WO2022042088A1 - 一种用于3d打印的镍基高温合金及其粉末制备方法 - Google Patents

一种用于3d打印的镍基高温合金及其粉末制备方法 Download PDF

Info

Publication number
WO2022042088A1
WO2022042088A1 PCT/CN2021/105818 CN2021105818W WO2022042088A1 WO 2022042088 A1 WO2022042088 A1 WO 2022042088A1 CN 2021105818 W CN2021105818 W CN 2021105818W WO 2022042088 A1 WO2022042088 A1 WO 2022042088A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
nickel
printing
based superalloy
particle size
Prior art date
Application number
PCT/CN2021/105818
Other languages
English (en)
French (fr)
Inventor
刘祖铭
魏冰
农必重
吕学谦
任亚科
曹镔
艾永康
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Priority to US17/496,809 priority Critical patent/US20220062992A1/en
Publication of WO2022042088A1 publication Critical patent/WO2022042088A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0836Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with electric or magnetic field or induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0896Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid particle transport, separation: process and apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention provides a nickel-based superalloy for 3D printing and a powder preparation method thereof, belonging to the technical field of superalloy and additive manufacturing.
  • the rapid development of metal 3D printing technology has increased the demand for high-quality, low-cost metal powders.
  • the development of 3D printing technology of high-performance nickel-based superalloys for aerospace is limited by the "weldability" of nickel-based superalloys and the quality of their powders.
  • the nickel-based superalloys used for 3D printing are mainly IN718, IN625, etc., which have good 3D printing forming properties, but their comprehensive performance is worse than that of powdered nickel-based superalloys.
  • Due to the high content of Al and Ti powder nickel-based superalloys are prone to cracking during the 3D printing process, which brings great challenges to the 3D printing of powdered nickel-based superalloys.
  • the development of powder nickel-based superalloy suitable for 3D printing and its powder preparation technology is an urgent problem to be solved in the field of nickel-based superalloy 3D printing.
  • the existing powder nickel-based superalloys have high Al and Ti contents, are sensitive to cracking, and are difficult to be used for 3D printing. Powdered nickel-based superalloys suitable for 3D printing have not been reported so far.
  • the fluidity and impurity content of powder are closely related to forming defects. Therefore, 3D printing technology puts forward higher requirements on the properties of powders, especially nickel-based superalloys.
  • the fluidity of powder directly affects the uniformity of powder spreading during selective laser melting (SLM) and electron beam melting (EBM), and the powder feeding stability during coaxial powder feeding laser forming (LENS), which in turn affects 3D printed parts. the quality of.
  • the fluidity of powder is affected by many aspects such as powder particle size and particle size distribution, powder shape and absorbed moisture.
  • the powder is required to be spherical or nearly spherical, and the particle size is between ten microns and one hundred microns.
  • the powder used for 3D printing nickel-based superalloys also has problems such as poor composition uniformity, high oxygen content, poor sphericity, and low yield of powder suitable for 3D printing particle size distribution.
  • Chinese patent CN107716934A discloses a method for preparing Inconel 718 alloy powder for 3D printing technology. It adopts vacuum induction melting technology and close-coupled gas atomization technology, and uses ultrasonic vibration and airflow classification to formulate the particle size ratio of the powder. Inconel 718 alloy powder suitable for selective laser melting technology.
  • Chinese patent CN105624472A discloses a nickel-based superalloy powder for 3D printing and its preparation method.
  • the chemical composition of the alloy powder is Ni50-80%, Al3-7%, Si ⁇ 1%, Ti1-6 %, V0.1-1%, Cr2-10%, Mn ⁇ 1%, Fe1.68%, Co8-15%; its preparation steps are: weigh the raw materials by weight, put them in a vacuum melting furnace and smelt into liquid , and then atomize the smelting liquid with high-pressure argon gas at a superheat degree of 20-40 °C to obtain alloy powder. Finally, the alloy powder is subjected to high-temperature annealing treatment under the protection of argon gas, and then vibrated and sieved. After cooling, it is classified into vacuum packaging. , to obtain the nickel-based superalloy powder.
  • Chinese patent CN107326218A discloses a preparation method of DD5 superalloy powder for 3D printing.
  • the DD5 master alloy ingot is subjected to component homogenization heat treatment, and the DD5 alloy powder is prepared by the plasma rotating electrode atomization method under the protection of inert gas.
  • the above patents mainly use the milling process to optimize the fluidity and sphericity of the powder and reduce the oxygen content of the powder to meet the powder demand for 3D printing.
  • Chinese patent (CN108941560B) discloses a method for eliminating cracks in René 104 nickel-based superalloy by laser additive manufacturing, and proposes to eliminate forming parts by designing laser forming parameters and zone scanning strategy, combined with stress relief annealing and spark plasma sintering (SPS) treatment scheme of internal cracks and inhibits the growth of grains during sintering.
  • SPS spark plasma sintering
  • the "non-weldable" nickel-based superalloy it is easy to crack and difficult to form during the 3D printing forming process, and the prepared powder is difficult to meet the 3D printing requirements of high-performance nickel-based superalloy parts.
  • the invention greatly reduces the cracking sensitivity of "non-weldable" nickel-based superalloy 3D printing, and obtains a high-performance nickel-based superalloy suitable for 3D printing; Refining, atomization, and screening processes are used to prepare nickel-based superalloy powders that meet the requirements of 3D printing.
  • the invention significantly reduces the oxygen and sulfur content of the gas atomized powder nickel-based superalloy powder, improves the sphericity and fluidity of the powder and the yield of fine powder with a particle size of 15-53 ⁇ m and medium-sized powder with a particle size of 53-106 ⁇ m, thereby Meet the powder requirements for high-performance nickel-based superalloy 3D printing.
  • the present invention provides a nickel-based superalloy for 3D printing and a powder preparation method thereof, the purpose of which is to greatly reduce the "non-weldable" nickel-based superalloy 3D Printing cracking sensitivity, high-performance nickel-based superalloys suitable for 3D printing are obtained; the prepared powder has good sphericity, low oxygen and sulfur content, narrow particle size distribution, high bulk density, good fluidity, and less special-shaped powder, which greatly improves The yield of 15-53 ⁇ m and 53-106 ⁇ m particle size powders, while significantly reducing the cracking sensitivity of "non-weldable" nickel-based superalloys for 3D printing, meets the needs of high-performance nickel-based superalloys for 3D printing powders.
  • the invention significantly widens the 3D printing process window of the nickel-based superalloy, reduces the risk of sharp decline in product performance due to uncontrollable factors during the 3D printing process, and prints parts with no cracks and excellent mechanical properties.
  • the performance of the part will be further improved after subsequent heat treatment.
  • the present invention is a nickel-based superalloy for 3D printing.
  • the nickel-based superalloy for 3D printing includes the following components in mass percentage:
  • the other non-weldable nickel-based superalloys are selected from one of IN738LC, CM247LC, CMSX-4, René 142, and Hastelloy X; or one of IN718 and IN625 nickel-based superalloys is used as the matrix, and 0.05 -0.18wt% RE.
  • the present invention is a nickel-based superalloy for 3D printing.
  • the nickel-based superalloy for 3D printing includes the following components in mass percentage:
  • the present invention is a nickel-based superalloy for 3D printing, wherein RE is selected from at least one of Sc, Y, La, Ce, and Er elements.
  • the present invention is a nickel-based superalloy for 3D printing, where RE is Sc; or RE is a mixture of Sc and at least one of Y, La, Ce, and Er.
  • RE is Sc
  • RE is a mixture of Sc and at least one of Y, La, Ce, and Er.
  • the present invention is a preparation method for 3D printing nickel-based superalloy powder, and the preparation method comprises the following steps:
  • the molten mother alloy melt is flowed down through the guide tube at a flow rate of 3.5kg/min ⁇ 5kg/min, and the metal liquid flow is broken into fine droplets with a high-pressure, high-purity inert gas of 3MPa ⁇ 5MPa, and the droplets are cooled and cooled. Solidify, form spherical powder, and enter into the powder collection tank;
  • the mesh number of the sieve is 100 mesh and 270 mesh. Spherical nickel-based superalloy powder and vacuum encapsulated;
  • the inert gas should be helium, argon, or a mixed gas of argon and helium, with a purity of 99.99 wt %, wherein the oxygen content is less than 0.0001 wt %.
  • the present invention is a preparation method for 3D printing nickel-based superalloy powder, wherein the raw material contains Al-RE master alloy.
  • the invention provides a preparation method for 3D printing nickel-based superalloy powder.
  • the total yield of medium powder with a particle size of 53-106 ⁇ m and fine powder with a particle size of 15-53 ⁇ m is 88.5%-91.5%.
  • the present invention provides a method for preparing nickel-based superalloy powder for 3D printing.
  • the obtained nickel-based superalloy powder for 3D printing has an oxygen content of less than or equal to 0.0126 wt% and a sulfur content of less than or equal to 0.0056 wt%.
  • nickel-based superalloy powder can also be prepared by plasma rotating electrode atomization method.
  • the present invention provides a method for preparing nickel-based superalloy powder for 3D printing.
  • the obtained nickel-based superalloy powder for 3D printing has an oxygen content of less than or equal to 0.01wt%, and a sulfur content of less than or equal to 0.004wt%.
  • the invention is a preparation method for 3D printing nickel-based superalloy powder, and the obtained nickel-based superalloy powder for 3D printing has a fluidity of 50g/2.5mm aperture of 15-25 s; optimized to be 15.5-16 s.
  • the present invention proposes a nickel-based superalloy for 3D printing and a powder preparation method thereof.
  • the rare earth microalloying is carried out by an appropriate amount of rare earth, which significantly reduces the cracking sensitivity of René 104 nickel-based superalloy in 3D printing.
  • the powder nickel-based superalloy designed by the invention has uniform powder composition and can be directly used for 3D printing, and the probability of cracks in the workpiece during the printing and forming process is far lower than that of the existing nickel-based superalloy.
  • the present invention proposes a nickel-based superalloy for 3D printing and a powder preparation method thereof.
  • the rare earth microalloying is carried out by an appropriate amount of rare earth, which widens the 3D printing process window of the nickel-based superalloy and solves the problem of the 3D printing process. Easy to crack and difficult to form.
  • the present invention proposes a nickel-based superalloy for 3D printing and a method for preparing powder thereof.
  • the prepared alloy and powder thereof improve the mechanical properties of 3D printing parts and inhibit the formation and propagation of cracks.
  • the present invention proposes a nickel-based superalloy for 3D printing and a powder preparation method thereof.
  • a trace amount of rare earth elements is added to the René 104 nickel-based superalloy to effectively reduce the oxygen and sulfur content of the powder, thereby eliminating the 3D printing process. Poor fusion or even cracking.
  • the present invention proposes a nickel-based superalloy for 3D printing and a powder preparation method thereof.
  • an appropriate amount of rare earth elements to the René104 nickel-based superalloy (especially introducing 0.07-0.09wt% into the René104 nickel-based superalloy) Rare earth), under the synergy of appropriate atomization process, the obtained nickel-based superalloy powder has good sphericity, low oxygen and sulfur content, narrow particle size distribution, high bulk density, good fluidity, and greatly reduced special-shaped powder.
  • the powder yield in the particle size range of 53 ⁇ m and 53-106 ⁇ m is greatly improved (up to 91.5%), which significantly improves the performance of nickel-based superalloy powder for 3D printing, and meets the high standard requirements of nickel-based superalloy 3D printing process.
  • Figure 1 is a scanning electron microscope (SEM) photograph of the morphology of the René 104 alloy powder obtained in Example 1 with a trace amount of rare earth added.
  • FIG. 2 is a high magnification SEM photograph of the morphology of the René 104 alloy powder obtained in Example 1 with a trace amount of rare earth added.
  • FIG. 3 is the particle size distribution curve of the René 104 alloy powder added with trace rare earths obtained in Example 1.
  • FIG. 4 is a SEM photograph of the microstructure of the René 104 alloy product prepared in Example 4.
  • FIG. 4 is a SEM photograph of the microstructure of the René 104 alloy product prepared in Example 4.
  • Figure 5 is a SEM photograph of the morphology of the René 104 alloy powder obtained in Comparative Example 1 without adding trace rare earth elements.
  • FIG. 6 is a high magnification SEM photograph of the morphology of the René 104 alloy powder obtained in Comparative Example 1 without adding trace rare earth elements.
  • FIG. 7 is the particle size distribution curve of the René 104 alloy powder obtained in Comparative Example 1 without adding trace rare earth elements.
  • the method of the invention is applied to the following René104 nickel-based superalloy, the mass fraction of rare earth elements is 0.08%, and the weight percentage of the alloy is: 20.6Co ⁇ 13Cr ⁇ 3.4Al ⁇ 3.9Ti ⁇ 3.8Mo ⁇ 2.1W ⁇ 2.4Ta ⁇ 0.9 Nb ⁇ 0.05Zr ⁇ 0.03B ⁇ 0.04C ⁇ 0.08Sc ⁇ the balance is Ni.
  • the steps of preparing nickel-based superalloy powder for 3D printing using the technical solution of the present invention are as follows:
  • Fig. 1 is an SEM photo of René 104 nickel-based superalloy powder particles prepared by gas atomization method in Example 1 of the present invention with 0.08% rare earth elements added.
  • Example 2 is a high-magnification SEM photo of René 104 nickel-based superalloy powder particles prepared by gas atomization with 0.08% rare earth Sc element in Example 1 of the present invention, with high sphericity and smooth powder surface. Mainly dendrites and a small amount of cellular structure, and the grain size is small.
  • Fig. 3 is the particle size distribution diagram of René 104 nickel-based superalloy powder prepared with 0.08% rare earth elements by gas atomization method in Example 1 of the present invention, the particle size distribution is narrow, 15-53 ⁇ m fine powder and 53-106 ⁇ m medium particle size powder The total yield was 91.5%.
  • the prepared René104 nickel-based superalloy powder added with 0.08% rare earth elements has an oxygen content of 0.0093%, a sulfur content of 0.0021%, and a fluidity of 15.8s for 50g/2.5mm aperture.
  • the prepared powder has excellent performance and can meet the needs of 3D printing.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the method of the invention is applied to the following René104 nickel-based superalloy, the mass fraction of rare earth elements is 0.08%, and the weight percentage of the alloy is: 20.6Co ⁇ 13Cr ⁇ 3.4Al ⁇ 3.9Ti ⁇ 3.8Mo ⁇ 2.1W ⁇ 2.4Ta ⁇ 0.9 Nb ⁇ 0.05Zr ⁇ 0.03B ⁇ 0.04C ⁇ 0.08Y ⁇ the balance is Ni.
  • the steps of preparing nickel-based superalloy powder for 3D printing using the technical solution of the present invention are as follows:
  • Vacuum smelting The René 104 nickel-based superalloy raw material with a mass fraction of 0.08% rare earth Y element is put into the crucible of the atomizing pulverizing furnace, and heating and smelting is carried out by induction of an intermediate frequency power supply in a 0.05Pa vacuum atmosphere;
  • the prepared René104 nickel-based superalloy powder with 0.08% rare earth Y element added has an oxygen content of 0.0126%, a sulfur content of 0.0056%, and a fluidity of 50g/2.5mm aperture of 24.3s.
  • the method of the invention is applied to the following René104 nickel-based superalloy, the mass fraction of rare earth elements is 0.08%, and the weight percentage of the alloy is: 20.6Co ⁇ 13Cr ⁇ 3.4Al ⁇ 3.9Ti ⁇ 3.8Mo ⁇ 2.1W ⁇ 2.4Ta ⁇ 0.9 Nb ⁇ 0.05Zr ⁇ 0.03B ⁇ 0.04C ⁇ 0.04Sc ⁇ 0.04Y ⁇ the balance is Ni.
  • the steps of preparing nickel-based superalloy powder for 3D printing using the technical solution of the present invention are as follows:
  • Vacuum smelting The René 104 nickel-based superalloy raw materials with mass fractions of 0.04% Sc and 0.04% Y elements are put into the crucible of the atomizing pulverizing furnace, and the medium frequency power supply is used for induction heating in a 0.05Pa vacuum atmosphere. smelting;
  • the prepared René104 nickel-based superalloy powder with 0.04% Sc and 0.04% Y rare earth elements has an oxygen content of 0.0114%, a sulfur content of 0.0048%, and a fluidity of 21.2s with a pore size of 50g/2.5mm.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the René 104 alloy block was prepared by using the 3D printing process parameters of Comparative Example 1 in the Chinese patent (CN108941560B).
  • the specific parameters of the SLM process are:
  • the laser power is 225W
  • the spot diameter is 0.12mm
  • the scanning speed is 600mm/s
  • the scanning distance is 0.11mm
  • the thickness of the powder layer is 0.03mm.
  • FIG. 4 is a SEM photograph of the microstructure of the René 104 alloy prepared in Example 4. The formed part has a dense structure and no cracks are observed.
  • the density of the prepared René 104 alloy is 99.2%, the yield strength at room temperature is 913MPa, the tensile strength is 1247MPa, and the elongation is 13.3%; compared with the Chinese patent (CN108941560B), the system has been treated with SPS to eliminate cracks. The yield strength and tensile strength were increased by 21.6% and 38.4%, respectively.
  • the alloy and powder prepared by the present invention adopts the 3D printing process parameters with the most severe cracking and the worst part performance in the Chinese patent (CN108941560B), and a crack-free part is prepared, and the mechanical properties are excellent; it shows that the alloy prepared by the present invention and Powders can widen the 3D printing process window.
  • the method of the invention is applied to the following René104 nickel-based superalloy, and the alloy weight percentage is: 20.6Co ⁇ 13Cr ⁇ 3.4Al ⁇ 3.9Ti ⁇ 3.8Mo ⁇ 2.1W ⁇ 2.4Ta ⁇ 0.9Nb ⁇ 0.05Zr ⁇ 0.03B ⁇ 0.04 C ⁇ The balance is Ni.
  • the steps of preparing nickel-based superalloy powder for 3D printing using the technical solution of the present invention are as follows:
  • Example 5 is an SEM photo of René 104 nickel-based superalloy powder particles prepared by gas atomization method in Example 1 of the present invention without adding trace rare earth elements, and many irregular powders and satellite powders can be observed.
  • Example 6 is a high-magnification SEM photo of René 104 nickel-based superalloy powder particles without trace rare earth elements prepared by gas atomization in Example 1 of the present invention, and satellite powder is attached to the powder surface.
  • Fig. 7 is the particle size distribution diagram of René 104 nickel-based superalloy powder without adding trace rare earth elements prepared by gas atomization method in Example 1 of the present invention.
  • the total yield of 53-106 ⁇ m medium particle size powder was only 74.1%.
  • the prepared René104 nickel-based superalloy powder has an oxygen content of 0.017%, a sulfur content of 0.0067%, and no fluidity at a pore size of 2.5 mm.
  • the prepared powder has poor performance and cannot meet the needs of 3D printing.
  • the method of the invention is applied to the following René104 nickel-based superalloy, and the alloy weight percentage is: 20.6Co ⁇ 13Cr ⁇ 3.4Al ⁇ 3.9Ti ⁇ 3.8Mo ⁇ 2.1W ⁇ 2.4Ta ⁇ 0.9Nb ⁇ 0.05Zr ⁇ 0.03B ⁇ 0.04 C ⁇ 0.04Sc ⁇ balance is Ni.
  • the steps of preparing nickel-based superalloy powder for 3D printing using the technical solution of the present invention are as follows:
  • the prepared René104 nickel-based superalloy powder with 0.04% Sc rare earth element has an oxygen content of 0.0144%, a sulfur content of 0.0073%, and a fluidity of 40.5s with a pore size of 50g/2.5mm.
  • the fluidity of the powder is poor, which is not conducive to 3D printing.
  • the method of the invention is applied to the following René104 nickel-based superalloy, and the alloy weight percentage is: 20.6Co ⁇ 13Cr ⁇ 3.4Al ⁇ 3.9Ti ⁇ 3.8Mo ⁇ 2.1W ⁇ 2.4Ta ⁇ 0.9Nb ⁇ 0.05Zr ⁇ 0.03B ⁇ 0.04 C ⁇ 0.20 Sc ⁇ the balance is Ni.
  • the steps of preparing nickel-based superalloy powder for 3D printing using the technical solution of the present invention are as follows:
  • the prepared René104 nickel-based superalloy powder with 0.20% Sc rare earth element has an oxygen content of 0.0087%, a sulfur content of 0.0018%, and a fluidity of 17.4s with a pore size of 50g/2.5mm.
  • adding excessive rare earth elements will not further improve the performance of the powder; instead, it will increase the cost, and at the same time increase the powder ratio below 15 ⁇ m, reducing the yield of powder with the particle size required for 3D printing.

Abstract

本发明提供一种用于3D打印的镍基高温合金及其粉末制备方法,属于高温合金和增材制造技术领域。针对"不可焊"粉末镍基高温合金在3D打印过程中易开裂问题,本发明通过稀土微合金化,结合真空熔炼、脱气、精炼、合理参数的雾化、筛分工艺,制备出满足3D打印需求的镍基高温合金及其粉末。本发明显著降低了"不可焊"粉末镍基高温合金的开裂敏感性,扩宽了3D打印工艺窗口,打印出的制件无裂纹,力学性能优异;同时,本发明制备的粉末球形度高、流动性好、异形粉少,大幅提高了3D打印所需的粒径为15~53μm细粉和53~106μm中粒径粉末的收得率,满足高品质、低成本的镍基高温合金3D打印用粉末需求。

Description

一种用于3D打印的镍基高温合金及其粉末制备方法 技术领域
本发明提供一种用于3D打印的镍基高温合金及其粉末制备方法,属于高温合金和增材制造技术领域。
背景技术
金属3D打印技术的快速发展,对高品质、低成本金属粉末的需求日益增加。航空航天用高性能镍基高温合金3D打印技术的发展,受制于镍基高温合金的“可焊性”及其粉末的质量。目前用于3D打印的镍基高温合金主要是IN718、IN625等,它们具有良好的3D打印成形性能,但是其综合性能相较粉末镍基高温合金差。粉末镍基高温合金由于Al、Ti含量高,开裂敏感性大,在3D打印过程中容易产生裂纹,给粉末镍基高温合金的3D打印带来了极大的挑战。发展适用于3D打印的粉末镍基高温合金及其粉末制备技术,是镍基高温合金3D打印领域急需解决的问题。
现有粉末镍基高温合金的Al、Ti含量高,对开裂敏感,难以用于3D打印成形。适用于3D打印的粉末镍基高温合金,目前还没有相关报道。
粉末的流动性、杂质含量与成形缺陷密切相关。因此,3D打印技术对粉末的性能提出了更高要求,尤其是镍基高温合金。粉末的流动性直接影响选区激光熔融(SLM)、电子束熔化(EBM)过程中铺粉均匀性,以及同轴送粉激光成形(LENS)过程中的送粉稳定性,进而影响3D打印制件的质量。粉末的流动性受粉末粒径及粒径分布、粉末形状和所吸收的水分等多方面的影响。为了保证粉末的流动性,要求粉末是球形或近球形,粒径在十几微米到一百微米之间。3D打印镍基高温合金所用粉末,还存在成分均匀性差、氧含量高、球形度差、适合3D打印粒度分布的粉末收得率低等问题。
针对上述问题,国内外进行了探索性的研究。中国专利CN107716934A,公开了一种用于3D打印技术的Inconel718合金粉末的制备方法,采用真空感应熔炼技术和紧耦合气雾化技术,运用超声振动、气流分级方法对粉末进行粒度配比,制备得到适用于选区激光熔化技术的Inconel718合金粉末。中国专利CN105624472A公开了一种3D打印用镍基高温合金粉末及其制备方法,以重量百分比计,合金粉末的化学组成为,Ni50-80%,Al3-7%、Si≤1%、Ti1-6%、V0.1-1%、Cr2-10%、Mn≤1%、Fe1.68%、Co8-15%;其制备步骤为:按重量比称取原料,放入真空熔炼炉中熔炼为液体,然后将熔炼液体在过热度20~40℃下用高压氩气进行雾化,得到合金粉末,最后将合金粉末在氩气保护下进行高温退火处理后,进行振动筛分,冷却后分级真空包装,得到所述镍基高温合金粉末。中国专利CN107326218A公开了一种3D打印用DD5高温合金粉末的制备方法,对DD5母合金锭进行成分均匀化热处理,在惰性气体保护下,采用等离子旋转电极雾化法制备DD5合金粉末。以上专利主要采用制粉工艺,优化粉末的流动性、球形度以及降低粉末氧含量,来满足3D打印用粉末需求。中国专利(CN108941560B)公开了一种消除René104镍基高温合金激光增材制造裂纹的方法,提出通过设计激光成形参数和分区扫描策略,结合去应力退火和放电等离子烧结(SPS)处理,消除成形件内部裂纹的方案,并抑制了烧结过程中晶粒的长大。但是,对于“不可焊”镍基高温合金,在3D打印成形过程中易开裂、难成形,所制备的粉末难以满足高性能镍基高温合金制件3D打印需求。同时,目前还未见采用微合金化并结合制粉工艺,就能实现在3D打印过程中最大概率降低裂纹产生的相关记载。
本发明通过引入适量的稀土,进行稀土微合金化,大幅降低“不可焊”镍基高温合金3D打印开裂敏感性,得到适用于3D打印的高性能镍基高温合金;结合真空熔炼、脱气、精炼、雾化、筛分工艺,制备满足3D打印要求的镍基高温合金粉末。本发明显著降低气雾化粉末镍基高温合金粉末的氧、硫含量,提高粉末的球形度、流动性以及粒径为15~53μm细粉和53~106μm中粒径粉末的收得率,从而满足高性能镍基高温合金3D打印用粉末需求。
技术问题
本发明针对“不可焊”镍基高温合金3D打印易开裂问题,提供了一种用于3D打印的镍基高温合金及其粉末制备方法,其目的是大幅降低“不可焊”镍基高温合金3D打印开裂敏感性,得到适用于3D打印的高性能镍基高温合金;制备的粉末球形度好、氧硫含量低、粒径分布窄、松装密度高、流动性好、异形粉少,大幅提高15~53μm和53~106μm粒径粉末的收得率,同时显著降低“不可焊”镍基高温合金3D打印开裂敏感性,满足高性能镍基高温合金3D打印用粉末需求。本发明显著扩宽了镍基高温合金3D打印工艺窗口,降低了3D打印过程中由于不可控因素导致的产品性能急剧下降的风险,打印出了无裂纹且力学性能优异的制件。该制件经过后续热处理,其性能还会得到进一步提升。
本发明一种用于3D打印的镍基高温合金,所述用于3D打印的镍基高温合金以质量百分比计,包括下述组分:
Co:14-23%;
Cr:11-15%;
Al:2-5%;
Ti:3-6%;
Mo:2.7-5%;
W:0.5-3%;
Ta:0.5-4%;
Nb:0.25-3%;
Zr:0.02-0.06%;
B:0.01-0.05%;
C:0.0015-0.1%;
RE  0.05-0.18wt%;
余量为Ni;
或以其他不可焊镍基高温合金为基体,向基体中加入0.05-0.18wt%的RE;
所述其他不可焊镍基高温合金选自IN738LC、CM247LC、CMSX-4、René 142、Hastelloy X中的一种;或以IN718、IN625镍基高温合金中的一种为基体,向基体中加入0.05-0.18wt%的RE。
本发明一种用于3D打印的镍基高温合金,所述用于3D打印的镍基高温合金以质量百分比计,包括下述组分:
Co: 20.6%;
Cr: 13%;
Al: 3.4%;
Ti: 3.9%;
Mo: 3.8%;
W: 2.1%;
Ta: 2.4%;
Nb: 0.9%;
Zr: 0.05%;
B: 0.03%;
C: 0.04%;
RE  0.06-0.18%;进一步优选为0.07-0.09%;
余量为Ni。
