WO2022021626A1 - 一种氧化卤代甲苯制备卤代苯甲醛的反应系统及方法 - Google Patents

一种氧化卤代甲苯制备卤代苯甲醛的反应系统及方法 Download PDF

Info

Publication number
WO2022021626A1
WO2022021626A1 PCT/CN2020/122732 CN2020122732W WO2022021626A1 WO 2022021626 A1 WO2022021626 A1 WO 2022021626A1 CN 2020122732 W CN2020122732 W CN 2020122732W WO 2022021626 A1 WO2022021626 A1 WO 2022021626A1
Authority
WO
WIPO (PCT)
Prior art keywords
halogenated
reaction
tower
liquid
gas
Prior art date
Application number
PCT/CN2020/122732
Other languages
English (en)
French (fr)
Inventor
张志炳
张锋
杨建�
魏世明
罗华勋
周政
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2022021626A1 publication Critical patent/WO2022021626A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/36Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in compounds containing six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/0035Periodical feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation

Definitions

  • the present invention relates to the field of selective catalytic synthesis of halogenated toluenes for halogenated benzaldehydes, in particular to a reaction system and method for preparing halogenated benzaldehydes by oxidizing halogenated toluenes.
  • the product of oxidizing halogenated toluene is mainly halogenated benzoic acid.
  • halogenated toluene can be completely oxidized to halogenated benzoic acid, but this reaction is difficult to bring economic benefits. Therefore, controlling the oxidation depth and making the oxidation product stay in the halogenated benzaldehyde has very important industrial realization value and significance.
  • Para-halogenated benzaldehydes are used in the production of medicines and pesticides, such as the preparation of pharmaceutical raw materials and intermediates such as sedative fennerol and aminophenylbutyric acid; halogenated benzaldehydes can be used as intermediates for medicines and dyes.
  • o- and p-halobenzaldehydes have attracted much attention.
  • the traditional method for preparing halogenated benzaldehydes is halogenated hydrolysis.
  • the halogenated benzaldehyde obtained by the method contains halogen elements, and the application is not as extensive as the products without halogen elements.
  • the reaction consumes raw materials and oxygen, and produces only a small amount of by-products and water in addition to the product. Purification of by-products can bring additional economic benefits, and the catalyst and solvent in the reaction can be recycled, the whole reaction will not cause additional pollution, and has high atom economy. Therefore, the selective oxidation of halogenated toluene to produce o- and p-halobenzaldehyde meets the requirements of green chemical industry and has great industrial prospects.
  • the first object of the present invention is to provide a reaction system for oxidizing halogenated toluene to prepare halogenated benzaldehyde, which reduces energy consumption compared with the reactor used in the past after adopting a gas-liquid strengthening reactor. , reduce the reaction temperature, improve the reaction yield, improve the utilization rate of raw materials, can simultaneously obtain halogenated benzaldehyde with a purity of more than 99wt% and a halogenated benzoic acid with a purity of more than 98wt%, which can better realize the catalyst ,
  • the circulation of the solvent has the advantages of high reaction efficiency, low energy consumption and less three wastes.
  • the second object of the present invention is to provide a method for preparing halobenzaldehyde by adopting the above reaction system, and the halobenzaldehyde obtained by the reaction has high purity and high yield.
  • the invention provides a reaction system for preparing halogenated benzaldehyde by oxidizing halogenated toluene, comprising: a batching tank and a gas-liquid strengthening reactor connected in sequence;
  • halogenated toluene and catalyst are mixed evenly in the batching tank, they enter the gas-liquid enhanced reactor for enhanced reaction, and the side wall of the gas-liquid enhanced reactor is provided with an oxygen inlet for fresh oxygen to enter, The bottom of the gas-liquid enhanced reactor is provided with a mixed material outlet;
  • the outlet of the mixture is connected to a rectification tower for rectification separation, the material flowing out from the bottom of the rectification tower enters the flash tower for separation, and the material from the top of the flash tower goes to the product tower for product purification to obtain halogen.
  • the halogenated benzaldehyde is transported to the refining tower for separation and refining between isomers;
  • the gas-liquid enhanced reactor is provided with a first micro-interface generator and a second micro-interface generator arranged in sequence along the vertical direction, and the first micro-interface generator is fed with the reaction circulating back from the outlet of the reaction material and liquid. feed liquid, the first micro-interface generator is connected with an exhaust gas entrainment pipe, the top of the exhaust gas entrainment pipe is located in the head space inside the gas-liquid enhanced reactor for entraining the halogen gas, the oxygen inlet communicating with the sidewall of the second micro-interface generator.
  • the reaction system of the invention adopts a gas-liquid intensified reactor to replace the previous reactor, which improves the mass transfer effect of the reaction.
  • halogenated toluene is selectively oxidized to produce free halogen elements.
  • the process of the halogenated benzaldehyde is particularly important. Because of this, the application of the gas-liquid enhanced reactor without tail gas can promote the gas-liquid reaction and improve the selectivity of the reaction; It is necessary to select products and by-products, which have strong industrial application value.
  • the enhanced reactor without tail gas circulation can realize no exhaust gas emission, and oxygen is introduced into a constant pressure to maintain the balance between supply and demand, and the safety is high; and the gas phase above the liquid level can be sent to the bottom of the reactor for repeated reactions, and the oxygen is utilized. High rate; good mixing effect of material and liquid, which is conducive to strengthening mass transfer and heat transfer, speeding up reaction rate, improving concentration and temperature distribution, reducing the occurrence of side reactions, and improving reaction selectivity, which is very suitable for application in this reaction.
  • the reason why the above-mentioned gas-liquid enhanced reactor can achieve no tail gas is that the upper-mounted first micro-interface generator and the lower-mounted second micro-interface generator are combined and applied inside the reactor, especially the upper-mounted type micro-interface generator.
  • the first micro-interface generator is equipped with a tail gas entrainment pipe, and uses the circulating entrainment of the reaction material and liquid inside the reactor as a driving force to entrain the halogen gas that stays above the liquid level inside the reactor through the air inlet pipe, thereby To achieve the effect of no tail gas. Therefore, the type of the top-mounted micro-interface generator is a hydraulic type, which is powered by liquid entrainment to entrain the halogen gas for further absorption.
  • the type of the bottom-mounted micro-interface generator is a pneumatic type, so that the incoming Oxygen is dispersed and broken, so as to disperse large bubbles into small bubbles and improve the mass transfer effect of the reaction.
  • the top of the first micro-interface generator is provided with a reaction material liquid inlet, the reaction material liquid inlet is connected with the reaction material liquid outlet through a circulation pipe, and a circulation pump is provided on the circulation pipe.
  • a circulation pipe is arranged on the side of the first micro-interface generator for the circulation of the reaction material and liquid. back and forth.
  • the circulating pipeline is provided with a circulating pump for conveying the feed liquid, and a heat exchanger for providing a heat source for the feed liquid.
  • the first micro-interface generator is fixed inside the gas-liquid intensified reactor through a fixing frame, and a connecting piece is provided between the second micro-interface generator and the first micro-interface generator to play the effect of being fixedly connected to each other.
  • micro-interface generator set inside the gas-liquid enhanced reactor itself, it belongs to the prior art. It has been reflected in previous patents, such as patents with application numbers CN201610641119.6, 201610641251.7, CN201710766435.0, CN106187660, CN105903425A, CN109437390A, CN205833127U and CN207581700U. In the previous patent CN201610641119.6, the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator) were introduced in detail.
  • the body is provided with an inlet communicating with the cavity, the opposite first and second ends of the cavity are open, wherein the cross-sectional area of the cavity is from the middle of the cavity to the first and second ends of the cavity.
  • the second end is reduced; the secondary crushing piece is arranged at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is arranged in the cavity, and both ends of the secondary crushing piece and the cavity are open
  • An annular channel is formed between the through holes of the micro-bubble generator.
  • the micro-bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, we can know that its specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe. In the bubble generator, ultra-high-speed rotation and cutting of the gas make the gas bubbles break into micro-bubbles at the micron level, thereby increasing the mass transfer area between the liquid phase and the gas phase, and the micro-bubble generator in this patent belongs to the pneumatic micro-interface generation. device.
  • the previous patent 201610641251.7 records that the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet, and the secondary bubble breaker communicates the feed port with the gas-liquid mixture outlet, indicating that the bubble breaker is both It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating liquid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid breaker. The mixture is simultaneously fed into the elliptical rotating ball for rotation, so that the bubbles are broken during the rotation, so the secondary bubble breaker is actually a gas-liquid linkage type micro-interface generator.
  • both hydraulic micro-interface generators and gas-liquid linkage micro-interface generators belong to a specific form of micro-interface generators.
  • the micro-interface generators used in the present invention are not limited to the above-mentioned forms.
  • the specific structure of the bubble breaker described in the prior patent is only one of the forms that the micro-interface generator of the present invention can take.
  • the liquid phase entering from the top provides the entrainment power, so as to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the accompanying drawings.
  • the bubble breaker has a conical structure, and the diameter of the upper part is larger than that of the lower part, so that the liquid phase can provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed in the early stage of the previous patent application, it was named as micro-bubble generator (CN201610641119.6), bubble breaker (201710766435.0), etc., and later changed its name to micro-interface generator with continuous technological improvement.
  • the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the names are different.
  • the micro-interface generator of the present invention belongs to the prior art, although some bubble breakers belong to the type of pneumatic bubble breakers, some belong to the type of hydraulic bubble breakers, and some belong to the type of gas bubble breakers.
  • the type of liquid-linked bubble breaker but the difference between the types is mainly selected according to the specific working conditions.
  • the connection between the micro-interface generator and the reactor and other equipment, including the connection structure and connection position depends on the micro-interface generator. It depends on the structure of the interface generator, which is not limited.
  • the solvent, halogenated toluene, catalyst and oxygen are selectively catalytically oxidized.
  • the solvent is generally selected as acetic acid and water
  • the catalyst is generally selected as cobalt acetate, manganese sulfate, potassium bromide, etc.
  • the material outlet enters the rectification tower to continue rectification.
  • a transfer pump is arranged between the outlet of the mixed material and the rectification tower for conveying the reacted mixed material into the rectification tower.
  • the top of the rectifying column is provided with a first top condenser, and the solvent and unreacted raw materials extracted from the first top condenser are returned to the batching tank .
  • the gas phase at the top of the rectification tower contains 95.8wt% of acetic acid, 2.5wt% of halogenated toluene and 1.7wt% of other components.
  • part of it is returned to the rectification tower after condensation, and the other part is returned to the rectification tower. into the ingredient tank.
  • the top of the product column is provided with a second top condenser, and the residual solvent and halogenated toluene extracted from the second top condenser are returned to the batching tank.
  • the gas phase at the top of the product tower contains more than 99.5wt% of unreacted raw material halogenated toluene, part of which is returned to the product tower after condensation, and the other part is returned to the batching tank through pipelines for recycling.
  • the material coming out from the bottom of the flash tower goes to the water washing tower for water washing and impurity removal, and the side wall of the water washing tower is sequentially provided with a halogenated benzoic acid outlet and a catalyst outlet from top to bottom,
  • the catalyst outlet is connected to an evaporator for catalyst recovery, and the material from the halogenated benzoic acid outlet is combined with the material from the bottom of the product column and collected.
  • the material from the bottom of the rectification tower goes to the flash tower for flash evaporation.
  • the pressure of the flash tower is 0.05Bar, and the residual heat is used for flash evaporation.
  • the obtained gas phase composition is 75.0% of halogenated toluene and 21.7% of halogenated benzaldehyde. %, halogenated benzoic acid 3.3%, go to the product tower for continued rectification.
  • the liquid phase composition after flash evaporation is 11.0% of p-halogenated toluene, 13.4% of halogenated benzaldehyde, and 75.6% of halogenated benzoic acid. It enters the washing tower for washing and removing impurities, so that the catalyst is dissolved in water and separated from the organic material. Afterwards, the catalyst dissolved in water is subsequently recovered by means of evaporator evaporation.
  • the top of the evaporator is provided with a water phase outlet for separating the water phase
  • the bottom of the evaporator is provided with a catalyst recovery port
  • the catalyst recovery port is connected to the batching tank to For the recycling of catalysts.
  • the catalyst is recovered by the evaporator, and the water obtained by evaporation can be recycled after being recovered.
  • the material from the halogenated benzoic acid outlet is combined with the material from the bottom of the product tower and then sent to the stirring and separation tank to separate the halogenated benzoic acid and the halogenated benzaldehyde, and sent to the Halogenated toluene is introduced into the stirring separation tank to utilize the difference in solubility of halogenated benzoic acid and halogenated benzaldehyde for separation.
  • the material from the bottom of the product tower is combined with the organic material after washing and recovering the catalyst, and sent to the stirring separation tank.
  • halogenated toluene is added to dissolve the halogenated benzaldehyde.
  • the separated halobenzoic acid is collected and collected, and the separated halobenzaldehyde is introduced from the middle section of the product column.
  • the part of the dissolved halotoluene is returned to the product column along the pipeline to continue the separation. Since the halogenated toluene takes away most of the halogenated benzaldehyde, the halogenated benzoic acid with a purity of more than 98.0% can be obtained, and the halogenated benzoic acid is directly extracted and collected.
  • a separation tank is provided at the top of the flash tower, the gas phase separated from the top of the separation tank goes to the product column, and the liquid phase separated from the bottom of the separation tank returns the flash tower.
  • the establishment of the separation tank can improve the flash separation effect of the flash column.
  • a pump body can be provided on the pipelines connected between the corresponding devices according to actual needs.
  • the present invention also provides a kind of reaction method of halogenated benzaldehyde, comprising the steps:
  • the solvent, halogenated toluene and catalyst are mixed evenly and then reacted with oxygen for enhanced reaction, and then successively undergo rectification, flash evaporation, and continuous rectification, and finally undergo purification and separation of isomers.
  • the pressure of the strengthening reaction is 0.5-3MPa, and the temperature is 70-100°C.
  • the reaction temperature is low, the pressure is greatly reduced, and the production capacity is high.
  • reaction system of halobenzaldehyde of the present invention reduces energy consumption by using gas-liquid strengthening reactor, reduces reaction temperature, improves reaction yield, improves the utilization ratio of raw material;
  • the no-tail gas circulation enhanced reactor can realize no exhaust gas emission, and oxygen is introduced into the constant pressure to maintain the balance between supply and demand, and the safety is high;
  • reaction system of the present invention can simultaneously obtain halogenated benzaldehydes with a purity of more than 99wt% and halogenated benzoic acids with a purity of more than 98wt%;
  • the reaction system of the present invention can better realize the circulation of catalyst and solvent, and has the advantages of high reaction efficiency, low energy consumption and less three wastes.
