WO2022041354A1 - 一种增减材制造装置及其增减材复合制造方法 - Google Patents

一种增减材制造装置及其增减材复合制造方法 Download PDF

Info

Publication number
WO2022041354A1
WO2022041354A1 PCT/CN2020/116426 CN2020116426W WO2022041354A1 WO 2022041354 A1 WO2022041354 A1 WO 2022041354A1 CN 2020116426 W CN2020116426 W CN 2020116426W WO 2022041354 A1 WO2022041354 A1 WO 2022041354A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
powder
precision
forming
cylinder lifting
Prior art date
Application number
PCT/CN2020/116426
Other languages
English (en)
French (fr)
Inventor
张新洲
陈兰
任旭东
甘淑媛
郭二廓
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2203346.8A priority Critical patent/GB2601455B/en
Publication of WO2022041354A1 publication Critical patent/WO2022041354A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/37Rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/3568Modifying rugosity
    • B23K26/3576Diminishing rugosity, e.g. grinding; Polishing; Smoothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the field of laser additive manufacturing, and in particular relates to a manufacturing device for adding and subtracting materials based on SLM molding and a composite manufacturing method for adding and subtracting materials.
  • the invention aims at the defects such as holes, micro-cracks and cracks often appear in the metal products formed by SLM, the parts with complex inner cavity structure cannot effectively reprocess the inner surface, and the SLM processing also has the disadvantages of low production efficiency and high processing cost.
  • An SLM-based manufacturing device for adding and subtracting materials and a composite manufacturing method for adding and subtracting materials are proposed.
  • a manufacturing device for adding and subtracting materials including a base body, and a three-degree-of-freedom rotating platform, a laser scanning device, an ultra-fast laser polishing device and a high-speed numerical control machining unit are arranged in the base body.
  • a scraper moving guide rail, a forming cylinder and a powder cylinder are installed on the rotating platform, a scraper is installed on the scraper moving guide rail, the forming cylinder includes a forming cylinder lifting platform, and a forming substrate is arranged on the surface of the forming cylinder lifting platform,
  • the forming cylinder lifting table is fixed on the forming cylinder lifting ball screw, the forming cylinder lifting nut is fixed on the bottom of the forming cylinder, and the forming cylinder lifting stepper motor drives the forming cylinder lifting ball screw to rotate, thereby driving the forming cylinder lifting table to rise and rise.
  • the powder tank includes a powder tank lifting platform, the powder tank lifting table is provided with molding powder, the scraper is located above the molding powder, the powder tank lifting table is fixed on the powder tank lifting ball screw, the powder tank The lifting nut is fixed on the bottom of the powder cylinder, and the powder cylinder lifting stepper motor drives the powder cylinder lifting ball screw to rotate, thereby driving the powder cylinder lifting platform to rise and fall; the laser scanning device, the ultra-fast laser polishing device and the The high-speed CNC machining units are all installed above the three-degree-of-freedom rotating platform.
  • the rotating platform is fixedly installed on the bearing fixing seat A and the bearing fixing seat B, and the bearing fixing seat A is simultaneously installed with the X-axis moving guide rail A and the X-axis precision ball screw A, and the bearing is fixed.
  • the X-axis moving guide rail B and the X-axis precision ball screw B are installed on the seat B at the same time, and the X-axis precision ball screw A and the X-axis precision ball screw are driven by the X-axis stepper motor A and the X-axis stepper motor B respectively.
  • the B synchronously drives the rotating platform to move on X-axis moving guide A and X-axis precision ball screw B;
  • the Y-axis rotating stepper motor drives the Y-axis rotating pinion to rotate, the Y-axis rotating pinion drives the Y-axis rotating gear to rotate, and then drives the Y-axis rotating shaft to rotate around the Y-axis;
  • the Z-axis rotating gear shaft is installed on the Y-axis to rotate
  • the Z-axis rotating stepper motor drives the Z-axis rotating pinion to rotate, which in turn drives the Z-axis rotating gear shaft to rotate around the Z-axis.
  • a high-precision three-dimensional visual measurement device and a radiological flaw detection system are simultaneously installed on the high-speed numerical control processing unit.
  • the number of the forming cylinder lifting platform and the powder cylinder lifting platform is multiple, and each adjacent two forming cylinder lifting platforms are connected to each other through a dovetail groove structure, and can realize up and down relative movement.
  • the two adjacent powder cylinder lifting platforms are connected to each other through a dovetail groove structure, and can realize the relative movement up and down.
  • the rotating platform baffle is fixed on the top of the rotating platform to prevent the molding powder from overflowing from the rotating platform when the rotating platform rotates.
  • the laser scanning device and the ultrafast laser polishing device are both fixed on the Y-axis precision ball screw, and the Y-axis precision ball screw is driven by the Y-axis stepping motor B to reciprocate along the Y-axis.
  • the high-precision 3D visual measurement device, the high-speed numerical control machining unit and the radiological flaw detection system are mounted on the Y-axis moving guide rail, and are driven by the Y-axis stepping motor A to reciprocate along the Y-axis moving guide rail.
  • the Y-axis moving guide rail is installed on the Z-axis precision ball screw A and the Z-axis precision ball screw B, and is driven by the Z-axis stepper motor A and the Z-axis stepper motor B to move synchronously.
  • the bottom of the base body is fixedly installed with a fixed base, the Z-axis stepper motor A, the Z-axis stepper motor B, the X-axis stepper motor A, the X-axis stepper motor B, and the Y-axis rotate
  • the stepping motors are all mounted on the fixed base.
  • the present invention also provides a composite manufacturing method for adding and subtracting materials by using the above-mentioned manufacturing device for adding and subtracting materials, which includes the following steps: S1: According to the size of the processed part, determine the number and position of the enabled forming cylinder lifting tables, the powder cylinder and the The molding cylinder adopts the same setting, and the molding powder is added to the powder tank; according to the shape of the molding cylinder, the corresponding molding substrate is placed; S2: seal the entire substrate, vacuumize and fill with protective gas; heat to a suitable working temperature; S3: Adjust all parts to the initial position, the rotating platform is in the horizontal non-rotating position, the forming cylinder is located in the processing range of the SLM laser scanning device, the high-speed CNC machining unit, the high-precision 3D vision measuring device and the radiological inspection system are located in the Y-axis moving guide rail S4: The molding cylinder lifting platform enabled in the molding cylinder descends one layer of thickness, the powder cylinder lifting platform enabled in the powder cylinder rises one layer
