CN108290216B - 3d打印用粉末及3d打印方法 - Google Patents

3d打印用粉末及3d打印方法 Download PDF

Info

Publication number
CN108290216B
CN108290216B CN201680066717.3A CN201680066717A CN108290216B CN 108290216 B CN108290216 B CN 108290216B CN 201680066717 A CN201680066717 A CN 201680066717A CN 108290216 B CN108290216 B CN 108290216B
Authority
CN
China
Prior art keywords
powder
printing
particle size
matrix
micrometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201680066717.3A
Other languages
English (en)
Other versions
CN108290216A (zh
Inventor
陈国锋
李长鹏
姚志奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN108290216A publication Critical patent/CN108290216A/zh
Application granted granted Critical
Publication of CN108290216B publication Critical patent/CN108290216B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/148Agglomerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/63Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/218Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种3D打印用粉末和一种3D打印方法,所述3D打印用粉末的粒径的取值范围为20微米至40微米,每一3D打印用粉末由复数粉末基体团聚而成,所述粉末基体的粒径的取值范围为0.2微米至1微米。本发明的3D打印用粉末可满足铺粉工艺的要求,且制出的零部件具有较佳的表面光洁度和机械性能,此外,借助本发明的3D打印用粉末,现有的增材制造设备可制造出陶瓷基产品。

Description

3D打印用粉末及3D打印方法
技术领域
本发明涉及3D打印技术领域,特别是一种用于3D打印用粉末和一种使用该粉末的3D打印方法。
背景技术
增材制造工艺(Additive Manufacturing)是重要的3D打印技术之一,增材制造工艺能够快速地将预先设计的CAD模型制造出来,而且能够在较短的时间内制造出结构复杂的零部件。选择性激光熔化(Selected Laser Melting,SLM)工艺是增材制造(Additivemanufacturing)技术的一种,其通过激光烧结的方式可快速地将与CAD模型相同的零部件制造出来。目前选择性激光熔化工艺得到了广泛的应用。
然而,选择性激光熔化工艺仍存在许多问题,例如,为了方便铺粉,使用的粉末的粒径较大,需要采用功率较大的激光束照射才能使粉末熔化,对选择性激光熔化设备提出了较高的要求,且零部件容易变形,零部件表面品质不佳。通常情况下,还需对选择性激光熔化工艺制造出的零部件进行打磨,当零部件的内部设有气道时,也需对气道的内表面进行打磨,然而,打磨零部件气道的内表面是非常困难的。另外,由于粉末的粒径较大,当粉末为陶瓷粉末时,所需的烧结温度过高,很难通过现有的增材制造设备直接制造陶瓷基产品。
为解决这一技术问题,在现有技术中,通常减小选择性激光熔化工艺使用的粉末的粒径,然而,粒径太小的粉末容易聚在一起或飞起,不容易铺粉。
发明内容
有鉴于此,本发明的目的是提出一种3D打印用粉末和一种3D打印方法,所述3D打印用粉末可满足铺粉工艺的要求,且制出的零部件具有较佳的表面光洁度和机械性能,另外,由于小尺寸的粉料可以在较低温度下融化,不仅可降低对设备激光光源功率的要求,还可通过现有增材制造工艺制造出陶瓷基产品。
本发明提供了一种3D打印用粉末,所述3D打印用粉末的粒径的取值范围为20微米至40微米,每一3D打印用粉末由复数粉末基体团聚而成,所述粉末基体的粒径的取值范围为0.2微米至1微米。
在3D打印用粉末的一种示意性实施例中,所述3D打印用粉末为金属粉末或陶瓷粉末。
在3D打印用粉末的一种示意性实施例中,所述3D打印用粉末为金属粉末,且为镍铬铁合金。
在3D打印用粉末的一种示意性实施例中,所述3D打印用粉末金属粉末为含铌、钼的沉淀硬化型镍铬铁合金。
在3D打印用粉末的一种示意性实施例中,所述3D打印用粉末陶瓷粉末为陶瓷粉末,其包括金属氧化物、碳化物以及氮化物中的至少其中之一。
本发明还提供了一种3D打印方法,所述3D打印方法包括以下步骤:
提供一种3D打印用粉末及一种3D打印装置,所述3D打印用粉末的粒径的取值范围为20微米至40微米,每一3D打印用粉末由复数粉末基体团聚而成,所述粉末基体的粒径的取值范围为0.2微米至1微米;
将所述3D打印用粉末铺设于所述3D打印装置的一成型部上;
采用所述3D打印装置发出的激光束对所述成型部上的所述3D打印用粉末进行扫描照射;
所述3D打印用粉末分解为所述粉末基体,所述激光束继续对所述粉末基体进行照射直至使所述粉末基体烧结为预设的形状。
在3D打印方法的一种示意性实施例中,所述3D打印装置包括一激光器和一扫描镜,所述激光器与所述扫描镜连接,且可生成所述激光束,所述扫描镜利用所述激光器提供所述激光束对所述3D打印用粉末进行扫描照射。
在3D打印方法的一种示意性实施例中,所述3D打印装置还包括一滚轮,通过所述滚轮的滚动将所述3D打印用粉末铺设于所述成型部上。
从上述方案中可以看出,在本发明的3D打印用粉末及3D打印方法中,3D打印用粉末的粒径较大,流动性能较好,可满足选择性激光熔化技术中铺粉工艺的要求,铺粉时,3D打印用粉末不容易聚在一起或飞起,铺粉工艺完成后,激光束对3D打印用粉末进行照射,3D打印用粉末又可分解为粒径尺寸较小的粉末基体,从而使得由本发明的3D打印用粉末制造出的零部件具有较佳的表面光洁度和机械性能。另外,粒径尺寸较小的陶瓷粉末也可以实现在现有激光束下完成烧结过程,从而使得通过现有增材制造设备可制造出陶瓷零部件。
附图说明
下面将通过参照附图详细描述本发明的优选实施例,使本领域的普通技术人员更清楚本发明的上述及其它特征和优点,附图中:
图1为本发明的一个实施例的3D打印用粉末的示意图。
图2为图1所示的3D打印用粉末从成型到分解的示意图。
图3为对图1所示的3D打印用粉末进行加工的3D打印装置的示意图。
图4为利用图1所示的3D打印用粉末进行3D打印的方法的流程图。
在上述附图中,所采用的附图标记如下:
10 3D打印用粉末
12 粉末基体
300 3D打印装置
301 待加工零部件
32 材料供给单元
322 供给活塞
323 第一缸体
324 滚轮
33 成型单元
332 成型活塞
333 第二缸体
334 成型部
34 激光烧结单元
342 激光器
343 扫描镜
S41、S42、S43、S44 步骤
D1 3D打印用粉末10的粒径
D2 粉末基体12的粒径
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下举实施例对本发明进一步详细说明。
图1为本发明的一个实施例的金属或陶瓷粉末的示意图。图2为图1所示的金属或陶瓷粉末从成型到分解的示意图。请参见图1和图2,本实施例的3D打印用粉末10的粒径D1的取值范围为10微米(μm)至60微米,优选20-40微米。每一3D打印用粉末10由复数粉末基体12团聚而成,粉末基体12的粒径D2的取值范围为0.05微米至5微米,优选0.2微米至1微米。
3D打印用粉末10为金属粉末或陶瓷粉末,金属粉末例如为Inconel 718合金,Inconel718合金是含铌、钼的沉淀硬化型镍铬铁合金,其具有高强度、良好的韧性及耐高温性能。陶瓷粉末为多种结构和功能的陶瓷材料,其包括金属氧化物、碳化物及氮化物中的至少其中之一,即陶瓷粉末包括金属氧化物、碳化物及氮化物中的一种或多种。此外,3D打印用粉末10还可为其他的镍铬铁合金或其他具有高强度及耐高温性能的材料。
可采用以下方法制备3D打印用粉末10,但不以此为限。
首先,可通过机械研磨制造出粉末基体12,研磨时间取决于粉末基体12的粒径、材料及研磨效率,粉末基体12可浸泡在液体中,所述液体例如为液态甲醇或液氮。液体中还添加有粘合剂,粘合剂为有机物,其可将复数粉末基体12粘接在一起;接着,通过喷雾干燥的方式完成造粒工艺以制成3D打印用粉末10的半成品。然后,对3D打印用粉末10的半成品进行加热和烧结去除3D打印用粉末10的半成品中的粘合剂,对于金属粉末,该烧结过程需要采用氩气和氢气的混合气体进行防氧化保护。最后,再借助过筛,选取粒径为10微米至60微米的3D打印用粉末10。
最终形成的3D打印用粉末10的粒径的取值范围为10-60微米,在较佳的实施例中,3D打印用粉末10的粒径为20-40微米。由于3D打印用粉末10由粉末基体12团聚而成,3D打印用粉末10在激光束的照射下,会分解为粒径为0.2-1微米的粉末基体12,激光束再对粉末基体12进行烧结,从而可以使零部件的表面具有较佳的粗糙度和精准度。此外,收集打印后的粉料,经过重新过筛,粒径在10-60微米范围的粉料将会再次使用;而因为受热分解的小尺寸粉末需要按照上述流程重新造粒→烧结→过筛,从而得到具有符合粒径要求的粉体。
图3为对图1所示的3D打印用粉末进行加工的3D打印装置的示意图。请参见图3,3D打印装置300包括材料供给单元32、成型单元33和激光烧结单元34,材料供给单元32为成型单元33提供3D打印用粉末10,激光烧结单元34用于烧结3D打印用粉末10,并使3D打印用粉末10在成型单元33上形成所需的零部件。
具体地,材料供给单元32包括供给活塞322、第一缸体323和滚轮324,供给活塞322配置于第一缸体323内,可沿着第一缸体323上下移动,3D打印用粉末10堆设于供给活塞322上。滚轮324可在3D打印用粉末10滚动,以将3D打印用粉末10平铺到成型单元33上。由于3D打印用粉末10的粒径较大,为10微米至60微米,3D打印用粉末10可均匀地被铺设于成型单元33上,而不容易聚在一起或飞起。
成型单元33包括成型活塞332、第二缸体333和成型部334,成型活塞332配置于第二缸体333内,可沿着第二缸体333上下移动;成型部334固定于成型活塞332上,可随着成型活塞332一起上下移动,成型部334用于承载待加工零部件301。
