WO2022041426A1 - 一种环状碳酸酯的微界面制备系统及方法 - Google Patents

一种环状碳酸酯的微界面制备系统及方法 Download PDF

Info

Publication number
WO2022041426A1
WO2022041426A1 PCT/CN2020/122809 CN2020122809W WO2022041426A1 WO 2022041426 A1 WO2022041426 A1 WO 2022041426A1 CN 2020122809 W CN2020122809 W CN 2020122809W WO 2022041426 A1 WO2022041426 A1 WO 2022041426A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
interface
carbon dioxide
carboxylation reaction
olefin
Prior art date
Application number
PCT/CN2020/122809
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
刘兴邦
刘甲
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2022041426A1 publication Critical patent/WO2022041426A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates

Definitions

  • the invention relates to the field of preparation of cyclic carbonates, in particular to a micro-interface preparation system and method of cyclic carbonates.
  • Cyclic carbonate is an important chemical product. Cyclic carbonate has a wide range of applications in the fields of organic synthesis intermediates, polar aprotic solvents, lithium-ion battery electrolytes, and polymer monomers.
  • the industrial synthesis of cyclic carbonate is the carboxylation of epoxy compounds and carbon dioxide.
  • the process uses metal halides and ammonium salts as catalysts, and realizes the synthesis of cyclic carbonates from epoxy compounds and carbon dioxide at a pressure of 2.0-5.0 MPa and a temperature of 100-150 °C.
  • olefins are more widely available, cheaper and less toxic than epoxies.
  • Compounds can be prepared from olefins by epoxidation. Using olefin and carbon dioxide as raw materials and imidazole bicarbonate ionic liquid as bifunctional catalyst, olefin epoxidation reaction and epoxy compound carboxylation reaction with carbon dioxide are connected in series to synthesize cyclic carbonate in one step. The production of cyclic carbonate by oxidative carboxylation of olefins and carbon dioxide can reduce the cost of raw materials, avoid the separation and storage of epoxy compounds, and simplify the production process.
  • the carboxylation reaction is carried out by directly feeding the liquid raw material and carbon dioxide gas into the reactor, because the carbon dioxide gas and the liquid raw material cannot be fully mixed in the reactor. , so that the reaction needs to be carried out under a higher operating pressure of carbon dioxide, the reaction efficiency is low, and the reaction energy consumption is high.
  • the first object of the present invention is to provide a micro-interface preparation system of cyclic carbonate.
  • the micro-interface preparation system is based on the micro-interface reaction strengthening technology, and the carbon dioxide is efficiently broken into micron-sized bubbles by a micro-interface generator, and dispersed into the liquid
  • a micro-interface system is formed in the raw material, which can increase the gas-liquid interface area in the carboxylation reaction kettle dozens of times, greatly improve the mass transfer rate of the gas phase to the reaction liquid and the macro-hydrogenation rate, so as to realize the direct synthesis of ring from olefin and carbon dioxide. It can solve the problem of low efficiency of the reaction system because carbon dioxide and liquid raw materials cannot be fully mixed in the reaction kettle in the prior art.
  • the second object of the present invention is to provide a method for preparing cyclic carbonate by adopting the above-mentioned micro-interface preparation system.
  • the cyclic carbonate obtained by the reaction has high purity and wide application, improves the applicability of the cyclic carbonate itself, and is worthwhile. Widespread application.
  • the invention provides a micro-interface preparation system of cyclic carbonate, comprising a stirring tank and a carboxylation reaction tank, wherein both the stirring tank and the carboxylation reaction tank are filled with an ionic liquid catalyst;
  • the side of the stirring tank is provided with a micro-interface unit, and the micro-interface unit is composed of several external micro-interface generators.
  • Two branch pipelines carbon dioxide is introduced into the micro-interface unit from the gas source conveying pipeline, and carbon dioxide, oxidant and olefin enter the interior of the micro-interface unit for breaking the carbon dioxide gas into micro-bubbles of micron level;
  • the bottom of the carboxylation reaction kettle is provided with a reaction material liquid inlet, the reaction material liquid inlet is communicated with the stirring tank through an overflow pipe, the carboxylation reaction kettle is provided with a built-in micro-interface generator, and the built-in micro-interface generator is arranged in the carboxylation reaction kettle.
  • the micro-interface generator is provided with a carbon dioxide feed port for dispersing and breaking carbon dioxide into micro-bubbles under the condition that the reaction material liquid is used as a medium;
  • the micro-interface preparation system of the cyclic carbonate of the present invention is provided with a micro-interface unit before the stirring kettle and a micro-interface generator inside the carboxylation reaction kettle, so that the entering carbon dioxide gas is dispersed and broken into micro-bubbles, thereby To improve the mass transfer effect, the olefin solution, the oxidant aqueous solution, and the reactant liquid introduced into the carboxylation reactor are all dispersed and broken in coordination with the gas, which is equivalent to the role of the medium.
  • the external micro-interface generators are arranged sequentially from top to bottom along the vertical direction.
  • the number of the external micro-interface generators is 3, and connecting rods are connected between the bottom surface and the top surface between the adjacent micro-interface generators.
  • the micro-interface unit of the present invention is arranged on the outside of the stirring tank, and is arranged in order from top to bottom, and the oxidant, olefin and carbon dioxide are collected and entered into the micro-interface unit through the main pipeline, because they enter the micro-interface unit in a collected manner.
  • the fusion effect between the raw materials is further improved, so that the incoming carbon dioxide enters into each micro-interface generator in parallel, which is equivalent to forming a micro-interface system in each micro-interface generator, so as to realize the gas phase in the liquid phase as the medium.
  • the micro-interface generator in the middle is the closest to the gas-phase feed port, so it is used as the main dispersed and broken micro-interface system, and then the upper and lower two micro-interfaces
  • the generator forms a secondary micro-interface system and a tertiary micro-interface system, which also has the effect of strengthening the carboxylation reaction.
  • a connecting rod is specially arranged between the micro-interface generators to strengthen the fixing effect.
  • the reaction feed liquid after the addition reaction is carried out from the stirring tank enters the carboxylation reaction kettle from the inlet of the reaction feed liquid from the overflow pipe through the pipeline when the liquid level reaches the top of the kettle, and further carboxylation is carried out in the carboxylation reaction kettle
  • the built-in micro-interface generator in the carboxylation reaction kettle is provided with a carbon dioxide feed port on the side. inside the reactor.
  • the micro-interface unit and the built-in micro-interface generator break the carbon dioxide into micro-bubbles with a diameter greater than or equal to 1 ⁇ m and less than 1 mm, so that the carbon dioxide contacts the epoxy compound generated in situ in the state of micro-bubbles, so as to increase the carboxylation reaction process.
  • the mass transfer area of the phase boundary between the carbon dioxide and the epoxy compound generated in situ and fully mix and then carry out the carboxylation reaction, thereby solving the problem in the prior art that the carbon dioxide and the epoxy compound are in the stirring tank and the carboxylation reactor. Insufficient mixing can not be obtained, resulting in a problem that the reaction efficiency of the system is reduced.
  • the above-mentioned external micro-interface generators and built-in micro-interface generators are of pneumatic type. By passing carbon dioxide, olefin solution, and oxidant solution into the micro-interface generator and then dispersing and crushing, the subsequent hydrogenation reaction is strengthened, and sulfur, nitrogen, etc. are removed. impurities, improve the mass transfer effect.
  • the oxidant delivery pipeline is connected with an oxidant storage tank, and the oxidant storage tank stores tert-butyl hydroperoxide or hydrogen peroxide.
  • a first delivery pump is preferably provided on the oxidant delivery pipeline.
  • the olefin conveying pipeline is connected with an olefin storage tank, which is used for conveying the olefin solution in the olefin storage tank to the micro-interface unit through the olefin conveying pipeline.
  • a second delivery pump is preferably provided on the olefin delivery pipeline.
  • micro-interface generator used in the present invention has been embodied in the inventor's prior patents, such as application numbers CN201610641119. Patents of CN205833127U and CN207581700U. In the previous patent CN201610641119.6, the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator) were introduced in detail.
  • the body is provided with an inlet communicating with the cavity, the opposite first and second ends of the cavity are open, wherein the cross-sectional area of the cavity is from the middle of the cavity to the first and second ends of the cavity.
  • the second end is reduced; the secondary crushing piece is arranged at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is arranged in the cavity, and both ends of the secondary crushing piece and the cavity are open An annular channel is formed between the through holes of the micro-bubble generator.
  • the micro-bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, we can know that its specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe.
  • the micro-bubble generator in this patent belongs to the pneumatic micro-interface generation. device.
  • the previous patent 201610641251.7 records that the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet, and the secondary bubble breaker communicates the feed port with the gas-liquid mixture outlet, indicating that the bubble breaker is both It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating liquid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid breaker. The mixture is simultaneously fed into the elliptical rotating ball for rotation, so that the bubbles are broken during the rotation, so the secondary bubble breaker is actually a gas-liquid linkage type micro-interface generator.
  • both hydraulic micro-interface generators and gas-liquid linkage micro-interface generators belong to a specific form of micro-interface generators.
  • the micro-interface generators used in the present invention are not limited to the above-mentioned forms.
  • the specific structure of the bubble breaker described in the prior patent is only one of the forms that the micro-interface generator of the present invention can take.
  • the previous patent 201710766435.0 recorded that "the principle of the bubble breaker is to achieve high-speed jets to achieve gas collision", and also stated that it can be used in micro-interface enhanced reactors to verify the relationship between the bubble breaker and the micro-interface generator.
  • the top of the bubble breaker is the liquid phase inlet, and the side is the gas phase inlet.
  • the liquid phase entering from the top provides the entrainment power, so as to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the accompanying drawings.
  • the bubble breaker has a conical structure, and the diameter of the upper part is larger than that of the lower part, so that the liquid phase can provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed in the early stage of the previous patent application, it was named as micro-bubble generator (CN201610641119.6), bubble breaker (201710766435.0), etc., and later changed its name to micro-interface generator with continuous technological improvement.
  • the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the names are different.
  • the micro-interface generator of the present invention belongs to the prior art, although some bubble breakers belong to the type of pneumatic bubble breakers, some belong to the type of hydraulic bubble breakers, and some belong to the type of gas bubble breakers.
  • the type of liquid-linked bubble breaker but the difference between the types is mainly selected according to the specific working conditions.
  • the connection between the micro-interface generator and the reactor and other equipment, including the connection structure and connection position depends on the micro-interface generator. It depends on the structure of the interface generator, which is not limited.
  • the above-mentioned liquid catalyst is a bifunctional catalyst of imidazole bicarbonate ionic liquid, and the type of the oxidant is an aqueous solution of tert-butyl peroxide (the mass fraction of tert-butyl hydroperoxide is 70%).
  • the type of catalyst is not limited, as long as it can be used. Make sure that the oxidative carboxylation reaction proceeds smoothly.
  • the oxidative carboxylation reaction solution enters from the side wall of the flash tank, the top of the flash tank is provided with a flash product outlet, the bottom of the flash tank is provided with a catalyst outlet, and the catalyst The outlet is connected to the side wall of the carboxylation reaction kettle for recycling the ionic liquid catalyst, and the outlet of the flash product is connected to the dehydration tower for dehydrating the flash product.
  • the ionic liquid catalyst after the flashing treatment is circulated back to the inside of the carboxylation reaction kettle, so as to be used again for the oxidative carboxylation reaction inside the reaction kettle, and at the same time
  • the flashed product obtained by flashing is sent to the product purification unit (dehydration column and rectification column).
  • the product purification unit sequentially dehydrates and rectifies other products obtained by the flash distillation, and finally obtains the product cyclic carbonate.
  • the dehydration product from the dehydration tower enters the rectification tower for rectification, and the obtained product is stored in the finished product tank. After the final product is collected, it is stored in the finished product tank. The product is generally removed from the rectification tower. The lateral line is extracted. And other components produced during the reaction are excluded from the system. For example, the gas phase from the top of the rectification tower is returned to the gas source transportation pipeline as a raw material.
  • the present invention also provides a preparation method of a cyclic carbonate micro-interface preparation system, comprising:
  • the olefin solution is mixed with carbon dioxide and the micro-interface is dispersed and broken, and then the carboxylation reaction is carried out, and then the product is collected by flashing, dehydration and rectification.
  • the temperature of the carboxylation reaction is 50-80° C.
  • the pressure of the carboxylation reaction is 0.1-1 MPa.
  • the preparation method breaks carbon dioxide into micro-scale micro-bubbles through the micro-interface, and releases the micro-bubbles into the inside of the carboxylation reaction kettle, so as to increase the amount of carbon dioxide and in-situ generated in the carboxylation reaction process.
  • the mass transfer area of the phase boundary between the cyclic carbonates makes the carbon dioxide fully contact with the epoxy compound generated in situ in the state of microbubbles, and the carboxylation reaction is carried out.
  • the product obtained by adopting the cyclic carbonate reaction of the present invention has good quality and high yield.
  • the preparation method of cyclic carbonate has the advantages of low reaction temperature, greatly reduced pressure and high liquid hourly space velocity, which is equivalent to increasing the production capacity.
  • the ionic liquid catalyst is filled into the stirred tank and the carboxylation reaction tank, the olefin is filled into the olefin storage tank, the t-butyl hydroperoxide/hydrogen peroxide is filled into the oxidant storage tank, and carbon dioxide is transported from the gas source
  • the pipeline enters, the system is started, and the olefin, oxidant and carbon dioxide are quantitatively transported to the inside of the micro-interface unit.
