WO2019024077A1 - 粉末烧结3d打印系统及其供粉方法 - Google Patents

粉末烧结3d打印系统及其供粉方法 Download PDF

Info

Publication number
WO2019024077A1
WO2019024077A1 PCT/CN2017/095971 CN2017095971W WO2019024077A1 WO 2019024077 A1 WO2019024077 A1 WO 2019024077A1 CN 2017095971 W CN2017095971 W CN 2017095971W WO 2019024077 A1 WO2019024077 A1 WO 2019024077A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
supply
layer
amount
printing system
Prior art date
Application number
PCT/CN2017/095971
Other languages
English (en)
French (fr)
Inventor
周宏志
梁银生
Original Assignee
吴江中瑞机电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴江中瑞机电科技有限公司 filed Critical 吴江中瑞机电科技有限公司
Priority to CN201780000942.1A priority Critical patent/CN108124436B/zh
Priority to PCT/CN2017/095971 priority patent/WO2019024077A1/zh
Publication of WO2019024077A1 publication Critical patent/WO2019024077A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/73Recycling of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/63Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application belongs to the technical field of 3D printing, and particularly relates to a powder sintered 3D printing system and a powder supplying method thereof.
  • the system is applied to powder sintering, and the powder may be a single metal powder, or may be a plastic powder, a ceramic and a bonding. a mixed powder of the agent, or a mixed powder of a metal and a binder.
  • the selective laser sintering rapid prototyping system first converts the CAD 3D model into an STS file and slices it according to a certain thickness to obtain the section profile of the slice.
  • the laser beam is then controlled to scan the powder in the solid portion of the model to melt the powder particles and bond to each other to gradually obtain the contour of the layer.
  • the forming table is lowered by a section height, and then the next layer is laid and sintered, and finally sintered into a three-dimensional product.
  • the problems existing in the prior art include at least: the powder supply amount of the powder supply steel is fixed and the same, and the cross section of the product is mostly changed, that is, the actual demand for the powder material of each layer is different, because it is high temperature. Sintering, after a powder supply is completed, the excess powder cannot be recycled, resulting in waste.
  • An object of the present invention is to provide a powder sintered 3D printing system and a powder supplying method thereof to overcome the deficiencies in the prior art.
  • the present invention provides the following technical solutions:
  • the embodiment of the present application discloses a powder sintered 3D printing system, comprising a molding worktable that can move up and down, a powdering roller, and a supply cylinder and a receiving cylinder which are disposed on two sides of the molding workbench, and the powder discharging roller
  • the wheel moves between the supply cylinder and the receiving cylinder.
  • the forming table is lowered by a section height, and the powder supply of the feeding cylinder is formed during the molding process of the product.
  • the amount corresponds to the amount of product required for the powder.
  • the amount of powder supplied to each layer of the supply tank is synchronously increased or decreased with the size of the cross-sectional area of each layer.
  • n layers are used as one unit, wherein n ⁇ 2, and the supply amount of the supply cylinder is the same in each unit.
  • a certain value a is set, and in the change trend of the cross-sectional area of the product forming, the difference d between the maximum value and the minimum value of the cross-sectional area in the same trend process is satisfied.
  • ⁇ a the amount of powder supplied to each layer of the feed tank is the same during the trend.
  • the powder supply amount satisfies one of the following conditions during the trend of the cross-sectional area:
  • n layer is used as a unit, where n ⁇ 2, and the supply amount of the supply cylinder is the same in each unit.
  • the forming table has the same cross-sectional height at each time.
  • the present application also discloses a powder supply method for a powder sintered 3D printing system.
  • the powder supply amount of the supply cylinder corresponds to the demand for the powder formation of the product.
  • the powder supply amount of each layer of the supply tank is synchronously increased or decreased with the sectional area of each layer forming.
  • the n layer is used as a unit, wherein n ⁇ 2, and the supply amount of the supply cylinder is the same in each unit.
  • a certain value a is set, and in the change trend of the cross-sectional area of the product forming, the difference d between the maximum value and the minimum value of the cross-sectional area in the same trend process is satisfied if d ⁇ a , the amount of powder supplied to each layer of the feed tank is the same during the trend.
  • the powder supply amount satisfies one of the following conditions during the trend of the cross-sectional area:
  • n layer is used as a unit, where n ⁇ 2, and the supply amount of the supply cylinder is the same in each unit.
  • the invention has the advantages that the powder supply amount of the invention adapts to the change of the cross-sectional area of the molded product, and the accurate supply of the powder material can be realized, the waste of the powder material can be avoided, and the cost is greatly reduced.