激光烧结单元34包括激光器342和扫描镜343,激光器342与扫描镜343连接,且可生成激光束,扫描镜343用于利用激光器342提供的激光束将3D打印用粉末10烧结成预设的结构。3D打印用粉末10在激光束的照射下,首先分解为复数粉末基体12,激光束对粉末基体12作进一步加热,即可将粉末基体12烧结为预设的结构。
需要说明的是,3D打印装置300还包括一控制器(图未示),所述控制器与材料供给单元32、成型单元33及激光烧结单元34电连接。控制器可根据零部件预设的形状控制材料供给单元32、成型单元33和激光烧结单元34作动,最终制成所需的零部件。
图4为利用图1所示的3D打印用粉末进行3D打印的方法的流程图。请参见图4和图3,本发明的3D打印方法包括以下步骤:
步骤S41,提供3D打印用粉末10及3D打印装置300,3D打印用粉末10的粒径D1的取值范围为10微米至60微米,每一3D打印用粉末10由复数粉末基体12团聚而成,粉末基体12的粒径D2的取值范围为0.2微米至1微米;
步骤S42,将3D打印用粉末10铺设于3D打印装置300的成型部334上;
步骤S43,采用3D打印装置300发出的激光束对成型部334上的3D打印用粉末10进行扫描照射;
步骤S44,3D打印用粉末10分解为粉末基体12,所述激光束继续对粉末基体12进行照射直至使粉末基体12烧结为预设的形状。
具体地,3D打印技术例如为选择性激光熔化技术。实际操作时,滚轮324先将一层3D打印用粉末10平铺到成型单元33的成型部334上,激光烧结单元34操控激光束对3D打印用粉末10进行扫描照射而使3D打印用粉末10的温度升高,3D打印用粉末10先分解为粉末基体12,激光束再将粉末基体12加热至熔化点,而将粉末基体12烧结形成待加工零部件301。
当一层截面烧结完后成型活塞332将下移一个层厚,供给活塞322上移一个层厚,这时滚轮324又会均匀地在待加工零部件301的上面铺上一层3D打印用粉末10并开始新一层截面的烧结,如此反复操作直至待加工零部件301完全成型。也就是说,执行完步骤S44后,再次执行步骤S42至步骤S44,如此循环,直到加工成型所需的零部件。
需要注意的是,由于3D打印时,加工成型的零部件是层叠而成,可经过合适热处理工艺消除层间结构,提高材料的机械性能,特别是抗高温蠕变性能。具体热处理工艺需要根据所选择的的打印材料并经过相应正交测试确定。本发明采用的热处理工艺例如为:1050~1080度下均匀化处理0.5~2小时,空冷到730~790度,保温5~20小时,炉冷到630~680度保温5~10h。
本发明的3D打印用粉末及3D打印方法至少具有以下的优点:
1.在本发明的3D打印用粉末及3D打印方法中,3D打印用粉末的粒径较大,流动性能较好,可满足选择性激光熔化技术中铺粉工艺的要求,铺粉时,3D打印用粉末不容易聚在一起或飞起,铺粉工艺完成后,激光束对3D打印用粉末进行照射,3D打印用粉末又可分解为粒径尺寸较小的粉末基体,从而使得由本发明的3D打印用粉末制造出的零部件具有较佳的表面光洁度和机械性能。
3.在本发明的3D打印用粉末及3D打印方法的一个实施例中,在对3D打印用粉末进行烧结时,其可先分解为尺寸较小的粉末基体,粉末基体熔化烧结可填充在材料间的缝隙中,使得制成的零部件更加致密,具有较佳的力学性能。
4.在本发明的3D打印用粉末及3D打印方法的一个实施例中,由于粉末基体的粒径较小,功率较小的激光束即可使粉末基体熔化,因而,对选择性激光熔化设备的要求也较低,有利于降低成本。
5.在本发明的3D打印用粉末及3D打印方法的一个实施例中,由于功率较小的激光束即可使粉末基体熔化,较低的照射温度可使粉末基体完全熔化,从而可降低零部件的变形量。
6.在本发明的3D打印用粉末及3D打印方法的一个实施例中,由于尺寸的减小可以实现粉末熔化或烧结温度降低,从而使得通过现有增材制造设备制造陶瓷零部件成为可能,也就是说,借助本发明的3D打印用粉末,现有的增材制造设备可制造出陶瓷基产品。
