WO2021227137A1 - 一种酯化法制备环己酮的外置微界面强化系统及方法 - Google Patents

一种酯化法制备环己酮的外置微界面强化系统及方法 Download PDF

Info

Publication number
WO2021227137A1
WO2021227137A1 PCT/CN2020/092790 CN2020092790W WO2021227137A1 WO 2021227137 A1 WO2021227137 A1 WO 2021227137A1 CN 2020092790 W CN2020092790 W CN 2020092790W WO 2021227137 A1 WO2021227137 A1 WO 2021227137A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclohexanone
micro
outlet
esterification
cyclohexanol
Prior art date
Application number
PCT/CN2020/092790
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2021227137A1 publication Critical patent/WO2021227137A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/41Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrogenolysis or reduction of carboxylic groups or functional derivatives thereof

Definitions

  • the invention belongs to the technical field of micro-interface strengthening reactions, and specifically relates to an external micro-interface strengthening system and method for preparing cyclohexanone by an esterification method.
  • Cyclohexanone is an important organic chemical raw material. In my country, 65% of cyclohexanone is used as the raw material for the production of caprolactam, 20% of cyclohexanone is used as the raw material for the production of adipic acid, and the remaining cyclohexanone is used as the related chemical raw material. In addition, cyclohexanone is also an excellent solvent, which can be used as a solvent for paint nitrocellulose, vinyl chloride polymers and copolymers. With the rapid development of my country's chemical fiber industry, the output of caprolactam and adipic acid is increasing year by year, and the demand for cyclohexanone is also increasing day by day, and the development and utilization prospects are broad.
  • the esterification method is currently the latest production process of cyclohexanone. It is mainly produced by the addition reaction of cyclohexyl acetate and hydrogen on a ketone catalyst to produce acetic acid and cyclohexanol. Cyclohexanol is dehydrogenated under the action of a dehydrogenation catalyst. Cyclohexanone. The process has high conversion rate and selectivity, almost no three wastes are generated, and has high atomic economy. At the same time, compared with the cyclohexene hydration method, the separation process of cyclohexane/cyclohexene is omitted, which significantly reduces energy consumption.
  • the esterification method for preparing cyclohexanone has obvious technological advantages, it also has some shortcomings.
  • the gas-liquid mass transfer area of the existing esterification reactor is limited. Hydrogen cannot be fully mixed, the mass transfer efficiency between the gas and the liquid phase is low, and the reaction efficiency is low.
  • the temperature and pressure of the esterification reaction are high, which greatly reduces the safety and stability of the system.
  • the first object of the present invention is to provide an external micro-interface strengthening system for preparing cyclohexanone by esterification.
  • the reaction system is equipped with a micro-interface generator at the raw material inlet.
  • hydrogen can be dispersed and broken into micro-sized bubbles with a diameter of micrometers, which increases the area of the phase boundary between hydrogen and cyclohexyl acetate, so that the mass transfer space is fully satisfied, and the mass transfer efficiency between the gas and liquid phases is improved, thereby increasing
  • the reaction efficiency is improved, and the material consumption and energy consumption are low, which reduces the production cost of the enterprise; at the same time, it also reduces the temperature and pressure of the esterification reaction, and increases the safety and stability of the system.
  • the second object of the present invention is to provide a method for preparing cyclohexanone by esterification using the above-mentioned intensified system.
  • the method has milder operating conditions, reduces the temperature and pressure of the reaction while ensuring the efficiency of the reaction, and has safety performance. High and low energy consumption, achieving a better reaction effect than the existing process.
  • the invention provides an external micro-interface strengthening system for preparing cyclohexanone by an esterification method, comprising an esterification reactor; the sidewall of the esterification reactor is provided with a raw material inlet, and the bottom is provided with a reactant outlet, The raw material inlet is connected to a micro-interface generator for dispersing the crushed gas into bubbles, and the reactant outlet is connected to an ethanol rectification tower for separating ethanol in the reactant;
  • the bottom of the ethanol rectification tower is provided with a heavy component outlet, and the heavy component outlet is connected to the cyclohexanol rectification tower for separating the gas phase cyclohexanol;
  • the top of the cyclohexanol rectification tower is provided with a gas phase outlet ,
  • the gas phase outlet is connected to a dehydrogenation reactor for carrying out the cyclohexanol dehydrogenation reaction;