  • FIG. 1 is a schematic view showing the principle of a powder sintered 3D printing system according to a specific embodiment of the present invention
  • FIG. 2 is a graph showing changes in the amount of powder supplied according to the cross-sectional area of the molding in the first embodiment of the present invention
  • Figure 3 is a graph showing the variation of the amount of powder supplied according to the cross-sectional area of the molding in the second embodiment of the present invention.
  • Fig. 4 is a graph showing changes in the amount of powder supplied in accordance with the cross-sectional area of the molding in the third embodiment of the present invention.
  • a powder sintered 3D printing system includes a horizontal work surface 1, a forming table 5 which can be moved up and down, a powdering roller 6, and a supply cylinder 4 and receiving materials which are disposed on both sides of the forming table 5.
  • the cylinder 3, the powdering roller 6 is moved between the supply cylinder 4 and the receiving cylinder 3, and after the layering and sintering of the layer is completed, the forming table 5 is lowered by a section height.
  • the amount of powder supplied to the supply tank 4 corresponds to the amount of product required for the formation of the powder.
  • the demand for the powder is different in different layers.
  • the supply of the powder to the supply tank can be provided correspondingly to the demand of the powder for each layer.
  • the corresponding correspondence at this point means that the amount of powder supplied increases as the demand increases, and decreases as the demand decreases.
  • the feeding cylinder is provided with a driving device, and the driving device can move up and down to push the powder out of the cylinder, and the displacement of the upper and lower movements is used to control the quantity of the discharging of each layer, and the driving device is controlled by the single chip, and the single chip is formed.
  • the product is modeled in 3D, and the data of each layer is pre-stored.
  • the thickness of each layer (the thickness can be preset) and the cross-sectional area of the layer can accurately calculate the demand for the layer. This demand amount corresponds to the displacement amount of the driving device.
  • the driving device may be a cylinder, and for the purpose of controlling the precision, it may also be a combination of a motor and a screw nut.
  • the molding table is disposed in the molding cylinder 2, and a power device is connected to the bottom thereof.
  • the power unit can be a cylinder or a combination of a motor and a lead nut.
  • the amount of powder supplied to each layer of the supply tank is synchronously increased or decreased as the sectional area of each layer is formed.
  • the amount of powder supplied to each layer needs to change as the demand of the layer changes to the powder. Specifically, when the demand is large, the amount of powder supply needs to be increased according to demand; when the demand is small At the time, the amount of powder supplied needs to be reduced as needed to avoid waste.
  • the amount of powder supply is only synchronously changed with the demand, but not how much is needed.
  • the supply is generally larger than the demand, and the excess amount can be set to a fixed amount.
  • the value, that is, the supply of each layer, is supplied in a certain amount to ensure the need for sintering.
  • n layers (positive integers) are employed as a unit in which n ? 2, and the supply amount of the supply cylinder is the same in each unit.
  • a certain value a (cross-sectional area) can be set, and the difference between the maximum value and the minimum value of the cross-sectional area in the same trend process in the trend of the cross-sectional area of the product forming. d, if d ⁇ a is satisfied, the supply amount of each layer of the supply tank is the same during the trend.
  • the same trend in this area refers to the process of an upward trend or a downward trend.
  • the powder supply amount satisfies one of the following conditions during the trend of the cross-sectional area:
  • n layer is used as a unit, where n ⁇ 2, and the supply amount of the supply cylinder is the same in each unit (Embodiment 2).
  • the profiled table is lowered in height at the same time each time.
  • the powder supply amount of the present invention adapts to changes with the cross-sectional area of the molded product, and the accurate supply of the powder material can be realized, the waste of the powder material can be avoided, and the cost can be greatly reduced.
  • compositions of the present teachings are also essential.
  • the composition consists of or consists of the recited components, and the process taught by the present invention also consists essentially of the recited process steps or consists of the recited process steps.
  • a single component can be replaced by multiple components and multiple components can be replaced by a single component to provide an element or structure or to perform one or several given functions.
  • This alternative is considered to be within the scope of the invention, except where a particular embodiment of the invention is not to be practiced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)

Abstract

一种粉末烧结3D打印系统和供粉方法,该系统包括可以上下移动的成型工作台(5)、铺粉辊轮(6)以及分设于所述成型工作台(5)两侧的供料缸(4)和收料缸(3),所述铺粉辊轮(6)移动于所述供料缸(4)和收料缸(3)之间,在完成一层的铺粉和烧结后,所述成型工作台(5)下降一层的截面高度,在产品成型过程中,供料缸(4)的供粉量与产品成型对粉料的需求量对应。供粉量随着成型产品截面积的变化而适应性变化,可以实现粉料的精确供应,避免粉料的浪费,大大降低成本。

Description

粉末烧结3D打印系统及其供粉方法 技术领域
本申请属于3D打印技术领域,特别是涉及一种粉末烧结3D打印系统及其供粉方法,该系统应用于粉末烧结,该粉末可以为单一的金属粉末,也可以为塑料粉、陶瓷与粘结剂的混合粉,或金属与粘结剂的混合粉。
背景技术
选择性激光烧结快速成型系统,首先将CAD三维模型转化为STS文件,按照一定的厚度进行切片,得到切片的截面轮廓。然后控制激光束对模型实心部分的粉末进行扫描,使粉末颗粒熔化而互相粘结,逐步得到该层的轮廓。完成一层扫描后,成型工作台下降一层的截面高度,再进行下一层的铺粉和烧结,最终烧结成三维产品。
现有技术存在的问题至少包括:供粉钢每次的供粉量是固定的、相同的,而产品的截面大多是变化的,也就是每层实际对粉料的需求量不同,由于是高温烧结,在一次供粉完成后,多余的粉料无法回收使用,造成浪费。
发明内容
本发明的目的在于提供一种粉末烧结3D打印系统及其供粉方法,以克服现有技术中的不足。
为实现上述目的,本发明提供如下技术方案:
本申请实施例公开一种粉末烧结3D打印系统,包括可以上下移动的成型工作台、铺粉辊轮以及分设于所述成型工作台两侧的供料缸和收料缸,所述铺粉辊轮移动于所述供料缸和收料缸之间,在完成一层的铺粉和烧结后,所述成型工作台下降一层的截面高度,在产品成型过程中,供料缸的供粉量与产品成型对粉料的需求量对应。
优选的,在上述的粉末烧结3D打印系统中,所述供料缸每层的供粉量随着每层成型的截面积大小而同步增大或减小。
优选的,在上述的粉末烧结3D打印系统中,采用n层作为一个单元,其中n≥2,在每个单元内,供料缸的供粉量相同。
优选的,在上述的粉末烧结3D打印系统中,设定一定值a,在产品成型的截面积变化趋势中,对于同一走势过程中截面积的最大值和最小值的差值d,如果满足d≤a,则该走势过程中供料缸每层的供粉量相同。
优选的,在上述的粉末烧结3D打印系统中,若d>a,则在该截面积的走势过程中,供粉量满足下述条件之一:
(1)、供料缸每层的供粉量随着每层成型的截面积大小而同步增大或减小;
(2)、采用n层作为一个单元,其中n≥2,在每个单元内,供料缸的供粉量相同。
优选的,在上述的粉末烧结3D打印系统中,所述成型工作台每次下降的截面高度相同。
本申请还公开了一种粉末烧结3D打印系统的供粉方法,在产品成型过程中,供料缸的供粉量与产品成型对粉料的需求量对应。
优选的,在上述的供粉方法中,所述供料缸每层的供粉量随着每层成型的截面积大小而同步增大或减小。
优选的,在上述的供粉方法中,采用n层作为一个单元,其中n≥2,在每个单元内,供料缸的供粉量相同。
优选的,在上述的供粉方法中,设定一定值a,在产品成型的截面积变化趋势中,对于同一走势过程中截面积的最大值和最小值的差值d,如果满足d≤a,则该走势过程中供料缸每层的供粉量相同。
优选的,在上述的供粉方法中,若d>a,则在该截面积的走势过程中,供粉量满足下述条件之一:
(1)、供料缸每层的供粉量随着每层成型的截面积大小而同步增大或减小;
(2)、采用n层作为一个单元,其中n≥2,在每个单元内,供料缸的供粉量相同。
与现有技术相比,本发明的优点在于:本发明的供粉量随着成型产品截面积的变化而适应性变化,可以实现粉料的精确供应,避免粉料的浪费,大大降低成本。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1所示为本发明具体实施例中粉末烧结3D打印系统的原理示意图;
图2所示为本发明第一实施例中供粉量随着成型截面积的变化曲线图;
图3所示为本发明第二实施例中供粉量随着成型截面积的变化曲线图;
图4所示为本发明第三实施例中供粉量随着成型截面积的变化曲线图。
具体实施方式
通过应连同所附图式一起阅读的以下具体实施方式将更完整地理解本发明。本文中揭示本发明的详细实施例;然而,应理解,所揭示的实施例仅具本发明的示范性,本发明可以各种形式来体现。因此,本文中所揭示的特定功能细节不应解释为具有限制性,而是仅解释为权利要求书的基础且解释为用于教示所属领域的技术人员在事实上任何适当详细实施例中以不同方式采用本发明的代表性基础。
结合图1所示,粉末烧结3D打印系统,包括水平的工作台面1、可以上下移动的成型工作台5、铺粉辊轮6以及分设于成型工作台5两侧的供料缸4和收料缸3,铺粉辊轮6移动于供料缸4和收料缸3之间,在完成一层的铺粉和烧结后,成型工作台5下降一层的截面高度。
在产品成型过程中,供料缸4的供粉量与产品成型对粉料的需求量对应。
产品成型过程中,由于截面积的变化,导致不同层对粉料的需求量不同,为了节约粉料的使用,供料缸对粉料的供应可以随着每层对粉料的需求进行对应供料,该处的对应,是指供粉量随着需求增大而增大,并随着需求减小而减少。
在一实施例中,供料缸设置有驱动装置,该驱动装置可以上下移动以推动粉料出缸,通过上下移动的位移以控制每层出料的数量,驱动装置受单片机控制,单片机对待成型的产品进行三维建模,并预存储每层成型的数据,通过对每层粉料的厚度(厚度可以预设)、以及该层的截面积可以精确计算该层对粉料的需求量,然后将该需求量对应到驱动装置的位移量。
在一实施例中,驱动装置可以为气缸,为了控制精度,也可以为电机与丝杆螺母的组合。
该技术方案中,成型工作台设置于成型缸2内,其底部连接有动力装置。 动力装置可以为气缸,也可以为电机与丝杆螺母的组合。
结合图2所示,在第一实施例中,供料缸每层的供粉量随着每层成型的截面积大小而同步增大或减小。
该技术方案中,每一层的供粉量均需要随着该层对粉料的需求变化而变化,具体地,当需求量大时,供粉量需要按需求增大供应;当需求量少时,供粉量需要按需求减少供应,避免浪费。
本案中,供粉量只是随着需求量同步变化,而并非需要多少而精确提供多少,实际操作过程中,供应量一般会比需求量大一些,而超出部分的量可以为设定的一个固定值,也就是每一层供应时,均多供应一定值的量,保证烧结成型的需要。
结合图3所示,在第二实施例中,采用n层(正整数)作为一个单元,其中n≥2,在每个单元内,供料缸的供粉量相同。
该技术方案中,在产品成型过程中,成型的层数数量往往非常大,相邻两层之间需要粉量的差值几乎可以忽略不计,因此考虑阶段性供粉的差别。
结合图4所示,在第三实施例中,可以设定一定值a(截面积),在产品成型的截面积变化趋势中,对于同一走势过程中截面积的最大值和最小值的差值d,如果满足d≤a,则该走势过程中供料缸每层的供粉量相同。
该处的同一走势是指上升趋势的过程或下降趋势的过程。
