CN111992877A - 一种高精度激光增减材的复合制造装置 - Google Patents

一种高精度激光增减材的复合制造装置 Download PDF

Info

Publication number
CN111992877A
CN111992877A CN202010646377.XA CN202010646377A CN111992877A CN 111992877 A CN111992877 A CN 111992877A CN 202010646377 A CN202010646377 A CN 202010646377A CN 111992877 A CN111992877 A CN 111992877A
Authority
CN
China
Prior art keywords
laser
processing
forming
additive
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010646377.XA
Other languages
English (en)
Inventor
何博
高双
兰亮
谭志俊
张奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Engineering Science
Original Assignee
Shanghai University of Engineering Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Engineering Science filed Critical Shanghai University of Engineering Science
Priority to CN202010646377.XA priority Critical patent/CN111992877A/zh
Publication of CN111992877A publication Critical patent/CN111992877A/zh
Priority to US17/235,701 priority patent/US11565349B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/126Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of gases chemically reacting with the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/33Platforms or substrates translatory in the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • B22F12/43Radiation means characterised by the type, e.g. laser or electron beam pulsed; frequency modulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/80Plants, production lines or modules
    • B22F12/82Combination of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/84Parallel processing within single device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开了一种高精度激光增减材的复合制造装置,包括密封成型室、惰性保护气源及加工成型平台;惰性保护气源与密封成型室连接;加工成型平台布置在密封成型室内,加工成型平台的正上方布置有光路选取系统;加工成型平台上设有加工位,加工成型平台的下方设有丝杠,加工成型平台固定在丝杠的滑块上,丝杠与丝杠电机连接,加工成型平台可在丝杠电机的驱动下在丝杠上前后滑动;光路选取系统包括相互平行、沿丝杠方向布置且不共用设备的增材独立激光光路和减材独立激光光路。本发明的装置融合激光增减材技术,改善复杂精细增材制件的成型精度、表面质量、组织性能和残余应力状态,实现一站式高效率、高精度、高性能增材制件的制备。

Description

一种高精度激光增减材的复合制造装置
技术领域
本发明属于激光加工技术领域,涉及一种高精度激光增减材的复合制造装置。
背景技术
激光选区熔化技术(Selective Laser Melting,SLM)是基于材料离散-逐渐累加的方法制造实体零件的激光增材制造技术,其具体以高功率激光为热源,逐层熔融金属粉末,可以直接制造出具有复杂精细结构的零件(加工精度高),该技术能够实现具有复杂结构的致密材料的快速、无模的近净成型,为复杂、精细结构零件的一体化制备提供新的思路,尤其为航空航天、医疗器械、精密机床、电子通讯等领域中的关键精密零部件的成型提供了一个简单、快速、低成本、绿色化的从粉末到整件的柔性制造技术,具有美好的应用前景。
但是受制于粉末的尺度、粉末粘附和粉末球化、层间台阶效应、激光聚焦光斑尺寸、微裂纹以及受热不均导致的残余拉应力和变形等的影响,SLM成型零件的复杂、精细程度、表面粗糙度、致密度及机械力学综合性能等仍与用户期待有较大差距。
因此,开发一种能够顺利解决SLM成型零件的几何尺寸精度低、表面质量差、残余拉应力大和内部缺陷多等问题进而实现高精度、一体化的近净成型的技术极具现实意义。
发明内容
本发明的目的在于克服现有技术SLM成型零件的几何尺寸精度低、表面质量差、残余拉应力大及内部缺陷多的缺陷,进而提供一种实现高精度、一体化的近净成型的制造设备。
为实现上述目的,本发明提供如下技术方案:
一种高精度激光增减材的复合制造装置,包括密封成型室、惰性保护气源、加工成型平台、光路选取系统及控制装置;
所述惰性保护气源与密封成型室连接,为密封成型室提供惰性保护气体;
所述加工成型平台布置在所述密封成型室内,其中光路选取系统布置在所述加工成型平台的上方;
所述加工成型平台上设有加工位,加工成型平台的下方设有丝杠,加工成型平台固定在丝杠的滑块上,所述丝杠与丝杠电机连接,加工成型平台可在丝杠电机的驱动下在丝杠上前后滑动;
所述光路选取系统布置在加工成型平台的正上方,其包括相互平行且沿丝杠方向布置的增材独立激光光路和减材独立激光光路这两条独立激光光路,每条独立激光光路包括一套依次排布的激光器、扩束镜、扫描振镜及聚焦场镜,各独立激光光路不共用设备;
所述控制装置分别与惰性保护气源、丝杠电机、加工成型平台及光路选取系统电信号连接,控制装置可控制惰性保护气源使得密封成型室内充满惰性保护气体,而后根据需求驱动丝杠电机加工成型平台滑动使得加工位对准所需的独立激光光路并控制光路选取系统加工部件,重复该操作直至部件加工完成即可。
本发明的高精度激光增减材的复合制造装置,采用激光增减材进行复合制造,其相比于传统激光增材制造,同步利用超快激光减材技术可以实现,逐层消除台阶效应,逐层剥离轮廓边缘的片层台阶和粘附粉末等多余材料,去除层内选定区域的局部材料并在逐层叠加后形成连续的复杂、精细内腔,可以有效地同步去除部分支撑材料;本发明有机融合激光选区熔化技术和超快激光减材技术,实现了两种加工技术同步进行的工艺路线,可以改善复杂精细增材制件的成型精度、表面质量,克服了无法对于带有封闭空腔、深槽深孔、多道毛细管路等精细结构的复杂、精细零件进行后续处理的技术难题,最终实现一站式高效率、高精度、高性能增材制件的近净成形。
本发明的装置设计精巧,每个加工工艺均配备有独立激光光路,相比于现有技术常用的共用设备(激光器),不仅能够显著提高加工精度,而且独立激光光路能够提高光路的稳定性,能够提高加工的稳定性,极具应用前景。
作为优选的技术方案:
如上所述的一种高精度激光增减材的复合制造装置,所述增材独立激光光路包括增材激光器、增材光路扩束镜、增材光路扫描振镜及增材光路聚焦场镜;
所述减材独立激光光路包括减材激光器、减材光路扩束镜、减材光路扫描振镜及减材光路聚焦场镜。
如上所述的一种高精度激光增减材的复合制造装置,所述控制装置分别与增材激光器及减材激光器连接。
在进行激光增材加工时,控制装置控制增材激光器输出激光光束,通过增材光路扩束镜、增材光路扫描振镜及增材光路聚焦场镜向加工成型平台上的对应加工位内输送加工激光束进行增材加工;
在进行激光减材加工时,控制装置控制减材激光器输出激光光束,通过减材光路扩束镜、减材光路扫描振镜及减材光路聚焦场镜向加工成型平台上的对应加工位内输送加工激光束进行减材加工。
如上所述的一种高精度激光增减材的复合制造装置,所述增材激光器发出的激光束为连续激光,其波长为1064nm,功率为100~1000W,光斑直径为50~200μm,扫描速度为50~2000mm/s;
所述减材激光器发出的激光束为皮秒脉冲激光束或飞秒脉冲激光束;
皮秒脉冲激光束的参数为:脉宽为13ps,频率为1~2MHz,功率为0~180W,扫描速度为1~10mm/s,波长为1030nm;
飞秒脉冲激光束的参数为:脉宽为190fs~10ps,频率为1kHz~1MkHz,功率为0~20W,扫描速度1~10mm/s,波长为1030nm。其中减材激光器功率需要根据实际工艺要求进行选择,过高的激光功率会导致激光光斑能量过大,造成明显的热效应并影响材料性能,而过低的激光功率会造成激光光斑能量不足,无法达到切除表面多余材料提高表面质量的目的。本发明中各类激光器发出激光的参数并不仅限于此,本领域技术人员可根据加工的实际需求在一定范围内进行调整。