  • step S4 if the defect is within the allowable error range, skip to step S4; if the defect exceeds the set error, continue to step S13;
  • step S13 the central intelligent control system automatically generates a CNC machining program according to the defect;
  • S14 high-speed CNC machining The unit removes the defective part;
  • S15 The central intelligent control system automatically generates a compensation layered sintering program according to the removed part, and skips to step S4;
  • S16 If the workpiece has an inner cavity structure, a certain number of processing layers can be set according to requirements.
  • S17 The central intelligent control system is based on The measurement result generates an ultra-fast laser polishing program, and the ultra-fast laser polishing device performs ultra-fast polishing on the inner cavity of the workpiece;
  • S18 The high-precision three-dimensional vision measurement device performs precision detection on the polishing inner cavity, and the central intelligent control system judges according to the detection accuracy.
  • step S17 If the accuracy meets the requirements, go to the next step; if the accuracy does not meet the requirements, skip to step S17; S19: repeat steps S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18 until all the addition and subtraction materials are manufactured and processed.
  • the beneficial effects of the present invention are as follows: 1.
  • the device realizes laser additive manufacturing, high-speed CNC machining and ultra-fast laser polishing surface treatment alternately in one device, so as to achieve dimensional accuracy and surface roughness equivalent to the machining center, and It can also realize the manufacture of high-precision inner cavity structures and conformal channels that cannot be achieved by machining centers, and successfully integrate free manufacturing of laser additive manufacturing, high-speed and high-precision manufacturing of machining centers and surface treatment of ultra-fast laser polishing.
  • this device realizes alternate laser additive manufacturing and high-speed CNC machining in one device, so as to achieve dimensional accuracy and surface roughness comparable to that of machining centers, and can also realize machining centers.
  • the fabrication of unachievable inner cavity structures and conformal channels successfully combines the freedom of laser additive manufacturing with high-speed, high-precision manufacturing in machining centers.
  • This processing method can use a larger light spot for modeling, and then use precision cutting for finishing, improve the dimensional accuracy and surface quality of the molded parts, and can manufacture parts with complex internal channels.
  • the variable-capacity molding cylinder and powder cylinder used in this device can change the capacity according to the size of the molding parts, improve the utilization rate of the powder, and improve the production efficiency; especially for the processing of high-cost experimental powder, Greatly reduces the processing cost.
  • the five-axis linkage device adopted by the device has simple structure and low cost, which can reduce the cost of the device while ensuring the machining accuracy. 5.
  • the machining error of the layered workpiece is measured by a high-precision 3D visual measuring device, and the internal defects of the layered workpiece are measured by the radiological flaw detection system, and the CNC machining unit is used for cutting processing to improve the comprehensive performance of the output parts.
  • FIG. 1 is a schematic diagram of the structure of the device of the present invention.
  • Figure 2 is a top view of the rotating platform in the device of the present invention.
  • Figure 3 is a top view of the forming cylinder and the powder cylinder lifting platform.
  • Figure 4 is a sectional view of a single forming cylinder lift table and powder cylinder lift table.
  • FIG. 5 is a schematic diagram of the inner cavity of the workpiece processed by the present invention.
  • FIG. 6 is a schematic diagram of the inner cavity of the ultrafast laser polishing workpiece of the present invention.
  • Fig. 7 is the control flow chart of the method of the present invention.
  • Forming cylinder 41. Forming substrate; 42. Workpiece; 43. Rotating platform baffle; 44. X-axis precision ball screw B; 45. X-axis moving guide rail B; 46. X-axis moving guide rail A; 47. X-axis precision ball screw A; 48. Bearing fixing seat B; 49. Y-axis rotating pinion; 50. Powder isolation device.
  • an SLM-based intelligent five-axis additive and subtractive material composite manufacturing system includes a base body 4 , and a fixed base 30 is provided on the base body 4 .
  • the rotating platform 14 with 3 degrees of freedom moves on the X-axis moving guide rail A46 and the X-axis moving guide rail B45 through the bearing fixing seat A27 and the bearing fixing seat B48, and is driven by the X-axis stepping motor A29 and the X-axis stepping motor B31 respectively
  • the X-axis precision ball screw A47 and the X-axis precision ball screw B44 move synchronously.
  • the X-axis moving guide rail A46 and the X-axis moving guide rail B45 are fixed on the fixed base 30 .
  • the Y-axis rotating shaft 26 is installed on the bearing fixing seat A27 and the bearing fixing seat B48, the Y-axis rotating large gear 34 is installed on the Y-axis rotating shaft 26, the Y-axis rotating stepper motor 33 drives the Y-axis rotating pinion 49 to rotate, Y The shaft rotation pinion 49 drives the Y-axis rotation gear 34 to rotate, and then drives the Y-axis rotation shaft 26 to rotate around the Y-axis.
  • the Z-axis rotating gear shaft 23 is mounted on the Y-axis rotating shaft 26, and the Z-axis rotating stepper motor 25 drives the Z-axis rotating pinion 24 to rotate, thereby driving the Z-axis rotating gear shaft 23 to rotate around the Z-axis.
  • the forming cylinder 40 and the powder cylinder 18 are installed on the Z-axis rotating gear shaft 23.
  • the forming cylinder 40 is composed of 16 forming cylinder lifting platforms 39 that can be lifted independently to form a variable-capacity forming cylinder (different lifting platforms are connected to each other through a dovetail groove structure. , and realize the relative movement up and down, as shown in Figure 3), the forming cylinder lifting nut 36 is fixed at the bottom of the forming cylinder 40, and the forming cylinder lifting stepper motor 38 drives the forming cylinder lifting ball screw 37 to rotate, thereby driving the forming cylinder lifting table.
  • the 39 can be lifted and lowered independently; according to the use requirements, the forming cylinders of different capacities can be formed by driving the forming cylinder lifting tables 39 of different numbers and positions to descend.
  • the powder cylinder 18 is composed of 16 powder cylinder lifting platforms 19 that can be lifted independently to form a variable-capacity powder cylinder.
  • the powder cylinder lifting nut 22 is fixed at the bottom of the powder cylinder 18.
  • the powder cylinder lifting stepper motor 20 drives the powder cylinder lifting ball screw 21. Rotating, thereby driving the powder cylinder lifting platform 19 to achieve independent rise and fall; according to the use requirements, driving the forming cylinder lifting platforms 19 of different numbers and positions to descend can form powder cylinders of different capacities.
  • the workpiece 42 is molded on the molding substrate 41 , and the molding substrate 41 is mounted on the molding cylinder lift table 39 .
  • the molding powder 17 is located on the powder cylinder lifting platform 19 , and is spread evenly in the molding cylinder 40 by the scraper 15 , and the scraper 15 reciprocates along the scraper moving guide 16 .
  • the rotating platform baffle 43 is fixed on the top of the rotating platform 14 to prevent the molding powder 17 from overflowing outside the rotating platform 14 when the rotating platform 14 rotates.
  • the SLM laser scanning device 7 and the ultrafast laser polishing device 11 are fixed together, and the Y-axis precision ball screw 6 is driven by the Y-axis stepping motor B5 to reciprocate along the Y-axis.
  • the high-precision three-dimensional vision measuring device 8 , the high-speed numerical control machining unit 9 and the radiological inspection system 10 are mounted on the Y-axis moving guide rail 12 , and are driven by the Y-axis stepping motor A3 to reciprocate along the Y-axis moving guide rail 12 .
  • the Y-axis moving guide rail 12 is installed on the Z-axis precision ball screw A13 and the Z-axis precision ball screw B35, and is driven by the Z-axis stepping motor A28 and the Z-axis stepping motor B32 to move synchronously. All control elements are connected to the central intelligent control system 1 through the signal line 2 .
  • the present invention includes the following steps.
  • the powder cylinder 18 and the forming cylinder 40 use the same settings (the forming cylinder 40 and the powder cylinder 18 each have 16 lifting tables, as shown in the figure 3), add the molding powder 17 into the powder cylinder 18; according to the shape of the molding cylinder 40, place the corresponding molding substrate 41;
  • the rotating platform 14 is in a horizontal non-rotating position, and the forming cylinder is located within the processing range of the SLM laser scanning device 7 (laser scanning device parameters: laser power 200 ⁇ 500W; powder layer thickness 0.02 ⁇ 0.15mm ; laser scanning speed 100 ⁇ 1500mm/s; spot diameter 0.06 ⁇ 0.30mm), high-speed CNC machining unit 9 (processing parameters: spindle speed 24000r/min, positioning accuracy 0.005mm, repeat positioning accuracy 0.003mm), high-precision three-dimensional vision measurement
  • the device 8 (measurement accuracy: X-axis, Y-axis accuracy 5 ⁇ m, Z-axis accuracy 1 ⁇ m) and radiological inspection system 10 (measurement accuracy: system resolution 1 ⁇ m, detection range 30mm) are located at the far right end of the Y-axis moving guide rail 12;
  • the molding cylinder lifting table 39 (positioning accuracy: 0.005mm) activated in the molding cylinder 37 is lowered by one layer thickness, the powder cylinder lifting table 19 activated in the powder cylinder 18 is raised by a layer thickness, and the scraper 15 spreads the molding powder 17 to the molding in cylinder 40;
  • the laser scanning device 7 starts to work, and the current layer powder is melted and sintered;
  • the high-precision three-dimensional vision measuring device 8 After a layer of powder is melted and sintered, the high-precision three-dimensional vision measuring device 8 first performs camera calibration and coordinate system registration, and then measures the molding size of the current layer, and the measurement results are transmitted to the central intelligent control system 1 through the signal line 2;
  • the central intelligent control system 1 compares the measurement result with the layered parameter size: if the measurement result is larger than the design size and exceeds the allowable error, proceed to step H; if the measurement result is smaller than the design size and exceeds the allowable error, then Go to step J; if the measurement result is within the allowable error range, skip to step K;
  • the central intelligent control system 1 automatically generates the CNC machining code according to the out of tolerance size;
  • the high-speed CNC machining unit 9 processes it; according to the automatically set machining code, go to the top of the workpiece 42, and process the workpiece 42; ", Z-axis indexing accuracy 4") is adjusted to the corresponding position and angle according to the machining code, so as to carry out the five-axis CNC machining of the workpiece 42; after the machining is completed, skip to step F;
  • the central control system 1 generates a compensation layered processing program according to the out-of-tolerance size, and then jumps to step D;
  • the radiation flaw detection system 10 performs non-contact flaw detection on the completed sintered layer, and records the position of the defect
  • the radiological flaw detection system 10 transmits the defect position data to the central intelligent control system 1, and the central control system 1 judges according to the set error value. If the defect is within the allowable error range, skip to step D; If the error is determined, continue to step M;
  • the central intelligent control system 1 automatically generates the CNC machining program according to the defect situation
  • the high-speed CNC machining unit 9 removes the defective part
  • the central intelligent control system 1 automatically generates a compensation layered sintering program according to the excised part, and skips to step D;
  • the number of processing layers can be set to 20 layers, that is, after each 20 layers are processed, the central intelligent control system 1 will measure the inner cavity wall according to the high-precision three-dimensional vision measuring device 8. According to the measurement result, the numerical control machining program of the inner cavity wall of the 20 layers is automatically generated, and then the high-speed numerical control machining unit (9) is controlled to finish the inner cavity wall, and finally the machining of the high-precision inner cavity of the workpiece is completed;
  • the central intelligent control system 1 generates an ultrafast laser polishing program according to the measurement results, and the ultrafast laser polishing device 11 (processing parameters: the laser wavelength is 1064nm, the output pulse width is 240fs, the single pulse energy is 100 ⁇ J, and the repetition frequency is 20k Hz- 100kHz, scanning speed 100mm/s-1000mm/s) for ultra-fast polishing of the inner cavity of the workpiece;
  • the high-precision three-dimensional vision measuring device 8 performs precision detection on the polishing inner cavity, and the central intelligent control system 1 judges according to the detection precision. If the precision meets the requirements, proceed to the next step; if the precision does not meet the requirements, skip to step Q ;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种增减材制造装置,包括基体(4)、基体内设置有具有3个自由度的转动平台(14)、可单自由度移动的SLM激光扫描装置(7)、超快激光抛光装置(11)、具有2个平移自由度的高速数控加工单元(9)、高精度三维视觉测量装置(8)和放射探伤系统(10)。以及一种增减材复合制造方法。使用该装置实现了在一台装置内交替进行激光增材制造、高速数控切削加工和超快激光抛光表面处理,从而实现与加工中心相当的尺寸精度和表面粗糙度,并且还可以实现加工中心无法实现的高精度内腔结构和随形通道的制造,成功地将激光增材制造的自由制造、加工中心的高速高精度制造和超快激光抛光的表面处理融为一体,提高了产出零件的综合性能。

Description

一种增减材制造装置及其增减材复合制造方法 技术领域
本发明属于激光增材制造领域,尤其涉及一种基于SLM成型的增减材制造装置及其增减材复合制造方法。
背景技术
随着金属3D打印技术的发展,其在航空航天、汽车、医疗、模具等领域的应用越来越广泛。金属3D打印成形速度慢和加工成本高是制约其在市场中推广应用的主要制约因素。目前SLM加工,由于极大的温度梯度以及产品复杂结构的影响,SLM成型的金属产品中经常会出现孔洞、微裂纹和开裂等缺陷,这些缺陷是导致其力学性能不佳的关键因素。对于具有复杂内部流道的零件,如随形冷却水路、冲压发动机和火箭发动机再生冷却流道,难以实现对内部表面的有效再处理。另外,SLM加工还存在生产效率低,加工成本高等缺点。
发明内容
本发明针对SLM成型的金属产品中经常会出现孔洞、微裂纹和开裂等缺陷,复杂内腔结构的零件无法对内部表面的有效再处理,且SLM加工还存在生产效率低,加工成本高等缺点,提出了一种基于SLM的增减材制造装置及其增减材复合制造方法。
为实现上述发明目的,本发明采取的技术方案为:一种增减材制造装置,包括基体,所述基体内设置有三自由度转动平台、激光扫描装置、超快激光抛光装置和高速数控加工单元,所述转动平台上安装有刮刀移动导轨、成型缸和粉缸,所述刮刀移动导轨上安装有刮刀,所述成型缸包括成型缸升降台,所述成型缸升降台表面设置有成型基板,所述成型缸升降台固定在成型缸升降滚珠丝杠上,成型缸升降螺母固定在成型缸的底部,成型缸升降步进电机驱动成型缸升降滚珠丝杠旋转,从而带动成型缸升降台上升和下降;所述粉缸包括粉缸升降台,所述粉缸升降台上设置有成型粉末,刮刀位于所述成型粉末上方,所述粉缸升降台固定在粉缸升降滚珠丝杠上,粉缸升降螺母固定在粉缸的底部,粉缸升降步进电机驱动粉缸升降滚珠丝杠旋转,从而带动粉缸升降台上升和下降;所述激光扫描装置、所述超快激光抛光装置和所述高速数控加工单元均安装在所述三自由度转动平台的上方。
上述方案中,所述转动平台固定安装在轴承固定座A和轴承固定座B上,所述轴承固定座A上同时安装有X轴移动导轨A和X轴精密滚珠丝杠A,所述轴承固定座B上同时安装有X轴移动导轨B和X轴精密滚珠丝杠B,由X轴步进电机A和X轴步进电机B分 别驱动X轴精密滚珠丝杠A和X轴精密滚珠丝杠B同步带动转动平台在X轴移动导轨A和X轴精密滚珠丝杠B上移动;Y轴旋转轴安装在轴承固定座A和轴承固定座B上,Y轴旋转大齿轮安装在Y轴旋转轴上,Y轴旋转步进电机驱动Y轴旋转小齿轮转动,Y轴旋转小齿轮带动Y轴旋转大齿轮旋转,继而带动Y轴旋转轴绕Y轴旋转;Z轴旋转齿轮轴安装在Y轴旋转轴上,Z轴旋转步进电机驱动Z轴旋转小齿轮转动,继而带动Z轴旋转齿轮轴绕Z轴旋转。
上述方案中,所述高速数控加工单元上同时安装有高精度三维视觉测量装置和放射探伤系统。
上述方案中,所述成型缸升降台和所述粉缸升降台的数量有多个,每相邻两个成型缸升降台之间通过燕尾槽结构相互连接,并且能够实现上下相对运动,每相邻两个粉缸升降台之间通过燕尾槽结构相互连接,并且能够实现上下相对运动。
上述方案中,旋转平台挡板固定于所述转动平台顶端,防止所述转动平台旋转时成型粉末从所述转动平台溢出。
上述方案中,所述激光扫描装置和超快激光抛光装置均固定在Y轴精密滚珠丝杠上,由Y轴步进电机B驱动Y轴精密滚珠丝杠沿Y轴进行往复移动。
上述方案中,所述高精度三维视觉测量装置、所述高速数控加工单元和所述放射探伤系统安装于Y轴移动导轨上,由Y轴步进电机A驱动沿着Y轴移动导轨往复移动。
上述方案中,所述Y轴移动导轨安装于Z轴精密滚珠丝杠A和Z轴精密滚珠丝杠B上,分别由Z轴步进电机A和Z轴步进电机B驱动同步运动,所述基体的底部固定安装有固定底座,所述Z轴步进电机A、所述Z轴步进电机B、所述X轴步进电机A、所述X轴步进电机B、所述Y轴旋转步进电机均安装在所述固定底座上。
本发明还提供了一种利用上述增减材制造装置进行增减材复合制造方法,包含以下步骤:S1:根据所加工零件的尺寸,确定启用的成型缸升降台的数量和位置,粉缸和成型缸采用相同的设置,将成型粉末加入粉缸中;根据成型缸的使用形状,放置相应的成型基板;S2:将整个基体进行密封,抽真空并填充保护气体;加热至合适的工作温度;S3:调整所有零部件至初始位置,转动平台处于水平不旋转位置,成型缸位于SLM激光扫描装置的加工范围内,高速数控加工单元、高精度三维视觉测量装置和放射探伤系统位于Y轴移动导轨的最右端;S4:成型缸中启用的成型缸升降台下降一层厚度,粉缸中启用的粉缸升降台上升一层厚度,刮刀将成型粉末铺至成型缸内,粉末隔离装置对成型粉末进行隔离,防止粉末溢出,并保证铺粉的均匀性;S5:激光扫描装置开始工作,对当层粉末进行熔化烧结;S6:一 层粉末熔化烧结后,高精度三维视觉测量装置首先进行相机标定与坐标系配准,然后对当层成型尺寸进行测量,测量结果通过信号线传输至中央智能控制系统;S7:中央智能控制系统将测量结果与分层参数尺寸进行对比:如果测量结果大于设计尺寸,并超出了允许误差,则进行步骤S8;如果测量结果小于设计尺寸,并超出了允许误差,则进行步骤S10;如果测量结果在允许误差范围内,则跳至步骤S11;S8:如果工件成型尺寸比分层设计尺寸偏大,中央控制系统根据超差尺寸自动生成数控加工代码;S9:高速数控加工单元对其进行加工;根据自动设置的加工代码,行至工件上方,对工件进行加工;转动平台根据加工代码调整至相应位置和角度,以便进行工件的五轴数控加工;加工完成后,跳至步骤S6;S10:中央智能控制系统根据超差尺寸生成补偿分层加工程序,然后跳至步骤S4;S11:放射探伤系统对完成的烧结层进行无接触探伤,并记录下缺陷的位置;S12:放射探伤系统将缺陷位置数据传输至中央控制系统,中央控制系统根据设定的误差值进行判断,如果缺陷在允许误差范围内,跳至步骤S4;如果缺陷情况超出了设定的误差,则继续步骤S13;S13:中央智能控制系统根据缺陷情况自动生成数控加工程序;S14:高速数控加工单元对缺陷部分进行切除;S15:中央智能控制系统根据切除部分自动生成补偿分层烧结程序,跳至步骤S4;S16:如果工件带有内腔结构,可以根据需求设定一定的加工层数后,采用高速数控加工单元对内腔壁进行精加工;S17:中央智能控制系统根据测量结果生成超快激光抛光程序,超快激光抛光装置对工件内腔进行超快抛光;S18:高精度三维视觉测量装置对抛光内腔进行精度检测,中央智能控制系统根据检测精度进行判断,如果精度满足要求,则进行下一步骤;若精度不满足要求,则跳至步骤S17;S19:重复步骤S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15,S16,S17,S18直至所有的增减材制造加工完成。
本发明的有益效果:1.本装置实现在一台装置内交替进行激光增材制造、高速数控切削加工和超快激光抛光表面处理,从而实现与加工中心相当的尺寸精度和表面粗糙度,并且还可以实现加工中心无法实现的高精度内腔结构和随形通道的制造,成功地将激光增材制造的自由制造、加工中心的高速高精度制造和超快激光抛光的表面处理融为一体,相比于传统的SLM增材制造,本装置实现在一台装置内交替进行激光增材制造和高速数控切削加工,从而实现与加工中心相当的尺寸精度和表面粗糙度,并且还可以实现加工中心无法实现的内腔结构和随形通道的制造,成功地将激光增材制造的自由制造和加工中心的高速高精度制造融为一体。2.本加工方法可以采用较大的光斑进行造型,然后再采用精密切削进行精加工,提高成型零件的尺寸精度和表面质量,而且可以制造内部复杂通道的零件。3.本装置采用的可变容量的成型缸和粉缸,可以根据成型零件的大小改变容量,提高了粉末的利用 率,并提高了生产效率;特别是针对高成本的实验性粉末的加工,极大地降低了加工成本。4.本装置采用的五轴联动装置,结构简单,成本较低,能够在保证加工精度的同时降低装置的成本。5.通过高精度三维视觉测量装置,测量分层工件的加工误差,通过放射探伤系统,测量分层工件的内部缺陷,并采用数控加工单元进行切削加工,提高产出零件的综合性能。
附图说明
图1是本发明装置的结构示意图。
图2是本发明装置中的旋转平台俯视图。
图3是成型缸和粉缸升降台俯视图。
图4是单个成型缸升降台和粉缸升降台的截面图。
图5是本发明加工工件内腔示意图。
图6是本发明超快激光抛光工件内腔示意图。
图7是本发明方法控制流程图。
图中:1.中央智能控制系统;2.信号线;3.Y轴步进电机A;4.基体;5.Y轴步进电机B;6.Y轴精密滚珠丝杠;7.激光扫描装置;8.高精度三维视觉测量装置;9.高速数控加工单元;10.放射探伤系统;11.超快激光抛光装置;12.Y轴移动导轨;13.Z轴精密滚珠丝杠A;14.转动平台;15.刮刀;16.刮刀移动导轨;17.成型粉末;18.粉缸;19.粉缸升降台;20.粉缸升降步进电机;21.粉缸升降滚珠丝杠;22.粉缸升降螺母;23.Z轴旋转齿轮轴;24.Z轴旋转小齿轮;25.Z轴旋转步进电机;26.Y轴旋转轴;27.轴承固定座A;28.Z轴步进电机A;29.X轴步进电机A;30.固定底座;31.X轴步进电机B;32.Z轴步进电机B;33.Y轴旋转步进电机;34.Y轴旋转大齿轮;35.Z轴精密滚珠丝杠B;36.成型缸升降螺母;37.成型缸升降滚珠丝杠;38.成型缸升降步进电机;39.成型缸升降台;40.成型缸;41.成型基板;42.工件;43.旋转平台挡板;44.X轴精密滚珠丝杠B;45.X轴移动导轨B;46.X轴移动导轨A;47.X轴精密滚珠丝杠A;48.轴承固定座B;49.Y轴旋转小齿轮;50.粉末隔离装置。
具体实施方式
下面结合附图及具体实施事例对本发明进一步说明。
如图1-图6所示,本实施例提供的一种基于SLM的智能五轴增减材复合制造系统,包括基体4,基体4上设置有固定底座30。具有3个自由度的转动平台14通过轴承固定座A27和轴承固定座B48在X轴移动导轨A46和X轴移动导轨B45上移动,由X轴步进电 机A29和X轴步进电机B31分别驱动X轴精密滚珠丝杠A47和X轴精密滚珠丝杠B44同步移动。X轴移动导轨A46和X轴移动导轨B45固定在固定底座30上。Y轴旋转轴26安装在轴承固定座A27和轴承固定座B48上,Y轴旋转大齿轮34安装在Y轴旋转轴26上,Y轴旋转步进电机33驱动Y轴旋转小齿轮49转动,Y轴旋转小齿轮49带动Y轴旋转大齿轮34旋转,继而带动Y轴旋转轴26绕Y轴旋转。Z轴旋转齿轮轴23安装在Y轴旋转轴26上,Z轴旋转步进电机25驱动Z轴旋转小齿轮24转动,继而带动Z轴旋转齿轮轴23绕Z轴旋转。
成型缸40和粉缸18安装于Z轴旋转齿轮轴23上,成型缸40由可单独升降的16个成型缸升降台39构成可变容量成型缸(不同升降台之间通过燕尾槽结构相互连接,并实现上下相对运动,如图3所示),成型缸升降螺母36固定在成型缸40的底部,成型缸升降步进电机38驱动成型缸升降滚珠丝杠37旋转,从而带动成型缸升降台39实现单独上升和下降;根据使用需求,驱动不同数量和位置的成型缸升降台39下降即可构成不同容量的成型缸。
粉缸18由可单独升降的16个粉缸升降台19构成可变容量粉缸,粉缸升降螺母22固定在粉缸18的底部,粉缸升降步进电机20驱动粉缸升降滚珠丝杠21旋转,从而带动粉缸升降台19实现单独上升和下降;根据使用需求,驱动不同数量和位置的成型缸升降台19下降即可构成不同容量的粉缸。
工件42在成型基板41上进行成型,成型基板41安装于成型缸升降台39上。成型粉末17位于粉缸升降台19上,通过刮刀15将其铺匀于成型缸40内,刮刀15沿着刮刀移动导轨16进行往复运动。
旋转平台挡板43固定于转动平台14顶端,防止转动平台14旋转时成型粉末17溢出转动平台14外。SLM激光扫描装置7和超快激光抛光装置11固定于一起,由Y轴步进电机B5驱动Y轴精密滚珠丝杠6沿Y轴进行往复移动。
高精度三维视觉测量装置8、高速数控加工单元9和放射探伤系统10安装于Y轴移动导轨12上,由Y轴步进电机A3驱动沿着Y轴移动导轨12往复移动。
Y轴移动导轨12安装于Z轴精密滚珠丝杠A13和Z轴精密滚珠丝杠B35上,分别由Z轴步进电机A28和Z轴步进电机B32驱动同步运动。所有的控制元件通过信号线2连接于中央智能控制系统1上。
下面以Inconel625合金为例,本发明包含以下步骤。
A.根据所加工零件的尺寸,确定启用的成型缸升降台39的数量和位置,粉缸18和 成型缸40采用相同的设置(成型缸40和粉缸18各有16个升降台,如图3所示),将成型粉末17加入粉缸18中;根据成型缸40的使用形状,放置相应的成型基板41;
B.将整个基体4进行密封,抽真空并填充保护气体;预热至200℃;
C.调整所有零部件至初始位置,转动平台14处于水平不旋转位置,成型缸位于SLM激光扫描装置7的加工范围内(激光扫描装置参数:激光功率200~500W;粉末层厚度0.02~0.15mm;激光扫描速度100~1500mm/s;光斑直径0.06~0.30mm),高速数控加工单元9(加工参数:主轴转速24000r/min,定位精度0.005mm,重复定位精度0.003mm)、高精度三维视觉测量装置8(测量精度:X轴、Y轴精度5μm,Z轴精度1μm)和放射探伤系统10(测量精度:系统分辨率1μm,探测范围30mm)位于Y轴移动导轨12的最右端;
D.成型缸37中启用的成型缸升降台39(定位精度:0.005mm)下降一层厚度,粉缸18中启用的粉缸升降台19上升一层厚度,刮刀15将成型粉末17铺至成型缸40内;
E.激光扫描装置7开始工作,对当层粉末进行熔化烧结;
F.一层粉末熔化烧结后,高精度三维视觉测量装置8首先进行相机标定与坐标系配准,然后对当层成型尺寸进行测量,测量结果通过信号线2传输至中央智能控制系统1;
G.中央智能控制系统1将测量结果与分层参数尺寸进行对比:如果测量结果大于设计尺寸,并超出了允许误差,则进行步骤H;如果测量结果小于设计尺寸,并超出了允许误差,则进行步骤J;如果测量结果在允许误差范围内,则跳至步骤K;
H.如果工件成型尺寸比分层设计尺寸偏大,中央智能控制系统1根据超差尺寸自动生成数控加工代码;
I.高速数控加工单元9对其进行加工;根据自动设置的加工代码,行至工件42上方,对工件42进行加工;转动平台14(精度:X轴定位精度0.005mm,Y轴分度精度4",Z轴分度精度4")根据加工代码调整至相应位置和角度,以便进行工件42的五轴数控加工;加工完成后,跳至步骤F;
J.中央控制系统1根据超差尺寸生成补偿分层加工程序,然后跳至步骤D;
K.放射探伤系统10对完成的烧结层进行无接触探伤,并记录下缺陷的位置;
L.放射探伤系统10将缺陷位置数据传输至中央智能控制系统1,中央控制系统1根据设定的误差值进行判断,如果缺陷在允许误差范围内,跳至步骤D;如果缺陷情况超出了设定的误差,则继续步骤M;
M.中央智能控制系统1根据缺陷情况自动生成数控加工程序;
N.高速数控加工单元9对缺陷部分进行切除;
O.中央智能控制系统1根据切除部分自动生成补偿分层烧结程序,跳至步骤D;
P.如果工件带有内腔结构,不失一般性,可以设定加工层数为20层,即每加工20层后,中央智能控制系统1根据高精度三维视觉测量装置8对内腔壁的测量结果,自动生成本20层内腔壁的数控加工程序,继而控制高速数控加工单元(9)对内腔壁进行精加工,最终完成工件高精度内腔的加工;
Q.中央智能控制系统1根据测量结果生成超快激光抛光程序,超快激光抛光装置11(加工参数:激光波长为1064nm,输出脉宽为240fs,单脉冲能量为100μJ,重复频率为20k Hz-100kHz,扫描速度100mm/s-1000mm/s)对工件内腔进行超快抛光;
R.高精度三维视觉测量装置8对抛光内腔进行精度检测,中央智能控制系统1根据检测精度进行判断,如果精度满足要求,则进行下一步骤;若精度不满足要求,则跳至步骤Q;
S.重复步骤D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R直至所有的增减材制造加工完成。

Claims (9)

  1. 一种增减材制造装置,包括基体(4),其特征在于,所述基体(4)内设置有三自由度转动平台(14)、激光扫描装置(7)、超快激光抛光装置(11)和高速数控加工单元(9),所述转动平台(14)上安装有刮刀移动导轨(16)、成型缸(40)和粉缸(18),所述刮刀移动导轨(16)上安装有刮刀(15),所述成型缸(40)包括成型缸升降台(39),所述成型缸升降台(39)表面设置有成型基板(41),所述成型缸升降台(39)固定在成型缸升降滚珠丝杠(37)上,成型缸升降螺母(36)固定在成型缸(40)的底部,成型缸升降步进电机(38)驱动成型缸升降滚珠丝杠(37)旋转,从而带动成型缸升降台(39)上升和下降;所述粉缸(18)包括粉缸升降台(19),所述粉缸升降台(19)上设置有成型粉末(17),刮刀(15)位于所述成型粉末(17)上方,所述粉缸升降台(19)固定在粉缸升降滚珠丝杠(21)上,粉缸升降螺母(22)固定在粉缸(18)的底部,粉缸升降步进电机(20)驱动粉缸升降滚珠丝杠(21)旋转,从而带动粉缸升降台(19)上升和下降;所述激光扫描装置(7)、所述超快激光抛光装置(11)和所述高速数控加工单元(9)均安装在所述三自由度转动平台(14)的上方。
  2. 根据权利要求1所述的一种增减材制造装置,其特征在于,所述转动平台(14)固定安装在轴承固定座A(27)和轴承固定座B(48)上,所述轴承固定座A(27)上同时安装有X轴移动导轨A(46)和X轴精密滚珠丝杠A(47),所述轴承固定座B(48)上同时安装有X轴移动导轨B(45)和X轴精密滚珠丝杠B(44),由X轴步进电机A(29)和X轴步进电机B(31)分别驱动X轴精密滚珠丝杠A(47)和X轴精密滚珠丝杠B(44)同步带动转动平台(14)在X轴移动导轨A(46)和X轴精密滚珠丝杠B(44)上移动;Y轴旋转轴(26)安装在轴承固定座A(27)和轴承固定座B(48)上,Y轴旋转大齿轮(34)安装在Y轴旋转轴(26)上,Y轴旋转步进电机(33)驱动Y轴旋转小齿轮(49)转动,Y轴旋转小齿轮(49)带动Y轴旋转大齿轮(34)旋转,继而带动Y轴旋转轴(26)绕Y轴旋转;Z轴旋转齿轮轴(23)安装在Y轴旋转轴(26)上,Z轴旋转步进电机(25)驱动Z轴旋转小齿轮(24)转动,继而带动Z轴旋转齿轮轴(23)绕Z轴旋转。
  3. 根据权利要求2所述的一种增减材制造装置,其特征在于,所述高速数控加工单元(9)上同时安装有高精度三维视觉测量装置(8)和放射探伤系统(10)。
  4. 根据权利要求3所述的一种增减材制造装置,其特征在于,所述成型缸升降台(39)和所述粉缸升降台(19)的数量有多个,每相邻两个成型缸升降台之间通过燕尾槽结构相互连接,并且能够实现上下相对运动,每相邻两个粉缸升降台之间通过燕尾槽结构相互连接,并且能够实现上下相对运动。
  5. 根据权利要求1或2或3或4所述的一种增减材制造装置,其特征在于,旋转平台挡板(43)固定于所述转动平台(14)顶端,防止所述转动平台(14)旋转时成型粉末(17)从所述转动平 台(14)溢出。
  6. 根据权利要求4所述的一种增减材制造装置,其特征在于,所述激光扫描装置(7)和超快激光抛光装置(11)均固定在Y轴精密滚珠丝杠(6)上,由Y轴步进电机B(5)驱动Y轴精密滚珠丝杠(6)沿Y轴进行往复移动。
  7. 根据权利要求6所述的一种增减材制造装置,其特征在于,所述高精度三维视觉测量装置(8)、所述高速数控加工单元(9)和所述放射探伤系统(10)安装于Y轴移动导轨(12)上,由Y轴步进电机A(3)驱动沿着Y轴移动导轨(12)往复移动。
  8. 根据权利要求7所述的一种增减材制造装置,其特征在于,所述Y轴移动导轨(12)安装于Z轴精密滚珠丝杠A(13)和Z轴精密滚珠丝杠B(35)上,分别由Z轴步进电机A(28)和Z轴步进电机B(32)驱动同步运动,所述基体(4)的底部固定安装有固定底座(30),所述Z轴步进电机A(28)、所述Z轴步进电机B(32)、所述X轴步进电机A(29)、所述X轴步进电机B(31)、所述Y轴旋转步进电机(33)均安装在所述固定底座(30)上。
  9. 一种利用权利要求8所述的增减材制造装置进行增减材复合制造方法,包含以下步骤:
    S1:根据所加工零件的尺寸,确定启用的成型缸升降台(39)的数量和位置,粉缸(18)和成型缸(40)采用相同的设置,将成型粉末(17)加入粉缸(18)中;根据成型缸(40)的使用形状,放置相应的成型基板(41);
    S2:将整个基体(4)进行密封,抽真空并填充保护气体;加热至合适的工作温度;
    S3:调整所有零部件至初始位置,转动平台(14)处于水平不旋转位置,成型缸位于SLM激光扫描装置(7)的加工范围内,高速数控加工单元(9)、高精度三维视觉测量装置(8)和放射探伤系统(10)位于Y轴移动导轨(12)的最右端;
    S4:成型缸(40)中启用的成型缸升降台(39)下降一层厚度,粉缸(18)中启用的粉缸升降台(19)上升一层厚度,刮刀(15)将成型粉末(17)铺至成型缸(40)内,粉末隔离装置(50)对成型粉末进行隔离,防止粉末溢出,并保证铺粉的均匀性;
    S5:激光扫描装置(7)开始工作,对当层粉末进行熔化烧结;
    S6:一层粉末熔化烧结后,高精度三维视觉测量装置(8)首先进行相机标定与坐标系配准,然后对当层成型尺寸进行测量,测量结果通过信号线(2)传输至中央智能控制系统(1);
    S7:中央智能控制系统(1)将测量结果与分层参数尺寸进行对比:如果测量结果大于设计尺寸,并超出了允许误差,则进行步骤S8;如果测量结果小于设计尺寸,并超出了允许误差,则进行步骤S10;如果测量结果在允许误差范围内,则跳至步骤S11;
    S8:如果工件成型尺寸比分层设计尺寸偏大,中央控制系统(1)根据超差尺寸自动生成数控 加工代码;
    S9:高速数控加工单元(9)对其进行加工;根据自动设置的加工代码,行至工件(42)上方,对工件(42)进行加工;转动平台(14)根据加工代码调整至相应位置和角度,以便进行工件(42)的五轴数控加工;加工完成后,跳至步骤S6;
    S10:中央智能控制系统(1)根据超差尺寸生成补偿分层加工程序,然后跳至步骤S4;
    S11:放射探伤系统(10)对完成的烧结层进行无接触探伤,并记录下缺陷的位置;
    S12:放射探伤系统(10)将缺陷位置数据传输至中央控制系统(1),中央控制系统(1)根据设定的误差值进行判断,如果缺陷在允许误差范围内,跳至步骤S4;如果缺陷情况超出了设定的误差,则继续步骤S13;
    S13:中央智能控制系统(1)根据缺陷情况自动生成数控加工程序;
    S14:高速数控加工单元(9)对缺陷部分进行切除;
    S15:中央智能控制系统(1)根据切除部分自动生成补偿分层烧结程序,跳至步骤S4;
    S16:如果工件带有内腔结构,可以根据需求设定一定的加工层数后,采用高速数控加工单元(9)对内腔壁进行精加工;
    S17:中央智能控制系统(1)根据测量结果生成超快激光抛光程序,超快激光抛光装置(11)对工件内腔进行超快抛光;
    S18:高精度三维视觉测量装置(8)对抛光内腔进行精度检测,中央智能控制系统(1)根据检测精度进行判断,如果精度满足要求,则进行下一步骤;若精度不满足要求,则跳至步骤S17;
    S19:重复步骤S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15,S16,S17,S18直至所有的增减材制造加工完成。
PCT/CN2020/116426 2020-08-24 2020-09-21 一种增减材制造装置及其增减材复合制造方法 WO2022041354A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2203346.8A GB2601455B (en) 2020-08-24 2020-09-21 Device for additive and subtractive manufacturing, and methof for additive and subtractive composite manufacturing using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010855161.4 2020-08-24
CN202010855161.4A CN112170838B (zh) 2020-08-24 2020-08-24 一种增减材制造装置及其增减材复合制造方法

Publications (1)

Publication Number Publication Date
WO2022041354A1 true WO2022041354A1 (zh) 2022-03-03

Family

ID=73924468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116426 WO2022041354A1 (zh) 2020-08-24 2020-09-21 一种增减材制造装置及其增减材复合制造方法

Country Status (3)

Country Link
CN (1) CN112170838B (zh)
GB (1) GB2601455B (zh)
WO (1) WO2022041354A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115091742A (zh) * 2022-05-26 2022-09-23 北京化工大学 一种增减材复合加工设备
CN115194176A (zh) * 2022-07-19 2022-10-18 中国科学院宁波材料技术与工程研究所 一种提高激光增材制造高熵合金成形件表面质量的方法
CN115901755A (zh) * 2022-11-11 2023-04-04 哈尔滨工业大学 一种用于送粉式增材制造粉末分布状态测量装置
CN117943559A (zh) * 2024-03-26 2024-04-30 中国航发沈阳黎明航空发动机有限责任公司 一种基于组合基板的空心可调叶片增材制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112848300A (zh) * 2021-01-07 2021-05-28 岳阳哈工三维科技有限公司 一种3d打印品质自动检测判断系统
CN113579250A (zh) * 2021-10-08 2021-11-02 湖南大学 一种激光熔覆增材与磨抛减材复合的超硬模具制造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204712464U (zh) * 2015-04-16 2015-10-21 中国矿业大学 五自由度快速成型加工装置
US20160236293A1 (en) * 2015-02-16 2016-08-18 Excetek Technologies Co., Ltd. Apparatus for metal additive manufacturing and electrical discharge machining
CN106180714A (zh) * 2016-08-24 2016-12-07 中国航天科技集团公司长征机械厂 下行式送粉系统
CN106756989A (zh) * 2016-11-22 2017-05-31 昆明七零五所科技发展总公司 一种零件的激光复合制造技术
CN107598163A (zh) * 2017-09-01 2018-01-19 华中科技大学 一种适用于铺粉式增材制造的质量无损在线检测装备及方法
CN109848563A (zh) * 2018-12-26 2019-06-07 北京航空航天大学 一种基于现有激光增材设备的同步激光抛光模块
CN109968040A (zh) * 2019-04-18 2019-07-05 江南大学 一种增减材复合制造设备
CN110076339A (zh) * 2019-03-06 2019-08-02 上海工程技术大学 一种复杂空腔增材制件内外表面的抛光方法
CN110976869A (zh) * 2019-12-25 2020-04-10 长安大学 一种零件增材复合制造装置及方法
CN111201124A (zh) * 2017-09-12 2020-05-26 滕忆先 增材制造设备及方法
CN111421138A (zh) * 2019-10-14 2020-07-17 江苏科技大学 一种可移动组合式选区激光熔化金属增材制造活动基板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684796A (en) * 1983-07-08 1987-08-04 The Charles Stark Draper Laboratory, Inc. Common optical aperture laser separator for reciprocal path optical
CN106759890A (zh) * 2016-12-28 2017-05-31 山东杭萧钢构有限公司 一种多高层成品钢方管柱在钢梁处的连接结构
CN106670808A (zh) * 2017-03-11 2017-05-17 苏州科技大学 增减材多功能加工一体机
CN108393654A (zh) * 2018-01-15 2018-08-14 大连理工大学 一种微细结构的制造方法
CN109926584B (zh) * 2019-03-06 2022-08-05 上海工程技术大学 一种增材制造和表面抛光同步加工方法及装置
CN110052713B (zh) * 2019-03-22 2020-04-10 江南大学 零件增减材复合制造工艺
CN210309059U (zh) * 2019-05-17 2020-04-14 南京南欣医药技术研究院有限公司 一种3d打印机垫板
CN110675989A (zh) * 2019-09-30 2020-01-10 江苏朗顺电工电气有限公司 一种高性能特高压输变电产品用绕组导线的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160236293A1 (en) * 2015-02-16 2016-08-18 Excetek Technologies Co., Ltd. Apparatus for metal additive manufacturing and electrical discharge machining
CN204712464U (zh) * 2015-04-16 2015-10-21 中国矿业大学 五自由度快速成型加工装置
CN106180714A (zh) * 2016-08-24 2016-12-07 中国航天科技集团公司长征机械厂 下行式送粉系统
CN106756989A (zh) * 2016-11-22 2017-05-31 昆明七零五所科技发展总公司 一种零件的激光复合制造技术
CN107598163A (zh) * 2017-09-01 2018-01-19 华中科技大学 一种适用于铺粉式增材制造的质量无损在线检测装备及方法
CN111201124A (zh) * 2017-09-12 2020-05-26 滕忆先 增材制造设备及方法
CN109848563A (zh) * 2018-12-26 2019-06-07 北京航空航天大学 一种基于现有激光增材设备的同步激光抛光模块
CN110076339A (zh) * 2019-03-06 2019-08-02 上海工程技术大学 一种复杂空腔增材制件内外表面的抛光方法
CN109968040A (zh) * 2019-04-18 2019-07-05 江南大学 一种增减材复合制造设备
CN111421138A (zh) * 2019-10-14 2020-07-17 江苏科技大学 一种可移动组合式选区激光熔化金属增材制造活动基板
CN110976869A (zh) * 2019-12-25 2020-04-10 长安大学 一种零件增材复合制造装置及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115091742A (zh) * 2022-05-26 2022-09-23 北京化工大学 一种增减材复合加工设备
CN115194176A (zh) * 2022-07-19 2022-10-18 中国科学院宁波材料技术与工程研究所 一种提高激光增材制造高熵合金成形件表面质量的方法
CN115901755A (zh) * 2022-11-11 2023-04-04 哈尔滨工业大学 一种用于送粉式增材制造粉末分布状态测量装置
CN117943559A (zh) * 2024-03-26 2024-04-30 中国航发沈阳黎明航空发动机有限责任公司 一种基于组合基板的空心可调叶片增材制造方法

Also Published As

Publication number Publication date
GB202203346D0 (en) 2022-04-27
GB2601455A (en) 2022-06-01
GB2601455B (en) 2022-10-12
CN112170838A (zh) 2021-01-05
CN112170838B (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2022041354A1 (zh) 一种增减材制造装置及其增减材复合制造方法
CN110315079B (zh) 一种增材制造装置及成形方法
CN104493492B (zh) 激光选区熔化与铣削复合加工设备及加工方法
CN104625061B (zh) 一种综合性数控3d打印设备及使用方法
EP3822003A1 (en) Additive and subtractive composite manufacturing device and method
CN210305757U (zh) 一种基于动态成形缸的增材制造装置
CN108971699B (zh) 一种舰船艉轴架电弧熔丝3d打印制造方法及其产品
CN107009150A (zh) 一种等离子和多轴数控机床增减材复合3d打印设备与方法
CN105252145A (zh) 一种金属薄板叠加制造复杂形状零件的方法和设备
CN108817386A (zh) 用于多光束激光选区熔化成形的层间梳状拼接方法
WO2017071316A1 (zh) 基于互联网信号传递的等离子熔融及多轴铣削加工复合3d打印设备
CN206689749U (zh) 一种钻孔用可调节式斜面工装夹具
CN109228336A (zh) 一种五轴增减材复合加工装置
CN111283198A (zh) 一种slm快速成型设备中成型缸系统结构
WO2022083086A1 (zh) 一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法
WO2019024077A1 (zh) 粉末烧结3d打印系统及其供粉方法
CN108789779A (zh) 一种陶瓷制品自动成型装置
CN209050258U (zh) 一种多功能激光加工设备
CN111992877A (zh) 一种高精度激光增减材的复合制造装置
CN114799182B (zh) 一种梯度功能复合材料超声辅助激光微熔覆方法及装置
CN106041236B (zh) 气膜冷却孔出口处热障涂层放电辅助化学加工扫描方法
CN114054781A (zh) 一种电弧增材与电化学减材复合制造装置及方法
CN107838420B (zh) 利用熔融床进行3d打印的方法和3d打印系统
CN117400002B (zh) 增等减材复合制造质量监控与智能控制方法
CN220240056U (zh) 一种带原位热处理炉的lmd增减材复合制造系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202203346

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200921

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951022

Country of ref document: EP

Kind code of ref document: A1