WO2022044060A1 - 原子吸光分光光度計および原子吸光分光光度計の制御方法 - Google Patents

原子吸光分光光度計および原子吸光分光光度計の制御方法 Download PDF

Info

Publication number
WO2022044060A1
WO2022044060A1 PCT/JP2020/031749 JP2020031749W WO2022044060A1 WO 2022044060 A1 WO2022044060 A1 WO 2022044060A1 JP 2020031749 W JP2020031749 W JP 2020031749W WO 2022044060 A1 WO2022044060 A1 WO 2022044060A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
atomic absorption
furnace
transformer
absorption spectrophotometer
Prior art date
Application number
PCT/JP2020/031749
Other languages
English (en)
French (fr)
Inventor
央祐 小林
拓正 関谷
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2022544883A priority Critical patent/JP7396503B2/ja
Priority to EP20951316.7A priority patent/EP4202412A4/en
Priority to PCT/JP2020/031749 priority patent/WO2022044060A1/ja
Priority to CN202080103415.5A priority patent/CN115943300A/zh
Publication of WO2022044060A1 publication Critical patent/WO2022044060A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces

Definitions

  • the present disclosure relates to a control method for an atomic absorption spectrophotometer and an atomic absorption spectrophotometer.
  • the atomic absorption spectrophotometer measures the concentration of the element to be measured contained in the sample from the absorbance absorbed by the atom to be measured by transmitting the light beam from the hollow-cathode lamp of the measurement element to the atomic vapor atomized from the sample. do.
  • an atomic absorption spectrophotometer using a graphite furnace is widely used.
  • Atomic absorption spectrophotometers using a graphite furnace have the advantages of a high heating rate for heating a sample and high absolute sensitivity.
  • This atomic absorption spectrophotometer uses a graphite furnace as an atomizer that decomposes a sample compound into free atomic vapors.
  • a graphite tube is used in a graphite furnace, a sample is injected into the graphite tube, and the graphite tube is electrically heated by the Joule heat of the current flowing through the graphite tube.
  • an alternating current heating method is known in which an alternating current is passed through the graphite tube using a transformer to heat the graphite tube (Patent Document 1).
  • the amount of current flowing through the graphite tube fluctuates greatly in one measurement. Therefore, it is conceivable to adopt a transformer whose rated current is the maximum amount of current in one measurement for the atomic absorption spectrophotometer, but the time when the maximum amount of current flows is measured once. Because it is short, it will be over spec and the manufacturing cost will be high.
  • the atomic absorption spectrophotometer will generate a large amount of heat in the transformer, and there is a possibility that it will not operate properly. Therefore, in the atomic absorption spectrophotometer, when a transformer with a rated current lower than the maximum current amount is adopted, a protection mechanism such as a breaking circuit such as a thermal fuse or a thermostat, or a temperature monitoring mechanism such as a thermocouple or a thermistor is used. It is conceivable to install it in a transformer. However, if the protection mechanism of the transformer or the temperature monitoring mechanism operates in one measurement, the atomic absorption spectrophotometer may not be able to acquire the data being measured, and inconveniences such as loss of measurement data may occur. there were.
  • a protection mechanism such as a breaking circuit such as a thermal fuse or a thermostat, or a temperature monitoring mechanism such as a thermocouple or a thermistor is used. It is conceivable to install it in a transformer. However, if the protection mechanism of the transformer or the temperature
  • the present disclosure has been made to solve the above-mentioned problems, and is an atomic absorption spectrophotometer and an atomic absorption spectrophotometer that can perform stable measurement without causing inconvenience such as loss of measurement data while reducing the manufacturing cost. It is an object of the present invention to provide a control method of a photometer.
  • the atomic absorption spectrophotometer of the present disclosure includes a furnace for heating a sample, a transformer for converting a voltage applied to the furnace, a power source for supplying current to the furnace, and a measurement for measuring the absorbance of the sample heated in the furnace. It is equipped with a unit and a control unit that controls the power supply and measurement unit, and the control unit can set the temperature program of the furnace according to the sample to be measured, and continuous measurement is being performed from the information of the set temperature program. Predicts the temperature reached by the transformer and prompts the user to change the temperature program when the predicted temperature reaches a predetermined temperature.
  • the control method of the atomic absorption spectrophotometer of the present disclosure predicts the ultimate temperature of the transformer during continuous measurement from the step of setting the temperature program of the furnace according to the sample to be measured and the information of the set temperature program. It includes a step and a step that prompts the user to change the temperature program when the predicted ultimate temperature reaches a predetermined temperature.
  • the control method of the atomic absorption spectrophotometer and the atomic absorption spectrophotometer described above can perform stable measurement without causing inconvenience such as loss of measurement data while reducing the manufacturing cost.
  • FIG. 1 is a schematic diagram showing the configuration of an atomic absorption spectrophotometer according to an embodiment.
  • the atomic absorption spectrophotometer 10 includes a light source such as a hollow cathode lamp, a furnace 2 which is an atomization unit, a measuring unit 3 including a spectroscope and a photomultiplier tube, a heating power supply 4 for supplying current to the furnace 2, and a furnace. It has a current sensor 5 for measuring the current supplied to 2, an optical sensor 6 for measuring the light from the furnace 2, a heating power source 4, a control unit 7 for controlling the measuring unit 3, and the like.
  • the furnace 2 is, for example, a graphite tube, has a sample charging inlet 2a for charging a sample in the center of the graphite tube, and heats and atomizes the sample charged from the sample charging inlet 2a.
  • the furnace 2 may be made of a material other than the graphite tube.
  • the heating power supply 4 that supplies current to the furnace 2 has a transformer 4a, and converts the voltage of the AC power supply (not shown) into the voltage applied to the furnace 2 via the transformer 4a. Gases such as argon gas, nitrogen gas, and compressed air flow from both ends of the graphite tube and are discharged to the outside from the sample injection port, thereby promoting incineration and preventing the oxidation phenomenon of the graphite tube. Further, the temperature of the furnace 2 is measured by detecting the amount of light emitted from the graphite tube with the optical sensor 6.
  • the measuring unit 3 includes a spectroscope and a photomultiplier tube (not shown) for measuring the absorbance of the sample heated in the furnace 2.
  • the spectroscope is, for example, a Zernitana spectroscope, which is composed of an inlet slit, a reflecting mirror, a diffraction grating, and an exit slit.
  • the absorbance measured by the photomultiplier tube is amplified by the amplifier and sent to the control unit 7 as a digital signal by the A / D converter.
  • the control unit 7 has an external memory 15, an operation unit 16 having a keyboard and the like, and a display unit 17 such as a liquid crystal display. Further, the control unit 7 has a CPU (Central Processing Unit) as a control center, a ROM (Read Only Memory) for storing programs and control data for operating the CPU, and a RAM (Random Access) that functions as a CPU work area. Memory), GPU (Graphics Processing Unit) that mainly performs image processing, input / output interface for maintaining signal consistency with peripheral devices, etc.
  • the CPU and GPU may be configured by FPGA (field-programmable gate array).
  • the control unit 7 controls the heating power supply 4 according to the temperature program described later to heat the furnace, and the measurement unit 3 measures the absorbance of the sample. Specifically, the light including the emission line spectrum emitted from the light source 1 passes through the inside of the graphite tube of the furnace 2 and is introduced into the measuring unit 3. The introduced light is separated into a predetermined wavelength by the spectroscope of the measuring unit 3 and then reaches the photomultiplier tube.
  • appropriate focusing optical systems are arranged between the light source 1 and the furnace 2 and between the furnace 2 and the measuring unit 3, respectively, and the light flux is appropriately focused and next. I am trying to introduce it to the stage.
  • the sample is charged into the graphite tube from the sample inlet 2a provided in the center of the graphite tube, a large current is passed from the heating power source 4 to the graphite tube, and the sample is heated and atomized.
  • the light passing through the graphite tube is strongly absorbed by the light having a wavelength peculiar to the element contained in the sample.
  • the control unit 7 calculates the ratio of the light-receiving intensity when such absorption is not received and the light-receiving intensity when it is absorbed, and quantifies the sample from the absorbance.
  • FIG. 2 is a graph showing the temperature program and the absorbance of the atomic absorption spectrophotometer according to the embodiment.
  • the control unit 7 After charging the sample into the graphite tube of the furnace 2, when the user presses the start switch of the operation unit 16, the control unit 7 performs the process according to the set temperature program.
  • FIG. 3 is a diagram showing an example of a setting editing screen for setting a temperature program of the atomic absorption spectrophotometer according to the embodiment.
  • the control unit 7 displays a setting edit screen for setting the temperature program shown in FIG. 3 on the display unit 17 according to a program stored in advance in the ROM, the external memory 15, or the like.
  • the user sets the temperature, time, and heating mode so that the furnace 2 is heated according to the pattern of the temperature program shown by the alternate long and short dash line in FIG. 2 by controlling the heating power supply 4.
  • the control unit 7 controls the heating power supply 4 in the order of drying-ashing-atomization-cleaning in synchronization with this temperature program.
  • an inert gas for example, argon
  • stages 1 to 4 are set as the drying period.
  • the stage 1 has a heating mode (RAMP) for heating to reach 60 ° C.
  • the stage 2 has a heating mode (RAMP) for heating to reach 120 ° C. in 25 seconds.
  • the stage 3 has a heating mode (RAMP) for heating to reach 250 ° C. in 10 seconds, and the stage 4 has a heating mode (RAMP) for heating to reach 1000 ° C. in 10 seconds.
  • stages 5 to 6 are set as the incineration period.
  • the stage 5 has a heating mode (STEP) for heating to maintain 1000 ° C. for 10 seconds
  • the stage 6 has a heating mode (STEP) for heating to maintain 1000 ° C. for 3 seconds.
  • stage 7 is set as the period of atomization.
  • the stage 7 has a heating mode (STEP) in which the temperature is maintained at 2700 ° C. for 3 seconds.
  • STEP heating mode
  • the gas of the sample atomized in the graphite tube absorbs the luminous flux of the light source 1, and the absorbance thereof is measured by the measuring unit 3.
  • the measuring unit 3 can measure the atomic absorption of the sample from the absorbance as shown in FIG.
  • stage 8 is set as the cleaning period.
  • the stage 8 is set to a heating mode (STEP) in which the temperature is maintained at 2700 ° C. for 2 seconds. After that, the furnace 2 is heated based on the setting of the temperature program in order to measure the next sample with a cooling period of about 15 seconds to 30 seconds.
  • STEP heating mode
  • the temperature of the furnace 2 is measured by the optical sensor 6, and the current supplied from the heating power source 4 to the furnace 2 is measured by the current sensor 5, so that the temperature of the furnace 2 is set by the temperature program.
  • the temperature is controlled so that it becomes the temperature.
  • the atomic absorption spectrophotometer when a transformer with a rated current lower than the maximum current amount is adopted, a protection mechanism such as a breaking circuit such as a thermal fuse or a thermostat, or a temperature monitoring mechanism such as a thermocouple or a thermistor is used. It had to be installed in the transformer.
  • a protection mechanism such as a breaking circuit such as a thermal fuse or a thermostat, or a temperature monitoring mechanism such as a thermocouple or a thermistor is used. It had to be installed in the transformer.
  • a protection mechanism such as a cutoff circuit or a temperature monitoring mechanism such as a thermocouple or a thermistor is adopted while adopting a transformer having a rated current lower than the maximum current amount.
  • the temperature program that has been set predicts the ultimate temperature of the transformer and controls the transformer so that it operates properly. That is, in the atomic absorption spectrophotometer 10, the transformer is controlled to operate correctly by software without providing an additional hardware mechanism.
  • the atomic absorption spectrophotometer is equipped with a protection mechanism such as a cutoff circuit or a temperature monitoring mechanism such as a thermocouple or thermista, if the transformer protection mechanism or temperature monitoring mechanism operates in one measurement.
  • the atomic absorption spectrophotometer cannot acquire the data being measured, which causes inconveniences such as loss of measurement data.
  • inconvenience such as loss of measurement data does not occur because the data being measured cannot be acquired.
  • control unit 7 predicts the temperature reached by the transformer 4a during continuous measurement (operation) from the information of the temperature program of the furnace 2 set before the start, and the predicted temperature reached by the transformer 4a is calculated. If the temperature exceeds the limit temperature, the user is urged to change the temperature program.
  • the control unit 7 predicts the ultimate temperature of the transformer 4a based on the heating index.
  • the heating index is a value obtained by dividing the integrated value of the function of the heating temperature and the heating time of the furnace 2 by the sum of the heating time and the cooling time. That is, the heating index is a value obtained by dividing the area of the heating temperature and the time of the temperature program shown in FIG. 3 by (heating time + cooling time). In the temperature program shown in FIG. 3, the heating index is calculated to be about 385 with the cooling time as 30 seconds.
  • FIG. 4 is a graph showing the relationship between the heating index and the reached temperature.
  • the vertical axis shown in FIG. 4 shows the temperature reached by the transformer 4a, and the horizontal axis shows the heating index.
  • FIG. 4 shows a graph showing the relationship between the heating index and the ultimate temperature of two transformers having different specifications. That is, the graph showing the relationship between the heating index and the reached temperature differs depending on the specifications of the transformer used for the heating power source 4.
  • the contribution rate (R 2 ) of this function is as high as 0.9997.
  • the graph showing the relationship between the heating index of the transformer with different specifications from the transformer 4a and the reached temperature is graph B, but the graph is not limited to this, and even if the transformer 4a has the same specifications, the measurement mode and the transformer
  • the graph showing the relationship between the heating index and the reached temperature changes under other conditions (predetermined conditions) such as the driving time of 4a. For example, when changing to another measurement mode with a different cooling time, the graph showing the relationship between the heating index of the transformer and the reached temperature is changed. Further, for example, when the driving time of the transformer 4a exceeds a predetermined time, the graph showing the relationship between the heating index of the transformer and the reached temperature is changed in consideration of the deterioration of the transformer 4a.
  • the graph showing the relationship between the heating index of the transformer and the reached temperature shown in FIG. 4 is a profile showing the relationship between the heating index and the reached temperature of the transformer, and the profile is stored in the external memory 15 in advance.
  • the profile may be stored as a function of the above-mentioned y (reached temperature) and x (heating index), or may be stored as a table summarizing the numerical values of y (reached temperature) and x (heating index). ..
  • the control unit 7 changes the profile (graph) showing the relationship between the heating index and the reached temperature of the transformer according to a predetermined condition.
  • the temperature reached by the transformer 4a is set to be less than 160 ° C. (predetermined temperature) using the graph A shown in FIG. That is, in the graph A shown in FIG. 4, when the ultimate temperature of the transformer 4a is 160 ° C. (predetermined temperature), the heating index is 550. Therefore, the heating index of the temperature program shown in FIG. 3 is about 385, which is the predetermined temperature. It has not reached the heating index of 550. In this way, the control unit 7 predicts the ultimate temperature of the transformer 4a during continuous measurement by using the heating index of the temperature program, and whether or not the indirectly predicted ultimate temperature has reached the predetermined temperature. Can be determined, and the overheat protection function of the transformer can be realized by software.
  • the heating index may be normalized by setting 550, which is a heating index of a predetermined temperature, as 100.
  • the heating index of the temperature program shown in FIG. 3 is about 385, it can be predicted from the graph A shown in FIG. 4 that the ultimate temperature of the transformer 4a is about 120 ° C. As for the ultimate temperature of the transformer 4a, it is not necessary to calculate the heating index as long as the ultimate temperature of the transformer 4a can be predicted from the information of the temperature program.
  • FIG. 5 is a diagram showing another example of the setting editing screen for setting the temperature program of the atomic absorption spectrophotometer 10 according to the embodiment.
  • stages 1 to 4 are set as the drying period, as in the temperature program shown in FIG.
  • the stage 1 has a heating mode (RAMP) for heating to reach 60 ° C. in 3 seconds
  • the stage 2 has a heating mode (RAMP) for heating to reach 120 ° C. in 25 seconds
  • the stage 3 has a heating mode (RAMP) for heating to reach 250 ° C. in 10 seconds
  • the stage 4 has a heating mode (RAMP) for heating to reach 1000 ° C. in 10 seconds.
  • stages 5 to 6 are set as the ashing period as in the temperature program shown in FIG.
  • the stage 5 has a heating mode (STEP) for heating to maintain 1000 ° C. for 10 seconds
  • the stage 6 has a heating mode (STEP) for heating to maintain 1000 ° C. for 3 seconds.
  • the stage 7 is set as the atomization period as in the temperature program shown in FIG.
  • the stage 7 has a heating mode (STEP) in which the temperature is maintained at 2700 ° C. for 3 seconds.
  • the stage 8 After atomization, in the temperature program setting shown in FIG. 5, the stage 8 is set as the cleaning period as in the temperature program shown in FIG. However, unlike the stage 8 shown in FIG. 3, the stage 8 shown in FIG. 5 has a heating mode (STEP) in which the temperature is maintained at 2700 ° C. for 12 seconds. Therefore, in the temperature program shown in FIG. 5, the heating index is calculated to be about 603 with the cooling time as 30 seconds.
  • STEP heating mode
  • the control unit 7 predicts the ultimate temperature of the transformer 4a during continuous measurement and indirectly predicts it. It can be determined that the reached temperature has reached a predetermined temperature. Therefore, the control unit 7 prompts the user to change the temperature program.
  • FIG. 6 is a diagram showing an example in which a warning is displayed on the setting edit screen for setting the temperature program of the atomic absorption spectrophotometer 10 according to the embodiment.
  • the warning window displays information that the temperature rises excessively and information that prompts the user to change the temperature program in order to avoid it.
  • the information prompting the user to change the temperature program also includes information on advice on which set value to change.
  • the control unit 7 is not limited to the warning window shown in FIG. 6 as a method of prompting the user to change the temperature program, but may also display a warning sound or a setting value portion that needs to be changed in red. good.
  • FIG. 7 is a flowchart showing a method of setting a temperature program of the atomic absorption spectrophotometer 10 according to the embodiment.
  • the control unit 7 displays a setting edit screen for setting the temperature program shown in FIG. 3 on the display unit 17 (step S11).
  • the control unit 7 determines whether or not the input of the set value for setting the temperature program has been accepted (step S12). Specifically, the control unit 7 accepts inputs for all the setting values (for example, the maximum number of stages, temperature, time, heating mode, etc.) necessary for the user to set the temperature program using the operation unit 16. If all are accepted, it is determined that the input of the set value has been accepted. Therefore, when it is determined that the input of all the set values is not accepted (NO in step S12), the control unit 7 returns the process to step S11.
  • the setting values for example, the maximum number of stages, temperature, time, heating mode, etc.
  • control unit 7 calculates the heating index based on the set values of the temperature program (step S13). Based on the set value set by the temperature program shown in FIG. 3, the control unit 7 calculates the heating index to be about 385 with the cooling time set to 30 seconds.
  • the control unit 7 determines whether or not the ultimate temperature of the transformer 4a (the ultimate temperature of the heating index) predicted from the calculated heating index is equal to or higher than the predetermined temperature (step S14). Specifically, the control unit 7 predicts the ultimate temperature of the transformer 4a during continuous measurement by using the calculated heating index and the graph shown in FIG. 4, and the indirectly predicted ultimate temperature is the predetermined temperature. Judge whether or not it has reached. When it is determined that the reached temperature of the calculated heating index is not equal to or higher than the predetermined temperature (NO in step S14), the control unit 7 heats the furnace 2 based on the set temperature program and starts the measurement (step S15). Since the heating index of the temperature program shown in FIG. 3 is about 385 and does not reach 550, which is the heating index of the predetermined temperature, the control unit 7 determines that the reached temperature of the calculated heating index is not equal to or higher than the predetermined temperature and measures the temperature. To start.
  • the control unit 7 displays a display prompting the change of the setting on the display unit 17. Specifically, the control unit 7 superimposes and displays the warning window shown in FIG. 6 on the setting edit screen.
  • the atomic absorption spectrophotometer 10 does not require any special hardware, and can realize the overheat protection function of the transformer by software. As a result, the atomic absorption spectrophotometer 10 can be equipped with a reasonable transformer 4a while achieving both safety and cost. Further, the atomic absorption spectrophotometer 10 can prompt the user to change the temperature program before starting the measurement for the temperature program in which the transformer 4a is overheated by continuous measurement, and the temperature program after the start of the measurement. As a result, the transformer 4a becomes overheated and the measurement is not interrupted.
  • the atomic absorption spectrophotometer 10 may be provided with a hardware transformer protection mechanism or a temperature monitoring mechanism to ensure double safety. Further, in the flowchart shown in FIG.
  • the atomic absorption spectrophotometer includes a furnace for heating a sample, a transformer for converting a voltage applied to the furnace, a power source for supplying current to the furnace, and measuring the absorbance of the sample heated in the furnace. It is equipped with a measuring unit and a control unit that controls the power supply and the measuring unit.
  • the control unit can set the temperature program of the furnace according to the sample to be measured, and continuous measurement is performed from the information of the set temperature program. It predicts the ultimate temperature of the transformer inside and prompts the user to change the temperature program when the predicted ultimate temperature reaches a predetermined temperature.
  • the atomic absorption spectrophotometer when the predicted reached temperature reaches a predetermined temperature, the user is urged to change the temperature program, so that there are inconveniences such as loss of measurement data while reducing the manufacturing cost. Stable measurement can be performed so that it does not occur.
  • the control unit divides the integral value of the function of the heating temperature and the heating time of the furnace by the sum of the heating time and the cooling time from the information of the temperature program. The value of the heating index is obtained, and the ultimate temperature of the transformer is predicted based on the heating index.
  • the value of the heating index is obtained from the information of the temperature program, and the reaching temperature of the transformer is predicted based on the heating index, so that the reaching temperature of the transformer can be accurately determined. Can be predicted.
  • the control unit sets a profile showing the relationship between the heating index and the ultimate temperature of the transformer in advance, and uses the heating index obtained from the information of the temperature program. , Predict the temperature reached by the transformer based on the configured profile.
  • the reaching temperature of the transformer is predicted based on the set profile, so that the reaching temperature of the transformer can be predicted more accurately.
  • control unit changes the profile according to a predetermined condition.
  • the profile is changed according to the predetermined conditions, so that the ultimate temperature of the transformer can be predicted based on the profile that meets the predetermined conditions.
  • the measurement mode is changed, the transformer specifications are changed, and the profile is changed when the transformer drive time exceeds a predetermined time.
  • the ultimate temperature of the transformer can be predicted based on the profile that meets the conditions.
  • the ultimate temperature of the transformer can be accurately predicted by using the function of the heating index and the ultimate temperature of the transformer.
  • the ultimate temperature of the transformer is accurately obtained. Can be predicted.
  • the furnace is a graphite tube, the temperature rise rate is high and the absolute sensitivity is high.
  • a power source for supplying a current to the furnace including a furnace for heating the sample according to the item 11 and a transformer for converting the voltage applied to the furnace, a measuring unit for measuring the absorbance of the sample heated in the furnace, and a power supply. It is a control method of an atomic absorption spectrophotometer equipped with a control unit that controls the measurement unit, and continuous measurement is performed from the step of setting the temperature program of the furnace according to the sample to be measured and the information of the set temperature program. It includes a step of predicting the ultimate temperature of the transformer inside and a step of prompting the user to change the temperature program when the predicted ultimate temperature reaches a predetermined temperature.
  • the atomic absorption spectrophotometer when the predicted reached temperature reaches a predetermined temperature, the user is urged to change the temperature program, so that there are inconveniences such as loss of measurement data while reducing the manufacturing cost. Stable measurement can be performed so that it does not occur.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

原子吸光分光光度計(10)は、試料を加熱する炉(2)と、炉(2)に印加する電圧を変換する変圧器(4a)を含み、炉(2)に電流を供給する加熱電源(4)と、炉(2)で加熱した試料の吸光度を測定する測定部(3)と、加熱電源(4)および測定部(3)を制御する制御部(7)と、を備える。制御部(7)は、測定する試料に応じて炉(2)の温度プログラムを設定することができ、設定された温度プログラムの情報から、連続測定中の変圧器(4a)の到達温度を予測し、予測した到達温度が所定温度に達する場合、温度プログラムの変更をユーザに促す。

Description

原子吸光分光光度計および原子吸光分光光度計の制御方法
 本開示は、原子吸光分光光度計および原子吸光分光光度計の制御方法に関する。
 原子吸光分光光度計は、試料を原子化した原子蒸気に測定元素のホロカソードランプから光束を透過させ、測定対象の原子により吸収される吸光度から試料中に含まれる測定対象の元素の濃度を測定する。原子吸光分光光度計の一種として、黒鉛炉を用いる原子吸光分光光度計が広く用いられている。黒鉛炉を用いる原子吸光分光光度計は、試料を加熱するための昇温速度が速く、絶対感度が高い利点がある。この原子吸光分光光度計は、試料である化合物を遊離原子蒸気に分解するアトマイザーとしての黒鉛炉を用いている。
 この原子吸光分光光度計では、黒鉛炉にグラファイトチューブを用い、当該グラファイトチューブの中に試料を注入し、グラファイトチューブに流した電流のジュール熱で電気的にグラファイトチューブを加熱する。グラファイトチューブを電気で加熱する場合、変圧器(トランス)を用いてグラファイトチューブに交流電流を流してグラファイトチューブを加熱する交流加熱方式が知られている(特許文献1)。
特開2020-101523号公報
 交流加熱方式を採用した原子吸光分光光度計では、一回の測定の中でグラファイトチューブに流す電流量が大きく変動する。そのため、原子吸光分光光度計は、一回の測定の中で最大となる電流量を定格電流とする変圧器を採用することが考えられるが、最大となる電流量が流れる時間が一回の測定の中で短いためオーバースペックとなり、製造コストが高くなる。
 しかし、最大となる電流量より低い定格電流の変圧器を採用すると、原子吸光分光光度計は、変圧器内での発熱量が多くなり、正しく動作しない可能性があった。そのため、原子吸光分光光度計では、最大となる電流量より低い定格電流の変圧器を採用する場合、温度ヒューズ、サーモスタット等の遮断回路などの保護機構、または熱電対、サーミスタなどの温度監視機構を変圧器に設けることが考えられる。ただし、一回の測定の中で変圧器の保護機構、または温度監視機構が動作した場合、原子吸光分光光度計は、測定中のデータを取得できずに測定データの欠損など不都合が生じることがあった。
 本開示は、上記のような課題を解決するためになされたもので、製造コストを低減しつつ、測定データの欠損など不都合が生じないよう安定した測定が行える原子吸光分光光度計および原子吸光分光光度計の制御方法を提供することを目的とする。
 本開示の原子吸光分光光度計は、試料を加熱する炉と、炉に印加する電圧を変換する変圧器を含み、炉に電流を供給する電源と、炉で加熱した試料の吸光度を測定する測定部と、電源および測定部を制御する制御部と、を備え、制御部は、測定する試料に応じて炉の温度プログラムを設定することができ、設定された温度プログラムの情報から、連続測定中の変圧器の到達温度を予測し、予測した到達温度が所定温度に達する場合、温度プログラムの変更をユーザに促す。
 本開示の原子吸光分光光度計の制御方法は、測定する試料に応じて炉の温度プログラムを設定するステップと、設定された温度プログラムの情報から、連続測定中の変圧器の到達温度を予測するステップと、予測した到達温度が所定温度に達する場合、温度プログラムの変更をユーザに促すステップと、を含む。
 上記の原子吸光分光光度計および原子吸光分光光度計の制御方法は、製造コストを低減しつつ、測定データの欠損など不都合が生じないよう安定した測定が行える。
実施の形態に係る原子吸光分光光度計の構成を示す概略図である。 実施の形態に係る原子吸光分光光度計の温度プログラムおよび吸光度を示すグラフである。 実施の形態に係る原子吸光分光光度計の温度プログラムを設定する設定編集画面の一例を示す図である。 加熱指標と到達温度の関係を示すグラフである。 実施の形態に係る原子吸光分光光度計の温度プログラムを設定する設定編集画面の別の一例を示す図である。 実施の形態に係る原子吸光分光光度計の温度プログラムを設定する設定編集画面で警告が表示された一例を示す図である。 実施の形態に係る原子吸光分光光度計の温度プログラムを設定する方法を示すフローチャートである。
 以下、本開示の実施の形態を、図を参照しながら詳細に説明する。図1は、実施の形態に係る原子吸光分光光度計の構成を示す概略図である。原子吸光分光光度計10は、ホロカソードランプなどの光源1、原子化部である炉2、分光器および光電子増倍管などを含む測定部3、炉2に電流を供給する加熱電源4、炉2に供給される電流を測定する電流センサ5、炉2からの光を測定する光センサ6、加熱電源4および測定部3などを制御する制御部7を有している。
 炉2は、例えばグラファイトチューブであり、当該グラファイトチューブの中央に試料を装入する試料装入口2aを有し、試料装入口2aから装入した試料を加熱して原子化する。なお、炉2は、グラファイトチューブ以外の材料で構成してもよい。炉2に電流を供給する加熱電源4は、変圧器4aを有し、当該変圧器4aを介して交流電源(図示せず)の電圧を炉2に印加する電圧に変換する。なお、グラファイトチューブ両端からアルゴンガスや窒素ガス、圧縮空気などのガスを流して試料注入口から外部に排出し、併せて灰化の促進およびグラファイトチューブの酸化現象を防止している。また、炉2の温度は、グラファイトチューブからの発光量を光センサ6で検出することにより測定される。
 測定部3は、炉2で加熱した試料の吸光度を測定するため、図示していない分光器および光電子増倍管などを含んでいる。分光器は、例えばツェルニターナ分光器であり、入口スリットと、反射鏡と、回折格子および出口スリットから構成されている。光電子増倍管で測定された吸光度は、増幅器で増幅され、A/D変換器でデジタル信号として制御部7に送られる。
 制御部7は、外部メモリ15、キーボード等を有する操作部16、液晶ディスプレイ等の表示部17を有している。また、制御部7は、制御中枢としてのCPU(Central Processing Unit)、CPUが動作するためのプログラムや制御データなどを記憶するROM(Read Only Memory)、CPUのワークエリアとして機能するRAM(Random Access Memory)、主に画像処理を行うGPU(Graphics Processing Unit)、周辺機器との間で信号の整合性を保つための入出力インターフェイスなどを含む。なお、CPUやGPUを、FPGA(field-programmable gate array)で構成してもよい。
 制御部7は、後述する温度プログラムに従い加熱電源4を制御して炉を加熱して、測定部3で試料の吸光度を測定する。具体的に、光源1から放射された輝線スペクトルを含む光は、炉2のグラファイトチューブ内部を通過して測定部3に導入される。導入された光は測定部3の分光器において所定波長に分光された後、光電子増倍管に達する。なお、図示していないが、光源1と炉2との間、炉2と測定部3との間にはそれぞれ適当な集光光学系が配置されており、光束を適切に集光して次段へ導入するようにしている。
 試料の測定時には、グラファイトチューブの中央に設けた試料装入口2aから試料をグラファイトチューブ内に装入し、加熱電源4からグラファイトチューブに大電流を流し、試料を加熱して原子化する。グラファイトチューブ内を通過する光は、試料に含まれる元素特有の波長の光が強く吸収される。制御部7は、このような吸収を受けない場合の受光強度と吸収を受けた場合の受光強度との比を計算し、その吸光度から試料の定量を行う。
 さらに、図を用いて原子吸光分光光度計10の温度プログラムおよび吸光度について詳しく説明する。図2は、実施の形態に係る原子吸光分光光度計の温度プログラムおよび吸光度を示すグラフである。試料を炉2のグラファイトチューブ内に装入した後、ユーザが操作部16のスタートスイッチを押すと、制御部7は設定した温度プログラムに従い処理を行なう。図3は、実施の形態に係る原子吸光分光光度計の温度プログラムを設定する設定編集画面の一例を示す図である。制御部7は、ROMまたは外部メモリ15等に予め格納されているプログラムに従い、図3に示す温度プログラムを設定する設定編集画面を表示部17に表示する。
 ユーザは、加熱電源4を制御することにより図2の一点鎖線で示す温度プログラムのパターンで炉2の加熱を行なうように、温度、時間、加熱モードを設定する。制御部7は、この温度プログラムに同期して、加熱電源4を乾燥-灰化-原子化-クリーニングと順に制御する。乾燥および灰化においては、グラファイトチューブ内に不活性ガス(例えばアルゴン)を送り込み、グラファイトチューブ内で発生した乾燥の期間の水蒸気や灰化の期間の煙を速やかに外部へ排出する。図3に示す温度プログラムの設定では、乾燥の期間としてステージ1~4が設定されている。ステージ1では、3秒で60℃に到達するように加熱する加熱モード(RAMP)とし、ステージ2では、25秒で120℃に到達するように加熱する加熱モード(RAMP)としている。ステージ3では、10秒で250℃に到達するように加熱する加熱モード(RAMP)とし、ステージ4では、10秒で1000℃に到達するように加熱する加熱モード(RAMP)としている。
 図3に示す温度プログラムの設定では、灰化の期間としてステージ5~6が設定されている。ステージ5では、1000℃を10秒間維持するように加熱する加熱モード(STEP)とし、ステージ6では、1000℃を3秒間維持するように加熱する加熱モード(STEP)としている。
 灰化後、図3に示す温度プログラムの設定では、原子化の期間としてステージ7が設定されている。ステージ7では、2700℃を3秒間維持するように加熱する加熱モード(STEP)としている。これにより、グラファイトチューブ内で原子化された試料のガスが光源1の光束を吸収し、その吸光度を測定部3で測定する。この原子化の期間において、測定部3は、図2に示すように試料の原子吸収を吸光度から測定することができる。
 原子化後、図3に示す温度プログラムの設定では、クリーニングの期間としてステージ8が設定されている。ステージ8では、2700℃を2秒間維持するように加熱する加熱モード(STEP)としている。その後、炉2は、15秒~30秒程度の冷却期間を挟んで、次の試料を測定するため温度プログラムの設定に基づく加熱が行われる。
 なお、制御部7では、炉2の温度を光センサ6で測定し、加熱電源4から炉2に供給される電流を電流センサ5で測定することで、炉2の温度が温度プログラムで設定した温度となるように温度制御を行なっている。
 このように、グラファイトチューブに電流を流して加熱する場合、加熱電源4の変圧器4aを用いてグラファイトチューブに交流電流を流してグラファイトチューブを加熱する。図3に示す温度プログラムから分かるように、一回の測定の中でグラファイトチューブに流す電流量が大きく変動する。そのため、原子吸光分光光度計は、一回の測定の中で最大となる電流量を定格電流とする変圧器を採用すると、最大となる電流量が流れる時間が一回の測定の中で短いためオーバースペックとなり、製造コストが高くなる。
 しかし、最大となる電流量より低い定格電流の変圧器を採用すると、原子吸光分光光度計は、変圧器内での発熱量が多くなり、正しく動作しない可能性があった。そのため、原子吸光分光光度計では、最大となる電流量より低い定格電流の変圧器を採用する場合、温度ヒューズ、サーモスタット等の遮断回路などの保護機構、または熱電対、サーミスタなどの温度監視機構を変圧器に設ける必要があった。
 そこで、本実施の形態に係る原子吸光分光光度計10では、最大となる電流量より低い定格電流の変圧器を採用しつつ、遮断回路などの保護機構、または熱電対、サーミスタなどの温度監視機構を設けることなく、設定した温度プログラムで変圧器の到達温度を予測して、変圧器が正しく動作するように制御する。つまり、原子吸光分光光度計10では、ハードウェア的な付加機構を設けることなく、ソフトウェアで変圧器が正しく動作するように制御する。
 特に、原子吸光分光光度計に遮断回路などの保護機構、または熱電対、サーミスタなどの温度監視機構を設けた場合、一回の測定の中で変圧器の保護機構、または温度監視機構が動作すると、原子吸光分光光度計は、測定中のデータを取得できずに測定データの欠損など不都合が生じる。しかし、原子吸光分光光度計10では、ソフトウェアで変圧器が正しく動作するように制御するので、測定中のデータを取得できずに測定データの欠損など不都合が生じることがない。
 具体的に、制御部7は、スタート前に設定する炉2の温度プログラムの情報から、連続測定(運転)した際の変圧器4aの到達温度を予測し、予測した変圧器4aの到達温度が制限温度以上となる場合、温度プログラムの変更をユーザに促す。
 制御部7は、変圧器4aの到達温度を加熱指標に基づいて予測する。ここで、加熱指標は、炉2の加熱温度と加熱時間との関数の積分値を、加熱時間と冷却時間との和で割った値である。つまり、加熱指標は、図3に示す温度プログラムの加熱温度と時間との面積を(加熱時間+放冷時間)で割った値である。図3に示す温度プログラムでは、冷却時間を30秒として加熱指標が約385と算出される。
 この加熱指標と連続測定時の変圧器4aの到達温度は、強い相関を示すことが実験的に分かっており、この関係から連続測定時の変圧器4aの到達温度を一義的に予想することができる。図4は、加熱指標と到達温度の関係を示すグラフである。図4に示す縦軸は変圧器4aの到達温度を示し、横軸は加熱指標をそれぞれ示している。なお、図4では、仕様の異なる2つの変圧器の加熱指標と到達温度の関係を示すグラフが図示されている。つまり、加熱指標と到達温度の関係を示すグラフは、加熱電源4に用いる変圧器の仕様により異なる。変圧器4aの加熱指標と到達温度の関係を示すグラフはグラフAであり、y(到達温度)=0.2437x(加熱指標)+25.701の一次関数で表すことができる。なお、この関数の寄与率(R)は、0.9997と高い。
 変圧器4aと異なる仕様の変圧器の加熱指標と到達温度の関係を示すグラフがグラフBであると説明したが、これに限られず、同じ仕様の変圧器4aであっても測定モード、変圧器4aの駆動時間など他の条件(所定条件)で加熱指標と到達温度の関係を示すグラフは変化する。例えば、冷却時間が異なる別の測定モードに変更した場合、変圧器の加熱指標と到達温度の関係を示すグラフを変更する。また、例えば、変圧器4aの駆動時間が所定時間を超えた場合、変圧器4aの劣化を考慮して変圧器の加熱指標と到達温度の関係を示すグラフを変更する。
 図4に示す変圧器の加熱指標と到達温度の関係を示すグラフは、加熱指標と変圧器の到達温度との関係を示すプロファイルで、当該プロファイルは、予め外部メモリ15に記憶してある。当該プロファイルは、上述のy(到達温度)とx(加熱指標)との関数として記憶しても、y(到達温度)とx(加熱指標)との数値をまとめたテーブルとして記憶してもよい。また、制御部7は、加熱指標と変圧器の到達温度との関係を示すプロファイル(グラフ)を所定条件に応じて変更する。
 図3に示す温度プログラムでは、図4に示すグラフAを用いて変圧器4aの到達温度が160℃(所定温度)未満となるように設定されている。つまり、図4に示すグラフAでは、変圧器4aの到達温度が160℃(所定温度)の場合、加熱指標が550であるので、図3に示す温度プログラムの加熱指標が約385で、所定温度の加熱指標である550に達していない。このように、制御部7は、温度プログラムの加熱指標を利用することで、連続測定中の変圧器4aの到達温度を予測し、間接的に予測した到達温度が所定温度に達したか否かを判断することができ、ソフトウェアにより変圧器の過熱保護機能を実現できる。なお、加熱指標は、所定温度の加熱指標である550を100として正規化してもよい。
 図3に示す温度プログラムの加熱指標が約385であれば、図4に示すグラフAから変圧器4aの到達温度が約120℃と予測できる。なお、変圧器4aの到達温度は、温度プログラムの情報から変圧器4aの到達温度を予測できれば、加熱指標を算出しなくてもよい。
 図5は、実施の形態に係る原子吸光分光光度計10の温度プログラムを設定する設定編集画面の別の一例を示す図である。図5に示す温度プログラムの設定でも、図3に示す温度プログラムと同じように、乾燥の期間としてステージ1~4が設定されている。ステージ1では、3秒で60℃に到達するように加熱する加熱モード(RAMP)とし、ステージ2では、25秒で120℃に到達するように加熱する加熱モード(RAMP)としている。ステージ3では、10秒で250℃に到達するように加熱する加熱モード(RAMP)とし、ステージ4では、10秒で1000℃に到達するように加熱する加熱モード(RAMP)としている。
 図5に示す温度プログラムの設定でも、図3に示す温度プログラムと同じように、灰化の期間としてステージ5~6が設定されている。ステージ5では、1000℃を10秒間維持するように加熱する加熱モード(STEP)とし、ステージ6では、1000℃を3秒間維持するように加熱する加熱モード(STEP)としている。
 灰化後、図5に示す温度プログラムの設定でも、図3に示す温度プログラムと同じように、原子化の期間としてステージ7が設定されている。ステージ7では、2700℃を3秒間維持するように加熱する加熱モード(STEP)としている。
 原子化後、図5に示す温度プログラムの設定でも、図3に示す温度プログラムと同じように、クリーニングの期間としてステージ8が設定されている。しかし、図3に示すステージ8と異なり、図5に示すステージ8では、2700℃を12秒間維持するように加熱する加熱モード(STEP)としている。そのため、図5に示す温度プログラムでは、冷却時間を30秒として加熱指標が約603と算出される。
 制御部7は、図5に示す温度プログラムの加熱指標が約603と所定温度の加熱指標である550を超えているので、連続測定中の変圧器4aの到達温度を予測し、間接的に予測した到達温度が所定温度に達した判断することができる。そのため、制御部7は、温度プログラムの変更をユーザに促す。
 温度プログラムの変更をユーザに促す一例として、温度プログラムの設定編集画面に警告のウインドウを重畳して表示されることが考えられる。図6は、実施の形態に係る原子吸光分光光度計10の温度プログラムを設定する設定編集画面で警告が表示された一例を示す図である。図6では、警告のウインドウに温度が過度に上昇する情報と、それを回避するために温度プログラムの変更をユーザに促す情報とが表示されている。さらに、温度プログラムの変更をユーザに促す情報には、どの設定値を変更すればよいかのアドバイスの情報も表示されている。なお、制御部7は、温度プログラムの変更をユーザに促す方法として、図6に示す警告のウインドウに限定されず、警告音や変更が必要な設定値の部分を赤字で表示するなどの方法でもよい。
 次に、原子吸光分光光度計10の温度プログラムを設定する方法についてフローチャートを用いて詳しく説明する。図7は、実施の形態に係る原子吸光分光光度計10の温度プログラムを設定する方法を示すフローチャートである。まず、制御部7は、表示部17に図3に示す温度プログラムを設定する設定編集画面を表示する(ステップS11)。制御部7は、温度プログラムを設定する設定値の入力を受け付けたか否かを判断する(ステップS12)。具体的に、制御部7は、ユーザが操作部16を用いて温度プログラムを設定するために必要な設定値(例えば、最大ステージ数、温度、時間、加熱モードなど)のすべてについて入力を受け付け、すべて受け付けた場合、設定値の入力を受け付けたと判断する。そのため、すべての設定値の入力を受け付けていないと判断した場合(ステップS12でNO)、制御部7は、処理をステップS11に戻す。
 すべての設定値の入力を受け付けたと判断した場合(ステップS12でYES)、制御部7は、温度プログラムの設定値に基づき加熱指標を算出する(ステップS13)。制御部7は、図3に示す温度プログラムで設定した設定値に基づき、冷却時間を30秒として加熱指標を約385と算出する。
 制御部7は、算出した加熱指標から予測される変圧器4aの到達温度(加熱指標の到達温度)が所定温度以上か否かを判断する(ステップS14)。具体的に、制御部7は、算出した加熱指標と図4に示したグラフとを利用して、連続測定中の変圧器4aの到達温度を予測し、間接的に予測した到達温度が所定温度に達したか否かを判断する。算出した加熱指標の到達温度が所定温度以上でないと判断した場合(ステップS14でNO)、制御部7は、設定した温度プログラムに基づいて炉2を加熱して測定を開始する(ステップS15)。制御部7は、図3に示す温度プログラムの加熱指標が約385で、所定温度の加熱指標である550に達していないので、算出した加熱指標の到達温度が所定温度以上でないと判断して測定を開始する。
 一方、算出した加熱指標の到達温度が所定温度以上であると判断した場合(ステップS14でYES)、制御部7は、設定の変更を促す表示を表示部17で行う。具体的に、制御部7は、図6に示す警告のウインドウを設定編集画面に重畳して表示する。
 このように、原子吸光分光光度計10は、特別なハードウェアを必要とせず、ソフトウェアにより変圧器の過熱保護機能を実現できる。これにより、原子吸光分光光度計10は、リーズナブルな変圧器4aを搭載しつつ、安全性とコスト性とを両立させることができる。また、原子吸光分光光度計10は、連続測定により変圧器4aが過熱状態となる温度プログラムに対して、測定を開始する前にユーザに温度プログラムの変更を促すことができ、測定開始後に温度プログラムに起因して変圧器4aが過熱状態となり、測定を中断することがなくなる。もちろん、原子吸光分光光度計10にハードウェアの変圧器の保護機構、または温度監視機構を設けて二重の安全を確保してもよい。また、図7に示すフローチャートでは、算出した加熱指標の到達温度が所定温度以上でないと判断されるまで温度プログラムを変更し続ける必要があるが、原子吸光分光光度計10は、算出した加熱指標の到達温度が所定温度以上であっても、ユーザの判断で測定を開始できるようにしてもよい。
[態様]
 上述した実施形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)
 一態様に係る原子吸光分光光度計は、試料を加熱する炉と、炉に印加する電圧を変換する変圧器を含み、炉に電流を供給する電源と、炉で加熱した試料の吸光度を測定する測定部と、電源および測定部を制御する制御部と、を備え、制御部は、測定する試料に応じて炉の温度プログラムを設定することができ、設定された温度プログラムの情報から、連続測定中の変圧器の到達温度を予測し、予測した到達温度が所定温度に達する場合、温度プログラムの変更をユーザに促す。
 第1項に記載の原子吸光分光光度計によれば、予測した到達温度が所定温度に達する場合、温度プログラムの変更をユーザに促すので、製造コストを低減しつつ、測定データの欠損など不都合が生じないよう安定した測定が行える。
 (第2項)
 第2項に記載の原子吸光分光光度計であって、制御部は、温度プログラムの情報から、炉の加熱温度と加熱時間との関数の積分値を、加熱時間と冷却時間との和で割った加熱指標の値を求め、加熱指標に基づいて変圧器の到達温度を予測する。
 第2項に記載の原子吸光分光光度計によれば、温度プログラムの情報から加熱指標の値を求め、加熱指標に基づいて変圧器の到達温度を予測するので、精度よく変圧器の到達温度を予測することができる。
 (第3項)
 第3項に記載の原子吸光分光光度計であって、制御部は、加熱指標と変圧器の到達温度との関係を示すプロファイルを予め設定しておき、温度プログラムの情報から求めた加熱指標と、設定されたプロファイルとに基づいて変圧器の到達温度を予測する。
 第3項に記載の原子吸光分光光度計によれば、設定されたプロファイルに基づいて変圧器の到達温度を予測するので、さらに精度よく変圧器の到達温度を予測することができる。
 (第4項)
 第4項に記載の原子吸光分光光度計であって、制御部は、プロファイルを所定条件に応じて変更する。
 第4項に記載の原子吸光分光光度計によれば、所定条件に応じてプロファイルが変更されるので、所定条件にあったプロファイルに基づいて変圧器の到達温度を予測することができる。
 (第5項)
 第5項に記載の原子吸光分光光度計であって、所定条件は、測定モード、変圧器の仕様、変圧器の駆動時間のうち少なくとも1つの条件を含む。
 第5項に記載の原子吸光分光光度計によれば、測定モードが変更される、変圧器の仕様が変更される、変圧器の駆動時間が所定時間を超えるとプロファイルが変更されるので、所定条件にあったプロファイルに基づいて変圧器の到達温度を予測することができる。
 (第6項)
 第6項に記載の原子吸光分光光度計であって、プロファイルは、加熱指標と変圧器の到達温度との関数として記憶される。
 第6項に記載の原子吸光分光光度計によれば、加熱指標と変圧器の到達温度との関数を利用して精度よく変圧器の到達温度を予測することができる。
 (第7項)
 第7項に記載の原子吸光分光光度計であって、制御部は、予測した到達温度が所定温度に達する場合、温度プログラムによる加熱後の冷却時間の変更をユーザに促す。
 第7項に記載の原子吸光分光光度計によれば、温度プログラムによる加熱後の冷却時間の変更をユーザに促すことで、測定データの欠損など不都合が生じないよう安定した測定が行えるようになる。
 (第8項)
 第8項に記載の原子吸光分光光度計であって、温度プログラムは、乾燥期間、灰化期間、原子化期間、クリーニング期間の各々の温度と時間との情報を含む。
 第8項に記載の原子吸光分光光度計によれば、乾燥期間、灰化期間、原子化期間、クリーニング期間の温度の各々の温度と時間との情報を含むので、精度よく変圧器の到達温度を予測することができる。
 (第9項)
 第9項に記載の原子吸光分光光度計であって、制御部は、予測した到達温度が所定温度に達する場合、温度プログラムの乾燥期間の温度または時間の変更をユーザに促す。
 第9項に記載の原子吸光分光光度計によれば、温度プログラムの乾燥期間の温度または時間の変更をユーザに促すことで、測定データの欠損など不都合が生じないよう安定した測定が行えるようになる。
 (第10項)
 第10項に記載の原子吸光分光光度計であって、炉は、グラファイトチューブである。
 第10項に記載の原子吸光分光光度計によれば、炉は、グラファイトチューブであるので、昇温速度が速く、絶対感度が高い。
 (第11項)
 第11項に記載の試料を加熱する炉と、炉に印加する電圧を変換する変圧器を含み、炉に電流を供給する電源と、炉で加熱した試料の吸光度を測定する測定部と、電源および測定部を制御する制御部とを備える原子吸光分光光度計の制御方法であって、測定する試料に応じて炉の温度プログラムを設定するステップと、設定された温度プログラムの情報から、連続測定中の変圧器の到達温度を予測するステップと、予測した到達温度が所定温度に達する場合、温度プログラムの変更をユーザに促すステップと、を含む。
 第11項に記載の原子吸光分光光度計によれば、予測した到達温度が所定温度に達する場合、温度プログラムの変更をユーザに促すので、製造コストを低減しつつ、測定データの欠損など不都合が生じないよう安定した測定が行える。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 光源、2 炉、2a 試料装入口、3 測定部、4 加熱電源、4a 変圧器、5 電流センサ、6 光センサ、7 制御部、8 ステージ、10 原子吸光分光光度計、15 外部メモリ、16 操作部、17 表示部。

Claims (11)

  1.  原子吸光分光光度計であって、
     試料を加熱する炉と、
     前記炉に印加する電圧を変換する変圧器を含み、前記炉に電流を供給する電源と、
     前記炉で加熱した試料の吸光度を測定する測定部と、
     前記電源および前記測定部を制御する制御部と、を備え、
     前記制御部は、
      測定する試料に応じて前記炉の温度プログラムを設定することができ、
      設定された前記温度プログラムの情報から、連続測定中の前記変圧器の到達温度を予測し、
      予測した前記到達温度が所定温度に達する場合、前記温度プログラムの変更をユーザに促す、原子吸光分光光度計。
  2.  前記制御部は、
      前記温度プログラムの情報から、前記炉の加熱温度と加熱時間との関数の積分値を、前記加熱時間と冷却時間との和で割った加熱指標の値を求め、
      前記加熱指標に基づいて前記変圧器の前記到達温度を予測する、請求項1に記載の原子吸光分光光度計。
  3.  前記制御部は、
      前記加熱指標と前記変圧器の前記到達温度との関係を示すプロファイルを予め設定しておき、
      前記温度プログラムの情報から求めた前記加熱指標と、設定された前記プロファイルとに基づいて前記変圧器の前記到達温度を予測する、請求項2に記載の原子吸光分光光度計。
  4.  前記制御部は、前記プロファイルを所定条件に応じて変更する、請求項3に記載の原子吸光分光光度計。
  5.  前記所定条件は、測定モード、前記変圧器の仕様、前記変圧器の駆動時間のうち少なくとも1つの条件を含む、請求項4に記載の原子吸光分光光度計。
  6.  前記プロファイルは、前記加熱指標と前記変圧器の前記到達温度との関数として記憶される、請求項3~請求項5のいずれか1項に記載の原子吸光分光光度計。
  7.  前記制御部は、
      予測した前記到達温度が前記所定温度に達する場合、前記温度プログラムによる加熱後の前記冷却時間の変更をユーザに促す、請求項2に記載の原子吸光分光光度計。
  8.  前記温度プログラムは、乾燥期間、灰化期間、原子化期間、クリーニング期間の各々の温度と時間との情報を含む、請求項1~請求項5のいずれか1項に記載の原子吸光分光光度計。
  9.  前記制御部は、
      予測した前記到達温度が前記所定温度に達する場合、前記温度プログラムの前記乾燥期間の温度または時間の変更をユーザに促す、請求項8に記載の原子吸光分光光度計。
  10.  前記炉は、グラファイトチューブである、請求項1~請求項5のいずれか1項に記載の原子吸光分光光度計。
  11.  試料を加熱する炉と、前記炉に印加する電圧を変換する変圧器を含み、前記炉に電流を供給する電源と、前記炉で加熱した試料の吸光度を測定する測定部と、前記電源および前記測定部を制御する制御部とを備える原子吸光分光光度計の制御方法であって、
      測定する試料に応じて前記炉の温度プログラムを設定するステップと、
      設定された前記温度プログラムの情報から、連続測定中の前記変圧器の到達温度を予測するステップと、
      予測した前記到達温度が所定温度に達する場合、前記温度プログラムの変更をユーザに促すステップと、を含む、制御方法。
PCT/JP2020/031749 2020-08-24 2020-08-24 原子吸光分光光度計および原子吸光分光光度計の制御方法 WO2022044060A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022544883A JP7396503B2 (ja) 2020-08-24 2020-08-24 原子吸光分光光度計および原子吸光分光光度計の制御方法
EP20951316.7A EP4202412A4 (en) 2020-08-24 2020-08-24 ATOMIC ABSORPTION SPECTROPHOTOMETER AND CONTROL METHODS FOR ATOMIC ABSORPTION SPECTROPHOTOMETER
PCT/JP2020/031749 WO2022044060A1 (ja) 2020-08-24 2020-08-24 原子吸光分光光度計および原子吸光分光光度計の制御方法
CN202080103415.5A CN115943300A (zh) 2020-08-24 2020-08-24 原子吸收分光光度计以及原子吸收分光光度计的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031749 WO2022044060A1 (ja) 2020-08-24 2020-08-24 原子吸光分光光度計および原子吸光分光光度計の制御方法

Publications (1)

Publication Number Publication Date
WO2022044060A1 true WO2022044060A1 (ja) 2022-03-03

Family

ID=80352810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031749 WO2022044060A1 (ja) 2020-08-24 2020-08-24 原子吸光分光光度計および原子吸光分光光度計の制御方法

Country Status (4)

Country Link
EP (1) EP4202412A4 (ja)
JP (1) JP7396503B2 (ja)
CN (1) CN115943300A (ja)
WO (1) WO2022044060A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047011A (ja) * 2004-08-02 2006-02-16 Shimadzu Corp ファーネス式原子吸光分光光度計
JP2020101523A (ja) 2018-12-20 2020-07-02 株式会社島津製作所 黒鉛炉および黒鉛炉で使用される変圧器
CN111366783A (zh) * 2020-03-18 2020-07-03 卫爱静 一种基于物联网的变压器运行参数在线监测系统及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599842A (ja) * 1990-12-26 1993-04-23 Shimadzu Corp 原子吸光分析装置
JPH04355347A (ja) * 1991-05-31 1992-12-09 Shimadzu Corp 原子吸光分光光度計
JP3239914B2 (ja) * 1993-10-30 2001-12-17 株式会社島津製作所 試料濃縮機能を備えた原子吸光分光光度計
JPH07239302A (ja) * 1994-02-28 1995-09-12 Shimadzu Corp 原子吸光分光光度計
JP4355347B2 (ja) 2006-09-28 2009-10-28 シャープ株式会社 画像表示装置及び方法、画像処理装置及び方法
JP7239302B2 (ja) 2018-11-27 2023-03-14 矢崎総業株式会社 配索状態提示方法および配索状態提示装置
JP7374751B2 (ja) 2018-12-28 2023-11-07 株式会社荏原製作所 パッド温度調整装置、パッド温度調整方法、研磨装置、および研磨システム
JP7128227B2 (ja) 2020-04-28 2022-08-30 グリー株式会社 制御プログラム、制御方法及びコンピュータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047011A (ja) * 2004-08-02 2006-02-16 Shimadzu Corp ファーネス式原子吸光分光光度計
JP2020101523A (ja) 2018-12-20 2020-07-02 株式会社島津製作所 黒鉛炉および黒鉛炉で使用される変圧器
CN111366783A (zh) * 2020-03-18 2020-07-03 卫爱静 一种基于物联网的变压器运行参数在线监测系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4202412A4

Also Published As

Publication number Publication date
EP4202412A1 (en) 2023-06-28
CN115943300A (zh) 2023-04-07
EP4202412A4 (en) 2024-05-29
JPWO2022044060A1 (ja) 2022-03-03
JP7396503B2 (ja) 2023-12-12

Similar Documents

Publication Publication Date Title
US4529912A (en) Mechanism and method for controlling the temperature and light output of a fluorescent lamp
US4533854A (en) Mechanism and method for controlling the temperature and output of a fluorescent lamp
JP4137972B2 (ja) ガス組成異常判断方法及び放電励起ガスレーザ発振器
US4518895A (en) Mechanism and method for controlling the temperature and output of a fluorescent lamp
JPH057839B2 (ja)
JP5825349B2 (ja) 分光装置
WO2005045379A1 (ja) 火炎検知方法および火炎検知装置
WO2022044060A1 (ja) 原子吸光分光光度計および原子吸光分光光度計の制御方法
JP4223881B2 (ja) 濃度測定システム
JP4595875B2 (ja) Icp分析装置
JP2010181205A (ja) 分光蛍光光度計
JP5975109B2 (ja) 原子吸光光度計及びこれに用いられる信号電圧最適化方法
JP2007010314A (ja) フレーム式原子吸光分光光度計
JP5153115B2 (ja) 周波数安定化ガスレーザ
US7377688B2 (en) Method and apparatus for determining the bulb temperature of high pressure discharge lamps
JP4586738B2 (ja) Icp分析装置
JPH07239302A (ja) 原子吸光分光光度計
JP3945784B1 (ja) 高制御型耐候試験機
JPH09210780A (ja) 重水素ランプ駆動回路及び紫外線吸収検出器
JP5174558B2 (ja) 分光分析装置および光源電源
JP2001242073A (ja) ファーネス式原子吸光分光光度計
US20130049639A1 (en) Light source apparatus
JPH06249781A (ja) Icp発光分光分析装置
JPWO2022044060A5 (ja)
JPH0875636A (ja) 原子吸光光度計用の無電極放電ランプ点灯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544883

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020951316

Country of ref document: EP

Effective date: 20230324