7.在本发明的3D打印用粉末及3D打印方法的一个实施例中,采用3D打印技术对本发明的3D打印用粉末进行加工,可一次性加工出复杂的零部件,而不需要先将零部件的各组成部分加工出来,然后再将各组成部分焊接在一起,可有效缩短加工时间。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种3D打印用粉末(10),其特征在于,所述3D打印用粉末(10)的粒径(D1)的取值范围为20微米至40微米,每一3D打印用粉末(10)由复数粉末基体(12)团聚而成,所述粉末基体(12)的粒径(D2)的取值范围为0.2微米至1微米;其中,所述3D打印用粉末(10)为陶瓷粉末,
所述3D打印用粉末(10)通过以下方法制备而成:
通过机械研磨制造出所述粉末基体(12),研磨时间取决于所述粉末基体(12)的粒径、材料及研磨效率;
所述粉末基体(12)浸泡在液体中,所述液体中添加有粘合剂,利用所述液体中粘合剂将粉末基体(12)粘接在一起,所述粘合剂为有机物;
通过喷雾干燥的方式完成造粒工艺以制成所述3D打印用粉末(10)的半成品;
对所述3D打印用粉末(10)的半成品进行加热和烧结去除所述3D打印用粉末(10)的半成品中的粘合剂;
利用过筛,选取粒径为20微米至40微米的所述3D打印用粉末(10)。
2.如权利要求1所述的3D打印用粉末(10),其特征在于,所述3D打印用粉末(10)为陶瓷粉末,其包括金属氧化物、碳化物及氮化物中的至少其中之一。
3.一种3D打印方法,其特征在于,所述3D打印方法包括以下步骤:
提供一种3D打印用粉末(10)及一种3D打印装置(300),所述3D打印用粉末(10)的粒径(D1)的取值范围为20微米至40微米,每一3D打印用粉末(10)由复数粉末基体(12)团聚而成,所述粉末基体(12)的粒径(D2)的取值范围为0.2微米至1微米;其中,所述3D打印用粉末(10)为陶瓷粉末,
将所述3D打印用粉末(10)铺设于所述3D打印装置(300)的一成型部(334)上;
采用所述3D打印装置(300)发出的激光束对所述成型部(334)上的所述3D打印用粉末(10)进行扫描照射;
所述3D打印用粉末(10)分解为所述粉末基体(12),所述激光束继续对所述粉末基体(12)进行照射直至使所述粉末基体(12)烧结为预设的形状;
所述3D打印用粉末(10)通过以下方法制备而成:
通过机械研磨制造出所述粉末基体(12),研磨时间取决于所述粉末基体(12)的粒径、材料及研磨效率;
所述粉末基体(12)浸泡在液体中,所述液体中添加有粘合剂,利用所述液体中粘合剂将粉末基体(12)粘接在一起,所述粘合剂为有机物;
通过喷雾干燥的方式完成造粒工艺以制成所述3D打印用粉末(10)的半成品;
对所述3D打印用粉末(10)的半成品进行加热和烧结去除所述3D打印用粉末(10)的半成品中的粘合剂;
利用过筛,选取粒径为20微米至40微米的所述3D打印用粉末(10)。
4.如权利要求3所述的3D打印方法,其特征在于,所述3D打印装置(300)包括一激光器(342)和一扫描镜(343),所述激光器(342)与所述扫描镜(343)连接,且可生成所述激光束,所述扫描镜(343)利用所述激光器(342)提供的所述激光束对所述3D打印用粉末(10)进行扫描照射。
5.如权利要求3所述的3D打印方法,其特征在于,所述3D打印装置(300)还包括一滚轮(324),通过所述滚轮(324)的滚动将所述3D打印用粉末(10)铺设于所述成型部(334)上。
CN201680066717.3A 2015-12-30 2016-12-28 3d打印用粉末及3d打印方法 Expired - Fee Related CN108290216B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201511021152.0A CN106925770A (zh) 2015-12-30 2015-12-30 3d打印用粉末及3d打印方法
CN2015110211520 2015-12-30
PCT/EP2016/082746 WO2017114852A1 (en) 2015-12-30 2016-12-28 3d printing powder and 3d printing method