  • the side wall of the dehydrogenation reactor is provided with a product outlet, and the product outlet is connected to a gas-liquid separator for separating hydrogen;
  • An alcohol ketone liquid outlet is provided at the bottom of the gas-liquid separator, and the alcohol ketone liquid outlet is connected to a cyclohexanone rectification tower for separating cyclohexanone.
  • the reaction process for preparing cyclohexanone by the esterification method has the following problems: the gas-liquid mass transfer area of the existing esterification reactor is limited, the cyclohexyl acetate and hydrogen cannot be fully mixed during the reaction, and the gas The mass transfer efficiency between the liquid phases is low, and the reaction efficiency is low. On the other hand, the temperature and pressure of the esterification reaction are relatively high, which greatly reduces the safety and stability of the system.
  • the external micro-interface strengthening system for preparing cyclohexanone by the esterification method of the present invention after a micro-interface generator is installed at the raw material port, on the one hand, hydrogen can be dispersed and broken into micro-sized bubbles with a diameter of micrometers, which increases the amount of hydrogen and
  • the phase boundary area between the cyclohexyl acetate makes the mass transfer space fully satisfied, improves the mass transfer efficiency between the gas and liquid phases, thereby improving the reaction efficiency, and the material consumption and energy consumption are low, and the production cost of the enterprise is reduced; at the same time; It also reduces the temperature and pressure of the esterification reaction, and increases the safety and stability of the system.
  • a hydrogen outlet is provided on the top of the gas-liquid separator, and the hydrogen outlet is connected to the micro-interface generator for reuse of the separated hydrogen.
  • the product after cyclohexanol dehydrogenation reaction will contain a large amount of hydrogen, and this part of hydrogen can be recovered through the gas-liquid separator, which fully improves the utilization rate of hydrogen.
  • the hydrogen outlet is provided with a hydrogen compressor for compressing the hydrogen before recycling.
  • a kettle liquid outlet is provided at the bottom of the cyclohexanol rectification tower, and the kettle liquid outlet is connected to the esterification reactor for reuse of unreacted cyclohexyl acetate.
  • the reactant contains a small amount of unreacted cyclohexyl acetate, which flows out from the kettle liquid outlet after ethanol distillation and cyclohexanol distillation, and returns to the esterification reactor to participate in the esterification reaction again , Fully improve the utilization rate of raw materials.
  • micro-interface generator is a pneumatic micro-interface generator, and the number of micro-interface generators is at least one.
  • micro-interface generators are not limited in the manner of setting, the position of the micro-interface generator, and the number; more preferably, the number of the micro-interface generator is more than one. Parallel arrangement, through this kind of multi-row parallel micro-interface generators to disperse and crush incoming hydrogen at the same time, which can effectively improve the subsequent reaction efficiency.
  • micro-interface generator used in the present invention has been embodied in the inventor’s previous patents, such as application numbers CN201610641119.6, 201610641251.7, CN201710766435.0, CN106187660, CN105903425A, CN109437390A, CN205833127U and CN207581700U patents.
  • the prior patent CN201610641119.6 detailed the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator).
  • the body is provided with an inlet communicating with the cavity, the opposite first end and the second end of the cavity are both open, and the cross-sectional area of the cavity is from the middle of the cavity to the first end of the cavity and The second end is reduced; the secondary crushing piece is provided at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is set in the cavity, and the secondary crushing piece is open to both ends of the cavity An annular channel is formed between the through holes.
  • the micro-bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, it can be known that the specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe.
  • the micro-bubble generator In the bubble generator, ultra-high-speed rotation and cutting the gas, the gas bubbles are broken into micron-level micro-bubbles, thereby increasing the mass transfer area between the liquid phase and the gas phase, and the micro-bubble generator in this patent belongs to a pneumatic micro-interface generation Device.
  • the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet.
  • the secondary bubble breaker connects the feed port with the gas-liquid mixture outlet, indicating that the bubble breakers are all It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating fluid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is The mixture is simultaneously passed into the elliptical rotating sphere for rotation, so as to achieve bubble breakage during the rotation, so the secondary bubble breaker is actually a gas-liquid linkage micro-interface generator.