如上所述的一种高精度激光增减材的复合制造装置,所述加工成型平台包括加工平台面、成型缸、粉料收集缸和铺粉刷;
所述成型缸、粉料收集缸布置在所述加工平台面上;
成型缸为所述加工位,成型缸内布置有基板,所述基板可在竖直方向上运动;
所述密封成型室上设有与外部连通的通孔,通孔处布置有用于外部向密封成型室内输送粉料的送粉器;
所述铺粉刷布置在所述加工平台面的上方,用于将送粉器内的粉料铺到成形缸中的基板上并将多余粉料推至粉料收集缸内。
如上所述的一种高精度激光增减材的复合制造装置,所述控制装置分别与铺粉刷、成型缸、送料器及粉料缸连接。
如上所述的一种高精度激光增减材的复合制造装置,所述控制装置为计算机。
如上所述的一种高精度激光增减材的复合制造装置,所述控制装置的操作步骤如下:
(1)获取待制造零件的三维数模,利用软件(如CAD软件、CAM软件及其他具有类似功能的模型制作软件)对待制造零件的三维数模进行切片分层处理,获取逐层切片层的轮廓数据,并生成待制造零件的构造参数,所述构造参数包括激光增材加工参数和激光减材加工参数;
(2)开启惰性保护气源使得密封成型室处于惰性保护气体的保护下;
(3)控制增材激光器按照增材加工参数在加工位上开始对待制造零件的激光增材加工,在激光增材制造时,送粉器(送粉器内的粉末材料为可以通过选区激光熔化进行增材制造加工的粉末,包括但不限于金属粉末、陶瓷粉末,及其混合粉末)向密封成型室输送粉料,通过铺粉刷的运动使送粉器的粉末平铺在成型缸的基板上,根据切片信息和构造参数控制激光束进行选择性地熔化铺设的粉料,并凝固形成零件的一个片层,即完成一个片层的激光增材加工工作,重复以上步骤,完成所有n层激光增材加工即完成待制造零件的激光增材加工;
(4)完成待制造零件的激光增材加工后,控制丝杠电机将该加工位移至减材独立激光光路的正下方,控制减材激光器按照激光减材参数进行超快脉冲激光减材加工,对已成型的n层片层的轮廓边缘和/或需减材加工成精细结构的特征区域进行扫描,去除粉末粘附、台阶效应等多余材料;
(5)反复步骤(3)~(4)直至待制造零件的所有片层加工完成,即完成待制造零件的加工工作。
如上所述的一种高精度激光增减材的复合制造装置,制得的零件的粗糙度可达Ra6.3μm,加工精度可达10μm。
有益效果:
(1)本发明的高精度激光增减材的复合制造装置,在激光增材加工过程中,同步利用超快激光减材技术可以逐层消除台阶效应,逐层剥离轮廓边缘的片层台阶和粘附粉末等多余材料,去除层内选定区域的局部材料并在逐层叠加后形成连续的复杂、精细内腔,可以有效地同步去除部分支撑材料;
(2)本发明的高精度激光增减材的复合制造装置,有机融合激光选区熔化技术和超快激光减材技术,可以改善复杂精细增材制件的成型精度、表面质量、组织性能和残余应力状态,克服了无法对于带有封闭空腔、深槽深孔、多道毛细管路等精细结构的复杂、精细零件进行后续处理的技术难题,最终实现一站式高效率、高精度、高性能增材制件的制备,同时在同一装置中完成两种工艺过程,很大程度上提高了加工效率和减少了后处理成本;
(3)本发明的高精度激光增减材的复合制造装置,设计精巧,每个加工工艺均配备有独立激光光路,相比于现有技术常用的共用设备(激光器),不仅能够显著提高加工精度,而且独立激光光路能够提高光路的稳定性,能够提高加工的稳定性,极具应用前景。
附图说明
图1为本发明的高精度激光增减材的复合制造装置的示意图;
图2为本发明的控制装置的控制流程图;
图3为传统激光选区熔化成型技术制得的316不锈钢毛细管(a)与采用本发明装置制得316不锈钢毛细管(b)的实体剖视图的对比示意图;
其中,1-惰性保护气源,2-密封成型室,3-送粉器,4-增材光路聚焦场镜,5-增材光路扫描振镜,6-增材光路扩束镜,7-增材激光器,8-减材光路扫描振镜,9-减材光路聚焦场镜,10-减材光路扩束镜,11-减材激光器,12-铺粉刷,13-成型缸,14-基板,15-待制造零件,16-粉料收集缸,17-滑块,18-丝杠,19-丝杠电机,20-控制装置。
具体实施方式
下面结合附图,对本发明的具体实施方式做进一步阐述,以制造316不锈钢毛细管为例。
一种高精度激光增减材的复合制造装置,如图1所示,包括密封成型室2、惰性保护气源1、加工成型平台、光路选取系统及控制装置20(计算机);
惰性保护气源1与密封成型室2连接,为密封成型室2提供惰性保护气体;
加工成型平台布置在密封成型室2内,其中光路选取系统布置在加工成型平台的上方,密封成型室2上设有与外部连通的通孔,通孔处布置有用于外部向密封成型室2内输送粉料的送粉器3;
加工成型平台包括加工平台面、成型缸13(加工位)、粉料收集缸16和铺粉刷12,成型缸13、粉料收集缸16布置在加工平台面上,成型缸13内布置有可在竖直方向上运动的基板14,铺粉刷12布置在加工平台面的上方,用于将送粉器3内的粉料铺到成形缸中的基板14上并将多余粉料推至粉料收集缸16内;