  • the olefin and the oxidant undergo oxidation reaction in the stirring tank to generate epoxy compounds, and the epoxy compounds undergo carboxylation reaction with carbon dioxide to generate cyclic carbonates.
  • the built-in micro-interface located in the carboxylation reactor The generator breaks the carbon dioxide into micro-sized micro-bubbles, and releases the micro-bubbles into the inside of the reaction kettle, so as to increase the phase boundary mass transfer area between the carbon dioxide and the epoxy compound during the carboxylation reaction. , so that the carbon dioxide fully contacts the epoxy compound in the state of microbubbles, and the carboxylation reaction is carried out.
  • the micro-interface preparation system of the cyclic carbonate of the present invention enables the micro-interface generator to break the carbon dioxide into micro-interfaces with a diameter greater than or equal to 1 ⁇ m and less than 1 mm before the carbon dioxide and the epoxy compound generated in situ undergo a carboxylation reaction. bubbles, so that the carbon dioxide contacts the cyclic carbonate generated in situ in the state of microbubbles, so as to increase the phase boundary mass transfer area between carbon dioxide and the cyclic carbonate generated in situ during the carboxylation reaction, and carry out sufficient Mixing and then carrying out the carboxylation reaction, thereby solving the problem in the prior art that the reaction efficiency of the system is reduced because the carbon dioxide and the cyclic carbonate carboxylation reaction cannot be fully mixed inside the reactor;
  • the micro-interface preparation system of the present invention returns the carbon dioxide and catalyst obtained by final separation to be reused, thereby further saving the production cost;
  • FIG. 1 is a schematic structural diagram of a micro-interface preparation system for cyclic carbonate provided in an embodiment of the present invention.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • Fig. 1 it is the micro-interface preparation system of the cyclic carbonate according to the embodiment of the present invention, which mainly comprises a stirred tank 20 and a carboxylation reaction kettle 14.
  • the side of the stirred tank 20 is provided with a micro-interface unit, and the micro-interface unit is composed of A number of external micro-interface generators 19 are formed, and the external micro-interface generators 19 are arranged in sequence from top to bottom along the vertical direction.
  • the number of external micro-interface generators 19 is preferably three.
  • the main pipeline 25 leading into the micro-interface unit is simultaneously connected with the oxidant delivery pipeline 24 and the two branch pipelines of the olefin delivery pipeline 23, and is simultaneously connected with the gas source delivery pipeline 13, and carbon dioxide, oxidant and olefin enter the inside of the micro-interface generator to For breaking the micro-bubbles of the micron level of carbon dioxide gas, the stirring kettle 20 and the carboxylation reaction kettle 14 are first filled with 200 g of imidazole bicarbonate ionic liquid catalyst; 1kg of styrene in the olefin storage tank 11 is transported to the stirred tank 20 through the olefin transport pipeline 23.
  • the olefin transport pipeline 23 is provided with a second transport pump 29, which is transported by the second circulation pump.
  • the oxidant storage tank 12 is connected with the oxidant delivery pipeline 24, and is used for transporting 2 kg of tert-butyl hydroperoxide aqueous solution (the mass fraction of tert-butyl hydroperoxide is 70%) in the oxidant storage tank 12 through the oxidant delivery pipeline 24 to the oxidant delivery pipeline 24.
  • a first conveying pump 28 is provided on the oxidant conveying pipeline 24, and the conveying is carried out by the first circulating pump.
  • the gas source conveying pipeline 13 ensures that there is a sufficient amount of carbon dioxide gas source, the system is started, the temperature of the system is set to 50°C, and the pressure is set to 1.0MPa.
  • the gas phase dispersed and broken by the micro-interface unit is more likely to undergo a cycloaddition reaction with the raw materials and the oxidant.
  • the stirring tank 20 is equipped with a speed-adjustable motor condensing coil, and the jacket is heated.
  • the reaction liquid level reaches the overflow pipe 27 and enters into the carboxylation reaction kettle 14 through the pipeline from the reaction material liquid inlet 26 at the bottom of the carboxylation reaction kettle 14, and the reaction is further completed.
  • styrene is hydrogenated by tert-butyl peroxide under the catalysis of imidazole bicarbonate ionic liquid to generate ethylene oxide, and at the same time, the built-in micro-interface generator 21 breaks carbon dioxide into micron scales The microbubbles are released into the carboxylation reactor 14, so that the carbon dioxide in the state of microbubbles is fully contacted with the ethylene oxide generated in situ, and the carboxylation reaction is carried out.
  • the oxidative carboxylation reaction liquid after the carboxylation reaction is carried out is transported to the flash tank 15, the top of the flash tank 15 is provided with a flash product outlet, and the bottom of the flash tank 15 is provided with a catalyst outlet, which is used for the oxidative carboxylation reaction liquid.
  • the flashing process is carried out, after the flashing, the ionic liquid catalyst in the flashing product is sent out through the catalyst outlet and then circulated to the inside of the carboxylation reactor 14 for the oxidative carboxylation reaction inside the carboxylation reactor 14 again, except for the catalyst.
  • the flashed product is sent to a subsequent product purification unit.
  • the flash product sent to the product purification unit passes through the dehydration tower 16 and the rectification tower 17 for corresponding dehydration and rectification in turn.
  • the rectification process finally obtains the product styrene cyclic carbonate, and the styrene cyclic carbonate is collected and stored in the finished product tank 18 .
  • Other components produced in the reaction process are excluded from the system, and the yield of styrene cyclic carbonate is about 85%, and the gas phase exiting from the top of the rectification tower 17 is returned to the gas source conveying pipeline 13 for reuse.
  • the micro-interface generator converts the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubble and transfers it to the bubble, so that the bubble is broken into micro-bubbles with a diameter of greater than or equal to 1 ⁇ m and less than 1 mm.
  • the energy input method or gas-liquid ratio it is divided into pneumatic micro-interface generator, hydraulic micro-interface generator and gas-liquid linkage micro-interface generator, among which the pneumatic micro-interface generator is driven by gas, and the input gas volume is much larger than the liquid volume;
  • the interface generator is driven by liquid, and the input gas volume is generally less than the liquid volume;
  • the gas-liquid linkage micro-interface generator is driven by gas and liquid simultaneously, and the input gas volume is close to the liquid volume.
  • the micro-interface generator is selected from one or more of pneumatic micro-interface generators, hydraulic micro-interface generators and gas-liquid linkage micro-interface generators.
  • micro-interface generators can also be added.
  • the installation position is not limited. It can be external or built-in. When built-in, it can also be installed on the side wall of the kettle. In order to achieve hedging of the micro-bubbles coming out of the outlet of the micro-interface generator.
  • the pressure and temperature in the carboxylation reactor 14 are reduced, and the energy consumption is sufficiently reduced.
  • the micro-interface preparation system of cyclic carbonate of the present invention has fewer equipment components, small footprint, low energy consumption, low cost and high safety. , the reaction is controllable, and the conversion rate of raw materials is high, which is equivalent to providing a micro-interface preparation system with stronger operability for the field of cyclic carbonate, which is worthy of widespread application.

