WO2022044091A1 - モジュラー・マルチレベル電力変換器およびモジュラー・マルチレベル電力変換システム - Google Patents

モジュラー・マルチレベル電力変換器およびモジュラー・マルチレベル電力変換システム Download PDF

Info

Publication number
WO2022044091A1
WO2022044091A1 PCT/JP2020/031899 JP2020031899W WO2022044091A1 WO 2022044091 A1 WO2022044091 A1 WO 2022044091A1 JP 2020031899 W JP2020031899 W JP 2020031899W WO 2022044091 A1 WO2022044091 A1 WO 2022044091A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
coil
arm
iron core
phase
Prior art date
Application number
PCT/JP2020/031899
Other languages
English (en)
French (fr)
Inventor
明 阪東
隆彦 菊井
フランチェスコ キローシ
シルビオ リステギーニ
Original Assignee
日立三菱水力株式会社
株式会社タムラ製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立三菱水力株式会社, 株式会社タムラ製作所 filed Critical 日立三菱水力株式会社
Priority to JP2022544910A priority Critical patent/JP7312332B2/ja
Priority to PCT/JP2020/031899 priority patent/WO2022044091A1/ja
Priority to EP20951347.2A priority patent/EP4203293A4/en
Publication of WO2022044091A1 publication Critical patent/WO2022044091A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation

Definitions

  • the present invention relates to a modular multi-level power converter (hereinafter referred to as "MMC converter” in the present invention).
  • MMC converter modular multi-level power converter
  • the DC side of two MMC converters is connected behind to form a frequency converter
  • the AC side of one MMC converter is used as the power system and the AC side of the other MMC converter is used as AC rotation.
  • It relates to a modular multi-level power conversion system suitable for connecting to an electric machine to form a variable speed power generation electric device.
  • the circuit of the MMC converter consists of a unit converter that generates a required voltage by controlling the modulation rate of the PWM converter that uses an energy storage element with voltage source characteristics such as a capacitor as the voltage source.
  • the voltage of the energy storage element of the unit converter fluctuates depending on the charge and discharge of the cycle determined by the AC frequency.
  • Six 2-terminal arms connected in series with this unit converter are provided, three of which are positive arms, the first terminal is connected to each phase terminal of the AC power supply, and the second terminal connected in a star shape is DC. Connect to the positive terminal of the power supply.
  • the remaining three units are used as negative arms, the second terminal is connected to each phase terminal of the AC power supply, and the first terminal connected in a star shape is connected to the negative terminal of the DC power supply.
  • the control of the MMC converter is current control that adjusts the arm current to an external AC current command and DC current command (hereinafter referred to as "converter current control” in the present invention), and PWM conversion provided in the unit converter.
  • a function to keep the average voltage of the energy storage element in equilibrium between unit converters by mutually adjusting the modulation factor of the device in the arm hereinafter referred to as “interstage control” in the present invention
  • energy storage in the arm hereinafter referred to as "interstage control” in the present invention
  • a function to keep the average voltage of the elements balanced between the arms hereinafter referred to as “phase balance control” in the present invention
  • DC a function to keep the average voltage of all energy storage elements at a set value
  • an inductive element that suppresses a current penetrating from the negative side arm to the positive side arm of each phase (hereinafter referred to as "penetration current" in the present invention). Is required.
  • Patent Document 1 in order to suppress the above-mentioned through current, three 2-terminal reactors are provided between the positive terminal of the DC power supply and the AC power supply terminal of each phase, and the negative terminal of the DC power supply and the AC power supply terminal of each phase. A method of providing three 2-terminal reactors between the two terminals is disclosed.
  • Patent Document 2 one 3-terminal reactor is provided in place of the two 2-terminal reactors connected to the AC power supply terminals of each phase in Patent Document 1, and the magnetomotive force of the two windings is subtracted with respect to the AC current.
  • a circuit method in which the magnetomotive force of two windings is added to the through current is disclosed.
  • FIG. 14 shows the configuration of the MMC converter 28 using the 2-terminal reactor of Patent Document 1.
  • Three two-terminal positive arm 7Ps are provided between the AC terminals U, V, W of the MMC converter 28 and the DC terminal P on the positive side, and the AC terminals U, V, W and the DC terminal N on the negative side are provided.
  • Three two-terminal negative arm 7Ns are provided between them, between the AC terminals U, V, W and the first terminal of the positive arm 7P, and between the AC terminals U, V, W and the second of the negative arm 7N.
  • a current transformer 10 is provided between the terminals, three 2-terminal reactors 29P are provided between the DC terminal P on the positive side of the MMC converter 28 and the second terminal of the positive arm 7P, and the DC on the negative side of the MMC converter 28.
  • Three 2-terminal reactors 29N are provided between the terminal N and the first terminal of the negative arm 7N.
  • the detected current (IP_U, IP_V, IP_W, IN_U, IN_V, IN_W) of the current transformer 10 is input to the converter current controller 11, and the alternating current (IAC_U, IAC_V, IAC_W) and the negative of each phase are input.
  • the through current (IPN_U, IPN_V, IPN_W) flowing from the side arm 7N to the positive arm 7P is calculated by the following equation.
  • IAC_U IP_U + IN_U
  • IAC_V IP_V + IN_V
  • IAC_W IP_W + IN_W
  • IPN_U (1/2) ⁇ (IP_U-IN_U)
  • IPN_V (1/2) ⁇ (IP_V-IN_V)
  • IPN_W (1/2) ⁇ (IP_W-IN_W)
  • the alternating current and through current are input, and the gate pulse to the positive side arm 7P and the negative side arm 7N of the two terminals is output.
  • an air-core reactor has been adopted as the 2-terminal reactor 29P and 29N of the MMC converter 28.
  • the iron core reactor is effective for downsizing the device, the iron core reactor was not adopted because the alternating current and the through current increase in inverse proportion to the inductance when the inductance decreases due to the saturation of the iron core.
  • the air-core reactor has a larger body than the iron-core reactor, and there is a risk of electromagnetic interference to the surroundings due to leakage magnetic flux. For this reason, a reactor is often installed in the shield chamber, which causes a problem of further increasing the size of the equipment.
  • the inductance value is increased to suppress the through current, the AC voltage drop determined by the product of this inductance value and the AC current increases, and especially when supplying invalid power to the AC side, the AC voltage drop is compensated.
  • FIG. 15 shows the configuration of the MMC converter 30 using the 3-terminal reactor of Patent Document 2.
  • the components common to the MMC converter 28 shown in FIG. 14 are numbered the same.
  • the components having the same numbers as those in FIG. 14 above are omitted from the description in order to avoid duplication.
  • a 3-terminal reactor 31U, 31V, 31W is provided between the AC terminals (U, V, W) of each phase, the first terminal of the positive arm 7P, and the second terminal of the negative arm 7N.
  • the configuration of the 3-terminal reactor 31 is shown in FIG.
  • the 3-terminal reactor 31 includes a winding (reactor coil) 33 and a winding 34, and is magnetically coupled by an iron core 35.
  • the iron core 35 is provided with a plurality of magnetic voids 36 made of a non-magnetic material in order to alleviate the saturation of the iron core.
  • the configuration of the winding 33 and the winding 34 is the same as that of the inner iron type 2-terminal DC reactor between the positive P terminal and the negative N terminal in the series 2-winding row configuration.
  • the connection point between the two windings 33 and the winding 34 is drawn out as an intermediate terminal C to serve as a third terminal.
  • the conventional 2-terminal DC reactor could be diverted as a 3-terminal reactor with minimal changes.
  • the 3-terminal reactor 31 using the iron core is expected to be smaller than the case of using the 2-terminal reactor 29 (29P, 29N) which is an air-core reactor.
  • the voltage drop due to the alternating current becomes the leakage inductance between the two windings, it is expected that the increase in the arm output voltage can be suppressed.
  • the alternating current flowing through the two windings acts in the demagnetizing direction, and the average magnetomotive force of the iron core magnetic path (M1 ⁇ M2 ⁇ M3 ⁇ M4 ⁇ M1) becomes zero.
  • the magnetic field distribution does not become zero.
  • the AC magnetic field between M2 and M3 of the iron core magnetic path shown in FIG. 16 has a positive or negative peak value
  • the AC magnetic field between M4 and M1 of the iron core magnetic path has the opposite polarity between M2 and M3 and is negative or positive. It becomes the peak value on the side.
  • FIG. 17 shows the circuit of the unit converter constituting the arm 7 (positive side arm 7P, negative side arm 7N).
  • the unit converter has a configuration in which an herb fridge circuit consisting of two self-extinguishing elements equipped with antiparallel diodes is connected to a capacitor.
  • the output voltage Vb of the unit converter is controlled to a required value by alternately turning on / off the gate signal GH to the upper self-extinguishing element and the gate signal GL to the lower self-extinguishing element.
  • the current flowing into the half-bridge circuit is the sum of the AC fundamental wave component Ib (peak value) and the DC component Id, excluding the harmonic component.
  • the capacitor voltage Vc fluctuates depending on the AC fundamental wave component and the charge / discharge controlled by the gate signals GH and GL.
  • the fluctuating frequency is twice the frequency of the AC fundamental wave.
  • the capacitor voltage Vc will be described as constant.
  • FIG. 18 describes a PWM control method for the unit converter.
  • ⁇ in the upper part of FIG. 18 is the modulation factor
  • the gate signals GH and GL are turned on and off depending on the magnitude relationship between the carrier wave and the modulated wave that fluctuate between 0 and 1.
  • the dead time required for the gate signals GH and GL can be set to 0.
  • the gate signals GH and GL have the waveforms shown in the middle stage.
  • the output voltage Vb of the unit converter is equal to the capacitor voltage Vc when the gate signal GH is on, and becomes 0 when the gate signal GL is on.
  • the PWM frequency which is the frequency of the carrier wave
  • the PWM frequency is set to infinity for simplicity, the likelihood of the modulation factor actually required is ignored for simplicity, and the lower limit of the modulation factor ⁇ is 0 and the upper limit is 1.
  • the output voltage Vb of the unit converter when it is assumed is shown. At this time, the AC component of the output voltage Vb of the unit converter becomes maximum. On the flip side, the required AC voltage can be output with the minimum capacitor voltage Vc. It is a condition of minimum DC voltage and maximum DC current to convert the required active power.
  • the AC output phase voltage peak value Vac_phase and the AC output current peak value IAC of the MMC converter are given by the following equation (2).
  • the coefficient 2 in the equation of the AC output current peak value IAC is the sum of the positive side arm 7P and the negative side arm 7N.
  • the DC voltage VDC of the MMC converter is the total of the positive side arm 7P and the negative side arm 7N
  • the DC current IDC is the total of the positive side arm 7P 3 units or the negative side arm 7N 3 units, so the formula (3) is used.
  • Equation (4) is obtained when considering the equilibrium of the active power under the condition of the power factor 1 in which the AC current is minimized, ignoring the loss of the MMC converter.
  • the AC component peak value of the magnetomotive force is more than twice the DC component magnetomotive force. Therefore, the magnetomotive force peak value of the 3-terminal reactor 31 is 1/3 or less of the magnetomotive force peak value of the 2-terminal reactor 29.
  • the 3-terminal reactor 31 composed of the winding 33, the winding 34, and the inner iron type iron core 35 designed on the assumption that the AC current magnetomotive force is smaller than the magnetomotive force due to the DC current is converted to MMC. It has been found that when it is used in the vessel 30, there is a problem that an excessive iron loss due to a drifting magnetic force and an excessive copper loss (coil current loss) due to an eddy current occur.
  • FIG. 20 shows a 3-terminal reactor 37 having a structure in which the intermediate terminal of a 2-terminal reactor using an outer iron type iron core is pulled out.
  • the two-divided winding 39 and the winding 40 from which the intermediate terminal C is pulled out wind around the iron core 38, and a plurality of voids 41 made of a non-magnetic material are provided in order to mitigate the influence of magnetic saturation.
  • 42 and 43 are iron cores through which the magnetic flux returns.
  • An object of the present invention is to solve the above-mentioned problems and to provide a small-sized, low-loss modular multi-level power converter.
  • the winding of the outer iron type 2-terminal reactor is divided into two concentrically to form a 3-terminal reactor.
  • the P terminal side coil is wound inward and the N terminal side coil is wound outward with respect to the iron core.
  • the P terminal side coil may be wound outward and the N terminal side coil may be wound inward.
  • the magnetomotive force due to the alternating current shunted from the intermediate terminal C to the two windings is subtracted, and the magnetomotive force of the two windings due to the once-through current from the N terminal to the P terminal is added.
  • the leakage inductance of the outer coil of the same iron core becomes larger and unbalanced than the leakage inductance of the inner coil.
  • the fundamental wave current value can be controlled to the command value by the converter current control device 11, even if the leakage inductance unbalance rate of the outer coil and the inner coil becomes about 10 times, the non-theoretical harmonic due to the leakage inductance imbalance. It was found that the wave increase was suppressed to less than 1%.
  • the AC component of the through current of each phase is the second harmonic at the maximum, and the fourth harmonic is the next largest.
  • the majority of these components are generated by charging and discharging, which are indispensable for keeping the voltage of the capacitors that make up the unit converter constant.
  • the value of the second harmonic is about 5% of the fundamental wave of the arm current.
  • the crossing wire between the intermediate terminal C and the two windings can be minimized, and the crossing wire goes out of the iron core in parallel with the magnetic path. It has the effect of suppressing the leakage magnetic flux.
  • FIG. 1 is a diagram showing a circuit configuration of a first embodiment of a modular multi-level power converter according to the present invention.
  • FIG. 2 is a diagram showing a circuit configuration of an arm (positive side arm, negative side arm).
  • FIG. 3 is a diagram showing a circuit configuration of a second embodiment of the modular multi-level power converter according to the present invention.
  • FIG. 4 is a diagram showing a modular multi-level power conversion system according to a third embodiment.
  • FIG. 5 is a diagram showing harmonics of each part current by the modular multi-level power conversion system of the third embodiment shown in FIG.