  • FIG. 1 is a schematic structural diagram of a reaction system for preparing halogenated benzaldehydes by oxidizing halogenated toluene according to the embodiment of the present invention.
  • 601-water phase outlet 602-catalyst recovery port;
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • Fig. 1 taking the selective oxidation of chlorotoluene to generate chlorobenzaldehyde as an example, it specifically includes:
  • Step 1 pass chlorotoluene, solvent (acetic acid), catalyst (Co/Mn/Br composite catalyst), and co-catalyst (alkali metal compound) into the batching tank 10 for mixing;
  • the pipeline enters the gas-liquid intensified reactor 20; oxygen enters the bottom of the gas-liquid intensified reactor 20 through the oxygen inlet 201; Reduce energy consumption;
  • the mixture material chlorotoluene, chlorobenzaldehyde, chlorobenzoic acid, catalyzer, solvent
  • mixture material outlet 202 is sent into the rectifying tower 30 by the mixture material pump 100 through the pipeline, and the subsequent refining is carried out. Distillation separation;
  • a first micro-interface generator 203 and a second micro-interface generator 204 are arranged in sequence along the vertical direction.
  • the top of the first micro-interface generator is provided with a reaction material liquid inlet 206.
  • the reaction material liquid circulated from the reaction material liquid outlet 207 is introduced into the micro-interface generator 203, the first micro-interface generator 203 is connected with a tail gas entrainment pipe 205, and the top of the exhaust gas entrainment pipe 205 is located inside the gas-liquid enhanced reactor 20.
  • the head space is used to entrain the halogen gas
  • the oxygen inlet 201 is communicated with the side wall of the second micro-interface generator 204
  • the reaction material liquid inlet 206 is connected with the reaction material liquid outlet 207 through a circulation pipe 208
  • the circulation pipe 208 is provided with
  • Step 2 The mixed material enters the rectifying tower 30 through the pipeline; the rectifying tower 30 is operated under reduced pressure, and the solvent and unreacted chlorotoluene are extracted from the top of the tower through the first tower top condenser 301 and returned to the rectifying tower 30 along the pipeline.
  • the lost solvent can also be supplemented through the pipeline; the temperature of the tower reactor material is relatively high, and it enters the flash tower 40 along the pipeline;
  • Step 3 The pressure of the flash tower 40 is 0.01 to 0.05 Bar, so that most of the chlorinated toluene and chlorobenzaldehyde are vaporized, and the components at the bottom of the tank are mainly chlorobenzoic acid, a catalyst and a small amount of chlorotoluene and chlorine. Substituted benzaldehyde.
  • the tower, the chlorotoluene and the residual solvent produced at the top of the tower are condensed by the second tower top condenser 801 and returned to the batching tank 10 along the pipeline, and the chlorobenzaldehyde (purity>99.6%) is produced in the gas phase at the bottom of the tower, and the tower reactor Mainly chlorobenzoic acid and a small amount of chlorobenzaldehyde.
  • the chlorobenzaldehyde is subjected to the subsequent rectification treatment in the refining tower 110, p-chlorobenzaldehyde and m-chlorobenzaldehyde are obtained, so as to separate the isomers, so as to meet the requirements of the subsequent downstream for different uses of different substances.
  • Chlorobenzoic acid mainly exists in the material coming out from the tower kettle of the product tower 80, and in the material coming out from the bottom of the flash tower 40, wherein the material coming out from the bottom of the flash tower 40 goes to the washing tower 50 and is washed with water. Miscellaneous, carry out washing, evaporation operation to reclaim the catalyst, after the washing, the material coming out from the halogenated benzoic acid outlet 501 of the side wall of the washing tower 50 and the material coming out of the tower kettle of the product tower 80 are merged into the stirring separation tank 70 to separate and obtain relatively High-purity chlorobenzoic acid.
  • Step 4 The desired product, chlorobenzaldehyde, remains in the crude chlorobenzoic acid.
  • p-chlorotoluene is passed into the stirring separation tank 70 through a pipeline to wash away most of the chlorine.
  • the chlorinated toluene raw material containing chlorobenzaldehyde can directly enter the product column 80 from the middle section of the product column 80 through the pipeline.
  • Step 5 After entering the water washing tower 50 for washing and removing impurities, the catalyst is dissolved in water so as to be separated from the organic material. After the catalyst dissolved in water comes out from the catalyst outlet 502, the catalyst is subsequently recovered by evaporating the evaporator 60. The top of the evaporator 60 is provided with a water phase outlet 601, and the bottom is provided with a catalyst recovery port 602, and the water obtained by evaporation is produced. Afterwards, it can be recycled, and there is no waste water discharge, and the catalyst is returned to the batching tank 10 for recycling.
  • step 1 the purpose of step 1 is to carry out the oxidation reaction of chlorinated toluene, and the process is strengthened by using a no-tail gas circulation strengthening reactor; the chlorinated toluene oxidation reaction process
  • the solvent used is acetic acid, a solvent commonly used in industry
  • the catalyst is a Co/Mn/Br composite catalyst
  • the oxidant uses oxygen to solve the problem of exhaust emission pollution
  • the co-catalyst is a simple alkali metal compound; the whole reaction process takes a short time and consumes energy. Low cost, easy availability of raw materials and low cost.
  • step 2 The purpose of step 2 is to separate out the solvent and unreacted chlorotoluene by rectification under reduced pressure, and the reclaimed material at the top of the tower can be recycled to the batching tank 10 for recycling.
  • step 3 The purpose of step 3 is to utilize the higher material temperature of the rectifying tower 30, to separate out most of the product chlorobenzaldehyde by one-step flash distillation, and to obtain a high-purity product through the vacuum rectifying tower 30,
  • the catalyst can be recycled by washing and evaporating. After separating the raw materials, main products and catalysts, the raw materials can be collected together to obtain the crude chlorobenzoic acid, which is subjected to the next step of separation and purification.
  • step 4 The purpose of step 4 is to recover and separate the chlorobenzaldehyde in the chlorobenzoic acid, obtain high-purity by-product chlorobenzoic acid while obtaining the main product, and improve economic benefits.
  • oxygen is also introduced into the gas-liquid strengthening reactor 20. After the oxygen fills the entire reactor and reaches a predetermined pressure, the circulation device in the reactor is opened, the temperature is raised, and the reaction is started, and the valve is set on the pipeline.
  • the flowmeter to control the circulating flow, and according to the pressure in the reactor, the oxygen source is timely added; after the reaction time is reached, the mixed material is sent to the rectifying tower 30, and the gas phase at the top of the rectifying tower 30 contains 95.8% (wt) of acetic acid.
  • the tower reactor material utilizes residual heat to flash, and the flash tower 40 pressure is 0.05Bar, and the obtained gas phase
  • the composition is 75.0% of p-chlorotoluene, 21.7% of p-chlorobenzaldehyde and 3.3% of p-chlorobenzoic acid, which is passed into the product tower 80;
  • the liquid phase composition after flash evaporation is 11.0% of p-chlorotoluene and 13.4% of p-chlorobenzaldehyde 75.6% of p-chlorobenzoic acid, pass it into the water washing tower 50, spray water to wash, so that the catalyst is dissolved in water and separated from the organic material, and then the catalyst is recovered by evaporation, and the water obtained by evaporation can be recycled.
  • the material fed into the product tower 80 is rectified, and the unreacted raw material p-chlorotoluene of more than 99.5% is obtained at the top of the tower, which is sent back to the batching tank 10 for recycling; the product p-chlorobenzaldehyde is extracted from the side line at the bottom of the tower, and the purity is acceptable. Up to more than 99.5%, the side-drawn product is sent to the refining tower 110 for continued separation, and the separation between different isomers is achieved by the rectification of the refining tower 110, and the gas phase from the top of the tower is also returned to the batching tank 10.
  • the tower reactor material is combined with the organic material after washing the recovery catalyst, and passed into the stirring separation tank 70, and the difference in solubility of aldehyde and acid in the raw material p-chlorotoluene is used to add p-chlorotoluene to dissolve p-chlorobenzaldehyde.
  • p-chlorotoluene can take most of the p-chlorobenzaldehyde to obtain p-chlorobenzoic acid with a purity of over 98.0%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

公开了一种氧化卤代甲苯制备卤代苯甲醛的反应系统及方法,反应系统包括:依次连接的配料罐、气液强化反应器;溶剂、卤代甲苯以及催化剂进入到配料罐混合均匀后,进入到气液强化反应器进行强化反应,气液强化反应器的侧壁设置有氧气进口,气液强化反应器的底部设置有混合物料出口;混合物料出口连接精馏塔进行精馏分离,从精馏塔塔底流出的物质进入闪蒸塔分离,从闪蒸塔塔顶出来的物质去往产品塔进行产品纯化,得到卤代苯甲醛。公开的反应系统提高了原料的利用率,能够同时得到纯度在99wt%以上的卤代苯甲醛和纯度在98wt%以上的卤代苯甲酸,能够较好地实现催化剂、溶剂的循环,具有反应效率高,能耗低,三废少的优点。

Description

一种氧化卤代甲苯制备卤代苯甲醛的反应系统及方法 技术领域
本发明涉及卤代甲苯的选择性催化合成卤代苯甲醛领域,具体而言,涉及一种氧化卤代甲苯制备卤代苯甲醛的反应系统及方法。
背景技术
氧化卤代甲苯的产物主要为卤代苯甲酸,应用MC催化剂和传统工艺条件,卤代甲苯可全部氧化为卤代苯甲酸,但该反应很难带来经济效益。因此,控制氧化深度,使氧化产物停留在卤代苯甲醛则有着很重要的工业实现价值与意义。对卤苯甲醛用于医药农药生产等领域,如镇静药芬那露、氨苯酪酸等医药原料及中间体的制备;卤代苯甲醛则可用作医药、染料中间体。近年来,随着此类精细化工产品需求的急剧增长,无论在工业化生产还是有机合成方面,邻、对卤苯甲醛都备受关注。
传统制备卤代苯甲醛的方法为卤化水解法。采用该方法所得的卤代苯甲醛中含有卤元素,应用广泛程度不及不含卤元素的产物。而氧化卤代甲苯生产卤代苯甲醛的过程,反应消耗原料与氧气而且得到产物之外只产生少量的副产物与水。副产物经过纯化处理可以带来额外的经济效益,并且反应中的催化剂与溶剂都可回收利用,整个反应不会造成额外的污染,且具有很高的原子经济性。因此,卤代甲苯选择性氧化生产邻、对卤苯甲醛符合绿色化工的要求,极具工业前景。
在采用卤代甲苯选择性氧化生产邻、对卤苯甲醛的工艺过程中,传统的气液反应器,如搅拌反应器、鼓泡反应器和搅拌鼓泡反应器都存在着氧气利用率低、废气处理难的问题。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种氧化卤代甲苯制备卤代苯甲醛的反应系统,该反应系统通过采用气液强化反应器之后,相较于以往所使用的反应器,其降低了能耗,降低了反应温度,提高了反应产率,提高了原料的利用率,能够同时得到纯度在99wt%以上的卤代苯甲醛和纯度在98wt%以上的卤代苯甲酸,能够较好地实现催化剂、溶剂的循环,具有反应效率高,能耗低,三废少的优点。
本发明的第二目的在于提供一种采用上述反应系统进行制备卤代苯甲醛的方法,反应得到的卤代苯甲醛纯度高、收率高。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种氧化卤代甲苯制备卤代苯甲醛的反应系统,包括:依次连接的配料罐、气液强化反应器;
溶剂、卤代甲苯以及催化剂进入到所述配料罐混合均匀后,进入到所述气液强化反应器进行强化反应,所述气液强化反应器的侧壁设置有用于新鲜氧气进入的氧气进口,所述气液强化反应器的底部设置有混合物料出口;
所述混合物料出口连接精馏塔进行精馏分离,从精馏塔塔底流出的物质进入闪蒸塔分离,从所述闪蒸塔塔顶出来的物质去往产品塔进行产品纯化,得到卤代苯甲醛,将所述卤代苯甲醛输送到精制塔中以用于同分异构体之间的分离精制;
所述气液强化反应器内设置有沿垂直方向依次设置的第一微界面发生器以及第二微界面发生器,所述第一微界面发生器内通入从反应料液出口循环回来的反应料液,所述第一微界面发生器连接有尾气卷吸管,所述尾气卷吸管的顶端位于所述气液强化反应器内部的顶部空间以用于将卤气卷吸下来,所述氧气进口与所述第二微界面发生器的侧壁连通。
本发明的反应系统采用了气液强化反应器代替了以往的反应器,提高了反应传质效果,随着对卤代苯甲醛需求的不断增长,选择性氧化卤代甲苯,生产无游离卤元素的卤代苯甲醛的工艺显得尤为重要。正因为如此,无尾气的气液强化反应器的应用可促进气-液反应的进行,提高反应的选择性;在此基础上,寻找可行的方法来实现对反应选择性的调控,从而根据市场需要选择产物与副产物,有极强的工业应用价值。
无尾气循环强化反应器可以实现没有废气排放,氧气通过恒压通入保持供给与需求间的平衡,安全性较高;并且液面上方气相可多次被送入反应器底部重复反应,氧气利用率高;料液混合效果好,有利于强化传质与传热,加快反应速率,改善浓度和温度分布,减少副反应的发生,提高反应的选择性,很适合应用在该反应中。
具体地,上述气液强化反应器之所以可以实现无尾气,因为在反应器内部将上置式的第一微界面发生器与下置式的第二微界面发生器进行结合应用,尤其是上置式的第一微界面发生器是设置有尾气卷吸管的,并利用反应器内部的反应料液循环卷吸作为动力,将停留在反应器内部液面之上的卤气通过进气管卷吸进来,从而实现无尾气的效果。因此上置式的微界面发生器类型为液动式,通过液体卷吸提供动力将卤气卷吸进来进一步吸收,下置式的微界面发生器的类型为气动式,以将进入到反应器内的氧气进行分散破碎,从而将大气泡分散成小气泡,提高反应传质效果。
优选地,第一微界面发生器的顶部设置有反应料液进口,所述反应料液进口与反应料液出口通过循环管道连接,所述循环管道上设置有循环泵。
因为上置式的第一微界面发生器是液动型的,因此为了给其提供卷吸卤气的动力,在第一微界面发生器的侧面设置有循环管道,以用于反应料液的循环往复。循环管道上设置有用于输送料液的循环泵,以及为了给料液提供热源的换热器。
第一微界面发生器是通过固定架固定在气液强化反应器内部的,第二微界 面发生器与第一微界面发生器之间设置有连接件,以起到相互固定连接的效果。
至于在气液强化反应器内部设置的微界面发生器本身属于现有技术。在先专利中已有体现,如申请号CN201610641119.6、201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。
此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。
由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。
综上所述,本发明的微界面发生器属于现有技术,虽然有的气泡破碎器属于气动式气泡破碎器类型,有的气泡破碎器属于液动式气泡破碎器类型,还有的属于气液联动式气泡破碎器类型,但是类型之间的差别主要是根据具体工况的不同进行选择,另外关于微界面发生器与反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。
在气液强化反应器内,溶剂、卤代甲苯以及催化剂、氧气进行选择性催化氧化,溶剂一般选择为醋酸和水,催化剂一般选择为醋酸钴、硫酸锰、溴化钾等,反应后从混合物料出口进入到精馏塔中继续精馏。在混合物料出口与精馏塔之间设置有输送泵以用于将反应后的混合物料输送到精馏塔中。
优选地,作为进一步可实施的方式,所述精馏塔的塔顶设置有第一塔顶冷凝器,从所述第一塔顶冷凝器采出的溶剂以及未反应的原料返回所述配料罐。
精馏塔的塔顶气相中含有醋酸95.8wt%、卤代甲苯2.5wt%、其他组分1.7wt%,为了对这部分物料充分回收,通过冷凝后一部分重新返回精馏塔中,另外一部分返回到配料罐中。
优选地,作为进一步可实施的方式,所述产品塔的塔顶设置有第二塔顶冷凝器,从所述第二塔顶冷凝器采出的残留溶剂以及卤代甲苯返回所述配料罐。
产品塔的塔顶气相中含有99.5wt%以上的未反应的原料卤代甲苯,通过冷凝后一部分返回产品塔中,另外一部分通过管路返回到配料罐中回收利用。
优选地,作为进一步可实施的方式,从闪蒸塔塔底出来的物质去往水洗塔进行水洗除杂,水洗塔的侧壁上从上到下依次设置有卤代苯甲酸出口以及催化剂出口,所述催化剂出口连接蒸发器以用于催化剂的回收,所述卤代苯甲酸出口出来的物质与所述产品塔的底部出来的物质汇合后收集。
从精馏塔塔底出来的物质去往闪蒸塔进行闪蒸,闪蒸塔的压力为0.05Bar,利用残余热量进行闪蒸,得到的气相组成为卤代甲苯75.0%、卤代苯甲醛21.7%、卤代苯甲酸3.3%,去往产品塔进行继续精馏。闪蒸后的液相组成为对卤代甲苯11.0%、卤代苯甲醛13.4%、卤代苯甲酸75.6%,进入水洗塔进行水洗除杂,使催化剂溶于水中从而与有机物料分离。之后溶于水中的催化剂后续采用蒸发器蒸发的方式回收催化剂。
优选地,作为进一步可实施的方式,所述蒸发器的顶部设置有水相出口用于分离水相,所述蒸发器的底部设置有催化剂回收口,所述催化剂回收口连接所述配料罐以用于催化剂的返回利用。通过蒸发器进行催化剂的回收,蒸发得到的水采出后可循环使用。
优选地,作为进一步可实施的方式,所述卤代苯甲酸出口出来的物质与所述产品塔的底部出来的物质汇合后去往搅拌分离罐以分离卤代苯甲酸与卤代苯甲醛,向所述搅拌分离罐中通入卤代甲苯以利用卤代苯甲酸与卤代苯甲醛溶解度的不同进行分离。
产品塔的塔顶得到99.5%以上的未反应的原料卤代甲苯,将其沿管路送回配料罐回收利用;塔底侧线采出产品卤代苯甲醛,纯度可达99.5%以上,为了得到邻、对位的卤代苯甲醛与间位的卤代苯甲醛分离,以实现同分异构体之间的分离,最后还设置有精制塔,将侧线采出的产品通往精制塔进行继续分离, 通过精致塔的精馏以实现不同的同分异构体之间的分离,塔顶出来的气相也是返回到配料罐中进行重复应用。
产品塔的底部出来的物质与水洗回收催化剂之后的有机物料合并,送入搅拌分离罐中,利用醛与酸在原料卤代甲苯中溶解度的不同,加入卤代甲苯,使卤代苯甲醛溶解。
优选地,作为进一步可实施的方式,分离出的卤代苯甲酸采出收集,分离出的卤代苯甲醛从所述产品塔的中段通入。卤代甲苯溶解的那部分沿管路回到产品塔继续进行分离。由于卤代甲苯带走大部分的卤代苯甲醛,因此即可得到纯度在98.0%以上的卤代苯甲酸,直接将卤代苯甲酸采出收集。
优选地,作为进一步可实施的方式,闪蒸塔的塔顶设置有分离罐,从所述分离罐顶部分离出的气相去往所述产品塔,从所述分离罐底部分离出的液相返回所述闪蒸塔。分离罐的设立可以提高闪蒸塔的闪蒸分离效果。
本发明的反应系统中可根据实际需要在相应的设备之间连接的管道上设置泵体。
本发明还提供了一种卤代苯甲醛的反应方法,包括如下步骤:
将溶剂、卤代甲苯、催化剂混合均匀后与氧气进行强化反应,然后依次经过精馏、闪蒸、继续精馏后,最后经过同分异构体的精制分离。
优选地,所述强化反应的压力0.5-3MPa,温度为70-100℃。
通过采用本发明的卤代苯甲醛的反应方法,反应温度低、压力大幅度下降,产能高。
与现有技术相比,本发明的有益效果在于:
(1)本发明的卤代苯甲醛的反应系统通过使用气液强化反应器,降低了能耗,降低了反应温度,提高了反应产率,提高了原料的利用率;
(2)无尾气循环强化反应器可以实现没有废气排放,氧气通过恒压通入保持供给与需求间的平衡,安全性较高;
(3)本发明的反应系统能够同时得到纯度在99wt%以上的卤代苯甲醛和纯度在98wt%以上的卤代苯甲酸;
(4)本发明的反应系统能够较好地实现催化剂、溶剂的循环,具有反应效率高,能耗低,三废少的优点。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的氧化卤代甲苯制备卤代苯甲醛的反应系统的结构示意图。
附图说明:
10-配料罐;                     20-气液强化反应器;
201-氧气进口;                  202-混合物料出口;
203-第一微界面发生器;          204-第二微界面发生器;
205-尾气卷吸管;                206-反应料液进口;
207-反应料液出口;              208-循环管道;
30-精馏塔;                     301-第一塔顶冷凝器;
40-闪蒸塔;                     401-分离罐;
50-水洗塔;                     501-卤代苯甲酸出口;
502-催化剂出口;                60-蒸发器;
601-水相出口;                  602-催化剂回收口;
70-搅拌分离罐;                 80-产品塔;
801-第二塔顶冷凝器。            90-料液泵;
100-混合物料泵。                110-精制塔。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,以氯代甲苯选择性氧化生成氯代苯甲醛为例,具体包括:
步骤1:将氯代甲苯、溶剂(醋酸)及催化剂(Co/Mn/Br复合催化剂)、助催化剂(碱金属化合物)通入配料罐10中进行混合;原料在料液泵90的作用下沿管路进入气液强化反应器20;氧气通过氧气进口201进入到气液强化反应器20的底部;气液强化反应器20为无尾气排放的气液强化反应器20,可以提高氧气利用率以减少能耗;反应完成后,混合物料(氯代甲苯、氯代苯甲醛、氯代苯甲酸、催化剂、溶剂)混合物料出口202经管路由混合物料泵100送入精馏塔30中,进行后续精馏分离;
在气液强化反应器20内部设置有沿垂直方向依次设置的第一微界面发生器203以及第二微界面发生器204,第一微界面发生器的顶部设置有反应料液进口206,第一微界面发生器203内通入从反应料液出口207循环回来的反应料液,第一微界面发生器203连接有尾气卷吸管205,尾气卷吸管205的顶端位于气液强化反应器20内部的顶部空间以用于将卤气卷吸下来,氧气进口201与第二微界面发生器204的侧壁连通,反应料液进口206与反应料液出口207通过循环管道208连接,循环管道208上设置有循环泵,同时在循环管道上还设置有换热器。
步骤2:混合物料经管路进入精馏塔30中;精馏塔30为减压操作,溶剂、未反应的氯代甲苯从塔顶经过第一塔顶冷凝器301采出并沿管路回到配料罐10中,损耗的溶剂还可通过管路进行补加;塔釜物料温度较高,沿管路进入闪蒸塔40中;
步骤3:闪蒸塔40的压力为0.01~0.05Bar,使其中大部分的氯代甲苯、氯代苯甲醛气化,罐底成分主要为氯代苯甲酸、催化剂和少量的氯代甲苯和氯代苯甲醛。气化物料经塔顶的分离罐401分离后,分离罐401顶部分离出的气相去往产品塔80,分离罐401底部分离出的液相返回所述闪蒸塔40,产品塔80为减压塔,塔顶采出氯代甲苯和残留的溶剂通过第二塔顶冷凝器801冷凝后沿 管路回到配料罐10,塔底气相采出氯代苯甲醛(纯度>99.6%),塔釜主要为氯代苯甲酸和少量的氯代苯甲醛。氯代苯甲醛经过后续的精制塔110精馏处理后,得到对氯苯甲醛以及间氯苯甲醛,以将同分异构体进行分离,以实现后续下游对不同的物质不同用途的要求。
氯代苯甲酸主要存在从产品塔80的塔釜出来的物质,以及从闪蒸塔40的塔底出来的物质中,其中从闪蒸塔40塔底出来的物质去往水洗塔50进行水洗除杂,进行水洗、蒸发操作以回收催化剂,水洗之后从水洗塔50侧壁的卤代苯甲酸出口501出来的物质和产品塔80的塔釜出来的物质合并通入搅拌分离罐70以分离获得较高纯度的氯代苯甲酸。
步骤4:氯代苯甲酸粗品中还残留着所需产物氯代苯甲醛,利用其在原料氯代甲苯中溶解度的不同,对氯甲苯经管路通入搅拌分离罐70可洗去大部分的氯代苯甲醛,即可得到纯度98%以上的氯代苯甲酸。含有氯代苯甲醛的氯代甲苯原料可直接通过管路从产品塔80的中段进入到产品塔80中。
步骤5:进入水洗塔50水洗除杂后,使催化剂溶于水中从而与有机物料分离。之后溶于水中的催化剂从催化剂出口502出来之后,后续采用蒸发器60蒸发的方式回收催化剂,蒸发器60的顶部设置有水相出口601,底部设置有催化剂回收口602,蒸发得到的水采出后可循环使用,不存在废水排放,催化剂则返回到配料罐10中循环利用。
在本发明的氯代甲苯选择性氧化生产氯代苯甲醛的新工艺中,步骤1目的是进行氯代甲苯的氧化反应,并应用无尾气循环强化反应器进行过程强化;氯代甲苯氧化反应过程所使用的溶剂为工业常用的溶剂醋酸,催化剂为Co/Mn/Br复合催化剂,氧化剂采用氧气以解决尾气排放污染问题,助催化剂为简单的碱金属化合物;整个反应过程耗时较短,能耗低,并且原料易得,成本较低。
步骤2目的是通过减压精馏,分离出溶剂以及未反应的氯代甲苯,塔顶回收物料可循环至配料罐10回收利用。
步骤3目的利用精馏塔30塔釜物料温度较高的特点,通过一步闪蒸即可 分离出大部分的产物氯代苯甲醛,再通过减压精馏塔30即可得到高纯度的产品,催化剂可通过水洗蒸发的方式进行回收利用,分离出原料、主要产物、催化剂之后,物料汇总到一起即可得到氯代苯甲酸粗品,进行下一步的分离纯化。
步骤4的目的则是将氯代苯甲酸中的氯代苯甲醛回收分离,得到主要产物的同时得到高纯度的副产品氯代苯甲酸,提高经济效益。
在上述实施例中,泵体的个数并没有具体要求,可根据需要在相应的位置设置。
以下简要说明本发明的氯代苯甲醛反应系统的工作过程和原理:
氮气吹扫反应系统中的各个设备,然后开车进行操作,将对氯甲苯、醋酸、催化剂(醋酸钴、硫酸锰、溴化钾)分别送入配料罐10中混合;混合均匀后通入气液强化反应器20中,氧气也通入到气液强化反应器20中,待氧气充满整个反应器并达到预定压力后,打开反应器中的循环装置,升温,开始反应,通过管道上设置的阀门及流量计调控循环流量,根据反应器内压力,适时补入氧源;达到反应时间后,混合物料送入到精馏塔30中,经过精馏塔30顶气相中含醋酸95.8%(wt)、对氯甲苯2.5%(wt)、其他组分1.7%(wt),将其返回配料罐10循环利用;塔釜物料利用残余热量进行闪蒸,闪蒸塔40压力为0.05Bar,得到的气相组成为对氯甲苯75.0%、对氯苯甲醛21.7%、对氯苯甲酸3.3%,将其通入产品塔80;闪蒸后的液相组成为对氯甲苯11.0%、对氯苯甲醛13.4%、对氯苯甲酸75.6%,将其通入水洗塔50,喷淋水洗,使催化剂溶于水中与有机物料分离,之后采用蒸发的方式回收催化剂,蒸发得到的水可循环使用。对通入产品塔80的物料进行精馏,塔顶得到99.5%以上的未反应的原料对氯甲苯,将其送回配料罐10回收利用;塔底侧线采出产品对氯苯甲醛,纯度可达99.5%以上,将侧线采出产品往精制塔110进行继续分离,通过精致塔110的精馏以实现不同的同分异构体之间的分离,塔顶出来的气相也是返回到配料罐10中进行重复应用;塔釜物料与水洗回收催化剂之后的有机物料合并,通入搅拌分离罐70,利用醛与酸在原料对氯甲苯中溶解度的不同,加入对氯甲苯,使对氯 苯甲醛溶解回到产品塔80进行分离;对氯甲苯带走大部分的对氯苯甲醛即可得到纯度在98.0%以上的对氯苯甲酸。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种氧化卤代甲苯制备卤代苯甲醛的反应系统,其特征在于,包括:依次连接的配料罐、气液强化反应器;
    溶剂、卤代甲苯以及催化剂进入到所述配料罐混合均匀后,进入到所述气液强化反应器进行强化反应,所述气液强化反应器的侧壁设置有用于新鲜氧气进入的氧气进口,所述气液强化反应器的底部设置有混合物料出口;
    所述混合物料出口连接精馏塔进行精馏分离,从精馏塔塔底流出的物质进入闪蒸塔分离,从所述闪蒸塔塔顶出来的物质去往产品塔进行产品纯化,得到卤代苯甲醛,将所述卤代苯甲醛输送到精制塔中以用于同分异构体之间的分离精制;
    所述气液强化反应器内设置有沿垂直方向依次设置的第一微界面发生器以及第二微界面发生器,所述第一微界面发生器内通入从反应料液出口循环回来的反应料液,所述第一微界面发生器连接有尾气卷吸管,所述尾气卷吸管的顶端位于所述气液强化反应器内部的顶部空间以用于将卤气卷吸下来,所述氧气进口与所述第二微界面发生器的侧壁连通。
  2. 根据权利要求1所述的反应系统,其特征在于,所述第一微界面发生器的顶部设置有反应料液进口,所述反应料液进口与反应料液出口通过循环管道连接,所述循环管道上设置有循环泵。
  3. 根据权利要求1所述的反应系统,其特征在于,所述精馏塔的塔顶设置有第一塔顶冷凝器,从所述第一塔顶冷凝器采出的溶剂以及未反应的原料返回所述配料罐。
  4. 根据权利要求1所述的反应系统,其特征在于,所述产品塔的塔顶设置有第二塔顶冷凝器,从所述第二塔顶冷凝器采出的残留溶剂以及卤代甲苯返回所述配料罐。
  5. 根据权利要求1所述的反应系统,其特征在于,从闪蒸塔塔底出来的物质去往水洗塔进行水洗除杂,水洗塔的侧壁上从上到下依次设置有卤代苯甲 酸出口以及催化剂出口,所述催化剂出口连接蒸发器以用于催化剂的回收,所述卤代苯甲酸出口出来的物质与所述产品塔的底部出来的物质汇合后收集。
  6. 根据权利要求5所述的反应系统,其特征在于,所述蒸发器的顶部设置有水相出口用于分离水相,所述蒸发器的底部设置有催化剂回收口,所述催化剂回收口连接所述配料罐以用于催化剂的返回利用。
  7. 根据权利要求5所述的反应系统,其特征在于,所述卤代苯甲酸出口出来的物质与所述产品塔的底部出来的物质汇合后去往搅拌分离罐以分离卤代苯甲酸与卤代苯甲醛,向所述搅拌分离罐中通入卤代甲苯以利用卤代苯甲酸与卤代苯甲醛溶解度的不同进行分离。
  8. 根据权利要求7所述的反应系统,其特征在于,从所述搅拌分离罐中分离出的卤代苯甲酸采出收集,分离出的卤代苯甲醛从所述产品塔的中段通入。
  9. 采用权利要求1-8任一项所述的卤代甲苯制备卤代苯甲醛的反应系统的反应方法,其特征在于,包括:
    将溶剂、卤代甲苯、催化剂混合均匀后与氧气进行强化反应,然后依次经过精馏、闪蒸、继续精馏后,最后经过同分异构体的精制分离。
  10. 根据权利要求9所述的反应方法,其特征在于,所述强化反应的压力0.5-3MPa,温度为70-100℃。
PCT/CN2020/122732 2020-07-27 2020-10-22 一种氧化卤代甲苯制备卤代苯甲醛的反应系统及方法 WO2022021626A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010729004.9 2020-07-27
CN202010729004.9A CN112047822A (zh) 2020-07-27 2020-07-27 一种氧化卤代甲苯制备卤代苯甲醛的反应系统及方法

Publications (1)

Publication Number Publication Date
WO2022021626A1 true WO2022021626A1 (zh) 2022-02-03

Family

ID=73601433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122732 WO2022021626A1 (zh) 2020-07-27 2020-10-22 一种氧化卤代甲苯制备卤代苯甲醛的反应系统及方法

Country Status (2)

Country Link
CN (1) CN112047822A (zh)
WO (1) WO2022021626A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578203A (zh) * 2021-07-16 2021-11-02 南京延长反应技术研究院有限公司 一种甲醇羰基化制备dmc的系统及制备方法
CN113479850A (zh) * 2021-07-16 2021-10-08 南京延长反应技术研究院有限公司 一种制备双氧水的塔式强化氧化系统以及方法
CN113387332A (zh) * 2021-07-16 2021-09-14 南京延长反应技术研究院有限公司 一种制备双氧水的微界面氧化系统以及氧化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011031424A2 (en) * 2009-09-14 2011-03-17 Hrd Corporation High shear system and method for the production of acids
CN102405207A (zh) * 2009-03-23 2012-04-04 堪萨斯大学 用于选择性氧化的喷雾工艺
CN105503567A (zh) * 2016-01-15 2016-04-20 湖南弘润化工科技有限公司 连续生产苯甲酸、副产苯甲醛的装置及方法
CN111389314A (zh) * 2020-03-31 2020-07-10 南京延长反应技术研究院有限公司 Px生产pta的内置微界面机组强化反应系统及工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103755520B (zh) * 2014-01-26 2015-04-01 沅江华龙催化科技有限公司 基于气液固多相反应分离同步反应器利用空气氧化取代甲苯生产取代苯甲醇、醛和酸的方法
CN107935828A (zh) * 2017-11-10 2018-04-20 浙江大学 一种由甲苯类化合物高选择性制备芳香醛的方法
CN210229906U (zh) * 2019-01-29 2020-04-03 南京延长反应技术研究院有限公司 下置式气液强化乳化固定床反应装置
CN210045215U (zh) * 2019-01-29 2020-02-11 南京延长反应技术研究院有限公司 低压气液强化乳化床反应装置
CN110204419A (zh) * 2019-02-26 2019-09-06 沅江华龙催化科技有限公司 一种节能环保的甲苯衍生物空气氧化合成苯甲醇(醛、酸)衍生物的方法
DE212019000177U1 (de) * 2019-03-15 2020-09-03 Nanjing Yanchang Reaction Technology Research Institute Co. Ltd Mikrogrenzflächen-verstärktes Hydrierungsreaktionssystem

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102405207A (zh) * 2009-03-23 2012-04-04 堪萨斯大学 用于选择性氧化的喷雾工艺
WO2011031424A2 (en) * 2009-09-14 2011-03-17 Hrd Corporation High shear system and method for the production of acids
CN105503567A (zh) * 2016-01-15 2016-04-20 湖南弘润化工科技有限公司 连续生产苯甲酸、副产苯甲醛的装置及方法
CN111389314A (zh) * 2020-03-31 2020-07-10 南京延长反应技术研究院有限公司 Px生产pta的内置微界面机组强化反应系统及工艺

Also Published As

Publication number Publication date
CN112047822A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2022021626A1 (zh) 一种氧化卤代甲苯制备卤代苯甲醛的反应系统及方法
WO2022011871A1 (zh) 一种煤制乙醇的微界面反应系统及方法
WO2021196386A1 (zh) 对二甲苯制备对苯二甲酸的内置微界面氧化系统及方法
CN101172931B (zh) 一种制备环己醇和环己酮的改进方法
WO2022057004A1 (zh) 一种对甲基苯酚的微界面制备系统及方法
WO2022011870A1 (zh) 一种煤制乙醇的反应系统及方法
CN111606790B (zh) 利用喷射环流反应器连续化生产优质高选择性苯甲醛和苯甲酸的系统及方法
CN114505027A (zh) 一种1,4-丁二醇的微界面制备系统及方法
CN109865493A (zh) 一种用于对二甲苯氧化的双鼓泡塔反应装置及反应工艺
WO2022021625A1 (zh) 一种卤代苯甲醛的制备系统及方法
CN111848344A (zh) 一种采用合成气制乙醇的反应系统及方法
CN111569788B (zh) 对二甲苯制备对苯二甲酸的外置微界面氧化系统及方法
CN107778131B (zh) 一种基于多层双环流导流筒鼓泡反应器制备环己醇和环己酮的方法
CN112142569A (zh) 一种对甲基苯酚的制备系统及方法
CN112044364A (zh) 一种氧化卤代甲苯制备卤代苯甲醛的智能反应系统及方法
CN111978269B (zh) 一种靛红酸酐连续化生产工艺及装置
CN215162271U (zh) 一种节能的甲硫醇合成装置
WO2023284024A1 (zh) 正丁醛缩合制辛烯醛的微界面强化系统及制备方法
WO2021227137A1 (zh) 一种酯化法制备环己酮的外置微界面强化系统及方法
CN102489220B (zh) 一种连续氧化制备草酸的方法及装置
CN115090238B (zh) 一种连续化生产氯化苄的系统和工艺
CN101817804B (zh) 压力振荡丙烯环氧化制备环氧丙烷的方法
WO2022057003A1 (zh) 一种对甲基苯酚的强化微界面制备系统及方法
CN212357099U (zh) 对二甲苯制备对苯二甲酸的内置微界面氧化系统
CN217699164U (zh) 一种呋喃酚高效反应器的尾气处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947352

Country of ref document: EP

Kind code of ref document: A1