Abstract

本发明提供了一种环状碳酸酯的微界面制备系统及方法,微界面制备系统包括:搅拌釜、羧化反应釜,搅拌釜以及羧化反应釜内均装填有离子液体催化剂;搅拌釜的侧面设置有微界面机组,微界面机组由若干个外置微界面发生器构成,通入所述微界面机组的总管道同时连接有氧化剂输送管道、以及烯烃输送管道的两个分支管道,二氧化碳从所述气源输送管道通入到所述微界面机组中,二氧化碳、氧化剂以及烯烃进入到微界面机组内部以用于破碎二氧化碳气体为微米级别的微气泡。本发明的微界面制备系统增大羧化反应过程中二氧化碳与原位生成的环状碳酸酯之间的相界传质面积,并进行充分混合再进行羧化反应。

Description

一种环状碳酸酯的微界面制备系统及方法 技术领域
本发明涉及环状碳酸酯制备领域,具体而言,涉及一种环状碳酸酯的微界面制备系统及方法。
背景技术
环状碳酸酯是一种重要的化学产品,环状碳酸酯在有机合成中间体,极性非质子型溶剂,锂离子电池电解质,聚合物单体等领域有着广泛的应用。工业上合成环状碳酸酯是采用环氧化合物与二氧化碳羧化法。该工艺采用金属卤化物和铵盐为催化剂,在压力2.0-5.0MPa和温度100-150℃下实现了环氧化合物和二氧化碳合成环状碳酸酯。
然而大部分环氧化合物有毒性,可能会诱发癌症。相较于环氧化合物,烯烃来源更广泛,价格更便宜且毒性较小。烯烃通过环氧化反应可以制备化合物。以烯烃和二氧化碳为原料,以咪唑碳酸氢盐离子液体为双功能催化剂,将烯烃环氧化反应和环氧化合物与二氧化碳羧化反应串联,一步合成环状碳酸酯。烯烃与二氧化碳氧化羧化法生产环状碳酸酯可以降低原料成本,避免环氧化合物的分离及存储,简化生产流程。
同时,现有的二氧化碳羧化反应系统制备环状碳酸酯时,是通过将液体原料和二氧化碳气体直接通入反应釜中进行羧化反应,由于二氧化碳气体和液体原料在反应釜中无法得到充分混合,从而导致反应需要在较高的二氧化碳操作压力下进行,反应效率低下,反应能耗高。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种环状碳酸酯的微界面制备系统,该微界面制备系统基于微界面反应强化技术,通过微界面发生器将二氧化碳高效破碎成微米级气泡,并分散到液体原料中形成微界面体系,以数十倍地提高羧化反应釜内的气液相界面积,大幅提高气相向反应液的传质速率及宏观加氢速率,以实现由烯烃与二氧化碳直接合成环状碳酸酯,并达到解决现有技术中由于二氧化碳和液体原料在反应釜内无法得到充分混合,导致反应系统效率低下的问题。
本发明的第二目的在于提供一种采用上述微界面制备系统进行环状碳酸酯的制备方法,反应得到的环状碳酸酯纯度高,应用广泛,提高了环状碳酸酯本身的适用面,值得广泛推广应用。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种环状碳酸酯的微界面制备系统,包括搅拌釜、羧化反应釜,所述搅拌釜以及羧化反应釜内均装填有离子液体催化剂;
所述搅拌釜的侧面设置有微界面机组,所述微界面机组由若干个外置微界面发生器构成,通入所述微界面机组的总管道同时连接有氧化剂输送管道、以及烯烃输送管道的两个分支管道,二氧化碳从所述气源输送管道通入到所述微界面机组中,二氧化碳、氧化剂以及烯烃进入到微界面机组内部以用于破碎二氧化碳气体为微米级别的微气泡;
所述羧化反应釜的底部设置有反应料液进口,所述反应料液进口与所述搅拌釜通过溢流管相通,所述羧化反应釜内设置有内置微界面发生器,所述内置微界面发生器上设置有二氧化碳进料口,以用于在所述反应料液为介质的情况下将二氧化碳分散破碎成微气泡;
从所述羧化反应釜内反应后的氧化羧化反应液依次经过闪蒸罐、脱水塔、精馏塔提纯后,得到环状碳酸酯产品。
本发明的环状碳酸酯的微界面制备系统,通过在搅拌釜之前设置有微界面 机组以及在羧化反应釜内部设置有微界面发生器,将进入的二氧化碳气体进行分散破碎成微气泡,从而提高传质效果,在微界面机组内部通入的烯烃溶液、以及氧化剂水溶液、还有在羧化反应釜内通入的反应料液均是配合气体的分散破碎,相当于介质的作用。
优选地,所述外置微界面发生器沿垂直方向由上至下依次设置。
优选地,所述外置微界面发生器的个数为3个,相邻所述微界面发生器之间的底面与顶面之间连接有连接杆。
本发明的微界面机组设置在了搅拌釜的外侧,从上至下依次排布的方式设置,而且氧化剂、烯烃以及二氧化碳汇总后通过总管道进入到微界面机组中,因为以汇总后的方式进入更加提高了原料之间的融合效果,这样进入的二氧化碳并行进入到每一个微界面发生器中,相当于在每个微界面发生器均形成一次微界面体系,以实现气相在以液相为介质的前提下在微界面发生器内部得到充分的分散破碎,最中部的微界面发生器离气相进料口最为接近,所以其作为主要分散破碎的微界面体系,然后上部与下部的两个微界面发生器形成二次微界面体系以及三次微界面体系,也起到加强羧化反应的效果。
此外,为了起到良好的固定作用,特在微界面发生器之间设置有连接杆以起到加强固定的效果。
从搅拌釜进行完加成反应后的反应料液当液面到釜顶后从溢流管经过管线从反应料液进口进入到羧化反应釜内,在羧化反应釜内进一步的进行羧化氧化反应,羧化反应釜内的内置微界面发生器侧面设置有二氧化碳进料口,为了使得内置微界面发生器更加稳定,特在内置微界面发生器的两侧设置有支架,固定在羧化反应釜的内部。
微界面机组以及内置微界面发生器将二氧化碳破碎成直径为大于等于1μm、小于1mm的微气泡,使得二氧化碳以微气泡的状态与原位生成的环氧化合物接触,以增大羧化反应程中二氧化碳与原位生成的环氧化合物之间的相界传质面积,并进行充分混合再进行羧化反应,从而解决了现有技术中由于二氧 化碳和环氧化合物在搅拌釜、羧化反应釜内部无法得到充分混合,导致系统反应效率降低的问题。
上述外置微界面发生器以及内置微界面发生器的类型为气动式,通过将二氧化碳与烯烃溶液、氧化剂溶液通入微界面发生器后分散破碎,以加强后续加氢反应,脱除硫、氮等杂质,提高传质效果。
优选地,所述氧化剂输送管道连接有氧化剂储罐,所述氧化剂存储罐内存储叔丁基过氧化氢或双氧水。氧化剂输送管道上优选设置有第一输送泵。
优选地,所述烯烃输送管道连接有烯烃存储罐,用于将所述烯烃存储罐中的烯烃溶液通过烯烃输送管道输送至所述微界面机组内。烯烃输送管道上优选设置有第二输送泵。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合 物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。
综上所述,本发明的微界面发生器属于现有技术,虽然有的气泡破碎器属于气动式气泡破碎器类型,有的气泡破碎器属于液动式气泡破碎器类型,还有的属于气液联动式气泡破碎器类型,但是类型之间的差别主要是根据具体工况的不同进行选择,另外关于微界面发生器与反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。
上述液体催化剂为咪唑碳酸氢盐离子液体的双功能催化剂,氧化剂的种类 为叔丁基过氧水溶液(叔丁基过氧化氢的质量分数为70%),当然催化剂的种类并不限定,只要能够确保氧化羧化反应顺利进行即可。
优选地,所述氧化羧化反应液从所述闪蒸罐的侧壁进入,所述闪蒸罐的顶部设置有闪蒸产物出口,所述闪蒸罐的底部设置有催化剂出口,所述催化剂出口连接所述羧化反应釜的侧壁用于将离子液体催化剂返回利用,所述闪蒸产物出口连接所述脱水塔用于将闪蒸产物进行脱水处理。
通过将氧化羧化反应液输送至闪蒸罐内部进行闪蒸处理,闪蒸处理后的离子液体催化剂循环返回至羧化反应釜内部,以再次用于反应釜内部的氧化羧化反应,并同时将闪蒸得到的闪蒸产物输送至产物提纯单元(脱水塔以及精馏塔)。产物提纯单元对所述闪蒸得到的其他产物依次进行脱水和精馏,最终得到产品环状碳酸酯。
优选地,所述脱水塔出来的脱水产物进入到所述精馏塔进行精馏,得到的产品储存在成品罐中,最终得到的产物收集后,储存到成品罐中,产物一般从精馏塔的侧线采出。并将反应过程中产生的其他组分排除系统。比如精馏塔塔顶出来的气相重新返回到气源输送管道作为原料使用。
本发明还提供了一种环状碳酸酯微界面制备系统的制备方法,包括:
将烯烃溶液与二氧化碳混合微界面分散破碎后进行羧化反应,再经过闪蒸、脱水以及精馏得到产品进行收集。
优选地,所述羧化反应的温度50-80℃,所述羧化反应的压力为0.1-1MPa。
具体地,该制备方法通过微界面将二氧化碳打碎成微米尺度的微气泡,并将微气泡释放到所述羧化反应釜内部,以增大羧化反应程中所述二氧化碳与原位生成的环状碳酸酯之间的相界传质面积,使得二氧化碳以微气泡的状态与原位生成的环氧化合物充分接触,并进行羧化反应。
采用本发明环状碳酸酯反应得到的产品品质好、收率高。环状碳酸酯的制备方法反应温度低、压力大幅度下降,液时空速高,相当于提高了产能。
在启动系统之前,先将离子液体催化剂填入到搅拌釜以及羧化反应釜中, 烯烃填入烯烃存储罐中,叔丁基过氧化氢/双氧水填入氧化剂存储罐中,二氧化碳从气源输送管道进入,启动系统,将烯烃、氧化剂、二氧化碳定量输送至微界面机组内部。
经过微界面机组的分散破碎后,在搅拌釜内烯烃与氧化剂发生氧化反应生成环氧化合物,环氧化合物与二氧化碳发生羧化反应生成环状碳酸酯,此外位于羧化反应釜内部的内置微界面发生器将二氧化碳打碎成微米尺度的微气泡,并将微气泡释放到所述反应釜内部,以增大羧化反应过程中所述二氧化碳与所述环氧化合物之间的相界传质面积,使得二氧化碳以微气泡的状态与环氧化合物充分接触,并进行羧基化反应。
与现有技术相比,本发明的有益效果在于:
(1)本发明的环状碳酸酯的微界面制备系统使得在二氧化碳与原位生成的环氧化合物进行羧化反应之前,微界面发生器将二氧化碳破碎成直径为大于等于1μm、小于1mm的微气泡,使得二氧化碳以微气泡的状态与原位生成的环状碳酸酯接触,以增大羧化反应过程中二氧化碳与原位生成的环状碳酸酯之间的相界传质面积,并进行充分混合再进行羧化反应,从而解决了现有技术中由于二氧化碳和环状碳酸酯羧化反应在反应釜内部无法得到充分混合,导致系统反应效率降低的问题;
(2)本发明的微界面制备系统将最终分离得到的二氧化碳、催化剂重新返回到进行重复利用,从而进一步节约了生产成本;
(3)本发明提供的低压烯烃与二氧化碳氧化羧化反应制备环状碳酸酯的强化反应工艺,通过使用咪唑碳酸氢盐离子液体为双功能催化剂,使得烯烃与二氧化碳直接氧化羧化反应制备环状碳酸酯,降低了原料成本,避免了环氧化合物的分离及存储,简化了生产流程。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的环状碳酸酯的微界面制备系统的结构示意图。
附图说明:
11-烯烃存储罐;                12-氧化剂存储罐;
13-气源输送管道;              14-羧化反应釜;
15-闪蒸罐;                    16-脱水塔;
17-精馏塔;                    18-成品罐;
19-外置微界面发生器;          20-搅拌釜;
21-内置微界面发生器;
23-烯烃输送管道;              24-氧化剂输送管道;
25-总管道;                    26-反应料液进口;
27-溢流管;                    28-第一输送泵;
29-第二输送泵。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商 者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例的环状碳酸酯的微界面制备系统,其主要包括搅拌釜20以及羧化反应釜14,搅拌釜20的侧面设置有微界面机组,微界面机组由若干个外置微界面发生器19构成,外置微界面发生器19沿垂直方向由上至下依次设置,相邻外置微界面发生器19之间的底面与顶面之间连接有用于固定的连接杆,外置微界面发生器19的个数优选为3个。
通入微界面机组的总管道25同时连接有氧化剂输送管道24、以及烯烃输送管道23的两个分支管道,并同时连接有气源输送管道13,二氧化碳、氧化剂以及烯烃进入到微界面发生器内部以用于破碎二氧化碳气体为微米级别的微气泡,搅拌釜20、羧化反应釜14内先填入200g的咪唑碳酸氢盐离子液体催 化剂;烯烃存储罐11与烯烃输送管道23连接,用于将存储在烯烃存储罐11内的1kg的苯乙烯通过烯烃输送管道23输送至搅拌釜20内,为了提高传输动力,在烯烃输送管道23上设置有第二输送泵29,通过第二循环泵进行输送。氧化剂存储罐12与氧化剂输送管道24连接,用于将氧化剂存储罐12中的2kg的叔丁基过氧化氢水溶液(叔丁基过氧化氢的质量分数为70%)通过氧化剂输送管道24输送至搅拌釜20内,为了提高传输动力,在氧化剂输送管道24上设置有第一输送泵28,通过第一循环泵进行输送。另外,气源输送管道13保证了有足量的二氧化碳气源,启动系统,系统温度设置为50℃,压力设置为1.0MPa。
在搅拌釜20内,经过微界面机组分散破碎的气相更易与原料、氧化剂进行环加成反应,搅拌釜20装有可调速电机冷凝盘管,夹套加热。反应液面达到溢流管27经过管线从羧化反应釜14底部的反应料液进口26进入到羧化反应釜14内部,进一步反应完全。
在羧化反应釜14内,苯乙烯在咪唑碳酸氢盐离子液体的催化下被叔丁基过氧化氢氧化生成环氧苯乙烷,同时,内置微界面发生器21将二氧化碳打碎成微米尺度的微气泡,并将微气泡释放到羧化反应釜14内部,使得二氧化碳以微气泡的状态与原位生成的环氧苯乙烷充分接触,并进行羧化反应。
将进行完羧化反应的氧化羧化反应液输送至闪蒸罐15中,闪蒸罐15的顶部设置有闪蒸产物出口,闪蒸罐15的底部设置有催化剂出口,对氧化羧化反应液进行闪蒸处理,闪蒸结束后,将闪蒸产物中的离子液体催化剂通过催化剂出口出去后循环至羧化反应釜14内部再次用于羧化反应釜14内部的氧化羧化反应,除催化剂外的闪蒸产物输送至后续的产物提纯单元。
输送至产物提纯单元的闪蒸产物依次通过脱水塔16和精馏塔17进行相应的脱水和精馏,脱水塔16用于对闪蒸产物进行脱水处理,精馏塔17用于对脱水产物进行精馏处理,最终得到产品苯乙烯环状碳酸酯,并对苯乙烯环状碳酸酯进行收集,储存在成品罐18中。并将反应过程中产生的其他成分排除系统, 检测苯乙烯环状碳酸酯的收率约为85%,精馏塔17顶部出去的气相返回到气源输送管道13进行重复利用。
在上述实施例中,微界面发生器通过将气体的压力能和/或液体的动能转变为气泡表面能并传递给气泡,使气泡破碎成直径为大于等于1μm、小于1mm的微米级别的微气泡,根据能量输入方式或气液比分为气动式微界面发生器、液动式微界面发生器和气液联动式微界面发生器,其中气动式微界面发生器采用气体驱动,输入气量远大于液体量;液动式微界面发生器采用液体驱动,输入气量一般小于液体量;气液联动式微界面发生器采用气液同时驱动,输入气量接近于液体量。微界面发生器选用气动式微界面发生器、液动式微界面发生器以及气液联动式微界面发生器中的一种或几种。
为了增加分散、传质效果,也可以多增设额外的微界面发生器,安装位置其实也是不限的,可以外置也可以内置,内置时还可以采用安装在釜内的侧壁上相对设置,以实现从微界面发生器的出口出来的微气泡发生对冲。
在上述实施例中,泵体的个数并没有具体要求,可根据需要在相应的位置设置。
在上述实施例中,其他操作条件不变,当反应温度设置为65℃,压力设置为0.5MPa,收率为88%。
在上述实施例中,其他操作条件不变,当反应温度设置为80℃,压力设置为0.1MPa,收率为92%。
此外,通过铺设微界面发生器降低了羧化反应釜14内的压力以及温度,充分降低了能耗。
总之,与现有技术的环状碳酸酯的微界面制备系统相比,本发明的环状碳酸酯的微界面制备系统设备组件少、占地面积小、能耗低、成本低、安全性高、反应可控,原料转化率高,相当于为环状碳酸酯领域提供了一种操作性更强的微界面制备系统,值得广泛推广应用。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其 限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种环状碳酸酯的微界面制备系统,其特征在于,包括搅拌釜、羧化反应釜,所述搅拌釜以及羧化反应釜内均装填有离子液体催化剂;
    所述搅拌釜的侧面设置有微界面机组,所述微界面机组由若干个外置微界面发生器构成,通入所述微界面机组的总管道同时连接有氧化剂输送管道、以及烯烃输送管道的两个分支管道,二氧化碳从所述气源输送管道通入到所述微界面机组中,二氧化碳、氧化剂以及烯烃进入到微界面机组内部以用于破碎二氧化碳气体为微米级别的微气泡;
    所述羧化反应釜的底部设置有反应料液进口,所述反应料液进口与所述搅拌釜通过溢流管相通,所述羧化反应釜内设置有内置微界面发生器,所述内置微界面发生器上设置有二氧化碳进料口,以用于在所述反应料液为介质的情况下将二氧化碳分散破碎成微气泡;
    从所述羧化反应釜内反应后的氧化羧化反应液依次经过闪蒸罐、脱水塔、精馏塔提纯后,得到环状碳酸酯产品。
  2. 根据权利要求1所述的微界面制备系统,其特征在于,所述外置微界面发生器沿垂直方向由上至下依次设置。
  3. 根据权利要求2所述的微界面制备系统,其特征在于,所述外置微界面发生器的个数为3个,相邻所述微界面发生器之间的底面与顶面之间连接有连接杆。
  4. 根据权利要求1-3任一项所述的微界面制备系统,其特征在于,所述氧化剂输送管道连接有氧化剂储罐,所述氧化剂存储罐内存储叔丁基过氧化氢或双氧水。
  5. 根据权利要求4所述的微界面制备系统,其特征在于,所述氧化剂输送管道上设置有第一输送泵。
  6. 根据权利要求1-3任一项所述的微界面制备系统,其特征在于,所述烯烃输送管道连接有烯烃存储罐,用于将所述烯烃存储罐中的烯烃溶液通过烯 烃输送管道输送至所述微界面机组内。
  7. 根据权利要求6所述的微界面制备系统,其特征在于,所述烯烃输送管道上设置有第二输送泵。
  8. 根据权利要求7所述的微界面制备系统,其特征在于,所述氧化羧化反应液从所述闪蒸罐的侧壁进入,所述闪蒸罐的顶部设置有闪蒸产物出口,所述闪蒸罐的底部设置有催化剂出口,所述催化剂出口连接所述羧化反应釜的侧壁用于将离子液体催化剂返回利用,所述闪蒸产物出口连接所述脱水塔用于将闪蒸产物进行脱水处理。
  9. 采用权利要求1-8任一项所述的环状碳酸酯的微界面制备系统的制备方法,其特征在于,包括:
    将烯烃溶液与二氧化碳混合微界面分散破碎后进行羧化反应,再经过闪蒸、脱水以及精馏得到产品进行收集。
  10. 根据权利要求9所述的制备方法,其特征在于,所述羧化反应的温度50-80℃,所述羧化反应的压力为0.1-1MPa。
PCT/CN2020/122809 2020-08-25 2020-10-22 一种环状碳酸酯的微界面制备系统及方法 WO2022041426A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010863199.6 2020-08-25
CN202010863199.6A CN112058191A (zh) 2020-08-25 2020-08-25 一种环状碳酸酯的微界面制备系统及方法