  • FIG. 6 is an explanatory diagram when a symmetry accident occurs in an AC system during operation at the rating of the power generation mode in the modular multi-level power conversion system of the third embodiment shown in FIG.
  • FIG. 1 is a diagram showing a circuit configuration of a first embodiment of a modular multi-level power converter according to the present invention.
  • FIG. 2 is a diagram showing a circuit configuration of an arm (positive side arm
  • FIG. 7 is a diagram showing voltage / current waveforms of the unit transformer.
  • FIG. 8 is a diagram showing an arm current waveform of the MMC converter.
  • FIG. 9 is a diagram showing waveforms of through current and direct current of the MMC converter.
  • FIG. 10 is an explanatory diagram when an asymmetric accident occurs in an AC system during operation at a power generation mode rating in the modular multi-level power conversion system of the third embodiment shown in FIG.
  • FIG. 11 is a diagram showing voltage / current waveforms of the unit transformer.
  • FIG. 12 is a diagram showing an arm current waveform of the MMC converter.
  • FIG. 13 is a diagram showing waveforms of through current and direct current of the MMC converter.
  • FIG. 14 is a diagram showing a configuration of a conventional MMC converter using a two-terminal reactor.
  • FIG. 15 is a diagram showing a configuration of a conventional MMC converter using a 3-terminal reactor.
  • FIG. 16 is a diagram showing the configuration of a 3-terminal reactor.
  • FIG. 17 is a diagram showing a circuit of a unit converter.
  • FIG. 18 is a diagram for explaining a PWM control method of the unit converter.
  • FIG. 19 is a diagram showing the relationship between the output voltage of the unit converter and the modulation factor.
  • FIG. 20 is a diagram showing a 3-terminal reactor having a structure in which an intermediate terminal of a 2-terminal reactor using an outer iron type iron core is pulled out.
  • FIG. 1 is a diagram showing a circuit configuration of a first embodiment of a modular multi-level power converter (hereinafter referred to as an MMC converter) according to the present invention.
  • an MMC converter modular multi-level power converter
  • 3-terminal reactors 3-terminal iron core reactors
  • the U phase will be described below.
  • the iron core 5U With the P-side coil 3U on the inside and the N-side coil 4U on the outside, the iron core 5U is wound clockwise and counterclockwise, respectively.
  • the iron core 5U has a plurality of voids 6U made of a non-magnetic material.
  • the P side coil 3V, the N side coil 4V, the iron core 5V, and the void 6V have the same configuration as the U phase.
  • the P side coil 3W, the N side coil 4W, the iron core 5W, and the void 6W have the same configuration as the U phase.
  • the 7P and 7N are two-terminal arms with unit converters connected in series.
  • the first terminal A of the three positive arm 7Ps is connected to the three-terminal reactors 2U, 2V, and 2W UP, VP, and WP terminals.
  • the two terminals B are connected in a star shape and connected to the positive terminal P of the MMC converter 1.
  • the second terminal B of the remaining three negative arms 7N is connected to the UN, VN, WN terminals of the three terminal reactors 2U, 2V, 2W, and the first terminal A is connected in a star shape to the MMC converter 1. Connect to the negative terminal N.
  • the positive terminal P of the MMC converter 1 is fixed in potential by a grounding circuit that also serves as a DC voltage transformer consisting of a high resistance 8P and a current transformer 9P, and the negative terminal N is a DC consisting of a high resistance 8N and a current transformer 9N.
  • the potential is fixed by a grounding circuit that also serves as a voltage transformer. This has the effect of suppressing the ground potential of the neutral point of the AC terminal (U, V, W) and the effect of suppressing the ground potential of the iron cores 5U, 5V, 5W of the 3-terminal reactor 2U, 2V, 2W.
  • Reference numeral 10 is a current transformer, which detects the currents (IP_U, IP_V, IP_W, IN_U, IN_V, IN_W) of the 6 coils constituting the 3-terminal reactor 2U, 2V, 2W and outputs them to the converter current controller 11.
  • FIG. 2 is a diagram showing a circuit configuration of an arm 7 (positive side arm 7P, negative side arm 7N).
  • the arm 7 has a configuration in which N half bridge circuits 12 (N is a natural number) constituting a unit converter are connected in series between the first terminal A and the second terminal B.
  • N is a natural number
  • the half-bridge circuit 12 includes two terminals, a positive terminal Y and a negative terminal X, and connects the self-arc extinguishing elements 13H and 13L and the antiparallel diodes 14H and 14L constituting the bidirectional chopper circuit to the capacitor 15.
  • PWM control is performed based on the command from the converter current control device 11 so that the target voltage is output between the XY terminals by the firing / extinguishing command from the gate drive unit (GDU) 16H, 16L to the self-arc extinguishing elements 13H, 13L. ..
  • Reference numeral 17 is a voltage detector, and the voltage of the capacitor 15 is input to the converter current controller 11 via the signal converter (CONV) 18.
  • the three-terminal reactors 2U, 2V, and 2W can be dispersed, so that the degree of freedom in the arrangement of the MMC converter 1 can be ensured.
  • FIG. 3 is a diagram showing a circuit configuration of a second embodiment of the MMC converter according to the present invention.
  • the components common to the MMC converter 1 of the first embodiment shown in FIG. 1 are numbered the same.
  • the components common to the MMC converter 1 will be omitted in order to avoid duplication.
  • 19 is an MMC converter, and 51 is a 3-phase 5-legged iron core reactor.
  • the U-phase iron core 55U which is the first leg, is wound clockwise and counterclockwise, respectively.
  • the U-phase iron core 55U includes a plurality of voids 56U made of a non-magnetic material.
  • the P side coil 53V, the N side coil 54V, the iron core 55V as the second leg, and the void 56V have the same configuration as the U phase.
  • the P side coil 53W, the N side coil 54W, the iron core 55W as the third leg, and the void 56W have the same configuration as the U phase.
  • Reference numeral 20 is the 4th leg and 21 is the 5th leg. Divide it into two equal parts and flow.
  • the 7P and 7N are two-terminal arms with unit converters connected in series.
  • the first terminal A of the three positive arms 7P is connected to the UP, VP, and WP terminals of the three-phase five-legged iron core reactor 51, and the second is
  • the terminal B is connected in a star shape and connected to the positive terminal P of the MMC converter 19.
  • the second terminal B of the remaining three negative arms 7N is connected to the UN, VN, WN terminals of the three-phase five-legged iron core reactor 51, and the first terminal A is connected in a star shape to the negative of the MMC converter 19. Connect to the side terminal N.
  • the reactors of each phase can be integrated into one of the three-phase five-legged iron core reactor 51, so that the MMC converter 19 can be miniaturized.
  • FIG. 4 is a diagram showing a modular multi-level power conversion system according to a third embodiment, and is a circuit configuration when the MMC converter of the first embodiment or the MMC converter of the second embodiment is applied to a variable speed power generation motor device. Is shown.
  • 1T is the first MMC converter
  • 1G is the second MMC converter
  • two DC sides are connected behind
  • the AC terminals (U1, V1, W1) of the first MMC converter 1T are connected to the unit transformer 22.
  • the neutral terminal N of the star winding of the unit transformer 22 is directly grounded, and the three terminals (A, B, C) of the star winding are connected to the AC system 23.
  • the pump turbine 26 is directly connected to the rotating shaft of the AC rotating electric machine 24.
  • the pump turbine 26 has an open / close control function for the guide vanes 27.
  • FIG. 5 is a diagram showing the harmonics of the currents of each part by the modular multi-level power conversion system of the third embodiment shown in FIG. 4, in which the rated active power and rated power factor of the first MMC converter 1T are 0.85 (invalid). Power supply) Shows the current harmonics during operation. As a result, evaluation is performed during steady operation.
  • the fundamental wave of the arm current is alternating current with the upper and lower arms merging.
  • the majority of the odd-order harmonics are alternating current.
  • even-order harmonics which are particularly harmful to the system, do not flow out to the AC current side.
  • the second harmonic current is indispensable in order to maintain the average voltage while charging and discharging the capacitor 15 constituting the unit converter.
  • the odd-order harmonics of the direct current are 1.5 times the penetration current, which is suppressed to 1/2 of the ratio of the direct current.
  • the even-order harmonics of direct current IDC
  • the zero-phase magnetomotive forces of the second and fourth harmonics which are the largest, are canceled out and become zero.
  • the other even-order harmonics are equivalent to the penetration current (1.0 times), and are suppressed to 1/3 of the ratio of the direct current component.
  • the rate of increase in iron loss due to the harmonic components of the 4th and 5th legs of the 3-phase 5-leg iron core reactor 51 is higher than that of the 1st, 2nd, and 3rd legs. It gets smaller.
  • gaps 56U, 56V, and 56W are provided in the first leg iron core 55U, the second leg iron core 55V, and the third leg 55W of the three-phase five-legged iron core reactor 51 in order to suppress magnetic saturation.
  • the other iron cores including the iron core 20 of the fourth leg and the iron core 21 of the fifth leg have no voids.
  • the leakage magnetic flux can be reduced, and the current transformer 10 using a Hall element that is easily affected by the surrounding magnetic field can be installed near the three-phase five-legged iron core reactor 51, realizing miniaturization of the device. can.
  • the magnetic shield equipment of the three-phase five-legged iron core reactor 51 can be reduced.
  • the above is the evaluation of the steady operating state by harmonic analysis.
  • it is important to evaluate the operating state during a transient phenomenon.
  • operational reliability in a transient state when a ground fault failure spreads on the system side is important.
  • the transient phenomenon differs greatly depending on the pumping mode in which the active power is supplied from the AC system 23 and the power generation mode in which the active power is supplied to the AC system 23.
  • the ground fault failure mode that occurs in the AC system differs depending on whether the accident is symmetric or asymmetric.
  • FIG. 6 shows a case where a symmetry accident occurs in the AC system 23A during operation at the power generation mode rating (60 MVA, 15.4 kV, power factor 0.85) in the MMC converter system of the third embodiment shown in FIG. It is a figure.
  • the components with the same numbers as those in FIG. 4 have the same contents, and the description thereof will be omitted to avoid duplication.
  • FIG. 7 shows the voltage / current waveform of the unit transformer 22.
  • the upper row shows the AC system side voltage (V_AN, V_BN, V_CN) of the unit transformer 22.
  • the lower part shows the current (IAC_U, IAC_V, IAC_W) on the MMC converter 1T side of the unit transformer 22.
  • FIG. 8 shows the arm current waveform of the MMC converter 1T.
  • the upper row shows the positive arm current (IP_U, IP_V, IP_W), and the lower row shows the negative arm current (IN_U, IN_V, IN_W).
  • the peak value of the arm current reaches about 1.4 times the steady state.
  • the upper part of FIG. 9 shows the through current (IPN_U, IPN_V, IPN_W) waveform of the MMC converter 1T, and the lower part shows the direct current (IDC) waveform.
  • the peak value of the through current and the peak value of the DC current are the same as in the steady state.
  • FIG. 10 shows a case where an asymmetric accident occurs in the AC system 23B during operation at the pumping mode rating (60 MVA, 15.4 kV, power factor 0.85) in the MMC converter system of the third embodiment shown in FIG. It is a figure.
  • the components with the same numbers as those in FIG. 4 have the same contents, and the description thereof will be omitted to avoid duplication.
  • a ground fault occurs at time t1 in the 1st phase (1A) of the 1st line of the AC system consisting of 2 transmission lines and the same phase (2A) of the 2nd line, and 73 is closed. .. Subsequently, the circuit breaker 52 opens at time t2. At time t2, the A phase is opened, and the phase open operation is performed by the B phase and the C phase.
  • the transient phenomena of each part in this case are shown in FIGS. 11, 12, and 13.
  • FIG. 11 shows the voltage / current waveform of the unit transformer 22.
  • the upper row shows the AC system side voltage (V_AN, V_BN, V_CN) of the unit transformer 22.
  • the lower part shows the current (IAC_U, IAC_V, IAC_W) on the MMC converter 1T side of the unit transformer 22.
  • the A-phase winding of the unit transformer 22 is opened.
  • the A-phase voltage in the figure is an induced voltage from the delta winding side of the unit transformer 22.
  • FIG. 12 shows the arm current waveform of the MMC converter 1T.
  • the upper row shows the positive arm current (IP_U, IP_V, IP_W), and the lower row shows the negative arm current (IN_U, IN_V, IN_W).
  • the peak value of the arm current reaches about 1.7 times the steady state, which is larger than the peak value at the time of the symmetry accident in FIG.
  • the phenomenon that the current peak value at the time of an asymmetric accident is larger than that at the time of a symmetric accident is a phenomenon that generally occurs in MMC converters.
  • FIG. 13 shows the through current (IPN_U, IPN_V, IPN_W) waveform of the MMC converter 1T, and the lower part shows the direct current (IDC) waveform.
  • the peak value of the penetration current is suppressed to a value much smaller than the peak value of the arm current (about 1.7 times the steady state), but the peak value of the DC current is 1.05 times the steady state and 1 in the steady state. .1 times. Both are larger than the peak value at the time of the symmetric accident in FIG.
  • the peak value of the magnetomotive force is 1/3 when using 3 3-terminal reactors 2 because the alternating current is canceled out compared to the case where 6 2-terminal reactors 29 using the arm current as the magnetomotive force are used.
  • the following is possible to reduce the size of the device. Since the magnetomotive force peak value magnification at the time of system accident spread can be significantly reduced, it becomes easier to suppress the saturation of the iron core, and further miniaturization can be realized.
  • the harmonics for the zero phase can be suppressed, so that the device can be further miniaturized and the loss can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

