい。
(PEB工程)
 上記パターン形成方法は、露光工程と、現像工程の前に、露光後のレジスト膜をベーク(PEB:Post Exposure Bake)する、PEB工程を更に有することが好ましい。ベークにより露光部の反応が促進され、感度、及び/又は、パターン形状がより良好となる。
 加熱温度は80~150℃が好ましく、80~140℃がより好ましく、80~130℃が更に好ましい。
 加熱時間は30~1000秒間が好ましく、60~800秒間がより好ましく、60~600秒間が更に好ましい。
 加熱は通常の露光・現像機に備わっている手段で行うことができ、ホットプレート等を用いて行ってもよい。
<(D)現像工程>
 現像工程は、露光されたレジスト膜(以下、「露光後のレジスト膜」ともいう。)を現像液によって現像する工程である。
 現像方法としては、特に制限されず、公知の現像方法を使用できる。現像方法としては、例えば、ディップ法、パドル法、スプレー法、及び、ダイナミックディスペンス法等が挙げられる。
 また、上記パターン形成方法は、現像工程の後に、現像液を他の溶剤に置換し、現像を停止する工程を更に有してもよい。
 現像時間はとしては、特に制限されないが、10~300秒間が好ましく、10~120秒間がより好ましい。現像液の温度としては、0~50℃が好ましく、15~35℃がより好ましい。パターン形成方法は、現像工程を少なくとも1回有していればよく、複数回有してもよい。
(現像液)
 現像液としては特に制限されず、公知の現像液を使用できる。現像液としては、例えば、アルカリ現像液、及び、有機溶剤を含有する現像液(有機系現像液)が挙げられる。
 本供給方法で供給された薬液は、有機系現像液に含有される有機溶剤として使用できる。
 なお、現像工程においては、有機溶剤を含有する現像液を用いた現像と、アルカリ現像液による現像を両方行ってもよい(いわゆる二重現像を行ってもよい)。
<(E)リンス工程>
 上記パターン形成方法は、現像工程の後に更にリンス工程を有することが好ましい。
 リンス工程は、現像後のレジスト膜を備えるウェハを、リンス液を用いて洗浄する工程である。
 洗浄方法としては特に制限されず、公知の洗浄方法を用いることできる。洗浄方法としては、例えば、回転吐出法、ディップ法、及び、スプレー法等が挙げられる。
 なかでも回転吐出法で洗浄し、洗浄後にウェハを2000~4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
 リンス時間としては、10~300秒間が好ましく、10~180秒間がより好ましく、20~120秒間が更に好ましい、リンス液の温度としては0~50℃が好ましく、15~35℃がより好ましい。
(リンス液)
 アルカリ現像液を用いた現像後に、レジスト膜を備えるウェハをリンスする場合、リンス液としては、純水が好ましく、界面活性剤を含有する純水であってもよい。
 有機系現像液を用いた現像後に、レジスト膜を備えるウェハをリンスする場合、リンス液としては、有機溶剤を含有するリンス液が好ましい。リンス液が含有する有機溶剤としては、例えば、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及び、エーテル系溶剤からなる群より選択される少なくとも1種の有機溶剤が好ましく、炭化水素系溶剤、エーテル系溶剤、及び、ケトン系溶剤からなる群から選択される少なくとも1種がより好ましく、炭化水素系溶剤、及び、エーテル系溶剤からなる群から選択される少なくとも1種が更に好ましい。
 上記のリンス液として、本供給方法で供給された薬液を使用する態様は好ましい。
 現像工程において、有機溶剤を含有する現像液を用いる場合、上記パターン形成方法は、現像工程の後に、リンス工程を有してもよいが、スループット(生産性)の観点から、リンス工程を有しなくてもよい。
