WO2022052223A1 - 一种聚乙醇酸的强化微界面制备系统及方法 - Google Patents

一种聚乙醇酸的强化微界面制备系统及方法 Download PDF

Info

Publication number
WO2022052223A1
WO2022052223A1 PCT/CN2020/122813 CN2020122813W WO2022052223A1 WO 2022052223 A1 WO2022052223 A1 WO 2022052223A1 CN 2020122813 W CN2020122813 W CN 2020122813W WO 2022052223 A1 WO2022052223 A1 WO 2022052223A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
interface
reactor
reaction
hydrolysis
Prior art date
Application number
PCT/CN2020/122813
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
刘甲
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2022052223A1 publication Critical patent/WO2022052223A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/785Preparation processes characterised by the apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/79Interfacial processes, i.e. processes involving a reaction at the interface of two non-miscible liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/005Pipe-line systems for a two-phase gas-liquid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/20Arrangements or systems of devices for influencing or altering dynamic characteristics of the systems, e.g. for damping pulsations caused by opening or closing of valves

Definitions

  • the invention relates to the field of preparation of polyglycolic acid, in particular, to a system and method for preparing a strengthened micro-interface of polyglycolic acid.
  • Polyglycolic acid is a common biodegradable polyester widely used in high value-added fields such as surgical sutures, drug carriers and bone materials.
  • Polyglycolic acid has a simple and regular linear molecular structure and is a simple linear aliphatic polyester.
  • Polyglycolic acid with a molecular weight of more than 10,000 has strong mechanical strength and can be used for medical sutures.
  • the industrial preparation of high molecular weight polyglycolic acid usually adopts the method of ring-opening polymerization of glycolide.
  • Dimethyl oxalate is hydrogenated to produce glycolic acid ester; glycolic acid ester is hydrolyzed to produce glycolic acid; the intermediate product glycolide is produced from glycolic acid; high molecular weight polyglycolic acid is produced by ring-opening polymerization of glycolide.
  • the hydrolysis reaction is carried out by directly feeding glycolic acid ester and distilled water into the reactor, because water and glycolic acid ester cannot be fully mixed in the reactor, thereby lead to low reaction efficiency.
  • the first object of the present invention is to provide an enhanced micro-interface preparation system for polyglycolic acid.
  • the enhanced micro-interface preparation system uses a micro-interface unit inside the hydrogenation reactor to carry out hydrogenation reaction between hydrogen and dimethyl oxalate. Before breaking the hydrogen into microbubbles, the mass transfer area of the phase boundary between the hydrogen and dimethyl oxalate was increased, thereby solving the problem of the reaction pressure caused by the fact that the hydrogen and the dimethyl oxalate could not be fully mixed in the reactor in the prior art. High, high hydrogen ester ratio, low liquid hourly space velocity.
  • the second object of the present invention is to provide a method for preparing polyglycolic acid by adopting the above-mentioned enhanced micro-interface preparation system.
  • the polyglycolic acid obtained by the reaction has high purity, is widely used, improves the applicability of polyglycolic acid itself, and is worthy of widespread application. .
  • the invention provides an enhanced micro-interface preparation system for polyglycolic acid, comprising: a hydrogenation reactor, a hydrogen feed pipeline, a hydrolysis reactor, and a water vapor feed pipeline;
  • the side wall of the hydrogenation reactor is provided with an oxalate feed pipeline, and a micro-interface unit is arranged in the hydrogenation reactor, and the micro-interface unit is formed by a plurality of micro-interface generators arranged in sequence from top to bottom ;
  • the hydrogen feed pipeline enters the inside of the micro-interface unit through the side wall of the hydrogenation reactor, so as to realize that the hydrogen is broken into micro-level micro-bubbles in the micro-interface unit in advance before the hydrogenation reaction ;
  • the reaction product after the hydrogenation reaction in the hydrogenation reactor enters the light removal tower to remove light components, and then enters the rectification tower for rectification to obtain glycolic acid ester, and generates glycolic acid through the hydrolysis reactor.
  • the side and interior of the hydrolysis reactor are provided with a micro-interface generator, the water vapor pipeline enters the interior of the micro-interface generator, and the glycolate obtained after the rectification treatment is passed into the micro-interface to generate
  • the inside of the generator is used to break the water vapor into micron-scale micro-bubbles in the micro-interface generator before the hydrolysis reaction;
  • the hydrolyzed product after the hydrolysis reaction in the hydrolysis reactor is dehydrated in a dehydration tower, refined in a refining tower, reacted in the first polymerization reactor to obtain glycolide monomer, purified in a crystallization kettle to obtain high-purity glycolide monomer, and the second The polymerization reactor is polymerized to obtain polyglycolic acid;
  • the top of the refining tower is provided with a methanol recovery pipeline, and the methanol recovery pipeline is connected to a methanol recovery tank.
  • micro-interface generators arranged on the side of the hydrolysis reactor, which are arranged in sequence from top to bottom, and water vapor enters each of the micro-interface generators in parallel through the water vapor pipeline.
  • the micro-interface generator inside the hydrolysis reactor is arranged close to the bottom of the hydrolysis reactor, and water vapor enters the micro-interface generator from the bottom of the hydrolysis reactor through the water vapor pipeline.
  • the micro-interface unit includes three micro-interface generators, and a set of liquid reciprocal channels are arranged between adjacent micro-interface generators, and the liquid reciprocal channels realize gas-liquid circulation in the micro-interface generators .
  • the steam feed pipeline is connected with a distilled water storage tank to provide a raw material source for the steam entering the hydrolysis reactor.
  • the hydrogen feed pipeline is connected with a gas source external channel to provide a gas source for the hydrogen to enter the micro-interface unit.
  • the oxalate feed pipeline is connected with an oxalate storage tank to provide a raw material source for the oxalate entering the hydrogenation reactor.
  • the micro-interface unit of the present invention is arranged inside the hydrogenation reactor and arranged in sequence from top to bottom.
  • the oxalate enters the hydrogenation reactor from the oxalate storage tank through the oxalate feed pipeline. After entering, it can be in close contact with the incoming hydrogen as a medium, so as to ensure that the hydrogen can be fully dispersed and broken in the micro-interface unit, and it is equivalent to forming a micro-interface system in each micro-interface generator to achieve
  • the gas phase is fully dispersed and broken inside the micro-interface generator under the premise of using the liquid phase as the medium.
  • the micro-interface generator at the bottom is the closest to the gas-phase feed port, so it is used as the main dispersed and broken micro-interface system.
  • the two micro-interface generators formed by the two micro-interface generators form a secondary micro-interface system and a tertiary micro-interface system, which also has the effect of strengthening the hydrogenation reaction.
  • the present invention also sets liquid reciprocal channels between adjacent micro-interface generators.
  • there are two liquid reciprocal channels which are arranged symmetrically on the left and right, because the mutual circulation of liquid between the micro-interface generators , which can improve the fragmentation of the gas phase, because the fragmentation requires power.
  • the liquid reciprocal channels also provide power correspondingly. The best way is to use two liquids.
  • the liquid phase flow directions of the reciprocal channels are just opposite, so that convection can also be generated between the various micro-interface generators to improve the crushing effect.
  • the micro-interface generator in the hydrogenation reactor breaks the hydrogen into micro-sized micro-bubbles, and releases the micro-bubbles into the reactor to increase the amount of hydrogen and oxalic acid during the hydrogenation reaction.
  • the mass transfer area of the phase boundary between the dimethyl esters makes the hydrogen fully contact with the dimethyl oxalate in the state of microbubbles, and the hydrogenation reaction is carried out.
  • micro-interface generators are arranged on the side and inside of the hydrolysis reactor, and there are two micro-interface generators arranged on the outside, which are arranged in order from top to bottom.
  • Setting two micro-interface generators can basically meet the reaction requirements.
  • the two micro-interface generators located on the outside are preferably set at a relatively lower position, and the micro-interface generator set inside the hydrolysis reactor is also set at a relatively lower position, so that it is far from the water vapor feed pipe. The location is relatively close.
  • the micro-interface generator set inside the hydrolysis reactor is also set at a relatively lower position, so that it is far from the water vapor feed pipe. The location is relatively close.
  • the micro-interface generator set inside the hydrolysis reactor is also set at a relatively lower position, so that it is far from the water vapor feed pipe. The location is relatively close.
  • the micro-interface generator set inside the hydrolysis reactor is also set at a relatively lower position, so that it is far from the water vapor feed pipe.
  • micro-interface generator used in the present invention has been embodied in the inventor's prior patents, such as application numbers CN201610641119. Patents of CN205833127U and CN207581700U. In the previous patent CN201610641119.6, the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator) were introduced in detail.
  • the body is provided with an inlet communicating with the cavity, the opposite first and second ends of the cavity are open, wherein the cross-sectional area of the cavity is from the middle of the cavity to the first and second ends of the cavity.
  • the second end is reduced; the secondary crushing piece is arranged at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is arranged in the cavity, and both ends of the secondary crushing piece and the cavity are open An annular channel is formed between the through holes of the micro-bubble generator.
  • the micro-bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, we can know that its specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe.
  • the micro-bubble generator in this patent belongs to the pneumatic micro-interface generation. device.
  • the previous patent 201610641251.7 records that the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet, and the secondary bubble breaker communicates the feed port with the gas-liquid mixture outlet, indicating that the bubble breaker is both It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating liquid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid breaker. The mixture is simultaneously fed into the elliptical rotating ball for rotation, so that the bubbles are broken during the rotation, so the secondary bubble breaker is actually a gas-liquid linkage type micro-interface generator.
  • both hydraulic micro-interface generators and gas-liquid linkage micro-interface generators belong to a specific form of micro-interface generators.
  • the micro-interface generators used in the present invention are not limited to the above-mentioned forms.
  • the specific structure of the bubble breaker described in the prior patent is only one of the forms that the micro-interface generator of the present invention can take.
  • the previous patent 201710766435.0 recorded that "the principle of the bubble breaker is to achieve high-speed jets to achieve gas collision", and also stated that it can be used in micro-interface enhanced reactors to verify the relationship between the bubble breaker and the micro-interface generator.
  • the top of the bubble breaker is the liquid phase inlet, and the side is the gas phase inlet.
  • the liquid phase entering from the top provides the entrainment power, so as to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the accompanying drawings.
  • the bubble breaker has a conical structure, and the diameter of the upper part is larger than that of the lower part, so that the liquid phase can provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed in the early stage of the previous patent application, it was named as micro-bubble generator (CN201610641119.6), bubble breaker (201710766435.0), etc., and later changed its name to micro-interface generator with continuous technological improvement.
  • the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the names are different.
  • the micro-interface generator of the present invention belongs to the prior art, although some bubble breakers belong to the type of pneumatic bubble breakers, some belong to the type of hydraulic bubble breakers, and some belong to the type of gas bubble breakers.
  • the type of liquid-linked bubble breaker but the difference between the types is mainly selected according to the specific working conditions.
  • the connection between the micro-interface generator and the reactor and other equipment, including the connection structure and connection position depends on the micro-interface generator. It depends on the structure of the interface generator, which is not limited.
  • the top of the light-removing tower is provided with a light component outlet for discharging the light components of methanol, methyl formate, ethylene glycol and dimethyl carbonate
  • the bottom of the light-removing tower is provided with a reorganization A branch outlet, the heavy component outlet communicates with the side wall of the rectification column for further rectification of glycolate.
  • a raw material circulation outlet is provided at the bottom of the rectification column, and the oxalate is returned to the hydrogenation reactor from the raw material circulation outlet to realize the recycling of the raw material.
  • an overhead condenser is provided on the top of the rectification column, and a part of the substances condensed from the column overhead condenser is returned to the rectification column, and the other part goes to the glycol ester storage tank.
  • a glycolate outlet is provided at the bottom of the refining tower, and the glycolate outlet is connected to the hydrolysis reactor for returning the glycolate to the hydrolysis reactor for hydrolysis reaction.
  • the bottom of the crystallization kettle is provided with a solvent discharge port, and the solvent discharge port is used to discharge the ethyl acetate solution added for crystallization.
  • the reaction product that has been reacted in the hydrogenation reactor is transported to the inside of the light-removing tower, and the light components such as methanol, methyl formate, ethylene glycol and dimethyl carbonate are distilled from the top of the column, and the obtained heavy components are transported to the follow-up. in the distillation column.
  • the rectification tower performs rectification treatment on the heavy components in the light removal tower, and the dimethyl oxalate left at the bottom of the rectification tower is recycled to the interior of the hydrogenation reactor, and used again for the dimethyl oxalate in the hydrogenation reactor.
  • a part of the material passing through the top condenser at the top of the rectification column is returned to the rectification column, and a part of the distilled glycolate is transported to the glycolate storage tank, and the glycolate storage tank is connected to the glycolate storage tank. connected to the top of the hydrolysis reactor.
  • the acidic hydrolysis catalyst is filled in the hydrolysis reactor in advance, and the distilled water is transported to the micro-interface generator in the hydrolysis reactor through the circulating pump; in the hydrolysis reactor, the glycolic acid ester reacts with water to generate the target product glycolic acid, which also generates methanol.
  • the micro-interface generator in the hydrolysis reactor breaks the distilled water into micro-scale droplets, and releases the micro-droplets into the inside of the reactor, so as to increase the amount of the distilled water in the hydrolysis reaction process.
  • the phase boundary mass transfer area between the glycolic acid esters makes the distilled water fully contact with the glycolic acid esters in the state of micro droplets, and carries out a hydrolysis reaction, and the hydrolysis reaction product is transported to the interior of the dehydration tower to obtain a water-removed organic reaction solution.
  • the organic reaction liquid is transported to the refining tower; the refining tower carries out rectification treatment on the organic reaction liquid, and the glycolate remaining at the bottom of the refining tower is recycled to the inside of the hydrolysis reactor through the glycolate outlet at the bottom, and is used again for
  • the glycolic acid ester in the hydrolysis reactor is hydrolyzed, and methanol is distilled from the methanol recovery pipeline at the top of the tower for recovery and stored in the methanol recovery tank.
  • the distilled glycolic acid is transported from the middle section of the purification tower to the first polymerization reactor for glycolic acid esterification, prepolymerization and depolymerization.
  • the refining tower is of the structure of a rectifying tower.
  • glycolic acid is subjected to esterification, prepolymerization and depolymerization to obtain the crude product of glycolide monomer, and the crude product of glycolide monomer is transported to the crystallization kettle; the crude product of glycolide monomer is stored in the crystallization kettle. Heating and dissolving in the middle, cooling and crystallization to obtain high-purity glycolide monomer, and transporting the high-purity glycolide monomer to the second polymerization kettle; the high-purity glycolide monomer undergoes a polymerization reaction in the second polymerization kettle, and finally obtains High molecular weight polyglycolic acid product.
  • the invention also provides a method for preparing a strengthened micro-interface of polyglycolic acid, comprising the following steps:
  • the mixed micro-interface of oxalate and hydrogen is dispersed and broken, and then hydrogenation reaction is carried out, and then glycolate is obtained through dehydrogenation and rectification for collection;
  • glycolide is dehydrated by hydrolysis reaction, then esterification, prepolymerization and depolymerization are performed to obtain glycolide monomer, and polyglycolic acid is obtained by polymerization.
  • the temperature of the hydrogenation reaction is 200-300° C.
  • the pressure of the carboxylation reaction is 0.1-2 MPa.
  • the temperature of the hydrolysis reaction is 60-100°C.
  • n(glycolate):n(H 2 O) is 1:1.5-1:4.
  • a micro-interface generator connected to the hydrogen feed pipeline is arranged inside the hydrogenation reactor, so that before the hydrogen and dimethyl oxalate undergo hydrogenation reaction, the micro-interface generator breaks the hydrogen into a diameter of Micro-bubbles greater than or equal to 1 ⁇ m and less than 1 mm make hydrogen contact with dimethyl oxalate in the state of micro-bubbles, so as to increase the phase boundary mass transfer area between hydrogen and dimethyl oxalate during the hydrogenation reaction, and carry out sufficient
  • the hydrogenation reaction is carried out after mixing, thereby solving the problems of high reaction pressure, large hydrogen ester ratio and low liquid hourly space velocity because hydrogen and dimethyl oxalate cannot be fully mixed in the reactor in the prior art.
  • the advantage of the solution of the present invention is that the micro-interface generator connected to the distilled water storage tank is arranged inside and outside the hydrolysis reactor, so that before the hydrolysis reaction between the distilled water and the glycolate is carried out, the micro-interface generator breaks the distilled water into diameters
  • the distilled water is contacted with the glycolate in the state of microdroplets, so as to increase the phase boundary mass transfer area between the distilled water and the glycolate during the hydrolysis reaction, thereby reducing the amount of water.
  • the amount of distilled water improves the reaction efficiency and reduces the operation cost of product dehydration.
  • the polyglycolic acid product obtained by the reaction method of the invention has good quality and high yield.
  • the preparation method itself has low reaction temperature, greatly reduced pressure and high liquid hourly space velocity, which is equivalent to increasing the production capacity.
  • the enhanced micro-interface preparation system of polyglycolic acid of the present invention is provided with a micro-interface unit inside the hydrogenation reactor, so that the hydrogen is broken into micro-bubbles before the hydrogen and dimethyl oxalate are hydrogenated, and the hydrogen and dimethyl oxalate are improved.
  • the mass transfer area of the phase boundary between the dimethyl oxalate thereby solving the problem that the hydrogen and the dimethyl oxalate cannot be fully mixed in the reactor in the prior art, resulting in high reaction pressure, large hydrogen-to-ester ratio, and low liquid hourly space velocity.
  • the present invention is used to receive distilled water before the hydrolysis reaction by arranging the micro-interface generator inside and outside the hydrolysis reactor, and before the hydrolysis reaction, the distilled water is broken into micro-droplets with a diameter of micron level, It is used to increase the phase boundary mass transfer area between the distilled water and the glycolic acid ester during the hydrolysis reaction, so as to strengthen the reaction efficiency of the glycolic acid ester hydrolysis.
  • FIG. 1 is a schematic structural diagram of an enhanced micro-interface preparation system for preparing glycolate from oxalate according to an embodiment of the present invention.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • FIG. 1 it is the enhanced micro-interface preparation system of polyglycolic acid according to the embodiment of the present invention, which mainly includes a hydrogenation reactor 13, a hydrogen feed pipeline 23, a hydrolysis reactor 19, and a water vapor feed pipeline 20.
  • 1kg of hydrogenation catalyst is pre-filled into the hydrogenation reactor 13
  • an oxalate feed pipeline is also arranged on the side wall of the hydrogenation reactor 13
  • a micro-interface unit is arranged in the hydrogenation reactor 13.
  • the interface unit is formed by a plurality of micro-interface generators 131 arranged in sequence from top to bottom, preferably three micro-interface generators 131, and a group of liquid reciprocal channels 132 are arranged between adjacent micro-interface generators 131.
  • the reciprocal channel 132 realizes the circulation of gas and liquid in the micro-interface generator 131 .
  • the hydrogen feed pipe 23 passes through the side wall of the hydrogenation reactor 13 and enters the inside of the micro-interface unit, so as to realize that the hydrogen is pre-crushed into the micro-interface unit inside the micro-interface unit before the hydrogenation reaction. of microbubbles.
  • the hydrogen feed pipeline 23 is connected with a gas source external channel 12 to provide a gas source for hydrogen to enter the micro-interface unit, and the oxalate feed pipeline is connected with an oxalate storage tank 11 to achieve entry into the hydrogenation reactor 13.
  • the oxalate provides the source of raw materials, and 50kg of dimethyl oxalate is pre-filled into the oxalate storage tank 11, and is transported to the interior of the hydrogenation reactor 13 through the first delivery pump 17, and the external channel 12 of the gas source is connected with enough hydrogen
  • the gas source is connected, the system is started, the temperature of the hydrogenation reactor 13 is set to 200 ° C, and the pressure is set to 1.0 MPa, and the dimethyl oxalate is transported to the interior of the hydrogenation reactor 13, and at the same time, the hydrogen is passed through the hydrogen feed pipeline 23. It is delivered to the inside of each micro-interface generator 131 of the micro-interface unit.
  • the micro-interface generator 131 breaks the hydrogen into micro-bubbles with a micron scale, and releases the micro-bubbles into the interior of the reactor, so that the hydrogen is fully contacted with dimethyl oxalate in the state of micro-bubbles, and the dimethyl oxalate is in the hydrogenation process. Under the catalysis of the catalyst, it reacts with hydrogen to generate glycolate, and at the same time, it also generates by-products such as methanol, methyl formate, ethylene glycol and dimethyl carbonate.
  • the hydrogenated reaction product is transported to the light removal tower 14 to remove the light components, the light components and the heavy components are separated and processed, and the light components such as methanol and methyl formate are distilled from the light component outlet 141 at the top of the tower.
  • the heavy components such as dimethyl oxalate and glycolate remain at the bottom of the column, and the heavy components are transported to the rectifying column 15 from the heavy component outlet 142, and the dimethyl oxalate is left at the bottom of the rectifying column 15, from the setting
  • the raw material circulation outlet 152 at the bottom of the rectifying column 15 goes out, and is transported back to the hydrogenation reactor 13 by the second delivery pump 18 to realize re-circulation.
  • the top condenser 151 is refluxed, and the other part is directly extracted and sent to the glycolate storage tank 16 for storage.
  • the glycolate storage tank 16 is connected to the top of the hydrolysis reactor 19, and the glycolate is transported into the hydrolysis reactor 19. A hydrolysis reaction is carried out.
  • the acid hydrolysis catalyst is pre-filled in the hydrolysis reactor 19, and the distilled water in the distilled water storage tank is sent to the hydrolysis reactor 19 through the third circulation pump 22 arranged on the steam feed pipeline 20, and the side of the hydrolysis reactor 19 is close to the hydrolysis reactor 19.
  • the reaction liquid is sent to the dehydration tower 24 for dehydration.
  • the hydrolyzate is dehydrated in the dehydration tower 24 to obtain the glycolic acid ester hydrolysis reaction solution that removes water, and goes to the refining tower for refining.
  • the pump 29 is transported back to the hydrolysis reactor 19, and then to the first polymerization reactor 25 for glycolic acid esterification, prepolymerization, and depolymerization, firstly esterification at 80°C, and vacuum dehydration; then the first polymerization reaction
  • the temperature of the kettle 25 is raised to 140° C. until the material in the first polymerization reaction kettle 25 is polymerized to solidify; the temperature of the first polymer reaction kettle 25 is raised to 175° C. for 4 hours; Under vacuum conditions, the material is cracked to distill out the crude glycolide monomer.
  • the methanol discharged from the top of the refining tower 27 is sent to the methanol recovery tank 30 through the methanol recovery pipeline 272 for methanol recovery.
  • the distilled glycolide monomer crude product is transported to the crystallization kettle, 13 liters of ethyl acetate are added to the crystallization kettle 28, and the temperature of the crystallization kettle 28 rises to 70 DEG C until the glycolide monomer crude product is completely dissolved, followed by cooling and crystallization to obtain high temperature. Pure glycolide monomer.
  • the ethyl acetate solution is discharged from the crystallization kettle 28, and the high-purity glycolide monomer is transported to the second polymerization reaction kettle 26.
  • the micro-interface generator 131 converts the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubbles and transfers them to the bubbles, so that the bubbles are broken into micron-level micrometers with a diameter greater than or equal to 1 ⁇ m and less than 1 mm.
  • Bubble according to the energy input method or gas-liquid ratio, is divided into pneumatic micro-interface generator 131, hydraulic micro-interface generator 131 and gas-liquid linkage micro-interface generator 131, wherein the pneumatic micro-interface generator 131 is driven by gas, and the input gas volume is much larger than that of liquid.
  • the hydraulic micro-interface generator 131 is driven by liquid, and the input gas volume is generally less than the liquid volume; the gas-liquid linkage micro-interface generator 131 is driven by gas and liquid simultaneously, and the input gas volume is close to the liquid volume.
  • the micro-interface generator 131 is selected from one or more of the pneumatic micro-interface generator 131 , the hydraulic micro-interface generator 131 and the gas-liquid linkage type micro-interface generator 131 .
  • micro-interface generators 131 can also be added.
  • the installation position is not limited. It can be installed externally or built-in. When built-in, it can also be installed on the side wall of the kettle. , so as to realize the hedging of the micro-bubbles coming out of the outlet of the micro-interface generator 131 .
  • the temperature of the hydrolysis reaction can also be 70°C, 80°C, 90°C, and 100°C.
  • the enhanced micro-interface preparation system of the present invention has fewer equipment components, small footprint, low energy consumption, low cost, high safety, and controllable reaction. , the conversion rate of raw materials is high, which is equivalent to providing a more operable enhanced micro-interface preparation system for the field of glycolate preparation, which is worthy of widespread application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种聚乙醇酸的强化微界面制备系统及方法,所述强化微界面制备系统包括:加氢反应器,氢气进料管道,水解反应器,水蒸气进料管道;加氢反应器的侧壁设置有草酸酯进料管道,所述加氢反应器内设置有微界面机组,所述微界面机组由多个微界面发生器从上至下依次排列形成;所述氢气进料管道穿过所述加氢反应器的侧壁进入到所述微界面机组内部,以实现在加氢反应之前氢气预先在所述微界面机组内部破碎成微米级别的微气泡。所述强化微界面制备系统通过在加氢反应器内部设置微界面机组以及在水解反应器的侧面设置微界面发生器,使得在氢气与草酸二甲酯进行加氢反应之前将氢气破碎为微气泡,提高氢气与草酸二甲酯之间的相界传质面积。

Description

一种聚乙醇酸的强化微界面制备系统及方法 技术领域
本发明涉及聚乙醇酸制备领域,具体而言,涉及一种聚乙醇酸的强化微界面制备系统及方法。
背景技术
聚乙醇酸是一种常见的生物可降解聚酯,广泛应用于手术缝合线、药物载体及骨材料等高附加值领域。聚乙醇酸具有简单规整的线性分子结构,是简单的线性脂肪族聚酯。分子量超过10000的聚乙醇酸具有较强的机械强度,可用于医用缝合线。工业上制备高分子量聚乙醇酸通常采用乙交酯开环聚合的方法。
中国是一个少油多煤的国家,随着我国煤制乙二醇行业的发展,利用中间产物草酸二甲酯大规模生产聚乙醇酸可以进一步促进煤化工的发展。草酸二甲酯加氢制乙醇酸酯;乙醇酸酯经水解制乙醇酸;再由乙醇酸制中间产品乙交酯;乙交酯开环聚合制得高分子量的聚乙醇酸。
在现有的草酸二甲酯加氢反应系统制乙醇酸酯时,需要将草酸二甲酯与氢气混合后通入反应器中进行加氢反应,由于氢气和草酸二甲酯无法得到充分的混合,从而导致反应需要在较高氢酯比(氢酯比>30:1)和高氢气压力(>2.0MPa)下进行,限制了反应器的生产能力(液时空速<1.0h -1)。
同时,现有的乙醇酸酯水解反应系统制备乙醇酸时,是通过将乙醇酸酯和蒸馏水直接通入反应釜中进行水解反应,由于水和乙醇酸酯在反应釜中无法得到充分混合,从而导致反应效率低下。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种聚乙醇酸的强化微界面制备系统,该强化微界面制备系统通过在加氢反应器内部设置微界面机组,使得在氢气与草酸二甲酯进行加氢反应之前将氢气破碎为微气泡,提高氢气与草酸二甲酯之间的相界传质面积,从而解决了现有技术中由于氢气和草酸二甲酯在反应器内部无法得到充分混合,导致反应压力高、氢酯比大、液时空速低的问题。
本发明的第二目的在于提供一种采用上述强化微界面制备系统制备聚乙醇酸的方法,反应得到的聚乙醇酸纯度高,应用广泛,提高了聚乙醇酸本身的适用面,值得广泛推广应用。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种聚乙醇酸的强化微界面制备系统,包括:加氢反应器,氢气进料管道,水解反应器,水蒸气进料管道;
所述加氢反应器的侧壁设置有草酸酯进料管道,所述加氢反应器内设置有微界面机组,所述微界面机组由多个微界面发生器从上至下依次排列形成;所述氢气进料管道穿过所述加氢反应器的侧壁进入到所述微界面机组内部,以实现在加氢反应之前氢气预先在所述微界面机组内部破碎成微米级别的微气泡;
从所述加氢反应器加氢反应后的反应产物进入脱轻塔脱除轻组分,再进入精馏塔精馏处理后得到乙醇酸酯,经过所述水解反应器生成乙醇酸,所述水解反应器的侧面以及内部均设置有微界面发生器,所述水蒸气管道进入到所述微界面发生器的内部,所述精馏处理后得到的乙醇酸酯通入到所述微界面发生器的内部,以实现在水解反应之前预先在微界面发生器内将水蒸气破碎成微米级别的微气泡;
从所述水解反应器水解反应后的水解产物经过脱水塔脱水、精制塔精制、第一聚合反应釜反应得到乙交酯单体、结晶釜中提纯得到高纯度的乙交酯单体,第二聚合反应釜聚合得到聚乙醇酸;
所述精制塔的顶部设置有甲醇回收管道,所述甲醇回收管道连接甲醇回收罐。
优选地,所述水解反应器侧面设置的微界面发生器为两个,从上至下依次排列,水蒸气通过所述水蒸气管道并行进入每个所述微界面发生器中。
优选地,所述水解反应器内部的微界面发生器靠近所述水解反应器的底部设置,水蒸气通过所述水蒸气管道从所述水解反应器底部进入到所述微界面发生器中。
优选地,所述微界面机组包括3个微界面发生器,相邻所述微界面发生器之间设置有一组液体互逆通道,所述液体互逆通道实现微界面发生器内气液的流通。
优选地,所述水蒸气进料管道连接有蒸馏水存储罐以实现为进入到所述水解反应器内的水蒸气提供原料来源。
优选地,所述氢气进料管道连接有气源外接通道以实现为氢气进入到微界面机组提供气源。
优选地,所述草酸酯进料管道连接有草酸酯存储罐以实现为进入到加氢反应器内的草酸酯提供原料来源。
本发明的微界面机组设置在了加氢反应器的内部,按照从上至下依次排布的方式设置,草酸酯从草酸酯存储罐通过草酸酯进料管道进入到加氢反应器的内部,进入之后作为介质与进入的氢气能够发生密切的接触,从而保证了氢气能够在微界面机组中充分分散破碎,且相当于在每个微界面发生器均形成一次微界面体系,以实现气相在以液相为介质的前提下在微界面发生器内部得到充分的分散破碎,最底部的微界面发生器离气相进料口最为接近,所以其作为主要分散破碎的微界面体系,然后上部的两个微界面发生器形成二次微界面体系以及三次微界面体系,也起到加强加氢反应的效果。
此外,本发明在相邻的微界面发生器之间还设置了液体互逆通道,液体互逆通道最好为两条,左右对称设置,因为在各个微界面发生器之间通过液体的 互相流通,从而更能够提高气相的破碎,因为破碎是需要动力的,除了微界面发生器内部的微孔结构提供动力以外,液体互逆通道也相应的配合提供了动力,最好的方式是两个液体互逆通道的液相流向是正好相反的,从而在各个微界面发生器之间也能产生对流,提高破碎的效果。
所述加氢反应器中的微界面发生器将氢气打碎成微米尺度的微气泡,并将微气泡释放到所述反应器内部,以增大加氢反应过程中所述氢气与所述草酸二甲酯之间的相界传质面积,使得氢气以微气泡的状态与草酸二甲酯充分接触,并进行加氢反应。
同样的,在水解反应器的侧面以及内部均设置有微界面发生器,外侧设置的微界面发生器为两个,由上至下依次排列,设置两个微界面发生器基本可以达到反应要求,且位于外侧的两个微界面发生器最好设置在相对比较靠下的位置,设置在水解反应器内部的微界面发生器也同样设置在比较靠下的位置,这样离水蒸气进料管道的位置比较近,当水蒸气进入水解反应器进行水解反应之前,在微界面发生器内能够被充分分散破碎,更有利于后续水解反应的进行,并且该设置位置大大增加了分散破碎的效果,分散破碎后从水解反应器的底部进入相应的也延长了反应的时间。另外通过内部与外部均设置微界面发生器相互配合后,能够大大提升分散破碎的效果。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次 破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当 于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。
综上所述,本发明的微界面发生器属于现有技术,虽然有的气泡破碎器属于气动式气泡破碎器类型,有的气泡破碎器属于液动式气泡破碎器类型,还有的属于气液联动式气泡破碎器类型,但是类型之间的差别主要是根据具体工况的不同进行选择,另外关于微界面发生器与反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。
优选地,所述脱轻塔的顶部设置有轻组分出口,以用于甲醇、甲酸甲酯、乙二醇和碳酸二甲酯的轻组分的排出,所述脱轻塔的底部设置有重组分出口,所述重组分出口与所述精馏塔的侧壁相通以用于将乙醇酸酯进行进一步的精馏。
优选地,所述精馏塔的底部设置有原料循环出口,所述草酸酯从所述原料循环出口返回到所述加氢反应器以实现的原料的循环利用。
优选地,所述精馏塔的顶部设置有塔顶冷凝器,从所述塔顶冷凝器冷凝下来的物质一部分返回到所述精馏塔,另外一部分去往乙醇酸酯存储罐。
优选地,所述精制塔的底部设置有乙醇酸酯出口,所述乙醇酸酯出口连接水解反应器用于将乙醇酸酯重新返回到水解反应器中进行水解反应。
优选地,所述结晶釜的底部设置有溶剂排出口,所述溶剂排出口用于排出结晶添加的乙酸乙酯溶液。
将加氢反应器内部反应完毕的反应产物输送至脱轻塔内部,甲醇、甲酸甲酯、乙二醇和碳酸二甲酯等轻组分从塔顶馏出,将得到的重组分输送至后续的精馏塔中。
精馏塔对脱轻塔中的重组分进行精馏处理,将留在精馏塔底部的草酸二甲酯循环至加氢反应器的内部,再次用于加氢反应器内的草酸二甲酯加氢反应,将精馏塔顶部经过塔顶冷凝器的物质,一部分返回到所述精馏塔,一部分馏出的乙醇酸酯输送至乙醇酸酯存储罐,所述乙醇酸酯存储罐与所述水解反应器的顶部连接。预先将酸性水解催化剂填入水解反应器中,将蒸馏水通过循环泵输 送至水解反应器中的微界面发生器内;在水解反应器内乙醇酸酯与水反应生成目标产物乙醇酸,同时也生成甲醇。
随后,所述水解反应器中的微界面发生器将蒸馏水打碎成微米尺度的微液滴,并将微液滴释放到所述反应器内部,以增大水解反应过程中所述蒸馏水与所述乙醇酸酯之间的相界传质面积,使得蒸馏水以微液滴的状态与乙醇酸酯充分接触,并进行水解反应,将水解反应产物输送至脱水塔内部,得到除水的有机反应液,将有机反应液输送至精制塔;所述精制塔对有机反应液进行精馏处理,将留在精制塔底部的乙醇酸酯通过底部的乙醇酸酯出口循环至水解反应器内部,再次用于水解反应器内的乙醇酸酯水解反应,甲醇则从塔顶的甲醇回收管道馏出进行回收,储存在甲醇回收罐中。馏出的乙醇酸从精制塔的塔中段输送至第一聚合反应釜中进行乙醇酸酯化、预聚、解聚。精制塔为精馏塔的结构,塔顶有塔顶冷凝器,塔底有塔底再沸器,精制塔塔顶馏出的甲醇通过塔顶冷凝器后一部分重新返回到精制塔中,另外一部分从塔顶冷凝器出来去往甲醇回收罐进行甲醇回收。
所述第一聚合反应釜中,乙醇酸经过酯化、预聚和解聚环节得到乙交酯单体粗品,将乙交酯单体粗品输送至结晶釜中;乙交酯单体粗品在结晶釜中加热溶解,冷却结晶得到高纯度乙交酯单体,将高纯度乙交酯单体输送至第二聚合釜中;高纯度乙交酯单体在第二聚合釜中发生聚合反应,最终得到高分子量的聚乙醇酸产品。
本发明还提供了一种聚乙醇酸的强化微界面制备方法,包括如下步骤:
将草酸酯与氢气混合微界面分散破碎后进行加氢反应,再经过脱氢、精馏得到乙醇酸酯进行收集;
将所述乙醇酸酯经过水解反应脱水后,再经过酯化、预聚、解聚得到乙交酯单体,聚合得到聚乙醇酸。
优选地,加氢反应的温度200-300℃,所述羧化反应的压力为0.1-2MPa。
优选地,水解反应的温度为60-100℃。
优选地,水解反应中,n(乙醇酸酯):n(H 2O)为1:1.5-1:4。
具体地,该制备方法通过在加氢反应器内部设置与氢气进料管道连接的微界面发生器,使得在氢气与草酸二甲酯进行加氢反应之前,微界面发生器将氢气破碎成直径为大于等于1μm、小于1mm的微气泡,使得氢气以微气泡的状态与草酸二甲酯接触,以增大加氢反应过程中氢气与草酸二甲酯之间的相界传质面积,并进行充分混合再进行加氢反应,从而解决了现有技术中由于氢气和草酸二甲酯在反应器内部无法得到充分混合,导致反应压力高、氢酯比大、液时空速低的问题。
本发明方案的优势还在于,通过在水解反应器内部以及外部均设置与蒸馏水存储罐连接的微界面发生器,使得在蒸馏水与乙醇酸酯进行水解反应之前,微界面发生器将蒸馏水破碎成直径为大于等于1μm、小于1mm的微液滴,使得蒸馏水以微液滴的状态与乙醇酸酯接触,以增大水解反应过程中蒸馏水与乙醇酸酯之间的相界传质面积,从而降低了蒸馏水的用量,提高了反应效率,降低了产物脱水的操作成本。
采用本发明的反应方法得到的聚乙醇酸产品品质好、收率高。且该制备方法本身反应温度低、压力大幅度下降,液时空速高,相当于提高了产能。
与现有技术相比,本发明的有益效果在于:
(1)本发明的聚乙醇酸的强化微界面制备系统通过在加氢反应器内部设置微界面机组,使得在氢气与草酸二甲酯进行加氢反应之前将氢气破碎为微气泡,提高氢气与草酸二甲酯之间的相界传质面积,从而解决了现有技术中由于氢气和草酸二甲酯在反应器内部无法得到充分混合,导致反应压力高、氢酯比大、液时空速低的问题;
(2)本发明通过在水解反应器内部以及外部均设置微界面发生器,用于在水解反应之前接受蒸馏水,并在水解反应之前,将所述蒸馏水破碎成直径为微米级别的微液滴,用以增加水解反应过程中所述蒸馏水和所述乙醇酸酯之间 的相界传质面积,强化乙醇酸酯水解的反应效率。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的草酸酯制备乙醇酸酯的强化微界面制备系统结构示意图。
附图说明:
11-草酸酯存储罐;               12-气源外接通道;
13-加氢反应器;                 131-微界面发生器;
132-液体互逆通道;              14-脱轻塔;
141-轻组分出口;                142-重组分出口;
15-精馏塔;                     151-塔顶冷凝器;
152-原料循环出口;              16-乙醇酸酯存储罐;
17-第一输送泵;                 18-第二输送泵;
19-水解反应器;                 20-水蒸气进料管道;
21-蒸馏水存储罐;               22-第三输送泵;
23-氢气进料管道;               24-脱水塔;
25-第一聚合反应釜;             26-第二聚合反应釜;
27-精制塔;                     28-结晶釜;
271-乙醇酸酯出口;              29-第四输送泵;
272-甲醇回收管道;              30-甲醇回收罐。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例的聚乙醇酸的强化微界面制备系统,其主要包括加氢反应器13、氢气进料管道23、水解反应器19、水蒸气进料管道20, 将1kg的加氢催化剂预先填入到加氢反应器13中,在加氢反应器13的侧壁上还设置有草酸酯进料管道,在加氢反应器13内设置有微界面机组,微界面机组由多个微界面发生器131从上至下依次排列形成,优选地为3个微界面发生器131,且相邻的微界面发生器131之间设置有一组液体互逆通道132,液体互逆通道132实现微界面发生器131内气液的流通。这样一来,氢气进料管道23穿过所述加氢反应器13的侧壁进入到所述微界面机组内部,以实现在加氢反应之前氢气预先在所述微界面机组内部破碎成微米级别的微气泡。
氢气进料管道23连接有气源外接通道12以实现为氢气进入到微界面机组提供气源,草酸酯进料管道连接有草酸酯存储罐11以实现为进入到加氢反应器13内的草酸酯提供原料来源,将50kg的草酸二甲酯预先填入草酸酯存储罐11内部,通过第一输送泵17输送到加氢反应器13内部,气源外接通道12与足够的氢气气源连接,启动系统,加氢反应器13的温度设置为200℃,压力设置为1.0MPa,将草酸二甲酯输送至加氢反应器13的内部,同时,将氢气通过氢气进料管道23输送至微界面机组的每个微界面发生器131内部。
微界面发生器131将氢气打碎成微米级尺度的微气泡,并将微气泡释放到反应器的内部,使得氢气以微气泡的状态与草酸二甲酯充分接触,草酸二甲酯在加氢催化剂的催化下与氢气反应生成乙醇酸酯,同时,也生成甲醇、甲酸甲酯、乙二醇和碳酸二甲酯等副产物。
将加氢完的反应产物输送至脱轻塔14脱除轻组分,对轻组分与重组分进行分离处理,甲醇、甲酸甲酯等轻组分从塔顶的轻组分出口141馏出,草酸二甲酯和乙醇酸酯等重组分留在塔底,并将重组分从重组分出口142出去输送至精馏塔15,草酸二甲酯留在精馏塔15的塔底,从设置在精馏塔15底部的原料循环出口152出去,通过第二输送泵18输送回加氢反应器13中以实现重新的循环利用,乙醇酸酯从精馏塔15的塔顶馏出,一部分经过塔顶冷凝器151回流,另一部分则直接采出去往乙醇酸酯存储罐16进行存储,乙醇酸酯存储罐16与水解反应器19的顶部连接,将乙醇酸酯输送进到水解反应器19中进行水 解反应。
酸性水解催化剂预先填入水解反应器19中,蒸馏水通过设置在水蒸气进料管道20上的第三循环泵22将蒸馏水存储罐中的蒸馏水送至水解反应器19内,水解反应器19侧面靠下的位置设置有两个由上至下依次排列的微界面发生器131,且在水解反应器19内部靠下的位置还设置有微界面发生器131,水解反应器19的温度设置为60℃,进料摩尔比调配为:n(乙醇酸酯):n(H 2O)=1:2,位于水解反应器19内部的微界面发生器131将蒸馏水打碎成微米级尺度的微液滴,并将微液滴释放到所述水解反应器19内部,使得蒸馏水以微气泡的状态与乙醇酸酯充分接触,乙醇酸酯在水解催化剂的催化下与蒸馏水反应生成乙醇酸和甲醇,将水解反应液输送至脱水塔24进行脱水。
水解产物在脱水塔24中进行脱水处理,得到除水的乙醇酸酯水解反应液,去往精制塔进行精制,精制塔27塔底的乙醇酸酯从乙醇酸酯出口271出去后通过第四循环泵29输送回水解反应器19中,然后去往第一聚合反应釜25进行乙醇酸酯化、预聚、解聚,首先在80℃下进行酯化,并抽真空脱水;随后第一聚合反应釜25升温至140℃,直至第一聚合反应釜25内物料聚合至固化;第一聚合反应釜25升温至175℃保温4h;保温结束后第一聚合反应釜25继续升温至320℃,在抽真空条件下物料裂解馏出乙交酯单体粗品。
从精制塔27塔顶出去的甲醇通过甲醇回收管道272送往甲醇回收罐30进行甲醇的回收。
馏出的乙交酯单体粗品输送至结晶釜,向结晶釜28中加入13升乙酸乙酯,结晶釜28温度升至70℃直至乙交酯单体粗品完全溶解,随后冷却结晶,得到高纯度的乙交酯单体。乙酸乙酯溶液从结晶釜28排出,高纯度的乙交酯单体输送至第二聚合反应釜26中。向第二聚合反应釜26中加入20g催化剂,第二聚合反应釜26温度设置为200℃,乙交酯开环聚合制得26.7kg聚乙醇酸产品,检测聚乙醇酸的分子量超过10000。
在上述实施例中,微界面发生器131通过将气体的压力能和/或液体的动能 转变为气泡表面能并传递给气泡,使气泡破碎成直径为大于等于1μm、小于1mm的微米级别的微气泡,根据能量输入方式或气液比分为气动式微界面发生器131、液动式微界面发生器131和气液联动式微界面发生器131,其中气动式微界面发生器131采用气体驱动,输入气量远大于液体量;液动式微界面发生器131采用液体驱动,输入气量一般小于液体量;气液联动式微界面发生器131采用气液同时驱动,输入气量接近于液体量。微界面发生器131选用气动式微界面发生器131、液动式微界面发生器131以及气液联动式微界面发生器131中的一种或几种。
为了增加分散、传质效果,也可以多增设额外的微界面发生器131,安装位置其实也是不限的,可以外置也可以内置,内置时还可以采用安装在釜内的侧壁上相对设置,以实现从微界面发生器131的出口出来的微气泡发生对冲。
在上述实施例中,泵体的个数并没有具体要求,可根据需要在相应的位置设置。
在上述实施例中,其他操作条件不变,当加氢反应温度设置为220℃,压力设置为0.5MPa。
在上述实施例中,其他操作条件不变,当加氢反应温度设置为260℃,压力设置为1MPa。
在上述实施例中,其他操作条件不变,当加氢反应温度设置为300℃,压力设置为0.1MPa。
在上述实施例中,其他操作条件不变,水解反应的温度还可以为70℃、80℃、90℃、100℃。
总之,与现有技术的聚乙醇酸的强化微界面制备系统相比,本发明的强化微界面制备系统设备组件少、占地面积小、能耗低、成本低、安全性高、反应可控,原料转化率高,相当于为乙醇酸酯制备领域提供了一种操作性更强的强化微界面制备系统,值得广泛推广应用。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其 限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种聚乙醇酸的强化微界面制备系统,其特征在于,包括:加氢反应器,氢气进料管道,水解反应器,水蒸气进料管道;
    所述加氢反应器的侧壁设置有草酸酯进料管道,所述加氢反应器内设置有微界面机组,所述微界面机组由多个微界面发生器从上至下依次排列形成;所述氢气进料管道穿过所述加氢反应器的侧壁进入到所述微界面机组内部,以实现在加氢反应之前氢气预先在所述微界面机组内部破碎成微米级别的微气泡;
    从所述加氢反应器加氢反应后的反应产物进入脱轻塔脱除轻组分,再进入精馏塔精馏处理后得到乙醇酸酯,经过所述水解反应器生成乙醇酸,所述水解反应器的侧面以及内部均设置有微界面发生器,所述水蒸气管道进入到所述微界面发生器的内部,所述精馏处理后得到的乙醇酸酯通入到所述微界面发生器的内部,以实现在水解反应之前预先在微界面发生器内将水蒸气破碎成微米级别的微气泡;
    从所述水解反应器水解反应后的水解产物经过脱水塔脱水、精制塔精制、第一聚合反应釜反应得到乙交酯单体、结晶釜中提纯得到高纯度的乙交酯单体,第二聚合反应釜聚合得到聚乙醇酸;
    所述精制塔的顶部设置有甲醇回收管道,所述甲醇回收管道连接甲醇回收罐。
  2. 根据权利要求1所述的强化微界面制备系统,其特征在于,所述水解反应器侧面设置的微界面发生器为两个,从上至下依次排列,水蒸气通过所述水蒸气管道并行进入每个所述微界面发生器中。
  3. 根据权利要求1所述的强化微界面制备系统,其特征在于,所述水解反应器内部的微界面发生器靠近所述水解反应器的底部设置,水蒸气通过所述水蒸气管道从所述水解反应器底部进入到所述微界面发生器中。
  4. 根据权利要求1所述的强化微界面制备系统,其特征在于,所述精制塔的底部设置有乙醇酸酯出口,所述乙醇酸酯出口连接水解反应器用于将乙醇 酸酯重新返回到水解反应器中进行水解反应。
  5. 根据权利要求1-4任一项所述的强化微界面制备系统,其特征在于,所述精馏塔的底部设置有原料循环出口,所述草酸酯从所述原料循环出口返回到所述加氢反应器以实现的原料的循环利用。
  6. 根据权利要求1-4任一项所述的强化微界面制备系统,其特征在于,所述精馏塔的顶部设置有塔顶冷凝器,从所述塔顶冷凝器冷凝下来的物质一部分返回到所述精馏塔,另外一部分去往乙醇酸酯存储罐,所述乙醇酸酯存储罐与所述水解反应器的顶部连接。
  7. 采用权利要求1-6任一项所述的聚乙醇酸的强化微界面制备系统的制备方法,其特征在于,包括如下步骤:
    将草酸酯与氢气混合微界面分散破碎后进行加氢反应,再经过脱氢、精馏得到乙醇酸酯进行收集;
    将所述乙醇酸酯经过水解反应脱水后,再经过酯化、预聚、解聚得到乙交酯单体,聚合得到聚乙醇酸。
  8. 根据权利要求7所述的反应方法,其特征在于,所述加氢反应的温度200-300℃,所述羧化反应的压力为0.1-2MPa。
  9. 根据权利要求7所述的反应方法,其特征在于,所述水解反应的温度为60-100℃。
PCT/CN2020/122813 2020-09-08 2020-10-22 一种聚乙醇酸的强化微界面制备系统及方法 WO2022052223A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010933486.XA CN112156731A (zh) 2020-09-08 2020-09-08 一种聚乙醇酸的强化微界面制备系统及方法
CN202010933486.X 2020-09-08

Publications (1)

Publication Number Publication Date
WO2022052223A1 true WO2022052223A1 (zh) 2022-03-17

Family

ID=73858447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122813 WO2022052223A1 (zh) 2020-09-08 2020-10-22 一种聚乙醇酸的强化微界面制备系统及方法

Country Status (2)

Country Link
CN (1) CN112156731A (zh)
WO (1) WO2022052223A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112933630A (zh) * 2021-01-29 2021-06-11 南京华基塔业有限公司 一种乳酸制备丙交酯的智能微界面反应系统及方法
CN114100551B (zh) * 2021-11-22 2023-02-03 浙江工业大学 一种二聚硫代六氟丙酮生产装置及生产工艺
CN114507133A (zh) * 2022-03-03 2022-05-17 南京延长反应技术研究院有限公司 一种制备顺丁烯二酸二甲酯的强化微界面系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455372A (en) * 1993-03-12 1995-10-03 Ube Industries, Ltd. Method of producing a glycolic acid ester
CN104177250A (zh) * 2014-09-16 2014-12-03 上海华谊(集团)公司 一种由乙醇酸甲酯生产乙醇酸的工艺
CN104262152A (zh) * 2014-09-16 2015-01-07 上海华谊(集团)公司 一种生产乙醇酸甲酯的方法
CN106187660A (zh) * 2016-09-08 2016-12-07 南京大学 苯加氢生产环己烷的装置和工艺
CN106268544A (zh) * 2016-08-05 2017-01-04 南京大学 塔式超细气泡反应器
CN111362792A (zh) * 2019-09-12 2020-07-03 南京延长反应技术研究院有限公司 一种甲醇羰基化制备乙酸的强化反应系统及工艺
CN111574342A (zh) * 2020-05-14 2020-08-25 南京延长反应技术研究院有限公司 一种苯选择性加氢制备环己酮的强化反应系统及方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI95821B (fi) * 1991-10-18 1995-12-15 Ahlstroem Oy Menetelmä ja laite kaasun sekoittamiseksi väliaineeseen sekä menetelmää soveltava valkaisuprosessi
JP3201057B2 (ja) * 1992-09-11 2001-08-20 宇部興産株式会社 グリコ−ル酸エステルの製造法
US6497812B1 (en) * 1999-12-22 2002-12-24 Chevron U.S.A. Inc. Conversion of C1-C3 alkanes and fischer-tropsch products to normal alpha olefins and other liquid hydrocarbons
JP3763076B2 (ja) * 2002-12-03 2006-04-05 株式会社日本触媒 α−ヒドロキシカルボン酸エステルの製造法
NO328780B1 (no) * 2007-11-15 2010-05-10 Yara Int Asa Apparat og fremgangsmate for a dannelse av og fordeling av bobler i en gass/vaeske blanding
US8794600B2 (en) * 2011-06-06 2014-08-05 Wu-Chiao Chou Bubble generating device
EP2698394A1 (en) * 2012-08-16 2014-02-19 PURAC Biochem BV Poly(2-hydroxyalkanoic acid) and method of its manufacture
CN105903425B (zh) * 2016-04-21 2018-09-07 南京大学 喷射反应器
CN106215730A (zh) * 2016-08-05 2016-12-14 南京大学 微米气泡发生器
CN206232628U (zh) * 2016-12-06 2017-06-09 福建永荣科技有限公司 一种环己酮的生产系统
CN107158983A (zh) * 2017-06-16 2017-09-15 广东大任生物科技有限责任公司 一种水气混合装置
CN107563051B (zh) * 2017-08-30 2019-04-02 南京大学 微界面强化反应器气泡尺度构效调控模型建模方法
CN109731490A (zh) * 2018-08-21 2019-05-10 北京环域生态环保技术有限公司 一种二次加压多级破碎的纳米气泡发生方法及装置
CN210045215U (zh) * 2019-01-29 2020-02-11 南京延长反应技术研究院有限公司 低压气液强化乳化床反应装置
CN111495288A (zh) * 2019-01-30 2020-08-07 南京大学 一种上下对冲式微界面强化反应装置及方法
CN111359556A (zh) * 2019-03-15 2020-07-03 南京延长反应技术研究院有限公司 一种微界面强化加氢反应系统
CN110591763B (zh) * 2019-09-10 2021-01-15 南京延长反应技术研究院有限公司 一种煤间接液化的智能强化控制系统及工艺
CN111961026A (zh) * 2020-08-25 2020-11-20 南京延长反应技术研究院有限公司 一种环状碳酸酯的强化微界面制备系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455372A (en) * 1993-03-12 1995-10-03 Ube Industries, Ltd. Method of producing a glycolic acid ester
CN104177250A (zh) * 2014-09-16 2014-12-03 上海华谊(集团)公司 一种由乙醇酸甲酯生产乙醇酸的工艺
CN104262152A (zh) * 2014-09-16 2015-01-07 上海华谊(集团)公司 一种生产乙醇酸甲酯的方法
CN106268544A (zh) * 2016-08-05 2017-01-04 南京大学 塔式超细气泡反应器
CN106187660A (zh) * 2016-09-08 2016-12-07 南京大学 苯加氢生产环己烷的装置和工艺
CN111362792A (zh) * 2019-09-12 2020-07-03 南京延长反应技术研究院有限公司 一种甲醇羰基化制备乙酸的强化反应系统及工艺
CN111574342A (zh) * 2020-05-14 2020-08-25 南京延长反应技术研究院有限公司 一种苯选择性加氢制备环己酮的强化反应系统及方法

Also Published As

Publication number Publication date
CN112156731A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
WO2022052223A1 (zh) 一种聚乙醇酸的强化微界面制备系统及方法
WO2022041426A1 (zh) 一种环状碳酸酯的微界面制备系统及方法
WO2022041425A1 (zh) 一种环状碳酸酯的强化微界面制备系统及方法
WO2021078239A1 (zh) 气液鼓泡床反应器、反应系统以及合成碳酸酯的方法
US11299450B2 (en) System and process for co-producing dimethyl carbonate and ethylene glycol
WO2022057004A1 (zh) 一种对甲基苯酚的微界面制备系统及方法
CN103007862B (zh) 一种乙炔羰基化法合成丙烯酸及酯的气液搅拌反应器
CN210045217U (zh) 上下对冲式渣油加氢乳化床微界面强化反应装置
WO2022052222A1 (zh) 一种草酸酯加氢制备乙醇酸酯的反应系统及方法
CN112521250A (zh) 一种气相催化水合法制备乙二醇的微界面反应系统及方法
CN112058184A (zh) 一种聚乙醇酸的制备系统及方法
CN111377802B (zh) 一种仲丁醇的制备方法及系统
CN115650825A (zh) 二元醇单乙烯基醚的合成方法
CN106588828A (zh) 一种thf精馏废液分离提纯方法
WO2022110872A1 (zh) 一种气相催化水合法制备乙二醇的强化反应系统及方法
CN112479822A (zh) 一种草酸酯法制备乙二醇的强化微界面反应系统及方法
CN112679465A (zh) 一种耦合反应精馏制备丙交酯的方法
CN112062943A (zh) 一种聚乙醇酸的微界面制备系统及方法
CN101704742B (zh) 一种生产芳香族羧酸的反应器
CN211972183U (zh) 一种醋酸酐生产系统
CN112723996A (zh) 一种环氧乙烷法制备乙二醇的强化微界面反应系统及方法
WO2021227137A1 (zh) 一种酯化法制备环己酮的外置微界面强化系统及方法
CN110964181B (zh) 一种再生聚酯熔体的增黏装置及再生纤维的生产方法
CN112441878A (zh) 一种气相催化水合法制备乙二醇的智能反应系统及方法
CN112843762B (zh) 一种由寡聚物制备丙交酯的反应系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953008

Country of ref document: EP

Kind code of ref document: A1