MMC変換器は、2端子アームをP端子側に3個、N端子側に3個備え、P端子側とN端子側のアームの間の誘導素子は、同心円状に鉄心脚を巻き回したUP,UNコイルを備えたリアクトル、同心円状に鉄心脚を巻き回したVP,VNコイルを備えたリアクトル、同心円状に鉄心脚を巻き回したWP,WNコイルを備えたリアクトルを含み、UPコイルの第1端子とUNコイルの第2端子、VPコイルの第1端子とVNコイルの第2端子、WPコイルの第1端子とWNコイルの第2端子を接続し、UPコイルの第2端子をUPアームの第1端子、UNコイルの第1端子をUNアームの第2端子、VPコイルの第2端子をVPアームの第1端子、VNコイルの第1端子をVNアームの第2端子、WPコイルの第2端子をWPアームの第1端子、WNコイルの第1端子をWNアームの第2端子に接続し、N端子からP端子への貫通電流により鉄心脚が励磁される方向に各コイルを巻き回す。

Description

モジュラー・マルチレベル電力変換器およびモジュラー・マルチレベル電力変換システム
 本発明は、モジュラー・マルチレベル電力変換器(以下、本発明では「MMC変換器」と称する。)に関する。特に2台のMMC変換器の直流側を背後接続して周波数変換装置を構成し、1台のMMC変換器の交流側を電力系統に、他の1台のMMC変換器の交流側を交流回転電気機械に接続して可変速発電電動装置を構成するのに好適なモジュラー・マルチレベル電力変換システムに関する。
 MMC変換器の回路は、コンデンサなどの電圧源特性のエネルギー蓄積素子を電圧源とするPWM変換器の変調率を制御することによって所要の電圧を発生させる単位変換器からなる。単位変換器のエネルギー蓄積素子の電圧は、交流周波数で決まる周期の充放電によって変動する。この単位変換器を直列接続した2端子アームを6台設け、このうち3台を正側アームとし、その第1端子を交流電源の各相端子に接続し、星形結線した第2端子を直流電源の正側端子に接続する。残り3台を負側アームとし、その第2端子を交流電源の各相端子に接続し、星形結線した第1端子を直流電源の負側端子に接続する。
 MMC変換器の制御は、外部からの交流電流指令と直流電流指令にアーム電流を調整する電流制御(以下、本発明では「変換器電流制御」と称する。)、単位変換器に設けたPWM変換器の変調率をアーム内で相互調整することによってエネルギー蓄積素子の平均電圧を単位変換器間で平衡に保つ機能(以下、本発明では「段間制御」と称する。)、アーム内のエネルギー蓄積素子の平均電圧をアーム間で平衡に保つ機能(以下、本発明では「相間平衡制御」と称する。)、全てのエネルギー蓄積素子の平均電圧を設定値に保つ機能(以下、本発明では「直流電圧制御」と称する。)からなる。上記の相間平衡制御と直流電圧制御を実現するためには、各相の負側アームから正側アームに貫通する電流(以下、本発明では「貫通電流」と称する。)を抑制する誘導性素子が必要となる。
 特許文献1では、上記の貫通電流を抑制するために直流電源の正側端子と各相の交流電源端子の間に2端子リアクトルを3台、直流電源の負側端子と各相の交流電源端子の間に2端子リアクトルを3台設ける方式が開示されている。
 特許文献2では、特許文献1で各相の交流電源端子に接続された2端子リアクトル2台に代えて1台の3端子リアクトルを設け、交流電流に対しては2巻線の起磁力を減算、貫通電流に対しては2巻線の起磁力を加算する回路方式が開示されている。
特許第5189105号公報 特許第6243083号公報
 特許文献1の2端子リアクトルを用いたMMC変換器28の構成を図14に示す。MMC変換器28の交流端子U,V,Wと正側の直流端子Pの間に3台の2端子の正側アーム7Pを設け、交流端子U,V,Wと負側の直流端子Nの間に3台の2端子の負側アーム7Nを設け、交流端子U,V,Wと前記正側アーム7Pの第1端子間、交流端子U,V,Wと前記負側アーム7Nの第2端子間に電流変成器10を設け、MMC変換器28の正側の直流端子Pと前記正側アーム7Pの第2端子間に2端子リアクトル29Pを3台、MMC変換器28の負側の直流端子Nと前記負側アーム7Nの第1端子間に2端子リアクトル29Nを3台設ける。
 以上の構成で、電流変成器10の検出電流(IP_U、IP_V、IP_W、IN_U、IN_V、IN_W)を変換器電流制御装置11に入力し、交流電流(IAC_U、IAC_V、IAC_W)と各相の負側アーム7Nから正側アーム7Pに流れる貫通電流(IPN_U、IPN_V、IPN_W)を次式で演算する。
   IAC_U=IP_U+IN_U
   IAC_V=IP_V+IN_V
   IAC_W=IP_W+IN_W
   IPN_U=(1/2)×(IP_U-IN_U)
   IPN_V=(1/2)×(IP_V-IN_V)
   IPN_W=(1/2)×(IP_W-IN_W)
 この交流電流と貫通電流を入力して、2端子の正側アーム7Pおよび負側アーム7Nへのゲートパルスを出力する。
 従来は、MMC変換器28の2端子リアクトル29Pおよび29Nとして空芯リアクトルが採用されてきた。装置の小型化のためには鉄心リアクトルが有効であるが、鉄心飽和によってインダクタンスが減少すると、インダクタンスに反比例して交流電流および貫通電流が増えるため、鉄心リアクトルは採用されなかった。空芯リアクトルは、本体が鉄心リアクトルに比べて大型である上に、漏洩磁束による周辺への電磁障害リスクがあった。このため、シールド室内にリアクトルを設置する場合も多く、更に設備の大型化を招く課題があった。
 また、貫通電流を抑制するためにインダクタンス値を増やすと、このインダクタンス値と交流電流の積で決まる交流電圧降下が増大し、特に交流側に無効電力を供給する場合、交流電圧降下を補償するためにアーム(正側アーム7P,負側アーム7N)の出力電圧を増やす必要があり、更に装置の大型化を招く課題があった。
 特許文献2の3端子リアクトルを用いたMMC変換器30の構成を図15に示す。図14に示すMMC変換器28と共通の構成要素には同じ番号を付している。前の図14と同じ番号の構成要素は重複を避けるため説明を省略する。
 各相の交流端子(U、V、W)、正側アーム7Pの第1端子、負側アーム7Nの第2端子間に3端子リアクトル31U,31V,31Wを設ける。各相の交流端子(U、V、W)を3端子リアクトル31(31U、31V、31W)の中間端子(UC、VC、WC)に接続し、3台の正側アーム7Pの第1端子を3端子リアクトル31の正側端子(UP、VP、WP)に接続し、3台の負側アーム7Nの第2端子を3端子リアクトル31の負側端子(UN、VN、WN)に接続する。
 3端子リアクトル31の構成を図16に示す。3端子リアクトル31は、巻線(リアクトルコイル)33と巻線34を備え、鉄心35で磁気結合されている。鉄心35には、鉄心飽和を緩和するために非磁性体からなる磁気的な空隙36を複数設けている。
 巻線33と巻線34の構成は、直列2巻線列構成で正側P端子と負側N端子間の内鉄型の2端子直流リアクトルと同一である。2つの巻線33と巻線34の接続点を中間端子Cとして引き出して第3の端子としている。
 これにより、従来の2端子直流リアクトルから最小限の変更で3端子リアクトルとして流用することが期待された。また、鉄心を用いた3端子リアクトル31により、空芯リアクトルである2端子リアクトル29(29P、29N)を用いる場合よりも装置の小型化が期待された。また、交流電流による電圧降下が2巻線間の漏れインダクタンス分になるため、アーム出力電圧の増加を抑制できることが期待された。
 しかし、2端子の直流リアクトルに中間端子を引き出した構成の3端子リアクトル31をMMC変換器に採用する場合、次のような課題がある。
 図16に示す3端子リアクトル31の端子Cから端子Pと端子Nに2分流する交流電流は、各々巻線33と巻線34で鉄心35を磁化する。2巻線を流れる交流電流は減磁方向に作用し、鉄心磁路(M1→M2→M3→M4→M1)の起磁力平均値は零になる。しかし、磁界分布は零にならない。図16に示す鉄心磁路のM2とM3間で交流磁界は正側あるいは負側のピーク値となり、鉄心磁路のM4とM1間の交流磁界はM2とM3間と反対極性で負側あるいは正側のピーク値となる。
 MMC変換器に採用する場合、各巻線の貫通電流による一定極性の起磁力に比べて交流電流による交番起磁力のピーク値の絶対値の方が必ず大きくなる。以下、この理由について図17、図18および図19を用いて説明する。
 図17にアーム7(正側アーム7P、負側アーム7N)を構成する単位変換器の回路を示す。単位変換器は逆並列ダイオードを備えた自己消弧素子2個からなるハーブフリッジ回路をコンデンサに接続した構成である。上側の自己消弧素子へのゲート信号GHと下側の自己消弧素子へのゲート信号GLを交互にオン・オフすることによって、単位変換器の出力電圧Vbを所要の値に制御する。MMC変換器の場合、ハーフブリッジ回路に流れ込む電流は、高調波成分を除くと交流基本波成分Ib(ピーク値)と直流成分Idの和となる。コンデンサ電圧Vcは交流基本波成分とゲート信号GH,GLで制御される充放電で変動する。変動周波数は交流基本波周波数の2倍の周波数となる。ここでは、簡単のためにコンデンサ電圧Vcは一定として説明する。
 図18で単位変換器のPWM制御方法を説明する。
 図18の上段のαは変調率で、0と1の間で変動する搬送波と変調波の大小関係で、ゲート信号GHとGLをオン・オフする。簡単のため、ゲート信号GHとGLに必要なデッドタイムを0にできると仮定して説明する。すると、ゲート信号GHとGLは中段に示す波形となる。単位変換器の出力電圧Vbは、下段に示すようにゲート信号GHがオンの時にコンデンサ電圧Vcに等しく、ゲート信号GLがオンの時に0となる。
 図19は、簡単のために搬送波の周波数であるPWM周波数を無限大とし、簡単のため実際に必要な変調率の尤度は無視し、変調率αの下限は0、上限は1で運用できるものとした時の単位変換器の出力電圧Vbを示す。この時、単位変換器の出力電圧Vbの交流分は最大となる。裏を返すと、最小のコンデンサ電圧Vcで所要の交流電圧を出力ができる。所要の有効電力を変換するのに直流電圧最小、直流電流最大の条件となる。
 以下、交流電流が最小、直流電流が最大となる場合について、単位変換器の交流電流と直流電流の大小比較する。図19の下段より、単位変換器の出力電圧Vbの交流分ピーク値をVb_ac、直流分をVb_dcとすると式(1)となる。
Figure JPOXMLDOC01-appb-M000001
 ここで、アーム7を構成する単位変換器の直列接続数をNとすると、MMC変換器の交流出力相電圧ピーク値Vac_phaseと交流出力電流ピーク値IACは下記の式(2)となる。ここで、交流出力電流ピーク値IACの式の係数2は、正側アーム7Pと負側アーム7Nの和となることによる。
Figure JPOXMLDOC01-appb-M000002
 MMC変換器の直流電圧VDCは正側アーム7Pと負側アーム7Nの合計となり、直流電流IDCは正側アーム7P3台の合計あるいは負側アーム7N3台の合計となるので式(3)となる。
Figure JPOXMLDOC01-appb-M000003
 ここで、簡単のためにMMC変換器の損失を無視し、交流電流が最小となる力率1の条件で有効電力の平衡を考えると式(4)となる。
Figure JPOXMLDOC01-appb-M000004
 以上より、アーム7を流れる交流電流のピーク値Ibと直流電流Idの関係は式(5)となる。
Figure JPOXMLDOC01-appb-M000005
 以上の通り、起磁力の交流分ピーク値は直流分起磁力の2倍以上となる。従って、3端子リアクトル31の起磁力ピーク値は、2端子リアクトル29の起磁力ピーク値の1/3以下となる。一方で、直流電流による起磁力に比べて交流電流起磁力の方が小さいことを前提に設計した巻線33と巻線34および内鉄型の鉄心35で構成された3端子リアクトル31をMMC変換器30に採用すると、漂遊磁束による過大な鉄損と、渦電流による過大な銅損(コイル電流損失)が発生する課題のあることが分かった。
 図20に外鉄型鉄心を使う2端子リアクトルの中間端子を引き出した構造の3端子リアクトル37を示す。中間端子Cを引き出した2分割の巻線39と巻線40が鉄心38を巻き回し、磁気飽和の影響を緩和するために非磁性体からなる空隙41を複数設ける。42と43は磁束帰路を流す鉄心である。
 以上の外鉄型鉄心の3端子リアクトル37をMMC変換器に適用した場合でも、正側と負側の巻線が磁束経路上で分散配置されるため、内鉄型の3端子リアクトル漂遊磁束による過大な鉄損と、渦電流による過大な銅損(コイル電流損失)が発生する課題があることが分かった。
 本発明の目的は、上記の課題を解決し、小型で低損失のモジュラー・マルチレベル電力変換器を提供することにある。
 上記の目的を達成するため、空芯リアクトルに代えて鉄心リアクトルで小型化し、発生損失を減らし、系統地絡故障波及時の鉄心飽和を抑制して過電流を抑制するのに好適なリアクトルを提供する。
 このため、外鉄型の2端子リアクトルの巻線を同心円状に2分割して3端子リアクトルを構成する。鉄心に対してP端子側コイルを内側に、N端子側コイルを外側に巻き回す。反対にP端子側コイルを外側に、N端子側コイルを内側に巻きまわしてもよい。中間端子Cから2巻線に分流する交流電流による起磁力は減算され、N端子からP端子への貫流電流による2巻線の起磁力は加算されるように構成する。
 同心円状に2分割した巻線構成を採用すると、同一鉄心の外側コイルの漏れインダクタンスは内側コイルの漏れインダクタンスよりも大きく不平衡になる。しかし、2巻線の漏れインダクタンス合計を有効インダクタンスの10分の1以下に抑えることが可能である。また、変換器電流制御装置11によって基本波電流値を指令値に制御できるため、外側コイルと内側コイルの漏れインダクタンス不平衡率が10倍程度になっても、漏れインダクタンスの不平衡による非理論高調波の増加は1%以下に抑えられることが分かった。
 以上より、外鉄型鉄心に同心円状に内側コイルと外側コイルを備えることにより異常損失を抑えることができ、MMC変換器の高調波をほとんど増加させずに運転することができる。
 各相の貫通電流の交流成分は第2調波が最大、次に大きいのが第4調波である。これらの成分の過半は単位変換器を構成するコンデンサの電圧を一定に保つために不可欠な充放電によって発生する。第2調波の値はアーム電流の基本波の5%程度になる。
 しかし、この充放電による第2調波と第4調波の零相分は相殺されることが分かった。その他の偶数次調波は各相の起磁力の代数和の1/3に抑えられることが分かった。また、各相の貫通電流の奇数次高調波の代数和に対し、零相分は1/2に抑制されることが分かった。
 以上より、MMC変換器の場合は、第4脚と第5脚を設けて零相磁束の帰路とし、3相5脚6巻線のリアクトルを採用することにより、各相に3台の外鉄型2巻線構成の3端子リアクトルを設ける場合よりも、更に小型化と低損失化を実現できる。
 本発明にかかるモジュラー・マルチレベル電力変換器は、外鉄型鉄心に同心円状に2巻線を配置した3端子リアクトルを各相に設置することによって2巻線を鉄心磁路方向に配置した場合に発生する異常損失を防止する効果がある。
 更には、一方のコイルを時計方向、もう片方を反時計方向とすることによって、中間端子Cと2巻線間の亘り線を最短にでき、亘り線が磁路に平行に鉄心外部に出ることによる漏洩磁束を抑える効果がある。
 更には、零相磁束の帰路となる第4脚、第5脚を備えた3相5脚6巻線のリアクトルを用いることによって、各相に設けた外鉄型リアクトルの帰路に発生する高調波による損失を低減する効果がある。
図1は、本発明にかかるモジュラー・マルチレベル電力変換器の実施例1の回路構成を示す図である。 図2は、アーム(正側アーム、負側アーム)の回路構成を示す図である。 図3は、本発明にかかるモジュラー・マルチレベル電力変換器の実施例2の回路構成を示す図である。 図4は、実施例3にかかるモジュラー・マルチレベル電力変換システムを示す図である。 図5は、図4に示す実施例3のモジュラー・マルチレベル電力変換システムによる各部電流の高調波を示す図である。 図6は、図4に示す実施例3のモジュラー・マルチレベル電力変換システムにおいて発電モードの定格で運転中に交流系統で対称事故が発生した場合の説明図である。 図7は、ユニット変圧器の電圧・電流波形を示す図である。 図8は、MMC変換器のアーム電流波形を示す図である。 図9は、MMC変換器の貫通電流および直流電流の波形を示す図である。 図10は、図4に示す実施例3のモジュラー・マルチレベル電力変換システムにおいて発電モードの定格で運転中に交流系統で非対称事故が発生した場合の説明図である。 図11は、ユニット変圧器の電圧・電流波形を示す図である。 図12は、MMC変換器のアーム電流波形を示す図である。 図13は、MMC変換器の貫通電流および直流電流の波形を示す図である。 図14は、2端子リアクトルを用いた従来のMMC変換器の構成を示す図である。 図15は、3端子リアクトルを用いた従来のMMC変換器の構成を示す図である。 図16は、3端子リアクトルの構成を示す図である。 図17は、単位変換器の回路を示す図である。 図18は、単位変換器のPWM制御方法を説明するための図である。 図19は、単位変換器の出力電圧と変調率との関係を示す図である。 図20は、外鉄型鉄心を使う2端子リアクトルの中間端子を引き出した構造の3端子リアクトルを示す図である。
 以下に、本発明にかかるモジュラー・マルチレベル電力変換器およびモジュラー・マルチレベル電力変換システムの実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
 図1は、本発明にかかるモジュラー・マルチレベル電力変換器(以下、MMC変換器と称する。)の実施例1の回路構成を示す図である。図1では、上述した図14に示すMMC変換器28、図15に示すMMC変換器30と共通の構成要素に同じ番号を付している。MMC変換器28,30と共通の構成要素については重複を避けるために説明を省略する。
 1はMMC変換器で、2U,2V,2Wは交流各相に設けた3端子鉄心リアクトル(以下、3端子リアクトルと称する。)である。
 以下、U相について説明する。P側コイル3Uを内側に、N側コイル4Uを外側にして、各々時計方向・半時計方向に鉄心5Uを巻き回す。鉄心5Uは非磁性体からなる空隙6Uを複数備えている。
 V相については、P側コイル3V、N側コイル4V、鉄心5V、空隙6VはU相と同様の構成である。W相については、P側コイル3W、N側コイル4W、鉄心5W、空隙6WはU相と同様の構成である。
 3端子リアクトル2U,2V,2WのUC,VC,WC端子と交流端子U,V,Wを接続する。
 7Pと7Nは単位変換器を直列接続した2端子のアームで、3台の正側アーム7Pの第1端子Aを3端子リアクトル2U,2V,2WのUP,VP,WP端子と接続し、第2端子Bを星形接続してMMC変換器1の正側端子Pに接続する。また、残り3台の負側アーム7Nの第2端子Bを3端子リアクトル2U,2V,2WのUN,VN,WN端子と接続し、第1端子Aを星形接続してMMC変換器1の負側端子Nに接続する。
 MMC変換器1の正側端子Pは高抵抗8Pと電流変成器9Pからなる直流電圧変成器を兼ねた接地回路で電位固定し、負側端子Nは高抵抗8Nと電流変成器9Nからなる直流電圧変成器を兼ねた接地回路で電位固定する。これにより、交流端子(U、V、W)の中性点の対地電位を抑える効果、3端子リアクトル2U,2V,2Wの鉄心5U,5V,5Wの対地電位を抑える効果がある。
 10は電流変成器で、3端子リアクトル2U,2V,2Wを構成する6コイルの電流(IP_U、IP_V、IP_W、IN_U、IN_V、IN_W)を検出して変換器電流制御装置11に出力する。
 図2は、アーム7(正側アーム7P、負側アーム7N)の回路構成を示す図である。
 アーム7は、第1端子Aと第2端子Bの間に単位変換器を構成するハーフブリッジ回路12をN個(Nは自然数)直列接続した構成である。なお、図2では、「No.i」のハーフブリッジ回路12以外については回路構成の記載を省略している。
 ハーフブリッジ回路12は正側端子Yと負側端子Xの2端子を備え、双方向チョッパ回路を構成する自己消弧素子13H,13L、逆並列ダイオード14H,14Lをコンデンサ15に接続する。
 ゲートドライブユニット(GDU)16H,16Lから自己消弧素子13H,13Lへの点弧・消弧指令で目標電圧をXY端子間に出力するよう、変換器電流制御装置11からの指令に基づきPWM制御する。
 17は電圧検出器で、信号変換器(CONV)18を経由してコンデンサ15の電圧を変換器電流制御装置11に入力する。
 以上の実施例1のMMC変換器1によれば、3端子リアクトル2U,2V,2Wを分散できるので、MMC変換器1の配置の自由度を確保することができる。
 図3は、本発明にかかるMMC変換器の実施例2の回路構成を示す図である。図3では、図1に示す実施例1のMMC変換器1と共通の構成要素に同じ番号を付している。MMC変換器1と共通の構成要素については重複を避けるために説明を省略する。
 19はMMC変換器で、51は3相5脚鉄心リアクトルである。
 U相のP側コイル53Uを内側に、U相のN側コイル54Uを外側にして第1脚となるU相の鉄心55Uを、各々時計方向・半時計方向に巻き回す。U相の鉄心55Uは非磁性体からなる空隙56Uを複数備えている。
 V相については、P側コイル53V、N側コイル54V、第2脚となる鉄心55V、空隙56VはU相と同様の構成である。W相については、P側コイル53W、N側コイル54W、第3脚となる鉄心55W、空隙56WはU相と同様の構成である。
 20は第4脚、21は第5脚であり、第1脚から第3脚を巻き回すコイル電流による起磁力によって発生する零相磁束が第4脚の鉄心20と第5脚の鉄心21に2等分して流れる。
 3相5脚鉄心リアクトル51のUC,VC,WC端子と交流端子U,V,Wを接続する。
 7Pと7Nは単位変換器を直列接続した2端子のアームで、3台の正側アーム7Pの第1端子Aを3相5脚鉄心リアクトル51のUP,VP,WP端子と接続し、第2端子Bを星形接続してMMC変換器19の正側端子Pに接続する。また、残り3台の負側アーム7Nの第2端子Bを3相5脚鉄心リアクトル51のUN,VN,WN端子と接続し、第1端子Aを星形接続してMMC変換器19の負側端子Nに接続する。
 以上の実施例2のMMC変換器19によれば、各相のリアクトルを3相5脚鉄心リアクトル51の1台に集約できるので、MMC変換器19を小型化することができる。
 図4は、実施例3にかかるモジュラー・マルチレベル電力変換システムを示す図であり、実施例1のMMC変換器または実施例2のMMC変換器を可変速発電電動装置に適用する場合の回路構成を示す。
 1Tは第1のMMC変換器、1Gは第2のMMC変換器、2台の直流側を背後接続し、第1のMMC変換器1Tの交流端子(U1、V1、W1)をユニット変圧器22のデルタ巻線側3端子(U、V、W)に接続する。ユニット変圧器22のスター巻線の中性端子Nを直接接地し、スター巻線の3端子(A、B、C)を交流系統23に接続する。
 第2のMMC変換器1Gの交流端子(U2、V2、W2)を交流回転電気機械24の3相交流端子(U、V、W)に接続する。交流回転電気機械24の電機子中性点は高抵抗25を介して接地する。
 図4の実施例では、交流回転電気機械24の回転軸にポンプ水車26を直結する。ポンプ水車26は案内羽根27の開閉制御機能を有する。第2のMMC変換器1Gの交流出力を可変周波数にすることにより、ポンプ水車26の可変速運転を実現する。
 図5は、図4に示す実施例3のモジュラー・マルチレベル電力変換システムによる各部電流の高調波を示す図で、第1のMMC変換器1Tの定格有効電力、定格力率0.85(無効電力供給)運転時の電流高調波を示す。これにより、定常運転時の評価を行う。
 図5の上から第1段は、図1,図3に示すアーム電流(IP_U、IP_V、IP_W、IN_U、IN_V、IN_W)の平均実効値を示し、基本波(n=1)実効値を基準に表示する。図5の上から第2段は、図1,図3に示す交流電流(IAC_U、IAC_V、IAC_W)の平均実効値を示し、基本波(n=1)実効値を基準に表示する。図5の上から第3段は、各相の貫通電流(IPN_U、IPN_V、IPN_W)の平均実効値を示し、アーム電流基本波(n=1)実効値、即ち交流電流基本波の1/2を基準に表示する。図5の上から第4段は、図1,図3に示す直流電流(IDC)の各次調波の実効値を示し、アーム電流基本波(n=1)実効値を基準に表示する。
 正側アーム電流(IP_U、IP_V、IP_W)と負側アーム電流(IN_U、IN_V、IN_W)と交流電流(IAC_U、IAC_V、IAC_W)の比較から、アーム電流の基本波は上下アームが合流して交流電流となる他、奇数次調波の過半が交流電流となっている。一方で、系統に特に有害とされる偶数次調波は交流電流側に流出していない。系統に流出すると有害な偶数次調波電流であるが、単位変換器を構成するコンデンサ15を充放電させながら平均電圧を維持するためには第2次調波電流が必須である。
 貫通電流(IPN_U、IPN_V、IPN_W)と直流電流(IDC)を比較すると、貫通電流の直流分の3相合計が直流電流(IDC)の直流分となり、直流電流(IDC)と貫通電流の振幅(実効値)比は3倍となる。
 一方、直流電流(IDC)の奇数次調波は貫通電流の1.5倍となり、直流分の比率の1/2に抑えられている。
 また、直流電流(IDC)の偶数次調波のうち、最も大きい第2調波と第4調波の零相分起磁力は相殺されて零になる。その他の偶数次調波は貫通電流と同等(1.0倍)となり、直流分の比率の1/3に抑えられている。
 図3に示すMMC変換器19では、3相5脚鉄心リアクトル51の第4脚と第5脚の高調波成分による鉄損増加率は、第1脚・第2脚・第3脚に比べて小さくなる。
 以上により、MMC変換器19の3相5脚鉄心リアクトル51の第4脚の鉄心20と第5脚の鉄心21の積層電磁、鋼板の板厚を厚くすることができる。これによって磁路の有効断面積を増やすことによって3台の3端子リアクトルを各相に設ける場合に比べ、第1脚の鉄心55U、第2脚の鉄心55V、第3脚の鉄心55Wの合計断面積と第4脚の鉄心20と第5脚の鉄心21の合計断面積とを等しく、使用材料を同一にすることによって低損失化する効果がある。
 図3に示すとおり、3相5脚鉄心リアクトル51の第1脚の鉄心55U,第2脚の鉄心55V,第3脚の55Wには磁気飽和を抑止するために空隙56U,56V,56Wを設けるが、第4脚の鉄心20と第5脚の鉄心21を含むその他の鉄心には空隙のない構成とする。これによって漏洩磁束を減らすことができ、周囲の磁界の影響を受けやすいホール素子を使った電流変成器10を3相5脚鉄心リアクトル51の近くに設置することができ、装置の小型化を実現できる。あるいは、3相5脚鉄心リアクトル51の磁気シールド設備を軽減することができる。
 以上は高調波分析による定常運転状態の評価である。電力システムの基幹系統に接続する可変速発電電動装置の場合、過渡現象時の運転状態の評価が重要となる。とりわけ、系統側の地絡故障波及時の過渡状態での運転信頼性が重要となる。交流回転電気機械24を可変速ポンプ水車に直結する場合、過渡現象は有効電力が交流系統23から供給される揚水モード、交流系統23に供給する発電モードで大きく異なる。また、交流系統で発生する地絡故障モードが対称事故の場合、非対称事故の場合で異なる。
 ここでは、代表例として発電モードで対称事故が発生した場合、揚水モードで非対称事故が発生した場合を選び、運転状態を説明する。以下、60MVA-15.4kVのMMC変換器1Tを、ユニット変圧器22を介して500kVの交流系統23に接続した場合の数値例で説明する。
 図6は、図4に示す実施例3のMMC変換器システムにおいて発電モードの定格(60MVA、15.4kV、力率0.85)で運転中に交流系統23Aで対称事故が発生した場合の説明図である。図4と同じ番号を付した構成要素は同じ内容であり、重複を避けて説明を省略する。
 図6に示すケースでは、2回線送電線からなる交流系統の第1回線(1A、1B、1C)で地絡故障が時刻t1で発生して73が閉路する。続いて時刻t2で遮断器52が開路する。この時の各部の過渡現象を図7,図8,図9に示す。
 図7は、ユニット変圧器22の電圧・電流波形を示す。上段はユニット変圧器22の交流系統側電圧(V_AN、V_BN、V_CN)を示す。下段はユニット変圧器22のMMC変換器1T側の電流(IAC_U、IAC_V、IAC_W)を示す。
 図8は、MMC変換器1Tのアーム電流波形を示す。上段は正側アーム電流(IP_U、IP_V、IP_W)を、下段は負側アーム電流(IN_U、IN_V、IN_W)を示す。アーム電流のピーク値は定常時の1.4倍程度に達する。
 図9の上段は、MMC変換器1Tの貫通電流(IPN_U、IPN_V、IPN_W)波形を、下段は直流電流(IDC)波形を示す。貫通電流のピーク値も直流電流のピーク値も定常状態と同じである。
 図10は、図4に示す実施例3のMMC変換器システムにおいて揚水モードの定格(60MVA、15.4kV、力率0.85)で運転中に交流系統23Bで非対称事故が発生した場合の説明図である。図4と同じ番号を付した構成要素は同じ内容であり、重複を避けて説明を省略する。
 図10に示すケースでは、2回線送電線からなる交流系統の第1回線の1相(1A)と第2回線の同じ相(2A)で地絡故障が時刻t1で発生して73が閉路する。続いて時刻t2で遮断器52が開路する。時刻t2でA相が開放され、B相C相による欠相運転となる。この場合の各部の過渡現象を図11,図12,図13に示す。
 図11は、ユニット変圧器22の電圧・電流波形を示す。上段はユニット変圧器22の交流系統側電圧(V_AN、V_BN、V_CN)を示す。下段はユニット変圧器22のMMC変換器1T側の電流(IAC_U、IAC_V、IAC_W)を示す。時刻t2以降、ユニット変圧器22のA相巻線は開放状態となる。図中のA相電圧は、ユニット変圧器22のデルタ巻線側からの誘起電圧である。
 図12は、MMC変換器1Tのアーム電流波形を示す。上段は正側アーム電流(IP_U、IP_V、IP_W)を、下段は負側アーム電流(IN_U、IN_V、IN_W)を示す。アーム電流のピーク値は定常時の1.7倍程度に達し、図8の対称事故時のピーク値よりも大きい。非対称事故時の電流ピーク値の方が対称事故時より大きくなる現象は、MMC変換器一般に発生する事象である。
 図13の上段は、MMC変換器1Tの貫通電流(IPN_U、IPN_V、IPN_W)波形を、下段は直流電流(IDC)波形を示す。貫通電流のピーク値はアーム電流のピーク値(定常時の1.7倍程度)よりずっと小さな値に抑えられているが、定常時の1.05倍、直流電流のピーク値は定常時の1.1倍となる。いずれも、図9の対称事故時のピーク値よりも大きい。
 以上のとおり、アーム電流を起磁力とする2端子リアクトル29を6台用いる場合に比べ、3端子リアクトル2を3台用いる場合は交流分が相殺されるために起磁力のピーク値が1/3以下となり、装置の小型化を実現できる。系統事故波及時の起磁力ピーク値倍率が大幅に低減できるため鉄心飽和を抑制しやすくなるため、更に小型化が実現できる。
 更に、3端子リアクトル2を3台用いる場合に比べ、3相5脚鉄心リアクトル51にすると、零相分の高調波が抑制できるため、更に装置の小型化、低損失化が実現できる。
1、1T、1G、19、28、30 MMC変換器
2U、2V、2W、31、31U、31V、31W、37 3端子鉄心リアクトル
3U、3V、3W、53U、53V、53W P側コイル
4U、4V、4W、54U,54V、54W N側コイル
5U、5V、5W、20、21、38、42、43、55U、55V、55W 鉄心
6U、6V、6W、36、41、56U、56V、56W 空隙
7 アーム
7P 正側アーム
7N 負側アーム
8P、8N、25 高抵抗
9P、9N、10 電流変成器
11 変換器電流制御装置
12 ハーフブリッジ回路
13H、13L 自己消弧素子
14H、14L 逆並列ダイオード
15 コンデンサ
16H、16L ゲートドライブユニット
17 電圧検出器
18 信号変換器
22 ユニット変圧器
23、23A、23B 交流系統
24 交流回転電気機械
26 ポンプ水車
27 案内羽根
29 2端子リアクトル
33、34、39、40 巻線(リアクトルコイル)
51 3相5脚鉄心リアクトル
52 遮断器

Claims (3)

  1.  直流電源の正側端子(P端子)と負側端子(N端子)と3相交流端子(U端子、V端子、W端子)間に接続されたモジュラー・マルチレベル電力変換器であって、k個(kは1以上の自然数)の電圧源特性のエネルギー貯蔵要素を介して任意の電圧を出力可能な2端子の単位変換器を直列接続した2端子アームを、前記正側端子(P端子)と前記3相交流端子間に3個(UPアーム、VPアーム、WPアーム)、前記負側端子(N端子)と前記3相交流端子間に3個(UNアーム、VNアーム、WNアーム)備え、前記正側端子(P端子)側の3個の2端子アームと前記負側端子(N端子)側の3個の2端子アームと前記3相交流端子との間に2端子コイルを含む誘導素子を備えたモジュラー・マルチレベル電力変換器において、
     前記誘導素子は、
     鉄心脚を同心円状に巻き回す2つのコイル(UPコイル、UNコイル)を備えた第1のリアクトルと、鉄心脚を同心円状に巻き回す2つのコイル(VPコイル、VNコイル)を備えた第2のリアクトルと、鉄心脚を同心円状に巻き回す2つのコイル(WPコイル、WNコイル)を備えた第3のリアクトルと、
     を含み、
     前記UPコイルの第1端子と前記UNコイルの第2端子を接続して前記3相交流端子のU端子として引き出し、前記VPコイルの第1端子と前記VNコイルの第2端子を接続して前記3相交流端子のV端子として引き出し、前記WPコイルの第1端子と前記WNコイルの第2端子を接続して前記3相交流端子のW端子として引き出し、前記UPコイルの第2端子を前記UPアームの第1端子に接続し、前記UNコイルの第1端子を前記UNアームの第2端子に接続し、前記VPコイルの第2端子を前記VPアームの第1端子に接続し、前記VNコイルの第1端子を前記VNアームの第2端子に接続し、前記WPコイルの第2端子を前記WPアームの第1端子に接続し、前記WNコイルの第1端子を前記WNアームの第2端子に接続し、前記UNコイルから前記UPコイルに貫通する電流によって前記第1のリアクトルの鉄心脚が励磁され、前記VNコイルから前記VPコイルに貫通する電流によって前記第2のリアクトルの鉄心脚が励磁され、前記WNコイルから前記WPコイルに貫通する電流によって前記第3のリアクトルの鉄心脚が励磁される方向に、前記UPコイル、前記UNコイル、前記VPコイル、前記VNコイル、前記WPコイルおよび前記WNコイルを巻き回すことを特徴とするモジュラー・マルチレベル電力変換器。
  2.  直流電源の正側端子(P端子)と負側端子(N端子)と3相交流端子(U端子、V端子、W端子)間に接続されたモジュラー・マルチレベル電力変換器であって、k個(kは1以上の自然数)の電圧源特性のエネルギー貯蔵要素を介して任意の電圧を出力可能な2端子の単位変換器を直列接続した2端子アームを、前記正側端子(P端子)と前記3相交流端子間に3個(UPアーム、VPアーム、WPアーム)、前記負側端子(N端子)と前記3相交流端子間に3個(UNアーム、VNアーム、WNアーム)備え、前記正側端子(P端子)側の3個の2端子アームと前記負側端子(N端子)側の3個の2端子アームと前記3相交流端子との間に2端子コイルを含む誘導素子を備えたモジュラー・マルチレベル電力変換器において、
     前記誘導素子は、
     第1の鉄心脚を同心円状に巻き回す2つのコイル(UPコイル、UNコイル)と、第2の鉄心脚を同心円状に巻き回す2つのコイル(VPコイル、VNコイル)と、第3の鉄心脚を同心円状に巻き回す2つのコイル(WPコイル、WNコイル)と、前記第1の鉄心脚、前記第2の鉄心脚および前記第3の鉄心脚のコモンモード磁束をとおす第4の鉄心脚および第5の鉄心脚とを設け、前記UPコイルの第1端子と前記UNコイルの第2端子を接続して前記3相交流端子のU端子として引き出し、前記VPコイルの第1端子と前記VNコイルの第2端子を接続して前記3相交流端子のV端子として引き出し、前記WPコイルの第1端子と前記WNコイルの第2端子を接続して前記3相交流端子のW端子として引き出し、前記UPコイルの第2端子を前記UPアームの第1端子に接続し、前記UNコイルの第1端子を前記UNアームの第2端子に接続し、前記VPコイルの第2端子を前記VPアームの第1端子に接続し、前記VNコイルの第1端子を前記VNアームの第2端子に接続し、前記WPコイルの第2端子を前記WPアームの第1端子に接続し、前記WNコイルの第1端子を前記WNアームの第2端子に接続し、前記UNコイルから前記UPコイルに貫通する電流によって前記第1の鉄心脚が励磁され、前記VNコイルから前記VPコイルに貫通する電流によって前記第2の鉄心脚が励磁され、前記WNコイルから前記WPコイルに貫通する電流によって前記第3の鉄心脚が励磁される方向に、前記UPコイル、前記UNコイル、前記VPコイル、前記VNコイル、前記WPコイルおよび前記WNコイルを巻き回すことを特徴とするモジュラー・マルチレベル電力変換器。
  3.  請求項1または請求項2に記載のモジュラー・マルチレベル電力変換器を2台備え、各モジュラー・マルチレベル電力変換器の直流正側端子(P端子)と直流負側端子(N端子)を背後接続し、第1のモジュラー・マルチレベル電力変換器の交流端子をユニット変圧器を介して電力系統に接続し、第2のモジュラー・マルチレベル電力変換器の交流端子を回転電気機械に接続し、前記第2のモジュラー・マルチレベル電力変換器の出力周波数を可変にして前記回転電気機械の回転速度を可変にすることを特徴とするモジュラー・マルチレベル電力変換システム。
PCT/JP2020/031899 2020-08-24 2020-08-24 モジュラー・マルチレベル電力変換器およびモジュラー・マルチレベル電力変換システム WO2022044091A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022544910A JP7312332B2 (ja) 2020-08-24 2020-08-24 モジュラー・マルチレベル電力変換器およびモジュラー・マルチレベル電力変換システム
PCT/JP2020/031899 WO2022044091A1 (ja) 2020-08-24 2020-08-24 モジュラー・マルチレベル電力変換器およびモジュラー・マルチレベル電力変換システム
EP20951347.2A EP4203293A4 (en) 2020-08-24 2020-08-24 MODULAR MULTI-STAGE CURRENT TRANSFORMER AND MODULAR MULTI-STAGE CURRENT TRANSFORMER SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031899 WO2022044091A1 (ja) 2020-08-24 2020-08-24 モジュラー・マルチレベル電力変換器およびモジュラー・マルチレベル電力変換システム

Publications (1)

Publication Number Publication Date
WO2022044091A1 true WO2022044091A1 (ja) 2022-03-03

Family

ID=80352803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031899 WO2022044091A1 (ja) 2020-08-24 2020-08-24 モジュラー・マルチレベル電力変換器およびモジュラー・マルチレベル電力変換システム

Country Status (3)

Country Link
EP (1) EP4203293A4 (ja)
JP (1) JP7312332B2 (ja)
WO (1) WO2022044091A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189105B2 (ja) 2006-12-08 2013-04-24 シーメンス アクチエンゲゼルシヤフト 電流変換装置
JP2015012769A (ja) * 2013-07-02 2015-01-19 株式会社日立製作所 電力変換装置および電気・機械エネルギ変換システム
JP6243083B2 (ja) 2015-02-25 2017-12-06 日立三菱水力株式会社 可変速発電電動装置および可変速発電電動システム
JP2019140743A (ja) * 2018-02-07 2019-08-22 富士電機株式会社 電力変換装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305708A1 (de) * 1983-02-18 1984-08-23 Transformatoren Union Ag, 7000 Stuttgart Drehstromdrosselspule mit fuenfschenkelkern
US8014110B2 (en) * 2007-01-22 2011-09-06 Johnson Controls Technology Company Variable speed drive with integral bypass contactor
US10069430B2 (en) * 2013-11-07 2018-09-04 Regents Of The University Of Minnesota Modular converter with multilevel submodules
JP6294187B2 (ja) * 2014-08-22 2018-03-14 株式会社日立製作所 無停電電源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189105B2 (ja) 2006-12-08 2013-04-24 シーメンス アクチエンゲゼルシヤフト 電流変換装置
JP2015012769A (ja) * 2013-07-02 2015-01-19 株式会社日立製作所 電力変換装置および電気・機械エネルギ変換システム
JP6243083B2 (ja) 2015-02-25 2017-12-06 日立三菱水力株式会社 可変速発電電動装置および可変速発電電動システム
JP2019140743A (ja) * 2018-02-07 2019-08-22 富士電機株式会社 電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4203293A4

Also Published As

Publication number Publication date
JPWO2022044091A1 (ja) 2022-03-03
EP4203293A4 (en) 2024-05-08
EP4203293A1 (en) 2023-06-28
JP7312332B2 (ja) 2023-07-20

Similar Documents

Publication Publication Date Title
US5905642A (en) Apparatus and method to reduce common mode voltage from current source drives
EP1564875B1 (en) Filter
US7277302B2 (en) 12-pulse converter including a filter choke incorporated in the rectifier
US7446435B2 (en) Power converter system and method
US8299732B2 (en) Power conversion system and method
US8537575B2 (en) Power converter and integrated DC choke therefor
US8179066B2 (en) Method for controlling a load with a predominantly inductive character and a device applying such a method
Chivite-Zabalza et al. A simple, passive 24-pulse AC–DC converter with inherent load balancing
JP6289825B2 (ja) 発電機励磁装置および電力変換システム
US7414331B2 (en) Power converter system and method
US6452819B1 (en) Inverter without harmonics
US5050059A (en) Frequency changer having parallel partial frequency changers with a DC circuit
US6583598B2 (en) Damping of resonant peaks in an electric motor which is operated using a converter with an intermediate voltage circuit, by means of matched impedance to ground at the motor star point, and a corresponding electric motor
KR20000024972A (ko) 전동기의 과전압 방지장치
Abdollahi Multi-phase shifting autotransformer based rectifier
EP3249799B1 (en) Power conversion device
WO2022044091A1 (ja) モジュラー・マルチレベル電力変換器およびモジュラー・マルチレベル電力変換システム
EP4087082A1 (en) Zero-sequence current balancer with a real power injector for a three-phase power system
WO2018163582A1 (ja) 電力変換装置
JP2005006455A (ja) 整流装置
US6208230B1 (en) Transformer for cycloconverter
JP6636219B1 (ja) 電力変換装置
Xie et al. Comparison of voltage and flux modulation schemes of StatComs regarding transformer saturation during fault recovery
Kusko et al. Application of 12-pulse converters to reduce electrical interference and audible noise from DC motor drives
JP3092195B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544910

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020951347

Country of ref document: EP

Effective date: 20230324