 リンス工程を有しないパターン形成方法としては、例えば、特開2015-216403号公報の0014段落~0086段落の記載が援用でき、上記内容は本明細書に組み込まれる。
 なお、リンス液としてはMIBC(メチルイソブチルカルビノール)、又は、現像液と同じ液体(特に酢酸ブチル)も好ましい。
<その他の工程>
 上記パターン形成方法は、既に説明した工程に加えて、その他の工程を有してもよい。その他の工程としては例えば、超臨界流体による洗浄工程、及び、加熱工程等が挙げられる。
 また、上記パターン形成方法は、プリウェット工程後の基板上に、レジスト下層膜形成用組成物を用いてレジスト下層膜を形成するレジスト下層膜形成工程を有してもよい。レジスト下層膜形成工程は、上記(B)レジスト膜形成工程に記載の方法に準じて行うことができる。また、レジスト下層膜形成工程の前に行うプリウェット工程は、上記(A)プリウェット工程に記載の方法に準じて行うことができる。
(超臨界流体による除去工程)
 超臨界流体による除去工程は、現像処理、及び/又は、リンス処理の後に、パターン上に付着している現像液、及び/又は、リンス液を超臨界流体により除去する工程である。
(加熱工程)
 加熱工程は、現像工程、リンス工程、又は、超臨界流体による除去工程の後に、パターン中に残存する溶剤を除去するためにレジスト膜を加熱する工程である。
 加熱温度は、特に制限されないが、40~160℃が好ましく、50~150℃がより好ましく、50~110℃が更に好ましい。
 加熱時間は、特に制限されないが、15~300秒間が好ましく、15~180秒間がより好ましい。
(BARC組成物塗布工程)
 上記パターン形成方法は、(B)レジスト膜形成工程の前に、ウェハ上にBARC(Bottom of Anti-Reflection Coating)組成物を塗布する工程を有してもよい。また、BARC組成物塗布工程は、ウェハのエッジ部(端部)に意図せず塗布されたBARC組成物を除去する工程を更に有してもよい。
 また、上記薬液は、半導体デバイス製造用以外の他の用途でも好適に用いることができ、ポリイミド、センサー用レジスト及びレンズ用レジスト等の現像液、並びに、リンス液としても使用できる。
 また、上記薬液は、医療用途又は洗浄用途の溶剤としても用いることができる。特に、容器、配管並びに基板(例えば、ウェハ及びガラス等)等の部材の洗浄に好適に用いることができる。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 なお、各種測定において、測定対象成分が、各測定装置の測定可能範囲を外れた場合(例えば、測定限界以下だった場合)には、測定対象物(薬液)で十分に洗浄したガラス器具を用いて、測定対象物を濃縮又は希釈して測定した。
 図1に示すような、貯留槽11と、ガス管12と、管路13と、中間槽14と、管路15と、排出部16と、管路15上に配置されたポンプ17及びフィルタユニット20とを備える供給装置を準備した。また、ガス管12の貯留槽11の上流側には、ガスフィルタ(Entegris社製「Wafergard III NF-750 インラインガスフィルタ」)を配置した。
[原料]
(圧送用ガス)
 各実施例及び各比較例において、薬液の送液に用いるガス(圧送用ガス)として、下記に示すガスを使用した。
・アルゴン(Ar)
・窒素(N
・ヘリウム(He)
(有機溶剤)
 各実施例及び各比較例において、薬液として下記の有機溶剤を使用した。
・プロピレングリコールモノメチルエーテルアセテート(PGMEA)
・ヘキサン
・4-メチル-2-ペンタノール(MIBC)
・1-ヘキサノール
・イソプロパノール(IPA)
・プロピレングリコールモノエチルエーテル(PGME)
・乳酸エチル(EL)
・酢酸ブチル(nBA)
・炭酸プロピレン
・プロピオン酸エチル
・酢酸イソアミル
・2-ヘプタノン(MAK)
・メチルエチルケトン(MEK)
・シクロヘキサノン
・シクロペンタノン
(特定金属成分の含有量)
 薬液における金属成分(金属イオン及び金属粒子)の種類ごとの含有量を、ICP-MS(「Agilent 8800 トリプル四重極ICP-MS(半導体分析用、オプション#200)」)を用いて、以下の条件により測定した。
 サンプル導入系は石英のトーチと同軸型PFA(パーフルオロアルコキシアルカン)ネブライザ(自吸用)、及び、白金インターフェースコーンを使用した。クールプラズマ条件の測定パラメータは以下のとおりである。
・RF(Radio Frequency)出力(W):600
・キャリアガス流量(L/min):0.7
・メークアップガス流量(L/min):1
・サンプリング深さ(mm):18
(水分含有量)
 薬液中の水分含有量は、カールフィッシャー水分計(製品名「MKC-710M」、京都電子工業社製、カールフィッシャー電量滴定式)を用いて測定した。
(フタル酸ジオクチルの含有量)
 薬液におけるフタル酸ジオクチル(DOP)の含有量を、ガスクロマトグラフ質量分析計(製品名「GCMS-2020」、株式会社島津製作所製)を用いて、以下の条件により測定した。
キャピラリーカラム:InertCap 5MS/NP 0.25mmI.D. ×30m df=0.25μm
試料導入法:スプリット 75kPa 圧力一定
気化室温度 :230℃
カラムオーブン温度:80℃(2min)-500℃(13min)昇温速度15℃/min
キャリアガス:ヘリウム
セプタムパージ流量:5mL/min
スプリット比:25:1
インターフェイス温度:250℃
イオン源温度:200℃
測定モード:Scan m/z=85~1000
試料導入量:1μL
(フィルタ)
 各実施例及び各比較例において、下記の材料で構成されたフィルタを使用した。
・ポリテトラフルオロエチレン(PTFE)
・ポリエチレン(PE)
・ナイロン
[薬液の調製]
 市販の有機溶剤を準備し、以下の精製装置を用いて精製することにより、各実施例及び各比較例で用いる薬液を調製した。
 まず、容器、排出部、容器と排出部とを接続する配管、配管上に配置されたろ過装置、及び、ろ過装置よりも下流側の配管と容器とを接続する返送配管を備える精製装置を準備した。ろ過装置は、配管上に直列に配置された複数のフィルタユニットで構成されており、調整弁を有さない。ろ過装置は、例えば、上流側(一次側)から順に以下のフィルタを有するフィルタユニットを備えていた。
・ポリプロピレン製フィルタ(細孔径:200nm、多孔質膜)
・イオン交換基を有するポリフルオロカーボン製フィルタ(細孔径:100nm、PTFEとPES(ポリエチレンスルホン酸)の重合体からなる繊維膜)
・ナイロン製フィルタ(細孔径:3nm、繊維膜)
 また、返送配管は、ろ過装置を通過した有機溶剤を容器に返送する機能を有する。
 なお、上記精製装置の接液部を有機溶剤を用いて十分に洗浄した後、洗浄された精製装置を用いて薬液の調製を行った。
 有機溶剤を容器に充填した後、容器とろ過装置とを接続する配管上に配置されたポンプを稼働して、容器からろ過装置に有機溶剤を送出した。有機溶剤をろ過装置内のフィルタユニットでろ過した後、ろ過した有機溶剤を返送配管を介して容器に返送した。上記のフィルタユニットを用いたろ過、及び、ろ過した有機溶剤の返送を繰り返した後、ろ過した有機溶剤を排出部から排出して、各実施例及び各比較例で用いる薬液を得た。
 なお、各実施例及び各比較例ごとに、上記のろ過処理においてろ過装置が備えるフィルタの種類及び個数、並びに、上記のろ過の繰返し数を適宜変更して、表1に示す組成を有する薬液を調製した。
[実施例1]
 供給装置10の管路15上に配置されたフィルタユニット20に、孔径2nmのフィルタを有するフィルタカートリッジを収納した。フィルタを構成する材料(ろ過材)はポリテトラフルオロエチレン(PTFE)であった。