本发明一种用于3D打印的镍基高温合金,RE选自Sc、Y、La、Ce、Er元素中的至少一种。
本发明一种用于3D打印的镍基高温合金,RE为Sc;或RE为Sc与Y、La、Ce、Er中至少一种的混合。在研发过程中发现,当稀土元素仅为Sc时,在同等加入量的情况下,其产品的收得率最高且质量也最好。
本发明一种用于3D打印镍基高温合金粉末的制备方法,所述制备方法包括下述步骤:
步骤一:真空熔炼
按设计组分配取原料,并将原料装入雾化制粉炉的坩埚内,在低于0.1Pa的真空度下采用感应加热,进行真空熔炼;
步骤二:脱气
原料熔化并完全合金化后,真空脱气10min~20min;
步骤三:精炼
向雾化制粉炉内充入高纯惰性气体至0.1-0.11MPa,将熔融的母合金熔液在1600℃~1650℃温度范围内保温10min~15min;
步骤四:雾化
将熔融的母合金熔液以3.5kg/min~5kg/min的流速经导流管流下,用3MPa~5MPa的高压、高纯惰性气体将金属液流破碎成细小液滴,液滴经过冷却和凝固,形成球形粉末,进入粉末收集罐中;
步骤五:筛分
粉末经充分冷却后,在惰性气体保护下使用气流分级和超声震动筛分,筛网目数为100目及270目,得到中粉粒径为53~106μm,细粉粒径为15~53μm的球形镍基高温合金粉末,并进行真空封装;
所述的惰性气体应为氦气、氩气,或氩、氦混合气体,纯度为99.99wt%,其中氧含量小于0.0001wt%。
本发明一种用于3D打印镍基高温合金粉末的制备方法,所述原料中,含有Al-RE中间合金。
本发明一种用于3D打印镍基高温合金粉末的制备方法,粒径为53~106μm的中粉与粒径为15~53μm的细粉的总收得率为88.5%-91.5%。
本发明一种用于3D打印镍基高温合金粉末的制备方法,所得用于3D打印的镍基高温合金粉末的氧含量小于等于0.0126wt%,硫含量小于等于0.0056wt%。在工业上应用时,还可以采用等离子旋转电极雾化法制备镍基高温合金粉末。
经优化后,本发明一种用于3D打印镍基高温合金粉末的制备方法,所得用于3D打印的镍基高温合金粉末的氧含量小于等于0.01wt%,硫含量小于等于0.004wt%。
本发明一种用于3D打印镍基高温合金粉末的制备方法,所得用于3D打印的镍基高温合金粉末50g/2.5mm孔径的流动性为15-25 s;经优化后可为15.5-16 s。
本发明的优点和积极效果
(1)本发明提出一种用于3D打印的镍基高温合金及其粉末制备方法,通过适量的稀土进行稀土微合金化,显著降低了René104镍基高温合金3D打印开裂敏感性。本发明所设计的粉末镍基高温合金,制备的粉末成分均匀,可以直接用于3D打印,且在打印成形过程中制件裂纹产生的概率远远低于现有镍基高温合金。
(2)本发明提出一种用于3D打印的镍基高温合金及其粉末制备方法,通过适量的稀土进行稀土微合金化,扩宽了镍基高温合金的3D打印工艺窗口,解决3D打印过程易开裂、难成形问题。
(3)本发明提出一种用于3D打印的镍基高温合金及其粉末制备方法,所制备的合金及其粉末,提高了3D打印制件的力学性能,抑制裂纹的形成和扩展。
(4)本发明提出一种用于3D打印的镍基高温合金及其粉末制备方法,向René104镍基高温合金中添加微量稀土元素,有效降低粉末的氧、硫含量,从而消除了3D打印过程中熔合不良甚至开裂现象。
(5)本发明提出一种用于3D打印的镍基高温合金及其粉末制备方法,通过向René104镍基高温合金中添适量稀土元素(尤其是往René104镍基高温合金引入0.07-0.09wt%稀土),在合适雾化工艺的协同下,制得的镍基高温合金粉末球形度好、氧硫含量低、径粒分布窄、松装密度高、流动性好、异形粉大幅减少,15~53μm和53~106μm粒度范围内粉末收得率大幅提高(最高可达91.5%),显著提高了3D打印用镍基高温合金粉末的性能,满足了镍基高温合金3D打印工艺的高标准要求。
附图说明
图1为实施例一所得添加微量稀土的René104合金粉末形貌扫描电镜(SEM)照片。
图2为实施例一所得添加微量稀土的René104合金粉末形貌高倍SEM照片。
图3为实施例一所得添加微量稀土的René104合金粉末的粒度分布曲线。
图4为实施例四制备的René104合金制件的微观结构SEM照片。
图5为对比例一所得未添加微量稀土元素的René104合金粉末形貌SEM照片。
图6为对比例一所得未添加微量稀土元素的René104合金粉末形貌高倍SEM照片。
图7为对比例一所得未添加微量稀土元素的René104合金粉末的粒度分布曲线。
本发明的具体实施方式
下面结合附图和具体实施例,对本发明做进一步的阐述。
实施例一:
将本发明方法用于下述René104镍基高温合金,添加质量分数为0.08%稀土元素,该合金重量百分比为:20.6Co~13Cr~3.4Al~3.9Ti~3.8Mo~2.1W~2.4Ta~0.9Nb~0.05Zr~0.03B~0.04C~0.08Sc~余量为Ni。采用本发明技术方案制备3D打印用镍基高温合金粉末的步骤如下:
(1)真空熔炼:将添加质量分数为0.08%稀土Sc元素的René104镍基高温合金原料装入雾化制粉炉的坩埚内,在0.05Pa真空气氛中,采用中频电源感应进行加热熔炼;
(2)脱气:原料熔化并完全合金化后,真空脱气15min;
(3)精炼:向炉内充入高纯氩气至0.1MPa,氩气纯度为99.99 wt%,氩气中氧含量为0.00006wt%,将熔融的金属液在1650℃保温15min;
(4)雾化:将金属液以3.8kg/min的重量流率经导流管流下,采用4MPa的高压、高纯氩气将金属液流破碎成细小液滴,液滴经过冷却和凝固,得到球形粉末,进入粉末收集罐中;
(5)筛分:粉末经充分冷却后,在惰性气体保护下使用气流分级和超声震动筛分,得到细粉粒径为15~53μm,中粉粒径为53~106μm的球形镍基高温合金粉末,并进行真空封装;
图1是本发明实施例1采用气雾化法制备添加0.08%稀土元素的的René104镍基高温合金粉末颗粒SEM照片,异形粉和卫星粉较少,球形度高。
图2是本发明实施例1采用气雾化法制备添加0.08%稀土Sc元素的的René104镍基高温合金粉末颗粒高倍SEM照片,球形度高,粉末表面光滑。主要为树枝晶及少量胞状组织,且晶粒尺寸细小。
图3是本发明实施例1采用气雾化法制备添加0.08%稀土元素的的René104镍基高温合金粉末粒径分布图,粒径分布窄,15~53μm细粉和53~106μm中粒径粉末的总收得率达91.5%。
经分析,所制备添加0.08%稀土元素的René104镍基高温合金粉末氧含量为0.0093%,硫含量为0.0021%,50g/2.5mm孔径的流动性为15.8s。制备的粉末性能优异,能满足3D打印需求。
 
实施例二:
将本发明方法用于下述René104镍基高温合金,添加质量分数为0.08%稀土元素,该合金重量百分比为:20.6Co~13Cr~3.4Al~3.9Ti~3.8Mo~2.1W~2.4Ta~0.9Nb~0.05Zr~0.03B~0.04C~0.08Y~余量为Ni。采用本发明技术方案制备3D打印用镍基高温合金粉末的步骤如下:
(1)真空熔炼:将添加质量分数为0.08%稀土Y元素的René104镍基高温合金原料装入雾化制粉炉的坩埚内,在0.05Pa真空气氛中,采用中频电源感应进行加热熔炼;
(2)脱气:原料熔化并完全合金化后,真空脱气15min;
(3)精炼:向炉内充入高纯氩气至0.1MPa,氩气纯度为99.99 wt%,氩气中氧含量为0.00006wt%,将熔融的金属液在1650℃保温15min;
(4)雾化:将金属液以3.8kg/min的重量流率经导流管流下,采用4MPa的高压、高纯氩气将金属液流破碎成细小液滴,液滴经过冷却和凝固,形成球形粉末,进入粉末收集罐中;
(5)筛分:粉末经充分冷却后,在惰性气体保护下使用气流分级和超声震动筛分,得到细粉粒径为15~53μm,中粉粒径为53~106μm的球形镍基高温合金粉末,并进行真空封装;15~53μm细粉粒径和53~106μm中粉粒径粉末的总收得率为88.7%。
经分析,所制备添加0.08%稀土Y元素的René104镍基高温合金粉末氧含量为0.0126%,硫含量为0.0056%,50g/2.5mm孔径的流动性为24.3s。
 
实施例三:
将本发明方法用于下述René104镍基高温合金,添加质量分数为0.08%稀土元素,该合金重量百分比为:20.6Co~13Cr~3.4Al~3.9Ti~3.8Mo~2.1W~2.4Ta~0.9Nb~0.05Zr~0.03B~0.04C~0.04Sc~0.04Y~余量为Ni。采用本发明技术方案制备3D打印用镍基高温合金粉末的步骤如下:
(1)真空熔炼:将添加质量分数为0.04%Sc和0.04%Y元素的René104镍基高温合金原料装入雾化制粉炉的坩埚内,在0.05Pa真空气氛中,采用中频电源感应进行加热熔炼;
(2)脱气:原料熔化并完全合金化后,真空脱气15min;
(3)精炼:向炉内充入高纯氩气至0.1MPa,氩气纯度为99.99 wt%,氩气中氧含量为0.00006wt%,将熔融的金属液在1650℃保温15min;
(4)雾化:将金属液以3.8kg/min的重量流率经导流管流下,采用4MPa的高压、高纯氩气将金属液流破碎成细小液滴,液滴经过冷却和凝固,形成球形粉末,进入粉末收集罐中;
(5)筛分:粉末经充分冷却后,在惰性气体保护下使用气流分级和超声震动筛分,得到细粉粒径为15~53μm,中粉粒径为53~106μm的球形镍基高温合金粉末,并进行真空封装;15~53μm细粉粒径和53~106μm中粉粒径粉末的总收得率为90.2%。
经分析,所制备添加0.04% Sc和0.04%Y稀土元素的René104镍基高温合金粉末氧含量为0.0114%,硫含量为0.0048%,50g/2.5mm孔径的流动性为21.2s。
 
实施例四:
以实施例一制备的合金粉末为原料,采用中国专利(CN108941560B)对比例一的3D打印工艺参数制备René104合金块体。SLM工艺具体参数为:
激光功率为225W,光斑直径为0.12mm,扫描速度为600mm/s,扫描间距为0.11mm,铺粉层厚为0.03mm。(不采用分区策略)
图4为实施例四制备的René104合金的微观结构SEM照片,成形件结构致密,没有观察到裂纹。
经检测,所制备的René104合金的致密度为99.2%,室温屈服强度为913MPa,抗拉强度为1247MPa,伸长率为13.3%;与中国专利(CN108941560B)对比例一经过SPS消除裂纹处理的制件相比,屈服强度和抗拉强度分别提高21.6%和38.4%。
本发明制备的合金及粉末,采用中国专利(CN108941560B)中开裂最严重、制件性能最差的3D打印工艺参数,制备出了无裂纹制件,且力学性能优异;表明本发明制备的合金及粉末可扩宽3D打印工艺窗口。
 
对比例一:
将本发明方法用于下述René104镍基高温合金,该合金重量百分比为:20.6Co~13Cr~3.4Al~3.9Ti~3.8Mo~2.1W~2.4Ta~0.9Nb~0.05Zr~0.03B~0.04C~余量为Ni。采用本发明技术方案制备3D打印用镍基高温合金粉末的步骤如下:
(1)真空熔炼:将René104镍基高温合金原料装入雾化制粉炉的坩埚内,在0.05Pa真空气氛中采用中频电源感应进行加热熔炼;
(2)脱气:原料熔化并完全合金化后,真空脱气15min;
(3)精炼:向炉内充入高纯氩气至0.1MPa,氩气纯度为99.99 wt%,氩气中氧含量为0.00006wt%,将熔融的金属液在1650℃保温15min;
(4)雾化:将金属液以3.8kg/min的重量流率经导流管流下,采用4Mpa的高压、高纯氩气将金属液流破碎成细小液滴,液滴经过冷却和凝固,形成球形粉末,进入粉末收集罐中;
(5)筛分:粉末经充分冷却后,在惰性气体保护下使用气流分级和超声震动筛分,得到细粉粒径为15~53μm,中粉粒径为53~106μm的球形镍基高温合金粉末,并进行真空封装;
图5是本发明实施例1采用气雾化法制备未添加微量稀土元素的René104镍基高温合金粉末颗粒SEM照片,可以观察到较多异形粉和卫星粉。
图6是本发明实施例1采用气雾化法制备未添加微量稀土元素的René104镍基高温合金粉末颗粒高倍SEM照片,粉末表面有卫星粉附着。
图7是本发明实施例1采用气雾化法制备未添加微量稀土元素的René104镍基高温合金粉末粒径分布图,粒径分布相比实施例1较宽,15~53μm细粉粒径和53~106μm中粉粒径粉末的总收得率仅为74.1%。
经分析,所制备的René104镍基高温合金粉末氧含量为0.017%,硫含量为0.0067%,2.5mm孔径下没有流动性。制备的粉末性能差,不能满足3D打印需求。
 
对比例二:
将本发明方法用于下述René104镍基高温合金,该合金重量百分比为:20.6Co~13Cr~3.4Al~3.9Ti~3.8Mo~2.1W~2.4Ta~0.9Nb~0.05Zr~0.03B~0.04C~0.04Sc~余量为Ni。采用本发明技术方案制备3D打印用镍基高温合金粉末的步骤如下:
(1)真空熔炼:将添加质量分数为0.04%稀土Sc元素的René104镍基高温合金原料装入雾化制粉炉的坩埚内,在0.05Pa真空气氛中采用中频电源感应进行加热熔炼;
(2)脱气:原料熔化并完全合金化后,真空脱气15min;
(3)精炼:向炉内充入高纯氩气至0.1MPa,氩气纯度为99.99 wt%,氩气中氧含量为0.00006wt%,将熔融的金属液在1650℃保温15min;
(4)雾化:将金属液以3.8kg/min的重量流率经导流管流下,采用4Mpa的高压、高纯氩气将金属液流破碎成细小液滴,液滴经过冷却和凝固,形成球形粉末,进入粉末收集罐中;
(5)筛分:粉末经充分冷却后,在惰性气体保护下使用气流分级和超声震动筛分,得到细粉粒径为15~53μm,中粉粒径为53~106μm的球形镍基高温合金粉末,并进行真空封装;15~53μm细粉粒径和53~106μm中粉粒径粉末的总收得率仅为80.6%。
经分析,所制备添加0.04% Sc稀土元素的René104镍基高温合金粉末氧含量为0.0144%,硫含量为0.0073%,50g/2.5mm孔径的流动性为40.5s。添加的稀土元素过少时,粉末的流动性较差,不利于3D打印成形。
 
对比例三:
将本发明方法用于下述René104镍基高温合金,该合金重量百分比为:20.6Co~13Cr~3.4Al~3.9Ti~3.8Mo~2.1W~2.4Ta~0.9Nb~0.05Zr~0.03B~0.04C~0.20 Sc~余量为Ni。采用本发明技术方案制备3D打印用镍基高温合金粉末的步骤如下:
(1)真空熔炼:将添加质量分数为0.20%稀土Sc元素的René104镍基高温合金原料装入雾化制粉炉的坩埚内,在0.05Pa真空气氛中采用中频电源感应进行加热熔炼;
(2)脱气:原料熔化并完全合金化后,真空脱气15min;
(3)精炼:向炉内充入高纯氩气至0.1MPa,氩气纯度为99.99 wt%,氩气中氧含量为0.00006wt%,将熔融的金属液在1650℃保温15min;
(4)雾化:将金属液以3.8kg/min的重量流率经导流管流下,采用4Mpa的高压、高纯氩气将金属液流破碎成细小液滴,液滴经过冷却和凝固,形成球形粉末,进入粉末收集罐中;
(5)筛分:粉末经充分冷却后,在惰性气体保护下使用气流分级和超声震动筛分,得到细粉粒径为15~53μm,中粉粒径为53~106μm的球形镍基高温合金粉末,并进行真空封装;15~53μm细粉粒径和53~106μm中粉粒径粉末的总收得率仅为82%。
经分析,所制备添加0.20% Sc稀土元素的René104镍基高温合金粉末氧含量为0.0087%,硫含量为0.0018%,50g/2.5mm孔径的流动性为17.4s。在熔炼制粉过程中,添加过量的稀土元素不会进一步提高粉末的性能;反而会增加成本,同时提高15μm以下的粉末比率,降低了满足3D打印所需粒径粉末的收得率。

Claims (10)

  1. 一种用于3D打印的镍基高温合金,其特征在于:用于3D打印的镍基高温合金以质量百分比计,包括下述组分:
    Co:14-23%;
    Cr:11-15%;
    Al:2-5%;
    Ti:3-6%;
    Mo:2.7-5%;
    W:0.5-3%;
    Ta:0.5-4%;
    Nb:0.25-3%;
    Zr:0.02-0.06%;
    B:0.01-0.05%;
    C:0.0015-0.1%;
    RE  0.05-0.18wt%;
    余量为Ni;
    或以其他不可焊镍基高温合金为基体,向基体中加入0.05-0.18wt%的RE;
    所述其他不可焊镍基高温合金选自IN738LC、CM247LC、CMSX-4、René 142、Hastelloy X中的一种;或以IN718、IN625镍基高温合金中的一种为基体,向基体中加入0.05-0.18wt%的RE。
  2. 根据权利要求1所述的一种用于3D打印的镍基高温合金,其特征在于:用于3D打印的镍基高温合金以质量百分比计,包括下述组分:
    Co: 20.6%;
    Cr: 13%;
    Al: 3.4%;
    Ti: 3.9%;
    Mo: 3.8%;
    W: 2.1%;
    Ta: 2.4%;
    Nb: 0.9%;
    Zr: 0.05%;
    B: 0.03%;
    C: 0.04%;
    RE  0.06-0.18wt%;
    余量为Ni。
  3. 根据权利要求1所述的一种用于3D打印的镍基高温合金,其特征在于:RE选自Sc、Y、La、Ce、Er元素中的至少一种。
  4. 根据权利要求3所述的一种用于3D打印的镍基高温合金,其特征在于:RE为Sc;或RE为Sc与Y、La、Ce、Er中至少一种的混合。
  5. 一种如权利要求1-4任意一项所述的用于3D打印镍基高温合金粉末的制备方法,其特征在于:所述制备方法包括下述步骤:
    步骤一:真空熔炼
    按设计组分配取原料,并将原料装入雾化制粉炉的坩埚内,在低于0.1Pa的真空度下采用感应加热,进行真空熔炼;
    步骤二:脱气
    原料熔化并完全合金化后,真空脱气10min~20min;
    步骤三:精炼
    向雾化制粉炉内充入高纯惰性气体至0.1-0.11MPa,将熔融的母合金熔液在1600℃~1650℃温度范围内保温10min~15min;
    步骤四:雾化
    将熔融的母合金熔液以3.5kg/min~5kg/min的流速经导流管流下,用3MPa~5MPa的高压、高纯惰性气体将金属液流破碎成细小液滴,液滴经过冷却和凝固,形成球形粉末,进入粉末收集罐中;
    步骤五:筛分
    粉末经充分冷却后,在惰性气体保护下使用气流分级和超声震动筛分,得到中粉粒径为53~106μm,细粉粒径为15~53μm的球形镍基高温合金粉末,并进行真空封装;
    所述的惰性气体应为氦气、氩气,或氩、氦混合气体,纯度为99.99wt%,其中氧含量小于0.0001wt%。
  6. 根据权利要求5所述的一种3D打印镍基高温合金粉末的制备方法,其特征在于:所述原料中,含有Al-RE中间合金。
  7. 根据权利要求5所述的一种3D打印镍基高温合金粉末的制备方法,其特征在于:粒径为53~106μm的中粉与粒径为15~53μm的细粉的总收得率为88.5%~91.5%。
  8. 根据权利要求5所述的一种3D打印镍基高温合金粉末的制备方法,其特征在于:所得用于3D打印的镍基高温合金粉末的氧含量小于等于0.0126wt%,硫含量小于等于0.0056wt%。
  9. 根据权利要求8所述的一种3D打印镍基高温合金粉末的制备方法,其特征在于:所得用于3D打印的镍基高温合金粉末的氧含量小于等于0.01wt%,硫含量小于等于0.004wt%。
  10. 根据权利要求5所述的一种3D打印镍基高温合金粉末的制备方法,其特征在于:所得用于3D打印的镍基高温合金粉末50g/2.5mm孔径的流动性为15-25 s。经优化后可为15.5-16 s。
PCT/CN2021/105818 2020-08-30 2021-07-12 一种用于3d打印的镍基高温合金及其粉末制备方法 WO2022042088A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/496,809 US20220062992A1 (en) 2020-08-30 2021-10-08 Nickel-based superalloy for 3d printing and powder preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010891092.2A CN111996414B (zh) 2020-08-30 2020-08-30 一种用于3d打印的镍基高温合金及其粉末制备方法
CN202010891092.2 2020-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/496,809 Continuation US20220062992A1 (en) 2020-08-30 2021-10-08 Nickel-based superalloy for 3d printing and powder preparation method thereof

Publications (1)

Publication Number Publication Date
WO2022042088A1 true WO2022042088A1 (zh) 2022-03-03

Family

ID=73464998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105818 WO2022042088A1 (zh) 2020-08-30 2021-07-12 一种用于3d打印的镍基高温合金及其粉末制备方法

Country Status (3)

Country Link
US (1) US20220062992A1 (zh)
CN (1) CN111996414B (zh)
WO (1) WO2022042088A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996414B (zh) * 2020-08-30 2021-06-29 中南大学 一种用于3d打印的镍基高温合金及其粉末制备方法
CN112828289A (zh) * 2020-12-30 2021-05-25 南方科技大学 一种减少热裂的沉淀强化镍基高温合金激光粉床熔融成形方法
CN112775589A (zh) * 2021-01-14 2021-05-11 有研工程技术研究院有限公司 一种高纯窄粒径镍基钎料合金粉末制备方法
CN113084181A (zh) * 2021-04-12 2021-07-09 辽宁冠达新材料科技有限公司 用于3d打印的gh3230镍基高温合金粉末制备方法
CN113369484A (zh) * 2021-06-08 2021-09-10 金川镍钴研究设计院有限责任公司 一种制备低氧含量真空气雾化3d打印高温合金粉末的方法
CN113618060B (zh) * 2021-08-09 2023-02-28 山东大学 一种镍基合金粉末及其制备方法和应用
CN113732280A (zh) * 2021-09-08 2021-12-03 泉州信息工程学院 一种激光选区熔化用石墨烯增强镍基高温合金粉末及其制备方法
CN114480920B (zh) * 2021-12-31 2022-09-02 中南大学 一种3d打印用镍基高温合金粉末及其制备方法和应用
CN114592144A (zh) * 2022-03-09 2022-06-07 上海交通大学 镍基高温合金粉末、镍基高温合金工件和制备方法
CN114535596A (zh) * 2022-03-09 2022-05-27 广东金瓷三维技术有限公司 一种用于3d打印的混合粉体及3d打印方法
CN114737100A (zh) * 2022-04-19 2022-07-12 中南大学 稀土元素钪改性的镍基高温合金及其制备方法
CN115007850B (zh) * 2022-05-11 2023-06-16 北京科技大学 一种3d打印粉末降氧方法
CN115430838B (zh) * 2022-08-26 2023-11-14 上海材料研究所有限公司 一种高钨高硼含量镍基合金粉末的制备方法
CN115572849B (zh) * 2022-09-05 2023-09-29 华南理工大学 一种超细晶镍钛基合金及其制备方法与应用
CN116393708B (zh) * 2023-06-06 2023-09-01 宁波众远新材料科技有限公司 一种用于3d打印的合金粉体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899664A (zh) * 2012-11-15 2013-01-30 丹阳惠达模具材料科技有限公司 激光熔覆合金粉末及其制备方法
CN104550984A (zh) * 2014-12-15 2015-04-29 中国航空工业集团公司北京航空材料研究院 一种3d打印用镍基高温合金粉末的制备方法
CN111996414A (zh) * 2020-08-30 2020-11-27 中南大学 一种用于3d打印的镍基高温合金及其粉末制备方法
CN112008079A (zh) * 2020-08-30 2020-12-01 中南大学 一种原位热处理提高3d打印镍基高温合金力学性能的方法
CN112011713A (zh) * 2020-08-30 2020-12-01 中南大学 一种消除3d打印镍基高温合金裂纹的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3336221A1 (de) * 1982-10-06 1984-04-12 Fuji Electric Co., Ltd., Kawasaki, Kanagawa Fueller fuer gegen schweisshitze bestaendige legierungen auf nickelbasis
WO2012011946A2 (en) * 2010-07-20 2012-01-26 Iowa State University Research Foundation, Inc. Method for producing la/ce/mm/y base alloys, resulting alloys, and battery electrodes
GB2565063B (en) * 2017-07-28 2020-05-27 Oxmet Tech Limited A nickel-based alloy
EP3489376A1 (en) * 2017-11-24 2019-05-29 Siemens Aktiengesellschaft Alloy for gas turbine applications with high oxidation resistance
US10988830B2 (en) * 2018-01-16 2021-04-27 Scandium International Mining Corporation Scandium master alloy production
US20190255609A1 (en) * 2018-02-21 2019-08-22 Honeywell International Inc. Methods for additively manufacturing turbine engine components via binder jet printing with gamma prime precipitation hardened nickel-based superalloys
CN110643856B (zh) * 2018-06-26 2021-11-30 中南大学 一种镍基合金、其制备方法与一种制造物品
CN109468634B (zh) * 2018-12-25 2021-02-02 沈阳大陆激光技术有限公司 一种激光熔覆技术恢复轧机阶梯垫精度的工艺方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899664A (zh) * 2012-11-15 2013-01-30 丹阳惠达模具材料科技有限公司 激光熔覆合金粉末及其制备方法
CN104550984A (zh) * 2014-12-15 2015-04-29 中国航空工业集团公司北京航空材料研究院 一种3d打印用镍基高温合金粉末的制备方法
CN111996414A (zh) * 2020-08-30 2020-11-27 中南大学 一种用于3d打印的镍基高温合金及其粉末制备方法
CN112008079A (zh) * 2020-08-30 2020-12-01 中南大学 一种原位热处理提高3d打印镍基高温合金力学性能的方法
CN112011713A (zh) * 2020-08-30 2020-12-01 中南大学 一种消除3d打印镍基高温合金裂纹的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANG, BUNYU ET AL.: "Development and Application in Ni-based Powders Containing Rare Earth Elements", JOURNAL OF LANZHOU POLYTECHNIC COLLEGE, vol. 14, no. 1, 31 March 2007 (2007-03-31), XP055906062, ISSN: 1009-2269 *

Also Published As

Publication number Publication date
CN111996414B (zh) 2021-06-29
US20220062992A1 (en) 2022-03-03
CN111996414A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
WO2022042088A1 (zh) 一种用于3d打印的镍基高温合金及其粉末制备方法
CN112011713B (zh) 一种消除3d打印镍基高温合金裂纹的方法
CN111496244B (zh) 一种增材制造高强铝合金粉及其制备方法和应用
CN108941588B (zh) 一种激光成形用镍基高温合金粉末的制备方法
CN108330344B (zh) 一种3D打印7xxx铝合金及其制备方法
CN106623959A (zh) 一种增材制造用Waspalloy球形粉末的制备方法
CN111778433B (zh) 一种3d打印用铝合金粉末材料及其制备方法与应用
CN110625112B (zh) 表面分布稀土氧化物的钛或钛合金球形粉末及其制备方法
CN110791686A (zh) 一种用于增材制造的铝合金粉末材料、制备方法及应用
WO2023019697A1 (zh) 一种用于3d打印的高强铝合金粉及其制备方法
CN111659882A (zh) 一种用于3d打印的铝镁合金粉末及其制备方法
CN113817935A (zh) 一种高纯净镍基高温合金及其球形粉末的制备方法
CN108396203A (zh) 稀土铒元素增强SLM专用AlSi10Mg铝合金粉末及其应用
CN109014182A (zh) 增材制造用7000系铝合金粉末及其制备方法
CN113020606A (zh) 用于航空增材制造的铝合金粉末材料、制备方法及3d打印方法
CN111842916A (zh) 一种用于3d打印的铝镁硅合金粉末及其制备方法
CN113512671B (zh) 一种3D打印用高强韧AlCrSc合金粉末及其制备方法与应用
CN108044123B (zh) 一种具有定向凝固组织的Nb-Si-Ti合金制备方法
CN109332717B (zh) 一种球形钼钛锆合金粉末的制备方法
CN111842915A (zh) 一种用于3d打印的铝锰合金粉末及其制备方法
CN114574739B (zh) 一种3d打印铝锂合金及其应用
CN113528901B (zh) 一种增材制造用耐热铝合金球形粉体材料及其制备方法
CN115007869A (zh) 一种服役温度为850℃的粉末冶金用钛铝粉末的制备方法
CN111842913A (zh) 一种用于3d打印的铝锌合金粉末及其制备方法
CN116174733B (zh) 一种合金粉末及其制备方法和应用、一种零件模型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21859928

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21859928

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/10/2023)