加工成型平台的下方设有丝杠18,加工成型平台固定在丝杠18的滑块17上,丝杠18与丝杠电机19连接,加工成型平台可在丝杠电机19的驱动下在丝杠18上前后滑动;
光路选取系统布置在加工成型平台的正上方,其包括相互平行且沿丝杠方向布置的增材独立激光光路和减材独立激光光路这两条独立激光光路,其中增材独立激光光路包括增材激光器7、增材光路扩束镜6、增材光路扫描振镜5及增材光路聚焦场镜4,减材独立激光光路包括减材激光器11、减材光路扩束镜10、减材光路扫描振镜8及减材光路聚焦场镜9;
其中,增材激光器发出的激光束为连续激光,其波长为1064nm,功率为100~1000W,光斑直径为50~200μm,扫描速度为50~2000mm/s;
减材激光器发出的激光束为皮秒脉冲激光束或飞秒脉冲激光束;
皮秒脉冲激光束的参数为:脉宽为13ps,频率为1~2MHz,功率为0~180W,扫描速度为1~10mm/s,波长为1030nm;
飞秒脉冲激光束的参数为:脉宽为190fs~10ps,频率为1kHz~1MkHz,功率为0~20W,扫描速度1~10mm/s,波长为1030nm;
控制装置20分别与惰性保护气源1、送粉器3、铺粉刷12、丝杠电机19、成型缸13、增材激光器7及减材激光器11电信号连接,控制装置可控制惰性保护气源使得密封成型室内充满惰性保护气体,而后根据需求驱动丝杠电机加工成型平台滑动使得加工位对准所需的独立激光光路并控制光路选取系统加工部件,重复该操作直至部件加工完成即可;
其中控制装置加工零件的具体步骤如图2所示,具体如下:
(1)获取待制造零件15(即316不锈钢毛细管)的三维数模,利用CAD软件和CAM软件对待制造零件的三维数模进行切片分层处理,获取逐层切片层的轮廓数据,并生成待制造零件的构造参数,构造参数包括激光增材加工参数和激光减材加工参数;
(2)开启惰性保护气源使得密封成型室处于惰性保护气体的保护下;
(3)控制增材激光器按照增材加工参数在加工位内开始对待制造零件的激光增材加工,其中送粉器内的粉料为粒径在15~53μm的近球形316不锈钢粉末,进行激光增材加工的过程具体为:送粉器3向密封成型室2输送粉料,通过铺粉刷12的运动使送粉器3的粉末平铺在成型缸的基板14上,根据切片信息和构造参数控制激光束进行选择性地熔化铺设的粉料,并凝固形成零件的一个片层,即完成一个片层的激光增材加工工作,重复以上步骤,完成所有n层激光增材加工,当构造完2~5层片层后,关闭增材激光器7;
(4)完成待制造零件的激光增材加工后,控制丝杠电机19将该加工位移至减材独立激光光路的正下方,控制减材激光器按照激光减材参数进行超快脉冲激光减材加工,激光减材加工具体为:对基板14上已熔覆层的轮廓边缘或需减材加工成精细结构的选定特征区域(精细结构有零件内部的空腔、深槽、深孔和复杂毛细管路等)进行减材扫描,扫描次数为1~2次,消除轮廓边缘及选定特征区域的多余材料,提高零件表面质量和尺寸精度,以及实现零件精细结构的成形;
(5)反复步骤(3)~(4)直至待制造零件的所有片层加工完成,即完成待制造零件的加工工作,已成型316不锈钢毛细管的剖视图如图3b所示;
制得的316不锈钢毛细管的粗糙度可达Ra 6.3μm,加工精度可达10μm,通过与传统激光选区熔化成型技术制得的316不锈钢毛细管进行比较后,可以发现,采用本发明的装置制得的316不锈钢毛细管内无粉末球化团残留且光滑度好,产品质量远优于传统激光选区熔化成型技术制得的316不锈钢毛细管(如图3a所示),本发明的装置能够提高零件的加工精度和表面质量,制得产品内部组织致密,能够有效抑制残余拉应力的形成,显著提升产品的综合力学性能。
经验证,本发明的高精度激光增减材的复合制造装置,在激光增材加工过程中,同步利用超快激光减材技术可以逐层消除台阶效应,逐层剥离轮廓边缘的片层台阶和粘附粉末等多余材料,去除层内选定区域的局部材料并在逐层叠加后形成连续的复杂、精细内腔,可以有效地同步去除部分支撑材料;有机融合激光选区熔化技术和超快激光减材技术,可以改善复杂精细增材制件的成型精度、表面质量、组织性能和残余应力状态,克服了无法对于带有封闭空腔、深槽深孔、多道毛细管路等精细结构的复杂、精细零件进行后续处理的技术难题,最终实现一站式高效率、高精度、高性能增材制件的制备,同时在同一装置中完成两种工艺过程,很大程度上提高了加工效率和减少了后处理成本;设计精巧,每个加工工艺均配备有独立激光光路,相比于现有技术常用的共用设备(激光器),不仅能够显著提高加工精度,而且独立激光光路能够提高光路的稳定性,能够提高加工的稳定性,极具应用前景。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应该理解,这些仅是举例说明,在不违背本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。