 上記の調製方法で調製された薬液における特定金属成分、水分及びフタル酸ジオクチルの各含有量を上記の測定方法で測定した後、貯留槽11に薬液を貯留した。
 原料ガスとしてArをガス管12内に送出し、ガスフィルタを通過させて圧送用ガスを調製し、得られた圧送用ガスを、ガス管12が接続した貯留槽11の頂部から貯留槽11の内部に導入した。これにより、貯留槽11上部のヘッドスペースに溜まったガスの気圧を高めて、貯留槽11に貯留された薬液の液面を加圧した。加圧によって生じた貯留槽11の内部と中間槽14の内部との圧力差によって、貯留槽11に貯留した薬液を管路13を通して中間槽14に送出(圧送)した。次いで、中間槽14と排出部16とを接続する管路15上に配置されたポンプ17を稼動し、中間槽14に貯留した薬液を排出部16から排出した。このとき、薬液を管路15に配置されたフィルタユニット20に通過させることにより、精製工程として、薬液のろ過処理を行った。
[実施例2~65、比較例1~5]
 表1に記載の圧送ガス、薬液及びフィルタを用いたこと以外は、実施例1に記載の方法に従って、薬液を供給し、精製後の薬液を得た。
 各実施例及び各比較例で得られた薬液を使用して、以下の評価を行った。
[評価]
(不純物溶出量の評価)
 各実施例及び各比較例の供給方法について、以下の方法で薬液における有機不純物の含有量を計測することにより、各供給方法において供給装置の管路等の接液部から薬液に溶出した有機不純物の量を測定した。
 まず、直径300mmのシリコン酸化膜基板を準備した。ウェハ上表面検査装置(Surfscan SP5;KLA Tencor製)を用いて、上記基板上に存在する直径19nm以上の有機残渣の個数を計測した(これを初期値とする。)。
 次に、上記基板をスピン吐出装置にセットし、基板を回転させながら、基板の表面に対して、各供給方法を実施する前の薬液を1mL/sの流速で吐出した。
 その後、基板をスピン乾燥した。上記検査装置を用いて、薬液を塗布した後の基板に存在する直径19nm以上の有機残渣の個数を計測した(これを計測値とする。)。初期値と計測値の差(計測値-初期値)を計算して、各供給方法を実施する前の薬液に由来する有機不純物量A1とした。
 なお、上記検査装置により計算された座標データを元に、薬液を塗布した後に新たに増加した欠陥に対して、欠陥解析装置(SEM Vision G6;AMAT製)を用いてEDX(Energy dispersive X-ray spectrometry:エネルギー分散型X線分析)による元素分析を行った。この方法により、有機不純物として計測された粒子が、金属成分を含まないことを確認した。
 フィルタユニットにフィルタを有するフィルタカートリッジを収納せず、フィルタを用いる薬液の精製工程を行わなかったこと以外は、上記の各実施例及び各比較例の供給方法と同様の方法で、各実施例及び各比較例の溶出量測定用のサンプルを得た。
 各サンプルについて、上記と同じ方法に従って初期値及び計測値を計測するとともに、計測された粒子が金属成分を含まない有機不純物であることを確認し、得られた初期値と計測値の差(計測値-初期値)を計算して、各サンプルに由来する有機不純物量A2とした。
 供給前の薬液に由来する有機不純物量A1、及び、上記サンプルに由来する有機不純物量A2から、式(A1-A2)を用いて、各実施例及び各比較例の供給方法における不純物の溶出量(個/ウェハ)を算出した。算出された不純物の溶出量を、表1に示す。
 不純物溶出量が少ないほど、供給装置の管路等の接液部から薬液への溶出が抑制された供給方法であることを意味する。
(フィルタ除去性能の評価)
 各実施例及び各比較例の供給方法について、以下の方法で、薬液をろ過する精製工程におけるフィルタの除去性能を評価した。
 実施例1~65及び比較例1~5につき、フィルタを用いる薬液の精製工程を有する上記の供給方法で得られた薬液を用いて、上記の不純物溶出量の評価試験と同様に、有機不純物量を測定した。
 即ち、各実施例及び各比較例の薬液について、上記と同じ方法に従って初期値及び計測値を計測するとともに、計測された粒子が金属成分を含まない有機不純物であることを確認し、得られた初期値と計測値の差(計測値-初期値)を計算して、各薬液に由来する有機不純物量A3とした。
 精製工程を有さない供給方法で得られた上記サンプルに由来する有機不純物量A2、及び、精製工程を有する供給方法で得られた上記薬液に由来する有機不純物量A3から、式((A2-A3)/A2)を用いて、各供給方法が有する精製工程による不純物の除去率(%)を算出した。算出された不純物の除去率(フィルタ除去率)を、表1に示す。
 フィルタ除去率が高いほど、その供給方法が有する精製工程による有機不純物の除去性能が高いことを意味する。
 表1に、各実施例及び各比較例において使用した圧送用ガスの組成、薬液の組成、フィルタ、並びに、上記評価結果を示す。
 表1の「圧送用ガス」の「種類」欄は、各実施例及び各比較例において使用した圧送用ガスの種類を示す。
 「ガスフィルタ」欄は、各実施例及び各比較例において使用した供給装置におけるガスフィルタの有無を示す。ガスフィルタ欄が「あり」である場合、ガス管上に設けたガスフィルタにガスを通過させ、圧送用ガスを調製(精製)したことを意味し、ガスフィルタ欄が「なし」である場合、供給装置において圧送用ガスの精製を行わず、予め精製を行い表1に示す圧送用ガスを準備したことを意味する。
 「水分量(ppm)」欄は、各実施例及び各比較例において使用した圧送用ガスに含まれる水分の含有量(単位:質量ppm)を示す。
 「純度」欄は、各実施例及び各比較例において使用した圧送用ガスの純度を示す。即ち、「純度」欄における「2N」、「3N」及び「5N」の表記は、使用した圧送用ガスの純度が、それぞれ、99体積%(2N)、99.9体積%(3N)、及び、99.999体積%(5N)であったことを意味する。
 表1の「薬液」の「有機溶剤」欄は、各実施例及び各比較例において使用した有機溶剤の種類を示す。なお、各実施例及び各比較例の薬液に含まれる有機溶剤の含有量はいずれも99.5質量%以上であった。
 「特定金属含有量(ppt)」欄は、薬液の全質量に対するFe成分(Fe粒子及びFeイオン)、Cr成分(Cr粒子及びCrイオン)、Ni成分(Ni粒子及びNiイオン)並びにAl成分(Al粒子及びAlイオン)の合計含有量(単位:質量ppt)を示す。
 なお、各実施例において使用した薬液に含まれる、特定金属成分以外の他の金属成分の含有量を測定した。その結果、上記他の金属成分の含有量はいずれも、薬液の全質量に対して10質量ppt以下であった。
 「水分量(%)」欄は、各実施例及び各比較例において使用した薬液の全質量に対する水の含有量(単位:質量%)を示す。
 「DOP(ppb)」欄は、各実施例及び各比較例において使用した薬液の全質量に対するフタル酸ジオクチルの含有量(単位:質量ppb)を示す。
 表1の「フィルタ」の「材質」欄は、上記供給装置において薬液の精製工程に用いたフィルタを構成するろ過材の材料を示し、「孔径」欄は、各フィルタの孔径を示す。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 表1に示すとおり、実施例1~65の薬液の供給方法は、比較例1~5の薬液の供給方法に比較して、管路から薬液に溶出する有機不純物の量を抑制する効果がより優れることが確認された。
 10 供給装置
 11 貯留槽
 12 ガス管
 12a ガス導入口
 13,15 管路
 14 中間槽
 16 排出口
 17 ポンプ
 20 フィルタユニット
 21 ガスフィルタ

Claims (20)

  1.  半導体デバイス用装置が備える管路内を通して、有機溶剤を含有する薬液を供給する、薬液の供給方法であって、
     ガスを用いて加圧することにより前記薬液を送出するガス圧送工程を有し、
     前記ガスに含まれる水分量が、前記ガスの全質量に対して0.00001~1質量ppmである、
     薬液の供給方法。
  2.  前記ガスの純度が99.9体積%以上である、請求項1に記載の薬液の供給方法。
  3.  前記ガスに含まれる水分量が、前記ガスの全質量に対して0.005~0.5質量ppmである、請求項1又は2に記載の薬液の供給方法。
  4.  前記ガスに含まれる水分量が、前記ガスの全質量に対して0.01~0.03質量ppmである、請求項1~3のいずれか1項に記載の薬液の供給方法。
  5.  前記ガスの純度が99.999体積%以上である、請求項1~4のいずれか1項に記載の薬液の供給方法。
  6.  前記ガスが、窒素及びアルゴンからなる群より選択される少なくとも1つを含む、請求項1~5のいずれか1項に記載の薬液の供給方法。
  7.  前記有機溶剤が、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、メトキシプロピオン酸メチル、プロピオン酸エチル、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、ジイソアミルエーテル、酢酸ブチル、酢酸イソアミル、イソプロパノール、4-メチル-2-ペンタノール、1-ヘキサノール、ジメチルスルホキシド、n-メチル-2-ピロリドン、ジエチレングリコール、エチレングリコール、ジプロピレングリコール、プロピレングリコール、炭酸エチレン、炭酸プロピレン、スルホラン、シクロヘプタノン、2-ヘプタノン、メチルエチルケトン、ヘキサン、及び、これらの組合せからなる群から選択される少なくとも1つである、請求項1~6のいずれか1項に記載の薬液の供給方法。
  8.  前記管路に連通する貯留槽に前記薬液を準備する薬液準備工程を更に有し、
     前記ガス圧送工程が、前記貯留槽の内部に前記ガスを導入して、前記貯留槽から前記管路内を通して前記薬液を送出する工程である、請求項1~7のいずれか1項に記載の薬液の供給方法。
  9.  前記ガス圧送工程により送出された薬液をフィルタを用いてろ過する精製工程を更に有する、請求項1~8のいずれか1項に記載の薬液の供給方法。
  10.  前記精製工程によりろ過される前記薬液における、Fe成分、Cr成分、Ni成分及びAl成分の合計含有量が、前記薬液の全質量に対して0.04~1200質量pptである、請求項9に記載の薬液の供給方法。
  11.  前記精製工程によりろ過される前記薬液における、Fe成分、Cr成分、Ni成分及びAl成分の合計含有量が、前記薬液の全質量に対して0.2~400質量pptである、請求項9又は10に記載の薬液の供給方法。
  12.  前記精製工程によりろ過される前記薬液における、Fe成分、Cr成分、Ni成分及びAl成分の合計含有量が、前記薬液の全質量に対して0.2~60質量pptである、請求項9~11のいずれか1項に記載の薬液の供給方法。
  13.  前記精製工程によりろ過される前記薬液における水分含有量が、前記薬液の全質量に対して0.0005~0.03質量%である、請求項9~12のいずれか1項に記載の薬液の供給方法。
  14.  前記精製工程によりろ過される前記薬液における水分含有量が、前記薬液の全質量に対して0.001~0.02質量%である、請求項9~13のいずれか1項に記載の薬液の供給方法。
  15.  前記精製工程によりろ過される前記薬液における水分含有量が、前記薬液の全質量に対して0.001~0.01質量%である、請求項9~14のいずれか1項に記載の薬液の供給方法。
  16.  前記精製工程によりろ過される前記薬液におけるフタル酸ジオクチルの含有量が、前記薬液の全質量に対して0.001~10質量ppbである、請求項9~15のいずれか1項に記載の薬液の供給方法。
  17.  前記精製工程によりろ過される前記薬液におけるフタル酸ジオクチルの含有量が、前記薬液の全質量に対して0.01~5質量ppbである、請求項9~16のいずれか1項に記載の薬液の供給方法。
  18.  前記精製工程によりろ過される前記薬液におけるフタル酸ジオクチルの含有量が、前記薬液の全質量に対して0.01~1質量ppbである、請求項9~17のいずれか1項に記載の薬液の供給方法。
  19.  原料ガスをガスフィルタを用いて精製するガス精製工程を更に有し、
     前記ガス精製工程で精製されたガスを前記ガス圧送工程において用いる、請求項1~18のいずれか1項に記載の薬液の供給方法。
  20.  基板にプリウェット液を接触させるプリウェット工程と、
     レジスト組成物を用いて前記基板上にレジスト膜を形成するレジスト膜形成工程と、
     前記レジスト膜を露光する工程と、
     露光された前記レジスト膜を、現像液を用いて現像してレジストパターンを形成する現像工程と、
     前記レジストパターンが形成された基板にリンス液を接触させるリンス工程と、を有し、
     前記プリウェット液、前記現像液及び前記リンス液からなる群より選択される少なくとも1つが、請求項1~19のいずれか1項に記載の供給方法により供給された薬液である、
     パターン形成方法。
PCT/JP2021/031672 2020-09-08 2021-08-30 薬液の供給方法、パターン形成方法 WO2022054620A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237008019A KR20230047474A (ko) 2020-09-08 2021-08-30 약액의 공급 방법, 패턴 형성 방법
JP2022547508A JPWO2022054620A1 (ja) 2020-09-08 2021-08-30
CN202180054694.5A CN116075780A (zh) 2020-09-08 2021-08-30 药液的供给方法、图案形成方法
US18/177,742 US20230229078A1 (en) 2020-09-08 2023-03-02 Chemical liquid supply method and pattern forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020150403 2020-09-08
JP2020-150403 2020-09-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/177,742 Continuation US20230229078A1 (en) 2020-09-08 2023-03-02 Chemical liquid supply method and pattern forming method

Publications (1)

Publication Number Publication Date
WO2022054620A1 true WO2022054620A1 (ja) 2022-03-17

Family

ID=80631685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031672 WO2022054620A1 (ja) 2020-09-08 2021-08-30 薬液の供給方法、パターン形成方法

Country Status (6)

Country Link
US (1) US20230229078A1 (ja)
JP (1) JPWO2022054620A1 (ja)
KR (1) KR20230047474A (ja)
CN (1) CN116075780A (ja)
TW (1) TW202222438A (ja)
WO (1) WO2022054620A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142552A (ja) * 2001-11-06 2003-05-16 Tokyo Electron Ltd 基板処理装置
JP2008140964A (ja) * 2006-12-01 2008-06-19 Matsushita Electric Ind Co Ltd 薬液供給装置および半導体装置の製造方法
JP2008177585A (ja) * 2008-02-01 2008-07-31 Tokyo Electron Ltd 基板処理方法,記録媒体及び基板処理装置
JP3205076U (ja) * 2016-02-08 2016-07-07 東京エレクトロン株式会社 処理液供給装置
JP2016139681A (ja) * 2015-01-27 2016-08-04 株式会社Screenホールディングス 蒸気供給装置、蒸気乾燥装置、蒸気供給方法および蒸気乾燥方法
WO2017217320A1 (ja) * 2016-06-13 2017-12-21 富士フイルム株式会社 液体組成物が収容された収容容器及び液体組成物の保管方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162806A (ja) 1997-09-24 1999-06-18 Hitachi Chem Co Ltd 半導体装置及びその製造法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142552A (ja) * 2001-11-06 2003-05-16 Tokyo Electron Ltd 基板処理装置
JP2008140964A (ja) * 2006-12-01 2008-06-19 Matsushita Electric Ind Co Ltd 薬液供給装置および半導体装置の製造方法
JP2008177585A (ja) * 2008-02-01 2008-07-31 Tokyo Electron Ltd 基板処理方法,記録媒体及び基板処理装置
JP2016139681A (ja) * 2015-01-27 2016-08-04 株式会社Screenホールディングス 蒸気供給装置、蒸気乾燥装置、蒸気供給方法および蒸気乾燥方法
JP3205076U (ja) * 2016-02-08 2016-07-07 東京エレクトロン株式会社 処理液供給装置
WO2017217320A1 (ja) * 2016-06-13 2017-12-21 富士フイルム株式会社 液体組成物が収容された収容容器及び液体組成物の保管方法

Also Published As

Publication number Publication date
US20230229078A1 (en) 2023-07-20
CN116075780A (zh) 2023-05-05
JPWO2022054620A1 (ja) 2022-03-17
KR20230047474A (ko) 2023-04-07
TW202222438A (zh) 2022-06-16

Similar Documents

Publication Publication Date Title
JPWO2018061573A1 (ja) 薬液、薬液収容体、薬液の充填方法、及び、薬液の保管方法
JP6890610B2 (ja) 薬液、薬液収容体、パターン形成方法、及び、キット
JP2023052469A (ja) 薬液、キット、パターン形成方法、薬液の製造方法及び薬液収容体
JP7282862B2 (ja) 薬液の精製方法
JP6949125B2 (ja) 薬液の精製方法、及び、薬液
WO2022054620A1 (ja) 薬液の供給方法、パターン形成方法
JP2023029346A (ja) 薬液、薬液収容体
JP2022176197A (ja) 薬液、薬液収容体、キット、半導体チップの製造方法
JP2022173352A (ja) 薬液、薬液収容体
JP7244620B2 (ja) 薬液、薬液収容体、薬液の製造方法、半導体チップの製造方法
JP7029459B2 (ja) 薬液収容体
KR20210115017A (ko) 약액, 레지스트 패턴 형성 방법, 반도체 칩의 제조 방법, 약액 수용체, 약액의 제조 방법
WO2020040034A1 (ja) 薬液収容体
WO2021182064A1 (ja) 薬液の精製方法、薬液の製造方法、薬液
TWI834622B (zh) 藥液的純化方法
WO2021059895A1 (ja) プリウェット液、レジスト膜形成方法、パターン形成方法、キット
JPWO2020040003A1 (ja) 薬液、薬液収容体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547508

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237008019

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866579

Country of ref document: EP

Kind code of ref document: A1