Publications (1)

Publication Number Publication Date
WO2022041426A1 true WO2022041426A1 (zh) 2022-03-03

Family

ID=73659242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122809 WO2022041426A1 (zh) 2020-08-25 2020-10-22 一种环状碳酸酯的微界面制备系统及方法

Country Status (2)

Country Link
CN (1) CN112058191A (zh)
WO (1) WO2022041426A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112551549A (zh) * 2020-12-17 2021-03-26 南京延长反应技术研究院有限公司 一种亚硫酸铵氧化的反应系统及方法
CN112717847A (zh) * 2020-12-17 2021-04-30 南京延长反应技术研究院有限公司 一种环氧乙烷法制备乙二醇的微界面反应系统及方法
CN112723996A (zh) * 2020-12-17 2021-04-30 南京延长反应技术研究院有限公司 一种环氧乙烷法制备乙二醇的强化微界面反应系统及方法
CN112774592B (zh) * 2020-12-28 2023-05-12 南京延长反应技术研究院有限公司 一种粗对苯二甲酸加氢精制的微界面反应系统及方法
CN112774579B (zh) * 2020-12-28 2023-05-30 南京延长反应技术研究院有限公司 一种粗对苯二甲酸加氢精制的智能微界面反应系统及方法
CN113387332A (zh) * 2021-07-16 2021-09-14 南京延长反应技术研究院有限公司 一种制备双氧水的微界面氧化系统以及氧化方法
CN113666395B (zh) * 2021-09-01 2023-07-21 南京延长反应技术研究院有限公司 一种微界面强化联合制碱的装置及生产方法
CN114409628A (zh) * 2022-01-19 2022-04-29 南京延长反应技术研究院有限公司 一种催化二氧化碳环加成制备环状碳酸酯的方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231937A (en) * 1978-08-28 1980-11-04 Atlantic Richfield Company Preparation of alkylene carbonates from alkylene iodohydrins
US5179214A (en) * 1991-09-23 1993-01-12 Texaco Chemical Company Process for manufacturing alkylene carbonates
CN101037431A (zh) * 2006-03-16 2007-09-19 中国科学院兰州化学物理研究所 二氧化碳和环氧化合物环加成反应合成环状碳酸酯的方法
CN102127051A (zh) * 2010-12-24 2011-07-20 北京理工大学 一种以烯烃为原料合成环状碳酸酯的方法
CN102250052A (zh) * 2010-05-18 2011-11-23 中国科学院兰州化学物理研究所 一种连续制备环状碳酸酯的工艺过程
CN103788055A (zh) * 2012-10-31 2014-05-14 中国科学院大连化学物理研究所 一种由烯烃直接制备环状碳酸酯的方法
CN104447676A (zh) * 2014-11-20 2015-03-25 中山大学 一种环状碳酸酯的制备方法
CN111362792A (zh) * 2019-09-12 2020-07-03 南京延长反应技术研究院有限公司 一种甲醇羰基化制备乙酸的强化反应系统及工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102464521B (zh) * 2010-11-04 2015-03-04 中国科学院大连化学物理研究所 一种微反应器系统内合成环状碳酸酯的方法
KR102440432B1 (ko) * 2014-05-30 2022-09-05 마루젠 세끼유가가꾸 가부시키가이샤 고리형 카보네이트의 제조 장치 및 제조 방법
CN210045215U (zh) * 2019-01-29 2020-02-11 南京延长反应技术研究院有限公司 低压气液强化乳化床反应装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231937A (en) * 1978-08-28 1980-11-04 Atlantic Richfield Company Preparation of alkylene carbonates from alkylene iodohydrins
US5179214A (en) * 1991-09-23 1993-01-12 Texaco Chemical Company Process for manufacturing alkylene carbonates
CN101037431A (zh) * 2006-03-16 2007-09-19 中国科学院兰州化学物理研究所 二氧化碳和环氧化合物环加成反应合成环状碳酸酯的方法
CN102250052A (zh) * 2010-05-18 2011-11-23 中国科学院兰州化学物理研究所 一种连续制备环状碳酸酯的工艺过程
CN102127051A (zh) * 2010-12-24 2011-07-20 北京理工大学 一种以烯烃为原料合成环状碳酸酯的方法
CN103788055A (zh) * 2012-10-31 2014-05-14 中国科学院大连化学物理研究所 一种由烯烃直接制备环状碳酸酯的方法
CN104447676A (zh) * 2014-11-20 2015-03-25 中山大学 一种环状碳酸酯的制备方法
CN111362792A (zh) * 2019-09-12 2020-07-03 南京延长反应技术研究院有限公司 一种甲醇羰基化制备乙酸的强化反应系统及工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU JIA, YANG GUOQIANG, LIU YING, WU DONGSHENG, HU XINGBANG, ZHANG ZHIBING: "Metal-free imidazolium hydrogen carbonate ionic liquids as bifunctional catalysts for the one-pot synthesis of cyclic carbonates from olefins and CO 2", GREEN CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 21, no. 14, 15 July 2019 (2019-07-15), GB , pages 3834 - 3838, XP055903364, ISSN: 1463-9262, DOI: 10.1039/C9GC01088B *

Also Published As

Publication number Publication date
CN112058191A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
WO2022041426A1 (zh) 一种环状碳酸酯的微界面制备系统及方法
WO2022041425A1 (zh) 一种环状碳酸酯的强化微界面制备系统及方法
WO2021078239A1 (zh) 气液鼓泡床反应器、反应系统以及合成碳酸酯的方法
CN213505981U (zh) 一种基于蒽醌法制备双氧水的系统
CN112044390A (zh) 一种环状碳酸酯的制备系统及方法
WO2022052223A1 (zh) 一种聚乙醇酸的强化微界面制备系统及方法
WO2023138074A1 (zh) 一种催化二氧化碳环加成制备环状碳酸酯的方法及系统
CN112062656A (zh) 一种对甲基苯酚的微界面制备系统及方法
CN103980246A (zh) 二氧化碳与环氧丙(乙)烷管式反应制取碳酸丙(乙)烯酯生产方法
WO2022052222A1 (zh) 一种草酸酯加氢制备乙醇酸酯的反应系统及方法
CN106479562B (zh) 一种强化氢气在重整生成油中的溶解方法及应用
CN112479852A (zh) 一种甲酸的制备系统及方法
CN112499592A (zh) 一种基于蒽醌法制备双氧水的系统及工艺
CN112774592B (zh) 一种粗对苯二甲酸加氢精制的微界面反应系统及方法
CN112479822A (zh) 一种草酸酯法制备乙二醇的强化微界面反应系统及方法
CN213528594U (zh) 一种连续化制备过氧化物并连续应用于氧化反应的装置
JP2024515084A (ja) 過酸化水素水を製造するマイクロ界面強化酸化システム及び酸化方法
CN211123731U (zh) 一种基于乙烯水合法制备乙二醇的智能控制反应系统
CN112717846A (zh) 一种环氧乙烷法制备乙二醇的智能微界面反应系统及方法
CN112441883A (zh) 一种气相催化水合法制备乙二醇的强化反应系统及方法
CN112479882A (zh) 一种甲醇液相氧化羰基化合成碳酸二甲酯的反应系统及工艺
CN108484565B (zh) 一种生产碳酸酯的系统及利用该系统生产碳酸酯的方法
CN217868682U (zh) 1,4-丁二醇专用生产装置
WO2022036838A1 (zh) 一种石油树脂加氢的微界面反应系统及方法
CN112774579B (zh) 一种粗对苯二甲酸加氢精制的智能微界面反应系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951094

Country of ref document: EP

Kind code of ref document: A1