该技术方案中,同样考虑的是在产品成型过程中,如果产品的截面积在一定的层数数量之间其变化不大,则可以该变化范围内保持每层相同的供粉量。
若d>a,则在该截面积的走势过程中,供粉量满足下述条件之一:
(1)、供料缸每层的供粉量与该层成型的截面积呈正比关系(实施例一);
(2)、采用n层作为一个单元,其中n≥2,在每个单元内,供料缸的供粉量相同(实施例二)。
在一实施例中,成型工作台每次下降的截面高度相同。
综上所述,本发明的供粉量随着成型产品截面积的变化而适应性变化,可以实现粉料的精确供应,避免粉料的浪费,大大降低成本。
本发明的各方面、实施例、特征及实例应视为在所有方面为说明性的且不打算限制本发明,本发明的范围仅由权利要求书界定。在不背离所主张的本发明的精神及范围的情况下,所属领域的技术人员将明了其它实施例、修改及使用。
在本申请案中标题及章节的使用不意味着限制本发明;每一章节可应用于本发明的任何方面、实施例或特征。
在本申请案通篇中,在将组合物描述为具有、包含或包括特定组份之处或者在将过程描述为具有、包含或包括特定过程步骤之处,预期本发明教示的组合物也基本上由所叙述组份组成或由所叙述组份组成,且本发明教示的过程也基本上由所叙述过程步骤组成或由所叙述过程步骤组组成。
在本申请案中,在将元件或组件称为包含于及/或选自所叙述元件或组件列表之处,应理解,所述元件或组件可为所叙述元件或组件中的任一者且可选自由所叙述元件或组件中的两者或两者以上组成的群组。此外,应理解,在不背离本发明教示的精神及范围的情况下,本文中所描述的组合物、设备或方法的元件及/或特征可以各种方式组合而无论本文中是明确说明还是隐含说明。
除非另外具体陈述,否则术语“包含”、“具有”的使用通常应理解为开放式的且不具限制性。
除非另外具体陈述,否则本文中单数的使用包含复数(且反之亦然)。此外,除非上下文另外清楚地规定,否则单数形式“一”及“所述”包含复数形式。另外,在术语“约”的使用在量值之前之处,除非另外具体陈述,否则本发明教示还包括特定量值本身。
应理解,各步骤的次序或执行特定动作的次序并非十分重要,只要本发明教示保持可操作即可。此外,可同时进行两个或两个以上步骤或动作。
应理解,本发明的各图及说明已经简化以说明与对本发明的清楚理解有关的元件,而出于清晰性目的消除其它元件。然而,所属领域的技术人员将认识到,这些及其它元件可为合意的。然而,由于此类元件为此项技术中众所周知的,且由于其不促进对本发明的更好理解,因此本文中不提供对此类元件的论述。应了解,各图是出于图解说明性目的而呈现且不作为构造图式。所省略细节及修改或替代实施例在所属领域的技术人员的范围内。
可了解,在本发明的特定方面中,可由多个组件替换单个组件且可由单个组件替换多个组件以提供一元件或结构或者执行一或若干给定功能。除了在此替代将不操作以实践本发明的特定实施例之处以外,将此替代视为在本发明的范围内。
尽管已参考说明性实施例描述了本发明,但所属领域的技术人员将理解,在不背离本发明的精神及范围的情况下可做出各种其它改变、省略及/或添 加且可用实质等效物替代所述实施例的元件。另外,可在不背离本发明的范围的情况下做出许多修改以使特定情形或材料适应本发明的教示。因此,本文并不打算将本发明限制于用于执行本发明的所揭示特定实施例,而是打算使本发明将包含归属于所附权利要求书的范围内的所有实施例。此外,除非具体陈述,否则术语第一、第二等的任何使用不表示任何次序或重要性,而是使用术语第一、第二等来区分一个元素与另一元素。

Claims (11)

  1. 一种粉末烧结3D打印系统,包括可以上下移动的成型工作台、铺粉辊轮以及分设于所述成型工作台两侧的供料缸和收料缸,所述铺粉辊轮移动于所述供料缸和收料缸之间,在完成一层的铺粉和烧结后,所述成型工作台下降一层的截面高度,其特征在于,在产品成型过程中,供料缸的供粉量与产品成型对粉料的需求量对应。
  2. 根据权利要求1所述的粉末烧结3D打印系统,其特征在于:所述供料缸每层的供粉量随着每层成型的截面积大小而同步增大或减小。
  3. 根据权利要求1所述的粉末烧结3D打印系统,其特征在于:采用n层作为一个单元,其中n≥2,在每个单元内,供料缸的供粉量相同。
  4. 根据权利要求1所述的粉末烧结3D打印系统,其特征在于:设定一定值a,在产品成型的截面积变化趋势中,对于同一走势过程中截面积的最大值和最小值的差值d,如果满足d≤a,则该走势过程中供料缸每层的供粉量相同。
  5. 根据权利要求4所述的粉末烧结3D打印系统,其特征在于:若d>a,则在该截面积的走势过程中,供粉量满足下述条件之一:
    (1)、供料缸每层的供粉量随着每层成型的截面积大小而同步增大或减小;
    (2)、采用n层作为一个单元,其中n≥2,在每个单元内,供料缸的供粉量相同。
  6. 根据权利要求1所述的粉末烧结3D打印系统,其特征在于:所述成型工作台每次下降的截面高度相同。
  7. 一种粉末烧结3D打印系统的供粉方法,其特征在于:在产品成型过程中,供料缸的供粉量与产品成型对粉料的需求量对应。
  8. 根据权利要求7所述的粉末烧结3D打印系统的供粉方法,其特征在于:供料缸每层的供粉量随着每层成型的截面积大小而同步增大或减小。
  9. 根据权利要求7所述的粉末烧结3D打印系统的供粉方法,其特征在于:采用n层作为一个单元,其中n≥2,在每个单元内,供料缸的供粉量相同。
  10. 根据权利要求7所述的粉末烧结3D打印系统的供粉方法,其特征在于:设定一定值a,在产品成型的截面积变化趋势中,对于同一走势过程 中截面积的最大值和最小值的差值d,如果满足d≤a,则该走势过程中供料缸每层的供粉量相同。
  11. 根据权利要求10所述的粉末烧结3D打印系统的供粉方法,其特征在于:若d>a,则在该截面积的走势过程中,供粉量满足下述条件之一:
    (1)、供料缸每层的供粉量随着每层成型的截面积大小而同步增大或减小;
    (2)、采用n层作为一个单元,其中n≥2,在每个单元内,供料缸的供粉量相同。
PCT/CN2017/095971 2017-08-04 2017-08-04 粉末烧结3d打印系统及其供粉方法 WO2019024077A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780000942.1A CN108124436B (zh) 2017-08-04 2017-08-04 粉末烧结3d打印系统及其供粉方法
PCT/CN2017/095971 WO2019024077A1 (zh) 2017-08-04 2017-08-04 粉末烧结3d打印系统及其供粉方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/095971 WO2019024077A1 (zh) 2017-08-04 2017-08-04 粉末烧结3d打印系统及其供粉方法

Publications (1)

Publication Number Publication Date
WO2019024077A1 true WO2019024077A1 (zh) 2019-02-07

Family

ID=62233542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095971 WO2019024077A1 (zh) 2017-08-04 2017-08-04 粉末烧结3d打印系统及其供粉方法

Country Status (2)

Country Link
CN (1) CN108124436B (zh)
WO (1) WO2019024077A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490513A (zh) * 2022-08-16 2022-12-20 深圳奇遇科技有限公司 氧化锆齿科托槽及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109130192B (zh) * 2018-09-10 2021-02-12 湖南华曙高科技有限责任公司 3d打印供粉量确定方法、装置、计算机设备和存储介质
CN113399664B (zh) * 2020-03-16 2023-07-14 大族激光科技产业集团股份有限公司 用于铺粉式3d打印装置的打印方法及装置
CN115070064B (zh) * 2022-06-30 2024-02-02 季华实验室 供粉量计算方法、装置、金属3d打印机及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202028770U (zh) * 2010-12-21 2011-11-09 湖南美纳科技有限公司 一种采用回粉槽实现的选择性激光烧结单面送粉装置
CN104289711A (zh) * 2014-05-22 2015-01-21 广东奥基德信机电有限公司 一种激光3d打印设备及打印方法
CN104475729A (zh) * 2014-12-31 2015-04-01 湖南华曙高科技有限责任公司 一种用于制造三维物体的装置及方法
CN105751491A (zh) * 2014-12-16 2016-07-13 长沙嘉程机械制造有限公司 紧凑型铺粉式3d打印机无粉缸供粉新方法
US20170021418A1 (en) * 2015-07-20 2017-01-26 Applied Materials, Inc. Additive manufacturing with pre-heating
CN106393683A (zh) * 2016-12-16 2017-02-15 北京隆源自动成型系统有限公司 带有激光加热的3d打印机
CN206241264U (zh) * 2016-11-10 2017-06-13 天津浩宇精工科技有限公司 一种3d快速成型设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2984191B1 (fr) * 2011-12-20 2014-01-10 Michelin Soc Tech Machine et procede pour la fabrication additive a base de poudre