Publications (2)

Publication Number Publication Date
CN108290216A CN108290216A (zh) 2018-07-17
CN108290216B true CN108290216B (zh) 2021-06-04

Family

ID=57681600

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201511021152.0A Pending CN106925770A (zh) 2015-12-30 2015-12-30 3d打印用粉末及3d打印方法
CN201680066717.3A Expired - Fee Related CN108290216B (zh) 2015-12-30 2016-12-28 3d打印用粉末及3d打印方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201511021152.0A Pending CN106925770A (zh) 2015-12-30 2015-12-30 3d打印用粉末及3d打印方法

Country Status (2)

Country Link
CN (2) CN106925770A (zh)
WO (1) WO2017114852A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11273496B2 (en) 2018-04-16 2022-03-15 Panam 3D Llc System and method for rotational 3D printing
US11273601B2 (en) 2018-04-16 2022-03-15 Panam 3D Llc System and method for rotational 3D printing
CN110893465A (zh) * 2018-08-22 2020-03-20 西门子股份公司 3d打印金属粉末、3d打印及制备3d打印金属粉末的方法
WO2021035677A1 (zh) * 2019-08-30 2021-03-04 西门子(中国)有限公司 增材制造金属粉末、增材制造及制备增材制造金属粉末的方法
CN114714617B (zh) * 2022-03-03 2023-09-01 上海航天设备制造总厂有限公司 提高工件致密度的供铺粉集成装置及工作方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639402A (en) * 1994-08-08 1997-06-17 Barlow; Joel W. Method for fabricating artificial bone implant green parts
JP3884741B2 (ja) * 2004-03-15 2007-02-21 勝義 近藤 マグネシウム合金顆粒状粉体原料の製造方法
WO2008090909A1 (ja) * 2007-01-23 2008-07-31 World Lab. Co., Ltd. 透明スピネルセラミックス及びその製造方法ならびにその透明スピネルセラミックスを用いた光学材料
CN102380480A (zh) * 2011-11-09 2012-03-21 苏州钻石金属粉有限公司 金属粉末的离线分离方法
FR2998496B1 (fr) * 2012-11-27 2021-01-29 Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines Procede de fabrication additive d'une piece par fusion selective ou frittage selectif de lits de poudre a compacite optimisee par faisceau de haute energie
FR3008014B1 (fr) * 2013-07-04 2023-06-09 Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines Procede de fabrication additve de pieces par fusion ou frittage de particules de poudre(s) au moyen d un faisceau de haute energie avec des poudres adaptees au couple procede/materiau vise
CN103785860B (zh) * 2014-01-22 2016-06-15 宁波广博纳米新材料股份有限公司 3d打印机用的金属粉末及其制备方法
WO2015175726A1 (en) * 2014-05-13 2015-11-19 University Of Utah Research Foundation Production of substantially spherical metal powers
US10144061B2 (en) * 2014-12-30 2018-12-04 Delavan Inc. Particulates for additive manufacturing techniques
WO2016116562A1 (en) * 2015-01-22 2016-07-28 Swerea Ivf Ab Method for additive manufacturing comprising freeze granulation allowing for flexible alloy design
CN104923797B (zh) * 2015-04-28 2017-06-16 上海材料研究所 用于激光选区熔化技术的Inconel625镍基合金粉末的制备方法

Also Published As

Publication number Publication date
CN108290216A (zh) 2018-07-17
WO2017114852A1 (en) 2017-07-06
CN106925770A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
CN108290216B (zh) 3d打印用粉末及3d打印方法
JP6303016B2 (ja) 積層造形物の製造方法
Kumar et al. Selective laser sintering
JP6519100B2 (ja) 焼結造形方法、液状結合剤、および焼結造形物
EP3116706B1 (en) Sintering particulate material
CN103407134B (zh) 模具的异型冷却水路结构及具有该结构模具的加工方法
EP3476504B1 (en) Applying electric pulses through a laser induced plasma channel for use in a 3-d metal printing process
CN108687344B (zh) 物品表面精整方法
JP6635227B1 (ja) 三次元形状造形物の製造方法
CN105499570A (zh) 一种在交变磁场中金属陶瓷功能梯度零件的3d打印方法
WO2013010870A1 (de) Verfahren zur bildung eines verbundwerkstoffs und wärmesenke
EP3096907B1 (en) Nanoparticle enhancement for additive manufacturing
JP2007016312A (ja) 焼結体形成方法
CN109128164A (zh) 一种硬质合金零件的制造方法
US10384285B2 (en) Method of selective laser brazing
JP2003321704A (ja) 積層造形法およびそれに用いる積層造形装置
CN113500205B (zh) 一种双金属材料的3d打印方法
JP2017164971A (ja) 三次元造形方法
US20060119017A1 (en) Method for making ceramic work piece and cermet work piece
EP3315227A1 (en) Method of manufacturing metal articles
EP2918359A1 (en) Sintering particulate material
WO2023148158A1 (de) Fertigungsvorrichtung zum schichtweisen fertigen von objekten
DE102015216583A1 (de) Verfahren zur Herstellung einer dreidimensionalen Struktur und Vorrichtung hierzu
US20190016059A1 (en) Additive manufacturing methods and related components
CN110590382A (zh) 双镭射烧结陶瓷材料的方法及其烧结设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211227

Address after: Munich, Germany

Patentee after: Siemens Energy International

Address before: Munich, Germany

Patentee before: SIEMENS AG

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210604

CF01 Termination of patent right due to non-payment of annual fee