  • micro-interface generator used in the present invention is not limited to the above-mentioned forms.
  • the specific structure of the bubble breaker described in the previous patent is only one of the forms that the micro-interface generator of the present invention can adopt.
  • the previous patent 201710766435.0 records that "the principle of the bubble breaker is high-speed jets to achieve gas collisions", and also explained that it can be used in a micro-interface strengthening reactor, verifying the difference between the bubble breaker and the micro-interface generator.
  • the previous patent CN106187660 is also a related record in the previous patent CN106187660 about the specific structure of the bubble breaker. For details, see paragraphs [0031]-[0041] in the specification, as well as the part of the drawings, which is related to the bubble breaker S-2 The specific working principle of the bubble breaker is explained in detail.
  • the top of the bubble breaker is the liquid phase inlet, and the side is the gas phase inlet.
  • the liquid phase coming in from the top provides the entrainment power to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the attached drawings.
  • the bubble breaker has a cone-shaped structure, and the diameter of the upper part is larger than that of the lower part, which is also for the liquid phase to provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed at the early stage of the patent application, it was named micro-bubble generator (CN201610641119.6) and bubble breaker (201710766435.0) in the early days. With continuous technological improvement, it was later renamed as micro-interface generator. Now the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the name is different.
  • the micro-interface generator of the present invention belongs to the prior art. Although some bubble breakers are pneumatic bubble breakers, some bubble breakers are hydraulic bubble breakers, and some are pneumatic bubble breakers.
  • the type of liquid-linked bubble breaker but the difference between the types is mainly selected according to the specific working conditions.
  • connection of the micro-interface generator and the reactor, and other equipment, including the connection structure and the connection position, according to the micro-interface It depends on the structure of the interface generator, which is not limited.
  • a cyclohexanone reflux tank which is provided with a reflux pipeline for returning part of cyclohexanone to the cyclohexanone rectification tower; the reflux pipeline is provided with a reflux pump .
  • a part of the condensate in the cyclohexanone reflux tank is pressurized by the reflux pump and then returned to the cyclohexanone rectification tower as a reflux pipeline to absorb excess heat at the top of the cyclohexanone rectification tower to maintain
  • the heat balance of the whole tower can also improve the recovery purity of cyclohexanone after multiple refluxing.
  • the reflux pump can be used to adjust the reflux, so that the reflux is stable and the operability is good.
  • the bottom of the cyclohexanone reflux tank is also provided with a cyclohexanone outlet for discharging reaction products.
  • the cyclohexanone outlet is connected with a cyclohexanone tower for the recovery of cyclohexanone.
  • esterification reactor and the dehydrogenation reactor are both fixed-bed catalytic reactors. Since the internal catalyst of the fixed-bed catalytic reactor is directly loaded on the fixed bed, it is not easy to wear in the bed and can be used for a long time. The structure of the reactor is simple and the operation is convenient.
  • the present invention also provides a method for preparing cyclohexanone by esterification using the above-mentioned enhanced system, which includes the following steps:
  • the hydrogen is dispersed and broken into micro-bubbles, and is fully emulsified with cyclohexyl acetate and then undergoes an esterification reaction to generate ethanol and cyclohexanol. Cyclohexanol is dehydrogenated to obtain cyclohexanone.
  • the hydrogen is dispersed and broken into microbubbles by the micro-interface generator, it is fully emulsified with cyclohexyl acetate and then undergoes an esterification reaction to produce ethanol and cyclohexanol.
  • the reaction product enters the ethanol rectification tower to separate the ethanol and then enters the cyclohexane.
  • the gas phase cyclohexanol from the top of the tower enters the dehydrogenation reactor for dehydrogenation reaction, the dehydrogenated product then enters the gas-liquid separator, and the alcohol ketone liquid after hydrogen separation finally enters the cyclohexanone Cyclohexanone is separated from the rectification tower and collected.
  • the temperature of the esterification reaction is 180-200°C; the pressure is 2.0-3.0 MPa.
  • the present invention has the following beneficial effects:
  • the external micro-interface strengthening system for preparing cyclohexanone by the esterification method of the present invention after a micro-interface generator is installed at the raw material inlet of the esterification reactor, on the one hand, hydrogen can be dispersed and broken into micro-bubbles with a diameter of micrometers.
  • the phase boundary area between hydrogen and cyclohexyl acetate is enlarged, so that the mass transfer space is fully satisfied, and the residence time of hydrogen in the liquid phase is increased, and the consumption of hydrogen is reduced, thereby greatly improving the reaction efficiency and significantly reducing the reaction.
  • the energy consumption in the process reduces the production cost of the enterprise; on the other hand, it reduces the temperature and pressure of the esterification reaction and increases the safety and stability of the system.
  • FIG. 1 is a schematic structural diagram of a built-in micro-interface ammoximation reaction system provided by an embodiment of the present invention.
  • an external micro-interface strengthening system for preparing cyclohexanone by an esterification method includes an esterification reactor 10; the sidewall of the esterification reactor 10 is provided with a raw material inlet 11, A reactant outlet 12 is provided at the bottom.
  • the raw material inlet 11 is connected to a micro-interface generator 20 for dispersing and crushing gas into bubbles.
  • the micro-interface generator 20 is a pneumatic micro-interface generator, and hydrogen enters the pneumatic micro-interface generator.
  • the hydrogen is dispersed and broken into micro-bubbles, thereby reducing the thickness of the liquid film and effectively increasing the mass transfer area between the hydrogen and the liquid phase material cyclohexyl acetate. Reduce mass transfer resistance and improve reaction efficiency.
  • the reactant outlet 12 is connected to an ethanol rectification tower 30 for separating ethanol from the reactants; the bottom of the ethanol rectification tower 30 is provided with a heavy component outlet 31, and the heavy component outlet 31 is connected to cyclohexane.
  • the alcohol rectification tower 40 is used to separate the gas phase cyclohexanol; specifically, the bottom of the cyclohexanol rectification tower 40 is provided with a kettle liquid outlet 41, and the kettle liquid outlet 41 is connected to the esterification reactor 10 is used for the unreacted cyclohexyl acetate to be reused; the top of the cyclohexanol rectification tower 40 is provided with a gas phase outlet 42 which is connected to the dehydrogenation reactor 50 for carrying out cyclohexanol Dehydrogenation reaction.
  • the side wall of the dehydrogenation reactor 50 is also provided with a product outlet 51, and the product outlet 51 is connected to a gas-liquid separator 60 for separating hydrogen.
  • the bottom of the gas-liquid separator 60 is provided with The alcohol and ketone liquid outlet 61 is connected to the cyclohexanone rectification tower 70 for separating cyclohexanone.
  • the top of the gas-liquid separator 60 is also provided with a hydrogen outlet 62, and the hydrogen outlet 62 is connected to the micro-interface generator 20 for the separated hydrogen to be reused.
  • the hydrogen outlet 62 is provided with a hydrogen compressor to compress the hydrogen before recycling.
  • a cyclohexanone reflux tank 80 is further included.
  • the bottom of the cyclohexanone reflux tank 80 is provided with a reflux pipeline for returning part of cyclohexanone to the cyclohexanone rectification tower 80; the reflux pipe A reflux pump 90 is arranged on the road. Compared with natural reflux, the reflux pump can be used to adjust the return flow, so that the return flow is stable and the operability is good.
  • the bottom of the cyclohexanone reflux tank 80 is also provided with a cyclohexanone outlet 81 for discharging reaction products, and the cyclohexanone outlet 81 is connected to a cyclohexanone tower 100 for recycling cyclohexanone.
  • the hydrogen gas enters the micro-interface generator 20 to be dispersed and broken into micron-level micro-bubbles, and is fully emulsified with cyclohexyl acetate and then enters the esterification reactor 10 for esterification reaction.
  • the temperature in the esterification reactor 10 is 180-200 °C;
  • the pressure is 2.0-3.0MPa.
  • the reaction product enters the ethanol rectification tower 30 through the reactant outlet 12 to separate ethanol, and then enters the cyclohexanol rectification tower 40 through the heavy component outlet 31, and the gas phase cyclohexanol enters the dehydrogenation reactor 50 through the gas phase outlet 42.
  • the tower kettle solution enters the esterification reactor 10 through the kettle liquid outlet 41 for the reuse of unreacted cyclohexyl acetate; the dehydrogenated product then enters the gas-liquid separator 60, The alcohol and ketone liquid after the hydrogen is separated finally enters the cyclohexanone rectification tower 70 to separate cyclohexanone, and the hydrogen is compressed through the hydrogen outlet 62 and then enters the micro-interface generator 20 to be reused.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种酯化法制备环己酮的外置微界面强化系统,包括酯化反应器;酯化反应器的侧壁设置有原料进口,原料进口连接微界面发生器以用于分散破碎气体成气泡,反应物出口连接乙醇精馏塔以用于分离反应物中的乙醇;乙醇精馏塔塔底设置有重组分出口,重组分出口连接环己醇精馏塔以用于分离出气相环己醇;环己醇精馏塔的顶部设置有气相出口,气相出口连接脱氢反应器以用于进行环己醇脱氢反应;本发明的外置微界面强化系统,通过在原料进口连接微界面发生器后,增大了氢气与醋酸环己酯之间的传质面积,提高了气液相之间的传质效率从而提高了反应效率,降低了企业的生产成本;同时还降低了酯化反应的温度和压力,增加了系统的安全性和稳定性。

Description

一种酯化法制备环己酮的外置微界面强化系统及方法 技术领域
本发明属于微界面强化反应技术领域,具体涉及一种酯化法制备环己酮的外置微界面强化系统及方法。
背景技术
环己酮是一种重要的有机化工原料,在我国,65%的环己酮作为生产己内酰胺的原料,20%的环己酮作为生产己二酸的原料,其余的环己酮作为相关化工原料;另外,环己酮还是优良的溶剂,可用作油漆硝化纤维、氯乙烯聚合物和共聚物的溶剂。随着我国化纤工业的迅速发展,己内酰胺、己二酸产量逐年增加,环己酮的需求量也日益俱增,开发利用前景广阔。
酯化法是目前最新的环己酮生产工艺,主要由醋酸环己酯和氢气在酮系催化剂发生加成反应,生成醋酸和环己醇,环己醇在脱氢催化剂作用下脱氢制得环己酮。该套工艺具有较高的转化率和选择性,几乎没有三废产生,具有较高的原子经济性。同时相较于环己烯水合法省去环己烷/环己烯的分离工艺,显著的降低了能耗。并且副产物乙醇可以用于其他化工生产,增加了产品附加值,增加了效益。然而,酯化法制备环己酮虽然有着明显的工艺优势,但也存在着一些缺陷:一方面,现有酯化反应器的气液相传质面积有限,反应过程中,醋酸环己酯和氢气无法得到充分混合,气液相之间的传质效率低下,反应效率低下,另一方面酯化反应的温度和压力较高,导致系统的安全性和稳定性大大的降低。
有鉴于此,特提出本发明。
发明内容
鉴于此,本发明的第一目的在于提供一种酯化法制备环己酮的外置微界面强化系统,该反应系统在原料进口设置微界面发生器,通过设置了微界面发生器后,一方面可以将氢气分散破碎成直径微米级的微气泡,增大了氢气和醋酸环己酯之间的相界面积,使得传质空间充分满足,提高了气液相之间的传质效率从而提高了反应效率,而且物耗、能耗低,降低了企业的生产成本;同时还降低了酯化反应的温度和压力,增加了系统的安全性和稳定性。
本发明的第二目的在于提供一种采用上述强化系统进行酯化法制备环己酮的方法,该方法的操作条件更加温和,在保证反应效率的同时降低了反应的温度和压力,而且安全性能高、能耗低,达到了比现有工艺更佳的反应效果。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种酯化法制备环己酮的外置微界面强化系统,包括酯化反应器;所述酯化反应器的侧壁设置有原料进口,底部设置有反应物出口,所述原料进口连接微界面发生器以用于分散破碎气体成气泡,所述反应物出口连接乙醇精馏塔以用于分离反应物中的乙醇;
所述乙醇精馏塔塔底设置有重组分出口,所述重组分出口连接环己醇精馏塔以用于分离出气相环己醇;所述环己醇精馏塔的顶部设置有气相出口,所述气相出口连接脱氢反应器以用于进行环己醇脱氢反应;所述脱氢反应器的侧壁设置有产物出口,所述产物出口连接气液分离器以用于分离氢气;所述气液分离器的底部设置有醇酮液出口,所述醇酮液出口连接环己酮精馏塔以用于分离环己酮。
现有技术中,酯化法制备环己酮的反应工艺存在以下问题:现有酯化反应器的气液相传质面积有限,反应过程中,醋酸环己酯和氢气无法得到充分混合,气液相之间的传质效率低下,反应效率低下,另一方面酯化反应的温度和压力 较高,导致系统的安全性和稳定性大大的降低。本发明的酯化法制备环己酮的外置微界面强化系统,通过在原料口设置了微界面发生器后,一方面可以将氢气分散破碎成直径微米级的微气泡,增大了氢气和醋酸环己酯之间的相界面积,使得传质空间充分满足,提高了气液相之间的传质效率从而提高了反应效率,而且物耗、能耗低,降低了企业的生产成本;同时还降低了酯化反应的温度和压力,增加了系统的安全性和稳定性。
进一步的,所述气液分离器的顶部设置有氢气出口,所述氢气出口连接所述微界面发生器以用于分离出的氢气重新返回利用。经过环己醇脱氢反应后的产物中会含有大量的氢气,通过气液分离器可以回收这部分氢气,充分提高了氢气的利用率。优选地,所述氢气出口设置有氢气压缩机以用于在氢气回收利用前先进行压缩。
进一步的,所述环己醇精馏塔的底部设置有釜液出口,所述釜液出口连接所述酯化反应器以用于未反应的醋酸环己酯重新返回利用。经过酯化反应后的反应物中含有少量的未反应的醋酸环己酯,在经过乙醇精馏和环己醇精馏后从釜液出口流出,回到酯化反应器中重新参与酯化反应,充分提高了原料的利用率。
进一步的,所述微界面发生器为气动式微界面发生器,所述微界面发生器的设置数量至少为一个以上。
进一步的,所述微界面发生器设置方式不限、设置位置不限,数量也不限;更优选的,所述微界面发生器数量为一个以上,在酯化反应器之前由上到下依次并列设置,通过这种多排并列设置的微界面发生器同时对进来的氢气进行分散破碎,更能够有效的提升后续的反应效率。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详 细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。
此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动 力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。
由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。
综上所述,本发明的微界面发生器属于现有技术,虽然有的气泡破碎器属于气动式气泡破碎器类型,有的气泡破碎器属于液动式气泡破碎器类型,还有的属于气液联动式气泡破碎器类型,但是类型之间的差别主要是根据具体工况的不同进行选择,另外关于微界面发生器与反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。
进一步的,还包括环己酮回流罐,所述环己酮回流罐的底部设置有将部分环己酮返回到环己酮精馏塔内的回流管路;所述回流管路上设置有回流泵。一部分环己酮回流罐内的冷凝液经过回流泵加压后作为回流管路回流至所述环己酮精馏塔内,以用于摄取所述环己酮精馏塔塔顶多余热量,维持全塔热平衡,经过多次回流,还可以提高环己酮的回收纯度。相比自然回流,采用回流泵可调节回流量,使得回流量稳定,操作性好。
进一步的,所述环己酮回流罐的底部还设置有用于反应产物排出的环己酮出口。所述环己酮出口连接有环己酮塔以用于回收环己酮。
进一步的,所述酯化反应器和脱氢反应器均为固定床催化反应器。由于固定床催化反应器内部催化剂直接装填在固定床上,因此在床层内不易磨损,可长期使用,而且反应器结构简单,操作方便。
除此之外,本发明还提供了一种采用上述强化系统进行酯化法制备环己酮的方法,包括如下步骤:
氢气分散破碎成微气泡后与醋酸环己酯充分乳化后进行酯化反应,生成乙醇和环己醇,环己醇经脱氢反应后制得环己酮。
进一步地,氢气经过微界面发生器分散破碎成微气泡后,与醋酸环己酯充分乳化后进行酯化反应生成乙醇和环己醇,反应产物进入乙醇精馏塔分离出乙醇后再进入环己醇精馏塔中,气相环己醇从塔顶出来进入脱氢反应器中进行脱氢反应,脱氢后的产物再进入气液分离器中,分离氢气后的醇酮液最后进入环己酮精馏塔内分离出环己酮并进行收集。
进一步的,所述酯化反应的温度为180-200℃;压力为2.0-3.0MPa。
与现有技术相比,本发明的有益效果在于:
本发明的酯化法制备环己酮的外置微界面强化系统,通过在酯化反应器的原料进口设置微界面发生器后,一方面可以将氢气分散破碎成直径微米级的微气泡,增大了氢气和醋酸环己酯之间的相界面积,使得传质空间充分满足,而且增加了氢气在液相中的停留时间,降低了氢气的耗量,从而大幅提高反应效率、显著降低反应过程中的能耗,降低了企业的生成成本;另一方面降低了酯化反应的温度和压力,增加了系统的安全性和稳定性。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的内置微界面氨肟化反应系统的结构示意图。
附图说明:
10-酯化反应器;                    11-原料进口;
12-反应物出口;                    20-微界面发生器;
30-乙醇精馏塔;                    31-重组分出口;
40-环己醇精馏塔;                  41-釜液出口;
42-气相出口;                       50-脱氢反应器;
51-产物出口;                       60-气液分离器;
61-醇酮液出口;                     62-氢气出口;
70-环己酮精馏塔;                   80-环己酮回流罐;
81-环己酮出口;                     90-回流泵;
100-环己酮塔。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例的酯化法制备环己酮的外置微界面强化系统,包括酯化反应器10;所述酯化反应器10的侧壁设置有原料进口11,底部设置有反应物出口12,所述原料进口11连接微界面发生器20以用于分散破碎气体成气泡,所述微界面发生器20为气动式微界面发生器,氢气进入到气动式微界面发生器的内部,通过气动式微界面发生器的破碎分散作用,将氢气分散破碎成微气泡,从而减小液膜厚度,有效的增大了氢气与液相物料醋酸环己酯之间的传质面积,降低传质阻力,提高反应效率。
进一步的,所述反应物出口12连接乙醇精馏塔30以用于分离反应物中的乙醇;所述乙醇精馏塔30塔底设置有重组分出口31,所述重组分出口31连接环己醇精馏塔40以用于分离出气相环己醇;具体而言,所述环己醇精馏塔40的底部设置有釜液出口41,所述釜液出口41连接所述酯化反应器10以用于未反应的醋酸环己酯重新返回利用;所述环己醇精馏塔40的顶部设置有气相出口42,所述气相出口42连接脱氢反应器50以用于进行环己醇脱氢反应。
该实施例中,所述脱氢反应器50的侧壁还设置有产物出口51,所述产物出口51连接气液分离器60以用于分离氢气,所述气液分离器60的底部设置有醇酮液出口61,所述醇酮液出口61连接环己酮精馏塔70以用于分离出环己酮。具体而言,所述气液分离器60的顶部还设置有氢气出口62,所述氢气出口62连接所述微界面发生器20以用于分离出氢气重新返回利用,优选地,所述氢气出口62设置有氢气压缩机以用于在氢气回收利用前先进行压缩。
本实施例中,还包括环己酮回流罐80,所述环己酮回流罐80的底部设置有将部分环己酮返回到环己酮精馏塔80内的回流管路;所述回流管路上设置有回流泵90,相比自然回流,采用回流泵可调节回流量,使得回流量稳定,操 作性好。
此外,所述环己酮回流罐80的底部还设置有用于反应产物排出的环己酮出口81,所述环己酮出口81连接有环己酮塔100以用于回收环己酮。
以下简要说明本发明酯化法制备环己酮的外置微界面强化系统的工作过程和原理。
氢气进入微界面发生器20内进行分散破碎成微米级别的微气泡,与醋酸环己酯充分乳化后进入酯化反应器10内进行酯化反应,酯化反应器10内的温度为180-200℃;压力为2.0-3.0MPa。反应产物经过反应物出口12进入乙醇精馏塔30内分离乙醇,随后通过重组分出口31再进入环己醇精馏塔40内,气相环己醇通过气相出口42进入脱氢反应器50内进行环己醇脱氢反应,塔釜溶液通过釜液出口41进入酯化反应器10内以用于未反应的醋酸环己酯重新返回利用;脱氢后的产物再进入气液分离器60中,分离出氢气后的醇酮液最后进入环己酮精馏塔70内分离出环己酮,氢气通过氢气出口62经压缩后进入微界面发生器20内重新返回利用。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种酯化法制备环己酮的外置微界面强化系统,其特征在于,包括酯化反应器;所述酯化反应器的侧壁设置有原料进口,底部设置有反应物出口,所述原料进口连接微界面发生器以用于分散破碎气体成气泡,所述反应物出口连接乙醇精馏塔以用于分离反应物中的乙醇;
    所述乙醇精馏塔塔底设置有重组分出口,所述重组分出口连接环己醇精馏塔以用于分离出气相环己醇;所述环己醇精馏塔的顶部设置有气相出口,所述气相出口连接脱氢反应器以用于进行环己醇脱氢反应;所述脱氢反应器的侧壁设置有产物出口,所述产物出口连接气液分离器以用于分离氢气;所述气液分离器的底部设置有醇酮液出口,所述醇酮液出口连接环己酮精馏塔以用于分离环己酮。
  2. 根据权利要求1所述的酯化法制备环己酮的外置微界面强化系统,其特征在于,所述气液分离器的顶部设置有氢气出口,所述氢气出口连接所述微界面发生器以用于分离出的氢气重新返回利用。
  3. 根据权利要求1所述的酯化法制备环己酮的外置微界面强化系统,其特征在于,所述环己醇精馏塔的底部设置有釜液出口,所述釜液出口连接所述酯化反应器以用于未反应的醋酸环己酯重新返回利用。
  4. 根据权利要求1所述的酯化法制备环己酮的外置微界面强化系统,其特征在于,所述微界面发生器为气动式微界面发生器,所述微界面发生器的设置数量至少为一个以上。
  5. 根据权利要求1所述的酯化法制备环己酮的外置微界面强化系统,其特征在于,还包括环己酮回流罐,所述环己酮回流罐的底部设置有将部分环己酮返回到环己酮精馏塔内的回流管路。
  6. 根据权利要求5所述的酯化法制备环己酮的外置微界面强化系统,其特征在于,所述环己酮回流罐的底部还设置有用于反应产物排出的环己酮出口。
  7. 根据权利要求1-6任一项所述的酯化法制备环己酮的外置微界面强化系统,其特征在于,所述酯化反应器和脱氢反应器均为固定床催化反应器。
  8. 采用权利要求1-7任一项所述的强化系统进行酯化法制备环己酮的方法,其特征在于,包括如下步骤:
    氢气分散破碎成微气泡后与醋酸环己酯充分乳化后进行酯化反应,生成乙醇和环己醇,环己醇经脱氢反应后制得环己酮。
  9. 根据权利要求9所述的方法,其特征在于,所述酯化反应的温度为180-200℃;压力为2.0-3.0MPa。
PCT/CN2020/092790 2020-05-14 2020-05-28 一种酯化法制备环己酮的外置微界面强化系统及方法 WO2021227137A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010406225.2A CN111574346A (zh) 2020-05-14 2020-05-14 一种酯化法制备环己酮的外置微界面强化系统及方法
CN202010406225.2 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021227137A1 true WO2021227137A1 (zh) 2021-11-18

Family

ID=72120954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092790 WO2021227137A1 (zh) 2020-05-14 2020-05-28 一种酯化法制备环己酮的外置微界面强化系统及方法

Country Status (2)

Country Link
CN (1) CN111574346A (zh)
WO (1) WO2021227137A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062656A (zh) * 2020-09-17 2020-12-11 南京延长反应技术研究院有限公司 一种对甲基苯酚的微界面制备系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105797654A (zh) * 2016-05-11 2016-07-27 南京大学 一种由环己烷制备环己酮的超高效氧化反应装置及方法
CN106349010A (zh) * 2015-07-13 2017-01-25 中国石油化工股份有限公司 一种生产环己醇的方法
CN107563051A (zh) * 2017-08-30 2018-01-09 南京大学 微界面强化反应器气泡尺度构效调控模型建模方法
CN108017498A (zh) * 2016-10-31 2018-05-11 中国石油化工股份有限公司 脱除乙酸的方法以及乙酸环己酯的生产方法和环己醇的生产方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210045215U (zh) * 2019-01-29 2020-02-11 南京延长反应技术研究院有限公司 低压气液强化乳化床反应装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106349010A (zh) * 2015-07-13 2017-01-25 中国石油化工股份有限公司 一种生产环己醇的方法
CN105797654A (zh) * 2016-05-11 2016-07-27 南京大学 一种由环己烷制备环己酮的超高效氧化反应装置及方法
CN108017498A (zh) * 2016-10-31 2018-05-11 中国石油化工股份有限公司 脱除乙酸的方法以及乙酸环己酯的生产方法和环己醇的生产方法
CN107563051A (zh) * 2017-08-30 2018-01-09 南京大学 微界面强化反应器气泡尺度构效调控模型建模方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, ZHIBING ET AL.: "Overview of Microinterface Intensification in Multiphase Reaction Systems", CIESC JOURNAL, vol. 69, no. 1, 31 December 2018 (2018-12-31), XP009526633, ISSN: 0438-1157, DOI: 10.11949/j.issn.0438-1157.20171400 *

Also Published As

Publication number Publication date
CN111574346A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2022011871A1 (zh) 一种煤制乙醇的微界面反应系统及方法
WO2021078239A1 (zh) 气液鼓泡床反应器、反应系统以及合成碳酸酯的方法
WO2022011865A1 (zh) 一种采用合成气制乙醇的反应系统及方法
WO2022011870A1 (zh) 一种煤制乙醇的反应系统及方法
WO2023138074A1 (zh) 一种催化二氧化碳环加成制备环状碳酸酯的方法及系统
WO2022057004A1 (zh) 一种对甲基苯酚的微界面制备系统及方法
WO2023165110A1 (zh) 一种1,4-丁二醇的微界面制备系统及方法
WO2022021626A1 (zh) 一种氧化卤代甲苯制备卤代苯甲醛的反应系统及方法
WO2021227137A1 (zh) 一种酯化法制备环己酮的外置微界面强化系统及方法
WO2021208199A1 (zh) 一种氨肟化兼回收叔丁醇的反应系统及方法
WO2023071938A1 (zh) 顺酐加氢方法及包括其的丁二酸生产方法
CN207786544U (zh) 一种锂盐生产装置
WO2021227136A1 (zh) 一种苯选择性加氢制备环己酮的强化反应系统及方法
CN110218151A (zh) 一种塔釜闪蒸式热泵反应精馏制备丙酸丙酯的装置和方法
WO2022052222A1 (zh) 一种草酸酯加氢制备乙醇酸酯的反应系统及方法
WO2022110872A1 (zh) 一种气相催化水合法制备乙二醇的强化反应系统及方法
CN211123731U (zh) 一种基于乙烯水合法制备乙二醇的智能控制反应系统
CN107285978A (zh) 正丁烷的制备方法
WO2020155506A1 (zh) 下置式气液强化乳化固定床反应装置及方法
WO2022032869A1 (zh) 一种制备n-甲基牛磺酸钠的微界面强化系统及方法
WO2023284024A1 (zh) 正丁醛缩合制辛烯醛的微界面强化系统及制备方法
CN113680286A (zh) 一种催化剂可循环使用的丙烯羰基化反应系统及方法
CN201272754Y (zh) 用于醋酸甲酯与一氧化碳液相羰基生成醋酐反应过程的高效气液副反应器
CN110478951A (zh) 一种增加催化剂沉降的工艺及催化剂沉降器
WO2022021625A1 (zh) 一种卤代苯甲醛的制备系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935279

Country of ref document: EP

Kind code of ref document: A1