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202028770U (zh) * 2010-12-21 2011-11-09 湖南美纳科技有限公司 一种采用回粉槽实现的选择性激光烧结单面送粉装置
CN104289711A (zh) * 2014-05-22 2015-01-21 广东奥基德信机电有限公司 一种激光3d打印设备及打印方法
CN105751491A (zh) * 2014-12-16 2016-07-13 长沙嘉程机械制造有限公司 紧凑型铺粉式3d打印机无粉缸供粉新方法
CN104475729A (zh) * 2014-12-31 2015-04-01 湖南华曙高科技有限责任公司 一种用于制造三维物体的装置及方法
US20170021418A1 (en) * 2015-07-20 2017-01-26 Applied Materials, Inc. Additive manufacturing with pre-heating
CN206241264U (zh) * 2016-11-10 2017-06-13 天津浩宇精工科技有限公司 一种3d快速成型设备
CN106393683A (zh) * 2016-12-16 2017-02-15 北京隆源自动成型系统有限公司 带有激光加热的3d打印机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490513A (zh) * 2022-08-16 2022-12-20 深圳奇遇科技有限公司 氧化锆齿科托槽及其制备方法

Also Published As

Publication number Publication date
CN108124436A (zh) 2018-06-05
CN108124436B (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2019024077A1 (zh) 粉末烧结3d打印系统及其供粉方法
US10589467B2 (en) Systems and methods for calibration feedback for additive manufacturing
He et al. Additive manufacturing of dense zirconia ceramics by fused deposition modeling via screw extrusion
CN206065415U (zh) 一种可变截面的选择性激光融化成型工作台
CN106141184B (zh) 多功能选择性激光熔化成形slm基板调平装置
JP6519100B2 (ja) 焼結造形方法、液状結合剤、および焼結造形物
JP4925048B2 (ja) 三次元形状造形物の製造方法
CN103173759B (zh) 一种粉床随动送铺粉机构
AU2018262560B2 (en) Molding method and apparatus, particularly applicable to metal and/or ceramics
TW201945099A (zh) 適應性3d列印
KR20180118692A (ko) 금속 빌드 재료들의 적층 가공
CN105728721A (zh) 一种金属粉末快速成型均匀铺粉装置
CN110899705B (zh) 一种用于制备铝基复合材料的3d打印装置
US20100323301A1 (en) Method and apparatus for making three-dimensional parts
CN201735793U (zh) 一种激光烧结成型机
CN102333607A (zh) 三维形状造型物的制造方法及由其得到的三维形状造型物
US20150030787A1 (en) Laser depositioning device and method for producing a component by direct laser depositioning
CN106584845A (zh) 一种用于熔融挤出成型的3d打印的方法及装置
CN204892951U (zh) 一种金属直接快速成型设备自动调平装置
CN106975749B (zh) 一种基于増材制造的粉床自适应铺粉方法
CN108290216B (zh) 3d打印用粉末及3d打印方法
CN208375523U (zh) 用于膏状物体的3d打印刮平装置及其设备
CN205888079U (zh) 金属工件的激光3d打印系统
EP2263861A1 (en) Method and apparatus for making three-dimensional parts
CN105798294A (zh) 一种难熔材料的快速零件成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920433

Country of ref document: EP

Kind code of ref document: A1