Claims (9)

1.一种高精度激光增减材的复合制造装置,其特征在于,包括密封成型室、惰性保护气源、加工成型平台、光路选取系统及控制装置;
所述惰性保护气源与密封成型室连接,为密封成型室提供惰性保护气体;
所述加工成型平台布置在所述密封成型室内,其中光路选取系统布置在所述加工成型平台的上方;
所述加工成型平台上设有加工位,加工成型平台的下方设有丝杠,加工成型平台固定在丝杠的滑块上,所述丝杠与丝杠电机连接,加工成型平台可在丝杠电机的驱动下在丝杠上前后滑动;
所述光路选取系统布置在加工成型平台的正上方,其包括相互平行且沿丝杠方向布置的增材独立激光光路和减材独立激光光路这两条独立激光光路,每条独立激光光路包括一套依次排布的激光器、扩束镜、扫描振镜及聚焦场镜,各独立激光光路不共用设备;
所述控制装置分别与惰性保护气源、丝杠电机、加工成型平台及光路选取系统电信号连接,控制装置可控制惰性保护气源使得密封成型室内充满惰性保护气体,而后根据需求驱动丝杠电机加工成型平台滑动使得加工位对准所需的独立激光光路并控制光路选取系统加工部件,重复该操作直至部件加工完成即可。
2.根据权利要求1所述的一种高精度激光增减材的复合制造装置,其特征在于,所述增材独立激光光路包括增材激光器、增材光路扩束镜、增材光路扫描振镜及增材光路聚焦场镜;
所述减材独立激光光路包括减材激光器、减材光路扩束镜、减材光路扫描振镜及减材光路聚焦场镜。
3.根据权利要求2所述的一种高精度激光增减材的复合制造装置,其特征在于,所述控制装置分别与增材激光器及减材激光器连接。
4.根据权利要求2所述的一种高精度激光增减材的复合制造装置,其特征在于,所述增材激光器发出的激光束为连续激光,其波长为1064nm,功率为100~1000W,光斑直径为50~200μm,扫描速度为50~2000mm/s;
所述减材激光器发出的激光束为皮秒脉冲激光束或飞秒脉冲激光束;
皮秒脉冲激光束的参数为:脉宽为13ps,频率为1~2MHz,功率为0~180W,扫描速度为1~10mm/s,波长为1030nm;
飞秒脉冲激光束的参数为:脉宽为190fs~10ps,频率为1kHz~1MkHz,功率为0~20W,扫描速度1~10mm/s,波长为1030nm。
5.根据权利要求1所述的一种高精度激光增减材的复合制造装置,其特征在于,所述加工成型平台包括加工平台面、成型缸、粉料收集缸和铺粉刷;
所述成型缸、粉料收集缸布置在所述加工平台面上;
成型缸为所述加工位,成型缸内布置有基板,所述基板可在竖直方向上运动;
所述密封成型室上设有与外部连通的通孔,通孔处布置有用于外部向密封成型室内输送粉料的送粉器;
所述铺粉刷布置在所述加工平台面的上方,用于将送粉器内的粉料铺到成形缸中的基板上并将多余粉料推至粉料收集缸内。
6.根据权利要求5所述的一种基于激光技术进行复合制造的装置,其特征在于,所述控制装置分别与铺粉刷、送料器、成型缸及粉料缸连接。
7.根据权利要求1所述的一种高精度激光增减材的复合制造装置,其特征在于,所述控制装置为计算机。
8.根据权利要求1所述的一种高精度激光增减材的复合制造装置,其特征在于,所述控制装置的操作步骤如下:
(1)获取待制造零件的三维数模,对待制造零件的三维数模进行切片分层处理,获取逐层切片层的轮廓数据,并生成待制造零件的构造参数,所述构造参数包括激光增材加工参数和激光减材加工参数;
(2)开启惰性保护气源使得密封成型室处于惰性保护气体的保护下;
(3)控制增材激光器按照增材加工参数在加工位上开始对待制造零件的激光增材加工;
(4)完成待制造零件的激光增材加工后,控制丝杠电机将该加工位移至减材独立激光光路的正下方,控制减材激光器按照激光减材参数进行超快脉冲激光减材加工;
(5)反复步骤(3)~(4)直至待制造零件的所有片层加工完成,即完成待制造零件的加工工作。
9.根据权利要求8所述的一种高精度激光增减材的复合制造装置,其特征在于,制得的零件的粗糙度可达Ra 6.3μm,加工精度可达10μm。
CN202010646377.XA 2020-07-07 2020-07-07 一种高精度激光增减材的复合制造装置 Pending CN111992877A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010646377.XA CN111992877A (zh) 2020-07-07 2020-07-07 一种高精度激光增减材的复合制造装置
US17/235,701 US11565349B2 (en) 2020-07-07 2021-04-20 Composite device for high-precision laser additive/subtractive manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010646377.XA CN111992877A (zh) 2020-07-07 2020-07-07 一种高精度激光增减材的复合制造装置

Publications (1)

Publication Number Publication Date
CN111992877A true CN111992877A (zh) 2020-11-27

Family

ID=73467552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010646377.XA Pending CN111992877A (zh) 2020-07-07 2020-07-07 一种高精度激光增减材的复合制造装置

Country Status (2)

Country Link
US (1) US11565349B2 (zh)
CN (1) CN111992877A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114713848A (zh) * 2022-06-10 2022-07-08 西安赛隆金属材料有限责任公司 一种提升增材制造零件表面质量的方法及增材制造设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116441851A (zh) * 2023-04-28 2023-07-18 中国长江电力股份有限公司 一种大型水轮机转轮止漏环增减材一体修复装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108907196A (zh) * 2018-09-03 2018-11-30 江苏典悦三维科技有限公司 激光增减材复合制造装置及方法
CN209452803U (zh) * 2019-01-28 2019-10-01 大连交通大学 一种设有导轨装置的金属打印增减材复合加工装置
CN209452804U (zh) * 2019-01-28 2019-10-01 大连交通大学 一种金属打印增减材复合加工装置
CN110369725A (zh) * 2019-08-02 2019-10-25 上海工程技术大学 基于激光增减材复合制造精细工件的近净成形方法及装置
US20200180066A1 (en) * 2017-07-06 2020-06-11 Ii-Vi Delaware, Inc. Additive manufacturing in metals with a fiber array laser source and adaptive multi-beam shaping

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008031587A1 (de) * 2008-07-03 2010-01-07 Eos Gmbh Electro Optical Systems Vorrichtung zum schichtweisen Herstellen eines dreidimensionalen Objekts
US8246714B2 (en) * 2009-01-30 2012-08-21 Imra America, Inc. Production of metal and metal-alloy nanoparticles with high repetition rate ultrafast pulsed laser ablation in liquids
US20120225568A1 (en) * 2011-03-03 2012-09-06 Tokyo Electron Limited Annealing method and annealing apparatus
FR2984191B1 (fr) * 2011-12-20 2014-01-10 Michelin Soc Tech Machine et procede pour la fabrication additive a base de poudre
CN104759623B (zh) * 2015-03-10 2017-06-23 清华大学 利用电子束‑激光复合扫描的增材制造装置
US10071422B2 (en) * 2015-12-10 2018-09-11 Velo3D, Inc. Skillful three-dimensional printing
CN105538728A (zh) * 2016-02-23 2016-05-04 中国科学院重庆绿色智能技术研究院 一种激光增减材复合制造的方法与装置
CN106346006B (zh) * 2016-10-26 2019-05-10 华中科技大学 一种金属零件的激光增材制造装备及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200180066A1 (en) * 2017-07-06 2020-06-11 Ii-Vi Delaware, Inc. Additive manufacturing in metals with a fiber array laser source and adaptive multi-beam shaping
CN108907196A (zh) * 2018-09-03 2018-11-30 江苏典悦三维科技有限公司 激光增减材复合制造装置及方法
CN209452803U (zh) * 2019-01-28 2019-10-01 大连交通大学 一种设有导轨装置的金属打印增减材复合加工装置
CN209452804U (zh) * 2019-01-28 2019-10-01 大连交通大学 一种金属打印增减材复合加工装置
CN110369725A (zh) * 2019-08-02 2019-10-25 上海工程技术大学 基于激光增减材复合制造精细工件的近净成形方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114713848A (zh) * 2022-06-10 2022-07-08 西安赛隆金属材料有限责任公司 一种提升增材制造零件表面质量的方法及增材制造设备
CN114713848B (zh) * 2022-06-10 2022-09-23 西安赛隆增材技术股份有限公司 一种提升增材制造零件表面质量的方法及增材制造设备

Also Published As

Publication number Publication date
US20220009033A1 (en) 2022-01-13
US11565349B2 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
CN109746441B (zh) 一种激光冲击强化辅助的激光增材制造复合加工方法
CN104001915B (zh) 一种高能束增材制造大尺寸金属零部件的设备及其控制方法
CN104493492B (zh) 激光选区熔化与铣削复合加工设备及加工方法
WO2018133799A1 (zh) 电子束选区熔化与电子束切割复合的增材制造装备
CN105945281B (zh) 零件与模具的熔积成形加工制造方法
CN111992879A (zh) 一种基于激光冲击强化和激光增减材进行复合制造的装置
CN102328081B (zh) 一种高功率激光快速成形三维金属零件的方法
CN109926584B (zh) 一种增材制造和表面抛光同步加工方法及装置
CN110976869A (zh) 一种零件增材复合制造装置及方法
CN102179517A (zh) 一种激光感应复合熔化直接成形方法及装置
CN109434109B (zh) 一种基于动态粉缸的激光选区熔化成形方法
CN109332697B (zh) 一种选区激光熔化增材制造设备
CN203843168U (zh) 一种高能束增材制造大尺寸金属零部件的设备
CN110666166B (zh) 一种多激光高精度的3d打印机及其打印方法
CN105127755A (zh) 一种工件的成型与强化的复合加工装置及方法
CN106624826B (zh) 一种微束等离子3d打印与铣削复合加工设备与方法
CN111992877A (zh) 一种高精度激光增减材的复合制造装置
CN111957968A (zh) 一种复合增减材加工成形装置及方法
CN217315884U (zh) 一种高能激光增减材复合制造装置
CN109604596B (zh) 一种增材制造动态铺粉系统
CN111992712A (zh) 一种基于激光技术进行复合制造的装置
CN113977074A (zh) 一种超快与连续激光增减材及激光强化制备装置与方法
CN109648079B (zh) 一种应用于增材制造的气氛保护装置
CN107570707A (zh) 等离子增材与激光切削的3d打印设备
CN217315878U (zh) 一种激光快速成型多个或多种实体的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination