WO2023138074A1 - 一种催化二氧化碳环加成制备环状碳酸酯的方法及系统 - Google Patents

一种催化二氧化碳环加成制备环状碳酸酯的方法及系统 Download PDF

Info

Publication number
WO2023138074A1
WO2023138074A1 PCT/CN2022/118433 CN2022118433W WO2023138074A1 WO 2023138074 A1 WO2023138074 A1 WO 2023138074A1 CN 2022118433 W CN2022118433 W CN 2022118433W WO 2023138074 A1 WO2023138074 A1 WO 2023138074A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
carbon dioxide
reaction
reactor
interface generator
Prior art date
Application number
PCT/CN2022/118433
Other languages
English (en)
French (fr)
Inventor
张志炳
孙海宁
周政
张锋
李磊
孟为民
杨高东
杨国强
刘甲
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2023138074A1 publication Critical patent/WO2023138074A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/31Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/70Complexes comprising metals of Group VII (VIIB) as the central metal
    • B01J2531/72Manganese

Definitions

  • the invention relates to the technical field of preparation of cyclic carbonates, in particular to a method and system for preparing cyclic carbonates by catalyzing carbon dioxide cycloaddition.
  • Cyclic carbonates are an important class of chemical products, which have wide applications and prospects in the fields of lithium-ion battery electrolytes, degradable polymer monomers, and organic synthesis intermediates.
  • the industrial synthesis of cyclic carbonate is the use of carbon dioxide and epoxy compounds for cycloaddition reaction.
  • the existing technology adopts metal halides and ammonium salts as catalysts, and is prepared under the conditions of reaction temperature 100-150° C. and reaction operating pressure 2.0-5.0 MPa.
  • both metal halides and ammonium salts contain halogen anions, which will cause serious corrosion to metal equipment under high temperature and high pressure reaction conditions, and put forward high requirements on the material of the reactor.
  • most of the reactors used in the existing process are tank reactors, the carbon dioxide and epoxy compounds cannot be fully mixed, and the gas/liquid phase interface area is small, so the reaction needs to be carried out at a high operating pressure and the reaction rate is low.
  • the first object of the present invention is to provide a method for preparing cyclic carbonate by catalyzing carbon dioxide cycloaddition.
  • the method adopts Schiff base metal and imidazole bicarbonate as catalysts, has good catalytic activity, fully reduces the reaction temperature, and improves the selectivity of cyclic carbonate.
  • the catalyst does not contain halogen anions, reduces the corrosion of metal equipment, and effectively improves the service life of equipment.
  • the second object of the present invention is to provide a system for preparing cyclic carbonate by catalyzing carbon dioxide cycloaddition.
  • the system disperses and breaks carbon dioxide into micron-scale microbubbles by setting a micro-interface unit in the reactor, thereby increasing the gas-liquid mass transfer area with epoxy compounds, reducing operating temperature and pressure, and improving raw material conversion rate and product yield.
  • the invention provides a method for preparing cyclic carbonate by catalyzing carbon dioxide cycloaddition, comprising the following steps: using Schiff alkali metal and imidazole bicarbonate as catalysts, carbon dioxide and epoxy compounds as raw materials, performing cycloaddition reaction to generate cyclic carbonate, and the structural formula of the Schiff alkali metal catalyst is:
  • R is ethyl, phenyl, cyclohexyl or naphthyl
  • M is copper, manganese, zinc or aluminum
  • X is Cl, Br, CH 3 , CH 3 CO 2 , BF 4 or PF 6 ;
  • R is methyl, ethyl, propyl, n-butyl, n-pentyl or n-hexyl.
  • epoxy carbonate is generally reacted by carbon dioxide and epoxy compounds under the catalysis of metal halides and ammonium salts, but the reaction has the following problems: the metal halides and ammonium salts used as catalysts contain halogen anions, and under high temperature and high pressure conditions, the halogen anions will cause corrosion to metal equipment and seriously affect the service life of the equipment.
  • the present invention provides a method for preparing cyclic carbonates by catalyzing carbon dioxide cycloaddition.
  • the method adopts Schiff base metal and imidazole bicarbonate as catalysts, has good catalytic activity, fully reduces the reaction temperature, and improves the selectivity of cyclic carbonates.
  • the catalyst does not contain halogen anions, reduces the corrosion of metal equipment, and effectively improves the service life of equipment.
  • the cycloaddition reaction includes: after the carbon dioxide is broken into micron-sized microbubbles through the micro-interface, it is mixed with the epoxy compound to carry out the cycloaddition reaction under the catalysis of the catalyst.
  • the cycloaddition reaction includes: after the carbon dioxide is broken into micron-sized microbubbles through the micro-interface, it is mixed with the epoxy compound to carry out the cycloaddition reaction under the catalysis of the catalyst.
  • the epoxy compound is ethylene oxide, propylene oxide, epichlorohydrin, butyl oxirane, styrene oxide, isopropyl glycidyl ether, allyl glycidyl ether, phenyl glycidyl ether or cyclohexene oxide.
  • the temperature of the cycloaddition reaction is 25-80°C, preferably 40°C.
  • the reaction temperature may be 25°C, 30°C, 35°C, 40°C, 45°C or the like.
  • the pressure of the cycloaddition reaction is 0.1-0.3 MPa, preferably 0.2 MPa.
  • the reaction pressure can be 0.1MPa, 0.2MPa, 0.3MPa and so on.
  • the present invention also provides a system for preparing cyclic carbonate by catalyzing carbon dioxide cycloaddition.
  • the system uses the above-mentioned method to prepare cyclic carbonate.
  • the system includes: a reactor and a micro-interface unit; the micro-interface unit is arranged inside the reactor; the side wall of the reactor is sequentially connected with a first feed pipeline for feeding epoxy compounds and a second feed pipeline for feeding carbon dioxide from top to bottom; the second feed pipeline is connected with the micro-interface unit to disperse and break the carbon dioxide into micron-scale microbubbles.
  • the micro-interface unit includes a first micro-interface generator and a second micro-interface generator, the first micro-interface generator is arranged above the second micro-interface generator, and the first micro-interface generator is opposite to the outlet of the second micro-interface generator.
  • both the outlets of the first micro-interface generator and the second micro-interface generator are provided with bubble distributors, the bubble distributors are conical, and the bubble distributors are provided with a plurality of distribution holes.
  • the first micro-interface generator and the second micro-interface generator are one or more of a pneumatic micro-interface generator, a hydraulic micro-interface generator and a gas-liquid linkage micro-interface generator.
  • the microbubbles at the micron level are microbubbles with a diameter greater than or equal to 1 ⁇ m but less than 1 mm.
  • a micro-interface unit is installed in the reactor to disperse and break carbon dioxide into micron-level microbubbles, which are mixed with epoxy compounds to form a gas-liquid emulsion, thereby increasing the gas-liquid mass transfer area between carbon dioxide and epoxy compounds, reducing the operating temperature and pressure, reducing the energy consumption required for the reaction, and effectively improving the reaction rate;
  • the micro-interface unit of the present invention is arranged inside the reactor, which occupies a small area and has high intrinsic safety.
  • the micro-interface unit of the present invention is composed of a first micro-interface generator and a second micro-interface generator.
  • the reason why two micro-interface generators are used is to disperse and crush carbon dioxide at the same time and improve the efficiency of dispersion and crushing; when the two micro-interface generators are arranged, the first micro-interface generator is located above and the second micro-interface generator is located below, and the outlet of the first micro-interface generator is opposite to the outlet of the second micro-interface generator. Uniform distribution improves the dispersion effect and prevents the coalescence of microbubbles.
  • the first feed pipeline is located above the second feed pipeline. This is because the first feed pipeline transports epoxy compounds, and the second feed pipeline transports carbon dioxide. Carbon dioxide is a gas. Part of the carbon dioxide is not dissolved in the epoxy compounds, but directly flows upward. The epoxy compounds transported by the first feed pipeline flow down from the upper part and combine with unreacted carbon dioxide to continue the reaction, which is beneficial to improving the conversion rate of raw materials.
  • the reactor is connected with a flash tank, and the flash tank is connected with a distillation tower. After the reaction product in the reactor is flashed by the flash tank, part of it flows into the rectification tower, and the other part flows back into the reactor.
  • an epoxy compound storage tank and a carbon dioxide storage tank are also included, the epoxy compound storage tank is connected to the first feed pipeline, and the carbon dioxide storage tank is connected to the second feed pipeline.
  • the method for preparing cyclic carbonates by catalytic carbon dioxide cycloaddition of the present invention adopts Schiff alkali metal and imidazole bicarbonate as catalysts and utilizes their good catalytic activity to fully reduce the reaction temperature and improve the selectivity of cyclic carbonates.
  • the catalyst does not contain halogen anions, which reduces the corrosion of metal equipment; by adopting the micro-interface strengthening reaction system, the gas/liquid interface area between carbon dioxide and epoxy compounds can be increased, the reaction operation pressure is reduced, and the reaction rate is improved.
  • the reaction system occupies a small area and has high intrinsic safety.
  • Fig. 1 is the structural representation of the system that the catalytic carbon dioxide cycloaddition that the embodiment of the present invention 1 provides prepares cyclic carbonate;
  • Figure 2 is the H NMR spectrum of the catalyst SH 4 -Al(Cl) provided in Example 1 of the present invention
  • Figure 3 is the carbon NMR spectrum of the catalyst SH 4 -Al(Cl) provided in Example 1 of the present invention.
  • Fig. 4 is the nuclear magnetic hydrogen spectrum of the catalyst [C 1 C 6 Im [HCO 3 ] provided by Example 1 of the present invention
  • Fig. 5 is the C NMR spectrum of the catalyst [C 1 C 6 Im[HCO 3 ] provided in Example 1 of the present invention.
  • the present embodiment provides a system for preparing cyclic carbonate by catalytic carbon dioxide cycloaddition, comprising: a reactor 50 and a micro-interface unit; the micro-interface unit is arranged inside the reactor 50; the side wall of the reactor 50 is sequentially connected with a first feed line 40 for feeding epoxy compounds and a second feed line 30 for feeding carbon dioxide; the second feed line 30 is connected with the micro-interface unit to disperse and break the carbon dioxide into micron-scale microbubbles.
  • the microbubbles at the micron level are microbubbles with a diameter greater than or equal to 1 ⁇ m and smaller than 1 mm.
  • the microinterface unit includes a first microinterface generator 80 and a second microinterface generator 60, the first microinterface generator 80 is arranged above the second microinterface generator 60, and the first microinterface generator 80 is opposite to the outlet of the second microinterface generator 60.
  • the outlets of the first micro-interface generator 80 and the second micro-interface generator 60 are both provided with a bubble distributor 70, the bubble distributor 70 is conical, and the bubble distributor 70 is provided with a plurality of distribution holes.
  • the first micro-interface generator 80 and the second micro-interface generator 60 are one or more of a pneumatic micro-interface generator, a hydraulic micro-interface generator and a gas-liquid linkage micro-interface generator.
  • the reactor 50 is connected with a flash tank 90, and the flash tank 90 is connected with a distillation tower 100. After the reaction product in the reactor 50 is flashed through the flash tank 90, a part flows into the rectification tower, and the other part flows back into the reactor 50.
  • the system of this embodiment further includes an epoxy compound storage tank 20 and a carbon dioxide storage tank 10 , the epoxy compound storage tank 20 is connected to the first feed pipeline 40 , and the carbon dioxide storage tank 10 is connected to the second feed pipeline 30 .
  • the method for preparing the cyclic carbonate of the present embodiment is as follows: load the Schiff alkali metal and imidazole bicarbonate catalysts into the reactor 50, feed propylene oxide and carbon dioxide into the reactor 50, react under the conditions of a pressure of 0.2 MPa and a reaction temperature of 40° C., and the reaction product enters the flash tank 90, wherein the propylene oxide and the cyclic carbonate carried are vaporized in the flash tank 90 and enter the rectification tower, and the catalyst at the bottom is transported back to the reactor 50.
  • Propylene oxide and cyclic carbonate are separated in the rectification tower, propylene oxide is distilled from the top of the rectification tower and recovered, and the product cyclic carbonate flows out at the bottom of the rectification tower.
  • the central metal element M of the Schiff base metal compound is aluminum
  • the bridging group R is naphthyl
  • R 1 of imidazole bicarbonate is methyl
  • R 2 is n-hexyl.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种催化二氧化碳环加成制备环状碳酸酯的方法及系统,包括以下步骤:以席夫碱金属和咪唑碳酸氢盐为催化剂,二氧化碳和环氧化合物为原料,进行环加成反应生成环状碳酸酯,所述席夫碱金属催化剂的结构式为(I)。其中,R为乙基、苯基、环己基或萘基,M为铜、锰、锌或铝,X为Cl、Br、CH 3、CH3CO 2、BF4或PF6;所述咪唑碳酸氢盐的结构式为(II)。其中,R1为甲基、乙基、丙基、正丁基、正戊基或正己基。本发明的方法能够降低反应所需温度和压力,降低反应能耗,同时提高反应效率。

Description

一种催化二氧化碳环加成制备环状碳酸酯的方法及系统 技术领域
本发明涉及环状碳酸酯制备技术领域,具体而言,涉及一种催化二氧化碳环加成制备环状碳酸酯的方法及系统。
背景技术
环状碳酸酯是一类重要的化工产品,在锂离子电池电解质、可降解聚合物单体、有机合成中间体等领域有着广泛的应用和前景。工业上合成环状碳酸酯是采用二氧化碳与环氧化合物进行环加成反应。现有的工艺是采用金属卤化物和铵盐作为催化剂,在反应温度100-150℃,反应操作压力2.0-5.0MPa的条件下进行制备。然而,金属卤化物和铵盐中均含有卤素阴离子,在高温高压反应条件下,对金属设备造成严重的腐蚀,对反应器的材质提出了很高的要求。同时,现有工艺所使用的反应器多为釜式反应器,二氧化碳和环氧化合物无法得到充分的混合,气/液相界面积小,导致反应需要在较高的操作压力下进行,反应速率较低。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种催化二氧化碳环加成制备环状碳酸酯的方法,该方法通过采用席夫碱金属和咪唑碳酸氢盐为催化剂,催化活性好,充分降低了反应温度,提高了环状碳酸酯的选择性,同时催化剂不含卤素阴离子,降低了对金属设备的腐蚀,有效提高了设备使用寿命。
本发明的第二目的在于提供一种催化二氧化碳环加成制备环状碳酸酯的系统,该系统通过在反应器内设置微界面机组,将二氧化碳分散破碎成微米级别的微气泡,提高了与环氧化合物的气液传质面积,能够降低操作温度和压力,提高原料转化率和产物收率。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种催化二氧化碳环加成制备环状碳酸酯的方法,包括以下步骤:以席夫碱金属和咪唑碳酸氢盐为催化剂,二氧化碳和环氧化合物为原料,进行环加成反应生成环状碳酸酯,所述席夫碱金属催化剂的结构式为:
Figure PCTCN2022118433-appb-000001
其中,R为乙基、苯基、环己基或萘基,M为铜、锰、锌或铝,X为Cl、Br、CH 3、CH 3CO 2、BF 4或PF 6
所述咪唑碳酸氢盐的结构式为:
Figure PCTCN2022118433-appb-000002
其中,R 1为甲基、乙基、丙基、正丁基、正戊基或正己基。
现有技术中,环氧碳酸酯一般通过二氧化碳和环氧化合物在金属卤化物和铵盐的催化作用下进行反应,但该反应存在以下问题:采用的催化剂金属卤化物和铵盐中均含有卤素阴离子,在高温高压条件下,卤素阴离子会对金属设备造成腐蚀,严重影响设备使用寿命。
为解决上述技术问题,本发明提供了一种催化二氧化碳环加成制备环状碳酸酯的方法,该方法采用席夫碱金属和咪唑碳酸氢盐为催化剂,催化活性好,充分降低了反应温度,提高了环状碳酸酯的选择性,同时催化剂不含卤素阴离子,降低了对金属设备的腐蚀,有效提高了设备使用寿命。
优选的,所述环加成反应包括:将二氧化碳经微界面破碎成微米级别的微气泡后,与环氧化合物混合在催化剂的催化下进行环加成反应。通过将微界面破碎与二氧化碳环加成反应相结合,提高了二氧化碳与环氧化合物间的气液传质面积,有利于提高反应速率,降低能耗。
优选的,所述的环氧化合物为环氧乙烷、环氧丙烷、环氧氯丙烷、丁基环氧乙烷、氧化苯乙烯、异丙基缩水甘油醚、烯丙基缩水甘油醚、苯基缩水甘油醚或氧化环己烯。
优选的,所述环加成反应的温度为25-80℃,优选为40℃。反应温度可以为25℃、30℃、35℃、40℃、45℃等等。
优选的,所述环加成反应的压力为0.1-0.3MPa,优选为0.2MPa。反应压力可以为0.1MPa、0.2MPa、0.3MPa等等。
本发明还提供了一种催化二氧化碳环加成制备环状碳酸酯的系统,该系统应用上述的方法制备环状碳酸酯。
优选的,所述系统包括:反应器和微界面机组;所述微界面机组设置在所述反应器的内部;所述反应器侧壁由上到下依次连接有用于通入环氧化合物的第一进料管路和用于通入二氧化碳的第二进料管路;所述第二进料管路与所述微界面机组相连以将二氧化碳分散破碎为微米级别的微气泡。
优选的,所述微界面机组包括第一微界面发生器和第二微界面发生器,所述第一微界面发生器设置在第二微界面发生器的上方,且所述第一微界面发生器与第二微界面发生器的出口相对。
优选的,所述第一微界面发生器与所述第二微界面发生器的出口处均设置有气泡分布器,所述气泡分布器呈锥形,且所述气泡分布器上设置有多个分布孔。
优选的,所述第一微界面发生器和所述第二微界面发生器为气动式微界面发生器、液动式微界面发生器以及气液联动式微界面发生器中的一种或几种。
优选的,所述微米级别的微气泡为直径大于等于1μm、小于1mm的微气泡。
现有技术中,环加成反应所使用的反应器多为釜式反应器,二氧化碳和环氧化合物在反应器中无法得到充分的混合,气/液相界面积小,导致反应需要在较高的操作压力下进行,反应速率较低。本发明通过在反应器内设置微界面机组,将二氧化碳分散破碎成为微米级别的微气泡,与环氧化合物混合成为气液乳化物,增大了二氧化碳与环氧化合物间的气液传质面积,能够降低操作温度和压力,降低反应所需能耗,同时能够有效提高反应速率;另外,本发明的微界面机组设置在反应器内部,占地面积小,本征安全性高。
本发明的微界面机组由第一微界面发生器和第二微界面发生器构成,之所以要采用两个微界面发生器,是为了同时对二氧化碳进行分散破碎,提高分散破碎效率;两个微界面发生器在排布时,第一微界面发生器位于上方,第二微界面发生器位于下方,且第一微界面发生器与第二微界面发生器的出口相对,这是为了使两股微气泡流进行对冲,促进微气泡的均匀分布,进而提高气液传质面积;设置气泡分布器也是为了促进微气泡的均匀分布,提高分散效果,防止微气泡间发生聚并。
本发明的进料管路在排布时,第一进料管路位于第二进料管路的上方, 这是因为第一进料管路输送的是环氧化合物,第二进料管路输送的是二氧化碳,二氧化碳是气体,部分二氧化碳并未溶于环氧化合物中,而是直接向上流动,第一进料管路输送的环氧化合物从上部流下,与未反应的二氧化碳结合继续反应,有利于提高原料转化率。
优选的,所述反应器连接有闪蒸罐,所述闪蒸罐连接有蒸馏塔,所述反应器内的反应产物经所述闪蒸罐闪蒸处理后,一部分流入所述精馏塔中,另一部分回流至所述反应器中。
优选的,还包括环氧化合物存储罐和二氧化碳存储罐,所述环氧化合物存储罐与所述第一进料管路相连,所述二氧化碳存储罐与第二进料管路相连。
与现有技术相比,本发明的有益效果为:
本发明的催化二氧化碳环加成制备环状碳酸酯的方法通过采用席夫碱金属和咪唑碳酸氢盐为催化剂,利用其良好的催化活性,充分降低了反应温度,提高了环状碳酸酯的选择性,催化剂不含卤素阴离子,降低了对金属设备的腐蚀;通过采用微界面强化反应系统,能够提高二氧化碳和环氧化合物的气/液相界面积,降低了反应操作压力,提高了反应速率,反应系统占地面积小,本征安全性高。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例1提供的催化二氧化碳环加成制备环状碳酸酯的 系统的结构示意图;
图2为本发明实施例1提供的催化剂SH 4-Al(Cl)的核磁氢谱;
图3为本发明实施例1提供的催化剂SH 4-Al(Cl)的核磁碳谱;
图4为本发明实施例1提供的催化剂[C 1C 6Im[HCO 3]的核磁氢谱;
图5为本发明实施例1提供的催化剂[C 1C 6Im[HCO 3]的核磁碳谱。
其中:
10-二氧化碳存储罐;           20-环氧化合物存储罐;
30-第二进料管路;             40-第一进料管路;
50-反应器;                   60-第二微界面发生器;
70-气泡分布器;               80-第一微界面发生器;
90-闪蒸罐;                   100-蒸馏塔。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
参阅图1,本实施例提供了一种催化二氧化碳环加成制备环状碳酸酯的系统,包括:反应器50和微界面机组;微界面机组设置在反应器50的内部;反应器50侧壁由上到下依次连接有用于通入环氧化合物的第一进料管路40和用于通入二氧化碳的第二进料管路30;第二进料管路30与微界面机组相连以将二氧化碳分散破碎为微米级别的微气泡。微米级别的微气泡为直径大于等于1μm、小于1mm的微气泡。
其中,微界面机组包括第一微界面发生器80和第二微界面发生器60, 第一微界面发生器80设置在第二微界面发生器60的上方,且第一微界面发生器80与第二微界面发生器60的出口相对。
具体的,第一微界面发生器80与第二微界面发生器60的出口处均设置有气泡分布器70,气泡分布器70呈锥形,且气泡分布器70上设置有多个分布孔。
本实施例中第一微界面发生器80和第二微界面发生器60为气动式微界面发生器、液动式微界面发生器以及气液联动式微界面发生器中的一种或几种。
继续参阅图1,反应器50连接有闪蒸罐90,闪蒸罐90连接有蒸馏塔100,反应器50内的反应产物经闪蒸罐90闪蒸处理后,一部分流入精馏塔中,另一部分回流至反应器50中。
本实施例的系统还包括环氧化合物存储罐20和二氧化碳存储罐10,环氧化合物存储罐20与第一进料管路40相连,二氧化碳存储罐10与第二进料管路30相连。
本实施例的制备环状碳酸酯的方法如下:将席夫碱金属和咪唑碳酸氢盐催化剂装入反应器50中,将环氧丙烷和二氧化碳通入反应器50中,在压力0.2MPa,反应温度为40℃的条件下反应,反应产物进入闪蒸罐90中,其中携带的环氧丙烷和环状碳酸酯在闪蒸罐90中汽化并进入精馏塔,底部的催化剂输送回反应器50。
环氧丙烷、环状碳酸酯在精馏塔内进行分离,环氧丙烷从精馏塔顶部馏出并进行回收,产物环状碳酸酯在精馏塔的底部流出。
本实施例中,席夫碱金属化合物的中心金属元素M为铝,桥连基团R为萘基,咪唑碳酸氢盐的R 1为甲基,R 2为正己基。
经测定,环状碳酸酯的生产强度为580kg/m 3·h,其核磁氢谱图如图2所示。
实施例2-4
采用实施例1的环氧丙烷与二氧化碳反应制碳酸酯的系统及方法,改变席夫碱金属化合物的中心金属元素M,结果如表1所示:
表1
Figure PCTCN2022118433-appb-000003
实施例5-7
采用实施例1中的环氧丙烷与二氧化碳反应制环状碳酸酯的方法,改变席夫碱铝化合物的桥连基团R,结果如表2所示:
表2
实施例 R 环状碳酸酯生产强度(kg/m 3·h)
5 乙基SH 1-Al(Cl) 482
6 环己基SH 2-Al(Cl) 511
7 苯基SH 3-Al(Cl) 542
实施例8-12
采用实施例1中的环氧丙烷与二氧化碳反应制环状碳酸酯的方法,改变咪唑碳酸氢盐的R 1和R 2,结果如表3所示:
表3
实施例 R 1 R 2 咪唑碳酸氢盐 环状碳酸酯生产强
        度(kg/m 3·h)
8 甲基 甲基 [C 1C 1Im[HCO 3] 440
9 甲基 乙基 [C 1C 2Im[HCO 3] 462
10 甲基 正丁基 [C 1C 4Im[HCO 3] 502
11 正丁基 正丁基 [C 4C 4Im[HCO 3] 547
12 正己基 正己基 [C 6C 6Im[HCO 3] 550
实施例13-16
采用实施例1中的环氧丙烷与二氧化碳反应制环状碳酸酯的方法,改变反应温度,结果如表4所示:
表4
Figure PCTCN2022118433-appb-000004
实施例17-18
采用实施例1中的环氧丙烷与二氧化碳反应制环状碳酸酯的方法,改变反应压力,结果如表5所示:
表5
Figure PCTCN2022118433-appb-000005
从实施例1-21的实验数据可以看出,采用席夫碱金属和咪唑碳酸氢盐 为催化剂催化二氧化碳环合成制备环状碳酸酯,即使在低温低压的条件下依然具有良好的生产强度,所以本发明通过采用席夫碱金属和咪唑碳酸氢盐为催化剂催化二氧化碳环合成,并对反应温度和反应压力进行限定,实现了在较低的温度和压力条件下进行反应,降低了反应能耗,且具有较高的反应效率。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (10)

  1. 一种催化二氧化碳环加成制备环状碳酸酯的方法,其特征在于,包括以下步骤:以席夫碱金属和咪唑碳酸氢盐为催化剂,二氧化碳和环氧化合物为原料,进行环加成反应生成环状碳酸酯,所述席夫碱金属催化剂的结构式为:
    Figure PCTCN2022118433-appb-100001
    其中,R为乙基、苯基、环己基或萘基,M为铜、锰、锌或铝,X为Cl、Br、CH 3、CH 3CO 2、BF 4或PF 6
    所述咪唑碳酸氢盐的结构式为:
    Figure PCTCN2022118433-appb-100002
    其中,R 1为甲基、乙基、丙基、正丁基、正戊基或正己基。
  2. 根据权利要求1所述的方法,其特征在于,所述环加成反应包括:将二氧化碳经微界面破碎成微米级别的微气泡后,与环氧化合物混合在催化剂的催化下进行环加成反应。
  3. 根据权利要求1所述的方法,其特征在于,所述的环氧化合物为环氧乙烷、环氧丙烷、环氧氯丙烷、丁基环氧乙烷、氧化苯乙烯、异丙基缩水甘油醚、烯丙基缩水甘油醚、苯基缩水甘油醚或氧化环己烯。
  4. 根据权利要求1所述的方法,其特征在于,所述环加成反应的温度为25-80℃,优选为40℃。
  5. 根据权利要求1所述的方法,其特征在于,所述环加成反应的压力 为0.1-0.3MPa,优选为0.2MPa。
  6. 一种催化二氧化碳环加成制备环状碳酸酯的系统,其特征在于,应用权利要求1-5任一项所述的方法制备环状碳酸酯。
  7. 根据权利要求6所述的系统,其特征在于,所述系统包括:反应器和微界面机组;所述微界面机组设置在所述反应器的内部;所述反应器侧壁由上到下依次连接有用于通入环氧化合物的第一进料管路和用于通入二氧化碳的第二进料管路;所述第二进料管路与所述微界面机组相连以将二氧化碳分散破碎为微米级别的微气泡。
  8. 根据权利要求7所述的系统,其特征在于,所述微界面机组包括第一微界面发生器和第二微界面发生器,所述第一微界面发生器设置在第二微界面发生器的上方,且所述第一微界面发生器与第二微界面发生器的出口相对。
  9. 根据权利要求8所述的系统,其特征在于,所述第一微界面发生器与所述第二微界面发生器的出口处均设置有气泡分布器,所述气泡分布器呈锥形,且所述气泡分布器上设置有多个分布孔。
  10. 根据权利要求7所述的系统,其特征在于,所述反应器连接有闪蒸罐,所述闪蒸罐连接有蒸馏塔,所述反应器内的反应产物经所述闪蒸罐闪蒸处理后,一部分流入所述精馏塔中,另一部分回流至所述反应器中。
PCT/CN2022/118433 2022-01-19 2022-09-13 一种催化二氧化碳环加成制备环状碳酸酯的方法及系统 WO2023138074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210059631.5A CN114409628A (zh) 2022-01-19 2022-01-19 一种催化二氧化碳环加成制备环状碳酸酯的方法及系统
CN202210059631.5 2022-01-19

Publications (1)

Publication Number Publication Date
WO2023138074A1 true WO2023138074A1 (zh) 2023-07-27

Family

ID=81272708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118433 WO2023138074A1 (zh) 2022-01-19 2022-09-13 一种催化二氧化碳环加成制备环状碳酸酯的方法及系统

Country Status (2)

Country Link
CN (1) CN114409628A (zh)
WO (1) WO2023138074A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409628A (zh) * 2022-01-19 2022-04-29 南京延长反应技术研究院有限公司 一种催化二氧化碳环加成制备环状碳酸酯的方法及系统
CN115739179B (zh) * 2022-11-01 2024-04-09 南京大学 一种复合型高分子催化剂及其制备方法、应用
CN116514741B (zh) * 2023-07-04 2023-09-26 山东民基新材料科技有限公司 利用微界面反应生产环氧氯丙烷的工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961026A (zh) * 2020-08-25 2020-11-20 南京延长反应技术研究院有限公司 一种环状碳酸酯的强化微界面制备系统及方法
CN112058191A (zh) * 2020-08-25 2020-12-11 南京延长反应技术研究院有限公司 一种环状碳酸酯的微界面制备系统及方法
CN114409628A (zh) * 2022-01-19 2022-04-29 南京延长反应技术研究院有限公司 一种催化二氧化碳环加成制备环状碳酸酯的方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961026A (zh) * 2020-08-25 2020-11-20 南京延长反应技术研究院有限公司 一种环状碳酸酯的强化微界面制备系统及方法
CN112058191A (zh) * 2020-08-25 2020-12-11 南京延长反应技术研究院有限公司 一种环状碳酸酯的微界面制备系统及方法
CN114409628A (zh) * 2022-01-19 2022-04-29 南京延长反应技术研究院有限公司 一种催化二氧化碳环加成制备环状碳酸酯的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU JIA, YANG GUOQIANG, LIU YING, ZHANG DEJIN, HU XINGBANG, ZHANG ZHIBING: "Efficient conversion of CO 2 into cyclic carbonates at room temperature catalyzed by Al-salen and imidazolium hydrogen carbonate ionic liquids", GREEN CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 22, no. 14, 20 July 2020 (2020-07-20), GB , pages 4509 - 4515, XP093079166, ISSN: 1463-9262, DOI: 10.1039/D0GC00458H *

Also Published As

Publication number Publication date
CN114409628A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2023138074A1 (zh) 一种催化二氧化碳环加成制备环状碳酸酯的方法及系统
WO2021078239A1 (zh) 气液鼓泡床反应器、反应系统以及合成碳酸酯的方法
CN101293810B (zh) 一种环己烷的液相氧化方法
WO2022041426A1 (zh) 一种环状碳酸酯的微界面制备系统及方法
WO2022041425A1 (zh) 一种环状碳酸酯的强化微界面制备系统及方法
CN210176754U (zh) 一种环戊烷无催化剂氧化的强化系统
EP3643698A1 (en) System and process for co-producing dimethyl carbonate and ethylene glycol
EP4424662A1 (en) Maleic anhydride hydrogenation method and succinic acid production method comprising same
CN115430368A (zh) 一种羰基化浆态气液混合制备丁辛醇的系统及工艺
WO2022110871A1 (zh) 一种草酸酯法制备乙二醇的强化微界面反应系统及方法
CN111807926A (zh) 一种煤制乙醇的反应系统及方法
WO2023284027A1 (zh) 一种制备双氧水的塔式强化氧化系统以及方法
CN106479562A (zh) 一种强化氢气在重整生成油中的溶解方法及应用
WO2021227137A1 (zh) 一种酯化法制备环己酮的外置微界面强化系统及方法
CN112028768A (zh) 一种草酸酯加氢制备乙醇酸酯的反应系统及方法
CN112452268A (zh) 一种草酸酯法制备乙二醇的微界面反应系统及方法
CN112479882A (zh) 一种甲醇液相氧化羰基化合成碳酸二甲酯的反应系统及工艺
CN109956845A (zh) 一种丙烯聚合制备壬烯的工艺方法
CN108484565A (zh) 一种生产碳酸酯的系统及利用该系统生产碳酸酯的方法
CN213506671U (zh) 一种甲醇液相氧化羰基化合成碳酸二甲酯的反应系统
CN101657400A (zh) 用于制备氯代醇的方法和设备
CN104109095B (zh) 草酸酯加氢生产乙醇酸酯的方法
CN113680286A (zh) 一种催化剂可循环使用的丙烯羰基化反应系统及方法
CN116020350A (zh) 一种合成碳酸酯的反应器、合成碳酸酯的系统以及方法
CN112569871A (zh) 一种用于co2羰基化反应的气液均布的列管式反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE