CN108044124B - 具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金制备方法 - Google Patents

具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金制备方法 Download PDF

Info

Publication number
CN108044124B
CN108044124B CN201711127817.5A CN201711127817A CN108044124B CN 108044124 B CN108044124 B CN 108044124B CN 201711127817 A CN201711127817 A CN 201711127817A CN 108044124 B CN108044124 B CN 108044124B
Authority
CN
China
Prior art keywords
powder
alloy
pure
lamellar
eutectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711127817.5A
Other languages
English (en)
Other versions
CN108044124A (zh
Inventor
刘伟
熊华平
李能
陈冰清
秦仁耀
孙兵兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN201711127817.5A priority Critical patent/CN108044124B/zh
Publication of CN108044124A publication Critical patent/CN108044124A/zh
Application granted granted Critical
Publication of CN108044124B publication Critical patent/CN108044124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/46Radiation means with translatory movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • B22F2007/045Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method accompanied by fusion or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于高温结构材料的制备技术领域,涉及一种具有层片状组织定向排列特征的近共晶Nb‑Si‑Mo合金制备方法。本发明采用送粉式激光快速成形技术制备具有细小层片状定向排列组织特征的近共晶Nb‑Si‑Mo合金,以市售纯元素粉末为原料,无需特别制备球形粉末或预合金化粉末,原材料准备过程简单。合金由Nb固溶体相和β‑Nb5Si3相两相组成,尺寸约为100~500nm的层片状Nb固溶体相和层片状β‑Nb5Si3相交替排列,并且所有层片状的Nb固溶体相和层片状的β‑Nb5Si3相都近似按同一方向排列。相比传统定向凝固工艺和磁控溅射等工艺制备的Nb‑Si‑Mo共晶合金,本发明基于激光快速熔化和凝固特点,能获得的更加细小的层片状组织,使近共晶成分的Nb‑Si‑Mo合金也能通过本发明实现显微组织的全共晶化。

Description

具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金制备 方法
技术领域
本发明属于高温结构材料的制备技术领域,涉及一种具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金制备方法。
背景技术
为满足高推比航空发动机叶片的研制需求,研究承温能力超过1200℃的新型超高温结构材料是当前材料领域的研究热点之一。Nb-Si基合金作为下一代高温结构材料显示出诱人的应用前景,受到广泛关注,被认为是最具潜力、能在短期内替代现有镍基高温合金的新一代超高温结构材料。
工艺与合金化元素对Nb-Si基合金的显微组织将产生显著影响,不同工艺会得到不同制备得到的Nb-Si基合金典型的显微组织。非自耗真空电弧熔炼制备得到的原子百分含量为Nb-16Si-2Cr合金的显微组织,由初生NbSS相、Nb5Si3和Nb3Si相组成,热处理后相形貌圆润,Nb3Si发生共析分解Nb3Si→NbSS+Nb5Si3。采用光悬浮定向凝固工艺制备的Nb-17.5Si合金由NbSS和Nb5Si3相形成的两相交替排列的定向组织。反应热压烧结工艺(热压温度1600℃,保温1h)制备的Nb-16Si合金,其显微组织由等轴状NbSS、Nb3Si相和Nb5Si3相组成。热挤压+热处理(1500℃/100h)工艺制备的Nb-10Si合金,初生NbSS相沿着挤压方向被拉长,经过热处理后Nb3Si完全分解为次生NbSS和Nb5Si3。采用物理气相沉积工艺可以制备出Nb和Nb5Si3相交替排列的微叠层材料。
由于在Nb-Si-Mo三元系中,存在一个二元Nb-Si系中所没有的新型共晶反应,即L→NbSS+β-Nb5Si3,其中L表示液体;NbSS表示Nb固溶体。通过该反应得到具有片层结构的共晶体,这对于提高合金的综合力学性能十分有利,此外,片层共晶组织的定向排列能进一步提高Nb-Si-Mo合金的综合力学性能。
目前,能获得层片状组织定向排列特征的Nb-Si合金的工艺主要有定向凝固和物理气相沉积方法。传统定向凝固工艺制备的Nb-Si-Mo合金,由于温度梯度较小,合金显微组织较粗大,且由于Nb-Si-Mo合金熔体活性较高,十分容易与定向凝固用陶瓷坩埚反应,在合金中引入杂质元素。物理气相沉积方法制备层片结构金,需要交替沉积Nb和Si,制备过程较复杂,组织十分粗大,单层Nb或Nb5Si3层的厚度约0.1~0.5mm,此外合金中还可能存在部分亚稳相,影响材料组织稳定性,需要后续处理才能完全消除。
发明内容
本发明的目的是提出一种利用高能激光束为熔化热源,制备具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金的方法。
本发明技术方案的具体内容是:
采用送粉式激光快速成形技术制备一种具有层片状组织定向排列的近共晶Nb-Si-Mo高温合金,合金由Nb固溶体相和β-Nb5Si3相两相组成,显微组织呈现尺寸为100~500nm的层片状Nb固溶体相和层片状β-Nb5Si3相交替排列,并且所有层片状的Nb固溶体相和层片状的β-Nb5Si3相都近似按同一方向排列,制备过程包括以下步骤:
(1)分别将市售纯Nb粉,纯Si粉和纯Mo粉通过金属筛筛分,获得粒径分布均匀的纯Nb粉,纯Si粉和纯Mo粉;
(2)根据Nb-Si-Mo三元相图,设计Nb-Si-Mo合金成分,Nb-Si-Mo合金的成分为近共晶成分,按照所需制备的Nb-Si-Mo合金成分,将步骤(1)获得的纯Nb粉,纯Si粉和纯Mo粉称量并混合,获得混合粉末;
(3)将Nb,Si和Mo的混合粉末置于激光快速成形系统的送粉器中,以高纯氩气为载粉气流和保护气;
(4)激光和粉末同轴送出,激光和粉末同步移动,且仅在一个方向上扫描一个道次,在激光的作用下,Nb,Si和Mo的混合粉末在成形基板上熔化形成熔池,并随着粉末和激光向前运动,熔池凝固,得到一层沉积层;
(5)待沉积层表面温度降低至100℃以下后,进行下一沉积层制备;
(6)粉末和激光的同轴头上升一个沉积层厚度,再以步骤(4)获得的沉积层为基体,重复步骤(4)获得另一沉积层;
(7)重复步骤(5)和步骤(6),直到所需高度的Nb-Si-Mo合金制备完成,待合金温度降至室温后取出,得到具有层片状组织定向排列特征的Nb-Si-Mo合金。
步骤(1)中筛分获得的纯Nb粉,纯Si粉和纯Mo粉的平均粒径约为50~100μm。
步骤(2)中所采用的混合方法是采用行星式球磨机混合2~5h,并且在混合过程中不添加任何磨球。
步骤(3)中载粉气流流速:5~10L/min,保护气流速:10~30L/min。
步骤(4)中成形基板为定向凝固态的DZ125合金,合金定向凝固方向平行于送粉式激光快速成形方向。
步骤(4)送粉速率为5~15g/min。
步骤(4)中激光功率设置为:600~3000W,激光焦点与成形基板的距离:0~20mm,激光扫描速率:400~1000mm/min。
本发明具有的优点和有益效果
本发明采用送粉式激光快速成形技术制备具有细小层片状定向排列组织特征的近共晶Nb-Si-Mo合金,以市售纯元素粉末为原料,无需特别制备球形粉末或预合金化粉末,原材料准备过程简单。合金由Nb固溶体相和β-Nb5Si3相两相组成,尺寸约为100~500nm的层片状Nb固溶体相和层片状β-Nb5Si3相交替排列,并且所有层片状的Nb固溶体相和层片状的β-Nb5Si3相都近似按同一方向排列。相比传统定向凝固工艺和磁控溅射等工艺制备的Nb-Si-Mo共晶合金,本发明基于激光快速熔化和凝固特点,能获得的更加细小的层片状组织,此外,由于激光加工的快速凝固特点,使近共晶成分的Nb-Si-Mo合金也能通过本发明实现显微组织的全共晶化。消除了传统熔铸Nb-Si工艺所不可避免的成分偏析,组织不均匀,晶粒粗大等问题,不需要坩埚约束,避免了电极、坩埚等对高活性Nb-Si-Mo合金熔体的污染,合金综合力学性能良好。待沉积合金冷却后再进行下一沉积层的制备,并采用定向凝固合金为成形基板,能在送粉式激光快速成形过程中形成定向热流,保证Nb-Si-Mo合金的组织稳定性。
具体实施方式
以下对本发明做进一步阐述,但本发明并不局限于具体实施例。
本发明采用送粉式激光快速成形技术制备一种具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金,合金由Nb固溶体相和β-Nb5Si3相两相组成,显微组织呈现尺寸约为100~500nm的层片状Nb固溶体相和层片状β-Nb5Si3相交替排列,并且所有层片状的Nb固溶体相和层片状的β-Nb5Si3相都近似按同一方向排列,制备过程包括以下步骤:
(1)分别将市售纯Nb粉,纯Si粉和纯Mo粉通过金属筛筛分,获得平均粒径为50~100μm的纯Nb粉,纯Si粉和纯Mo粉;
(2)根据Nb-Si-Mo三元相图,设计Nb-Si-Mo合金成分,Nb-Si-Mo合金的成分为近共晶成分,按照所需制备的Nb-Si-Mo合金成分,将步骤(1)获得的纯Nb粉,纯Si粉和纯Mo粉采用天平称量,再采用行星式球磨机混合2~5h,并且在混合过程中不添加任何磨球,最后获得与所需制备的Nb-Si-Mo合金成分一致的Nb粉,Si粉和Mo粉的混合粉末;
(3)将步骤(2)中获得的Nb粉+Si粉+Mo粉的混合粉末置于激光快速成形系统的送粉器中,以高纯氩气为载粉气流和保护气,载粉气流流速:5~10L/min,保护气流速:10~30L/min;
(4)以定向凝固态的DZ125合金为成形基板,DZ125合金定向凝固方向平行于送粉式激光快速成形方向;
(5)激光和粉末同轴送出,激光和粉末同步移动,且仅在一个方向上扫描一个道次,送粉速率为:5~15g/min,激光功率为:800~3000W,激光焦点与成形基板的距离:5~20mm,激光扫描速率:400~800mm/min,在激光的作用下,Nb粉+Si粉+Mo粉的混合粉末在成形基板上熔化形成熔池,并随着粉末和激光向前运动,熔池凝固,得到激光单道次扫描的沉积层;
(6)通过表面测温仪测量沉积层表面温度,待沉积层表面温度降低至100℃以下后,再进行下一沉积层制备;
(7)粉末和激光的同轴头上升一个沉积层厚度,沉积层厚度为:0.3~1mm,再以步骤(5)获得的沉积层为基体,重复步骤(5)获得另一沉积层;
(8)重复步骤(6)和步骤(7),直到所需高度的Nb-Si-Mo合金制备完成,待合金温度降至室温后取出,得到薄壁形状的具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金。
实施例
具有层片状组织定向排列特征的近共晶Nb-18Si-10Mo合金的制备方法
(1)将市售的纯Nb粉,纯Si粉和纯Mo粉通过金属筛筛分,获得平均粒度为80μm的纯Nb粉,纯Si粉和纯Mo粉;
(2)按照以原子百分比计为Nb-18Si-10Mo合金的成分,将步骤(1)中获得的80μm的纯Nb粉,纯Si粉和纯Mo粉,采用电子天平称量,再采用行星式球磨机混合2h,混合过程中不添加任何磨球,获得混合粉末;
(3)将步骤(2)中获得的混合粉末置于激光快速成形系统的送粉器中,以高纯氩气为送粉气流,载粉气流为:8L/min,以氩气为保护气,保护气流量为:20L/min;
(4)以尺寸为300mm×300mm×50mm的DZ125合金为成形基板;
(5)采用光纤激光器为热源,激光和粉末同轴送出,激光和粉末同时移动,且仅在一个方向上扫描一个道次,激光与成形基板处于离焦状态,离焦距离设置为13mm,设置激光功率为:1800W,激光扫描速度为:600mm/min;采用同轴送粉方式,混合粉末的送粉速率为10g/min,在基板上沉积宽度约2mm,厚度约为0.5mm,长度约15mm的沉积层;
(6)通过表面测温仪测量沉积层表面温度,待沉积层表面温度降低至100℃以下后,再进行下一沉积层制备;
(7)粉末和激光的同轴头上升一个沉积层厚度,再以步骤(5)获得的沉积层为基体,重复步骤(5)获得另一沉积层;
(8)重复步骤(6)和步骤(7),直到获得高度约为15mm,长度为15mm,厚度为2mm的Nb-18Si-10Mo合金试块,待合金试块温度降至室温后取出,得到具有层片状组织定向排列特征的近共晶Nb-18Si-10Mo合金。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所做的等效结构或等效流程变换,或直接或间接运用在其他相关技术领域,均同理包括在本发明的专利保护范围内。

Claims (5)

1.具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金制备方法,其特征在于:采用送粉式激光快速成形技术制备一种具有层片状组织定向排列的近共晶Nb-Si-Mo高温合金,合金由Nb固溶体相和β-Nb5Si3相两相组成,显微组织呈现尺寸为100~500nm的层片状Nb固溶体相和层片状β-Nb5Si3相交替排列,并且所有层片状的Nb固溶体相和层片状的β-Nb5Si3相都近似按同一方向排列,制备过程包括以下步骤:
(1)分别将市售纯Nb粉,纯Si粉和纯Mo粉通过金属筛筛分,获得粒径分布均匀的纯Nb粉,纯Si粉和纯Mo粉;
(2)根据Nb-Si-Mo三元相图,设计Nb-Si-Mo合金成分,Nb-Si-Mo合金的成分为近共晶成分,按照所需制备的Nb-Si-Mo合金成分,将步骤(1)获得的纯Nb粉,纯Si粉和纯Mo粉称量并混合,获得混合粉末;
(3)将Nb,Si和Mo的混合粉末置于激光快速成形系统的送粉器中,以高纯氩气为载粉气流和保护气;
(4)激光和粉末同轴送出,激光和粉末同步移动,且仅在一个方向上扫描一个道次,送粉速率为5~15g/min,激光功率设置为:600~3000W,激光焦点与成形基板的距离:0~20mm,激光扫描速率:400~1000mm/min;在激光的作用下,Nb,Si和Mo的混合粉末在成形基板上熔化形成熔池,并随着粉末和激光向前运动,熔池凝固,得到一层沉积层;
(5)待沉积层表面温度降低至100℃以下后,进行下一沉积层制备;
(6)粉末和激光的同轴头上升一个沉积层厚度,再以步骤(4)获得的沉积层为基体,重复步骤(4)获得另一沉积层;
(7)重复步骤(5)和步骤(6),直到所需高度的Nb-Si-Mo合金制备完成,待合金温度降至室温后取出,得到具有层片状组织定向排列特征的Nb-Si-Mo合金。
2.根据权利要求1所述的具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金制备方法,其特征在于:步骤(1)中筛分获得的纯Nb粉,纯Si粉和纯Mo粉的平均粒径为50~100μm。
3.根据权利要求1所述的具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金制备方法,其特征在于:步骤(2)中所采用的混合方法是采用行星式球磨机混合2~5h,并且在混合过程中不添加任何磨球。
4.根据权利要求1所述的具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金制备方法,其特征在于:步骤(3)中载粉气流流速:5~10L/min,保护气流速:10~30L/min。
5.根据权利要求1所述的具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金制备方法,其特征在于:步骤(4)中成形基板为定向凝固态的DZ125合金,合金定向凝固方向平行于送粉式激光快速成形方向。
CN201711127817.5A 2017-11-14 2017-11-14 具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金制备方法 Active CN108044124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711127817.5A CN108044124B (zh) 2017-11-14 2017-11-14 具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711127817.5A CN108044124B (zh) 2017-11-14 2017-11-14 具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金制备方法

Publications (2)

Publication Number Publication Date
CN108044124A CN108044124A (zh) 2018-05-18
CN108044124B true CN108044124B (zh) 2020-03-27

Family

ID=62119748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711127817.5A Active CN108044124B (zh) 2017-11-14 2017-11-14 具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金制备方法

Country Status (1)

Country Link
CN (1) CN108044124B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703971B (zh) * 2012-06-01 2015-05-27 西北工业大学 一种制备Si基二元共晶自生复合材料的方法
EP2886225B1 (en) * 2013-12-23 2017-06-07 Ansaldo Energia IP UK Limited Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
CN103949639B (zh) * 2014-05-19 2016-08-17 北京航空航天大学 一种激光选区熔化技术制备Nb-Si基超高温合金的方法
CN105132844B (zh) * 2015-09-30 2017-10-17 北京航空航天大学 一种改善Nb‑Si基多元合金高温抗氧化性的方法

Also Published As

Publication number Publication date
CN108044124A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
Xiang et al. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique
KR100689597B1 (ko) 규화철 스퍼터링 타겟트 및 그 제조방법
CN111872386B (zh) 一种高强度铝镁合金的3d打印工艺方法
CN109022920B (zh) 一种无裂纹的4d打印钛镍形状记忆合金及其制备方法
CN110218907B (zh) 一种用于3d打印的含硼钛基复合粉末及其制备方法
KR102646469B1 (ko) Cr-Si 계 소결체
CN114939654B (zh) 一种用于激光增材制造的高熵合金粉末及其制备方法、应用
CN112853168A (zh) 一种AlSi10Mg粉末及激光选区熔化制造工艺
CN111850332A (zh) 一种高强度铝锌合金的3d打印工艺方法
CN111673085A (zh) 一种高强度铝镁硅合金的3d打印工艺方法
CN108044123B (zh) 一种具有定向凝固组织的Nb-Si-Ti合金制备方法
CN104704139B (zh) Cu‑Ga合金溅射靶及其制造方法
TWI387661B (zh) Manufacturing method of nickel alloy target
CN102864343B (zh) 一种原位铝基复合材料孕育剂的制备方法
EP0577116B1 (en) Process for producing a composite material consisting of gamma titanium aluminide as matrix with titanium diboride as perserdoid therein
CN107876763B (zh) 一种具有定向凝固组织特征的Nb-Si合金制备方法
CN108044122B (zh) 一种Nb-Si基合金空心涡轮叶片的制备方法
CN108044124B (zh) 具有层片状组织定向排列特征的近共晶Nb-Si-Mo合金制备方法
CN113909733B (zh) 一种电弧熔丝增材制造用铝镁合金焊丝及其制备方法
CN114807719A (zh) 一种实现AlxCoFeNi高熵合金晶粒细化的激光熔化沉积方法
CN113652585A (zh) TiC增强低密度铌合金及其组织可控的激光立体成形方法
JP2006241484A (ja) 新規ニオブ基複合体及びその利用
TW201809297A (zh) 一種高純度鎢金屬材料及鎢靶材之製備方法
JP2738766B2 (ja) 化合物焼結体の製造方法
Zhang et al. Refractory high-entropy alloys fabricated by powder metallurgy: Progress, challenges and opportunities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant