WO2022041338A1 - 一种用于线激光输出的固定装置 - Google Patents

一种用于线激光输出的固定装置 Download PDF

Info

Publication number
WO2022041338A1
WO2022041338A1 PCT/CN2020/115311 CN2020115311W WO2022041338A1 WO 2022041338 A1 WO2022041338 A1 WO 2022041338A1 CN 2020115311 W CN2020115311 W CN 2020115311W WO 2022041338 A1 WO2022041338 A1 WO 2022041338A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
hole
fixing
peripheral wall
prism
Prior art date
Application number
PCT/CN2020/115311
Other languages
English (en)
French (fr)
Inventor
王艳超
吴筱
丁有爽
邵天兰
Original Assignee
梅卡曼德(北京)机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 梅卡曼德(北京)机器人科技有限公司 filed Critical 梅卡曼德(北京)机器人科技有限公司
Priority to US18/043,046 priority Critical patent/US11749958B2/en
Publication of WO2022041338A1 publication Critical patent/WO2022041338A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/1805Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for prisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M7/00Details of attaching or adjusting engine beds, frames, or supporting-legs on foundation or base; Attaching non-moving engine parts, e.g. cylinder blocks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/022Mountings, adjusting means, or light-tight connections, for optical elements for lenses lens and mount having complementary engagement means, e.g. screw/thread
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application relates to the technical field of laser beam expansion, and in particular, to a fixing device for line laser output.
  • the laser needs to be output in a fixed shape, or the laser is required to carry no less than a certain amount of energy when projected onto a certain plane.
  • the laser needs to be output in a straight line segment in the shape of a "one".
  • the laser beam is input into a Powell prism for shaping to output a "one"-shaped laser, but the laser beam is difficult to align with the center of the Powell prism, that is, the laser beam is difficult to inject along the axis of the Powell prism.
  • there is a fixing device as shown in FIG. 1 which can realize the aforementioned alignment.
  • Figure 1a is a perspective view of the device
  • Figure 1b is a front view viewed from one side of the Powell prism.
  • the device realizes the adjustment of the pitch angle and the yaw angle of the Powell prism by adjusting the tightness of the top wire in the adjustment hole 1-adjustment hole 10.
  • the alignment method is complicated, and it is difficult to achieve alignment.
  • the top wire falls off during subsequent use, the relative position of the laser beam and the prism will be greatly deviated.
  • the present application aims to solve one of the technical problems in the related art at least to a certain extent.
  • a fixture for line laser output comprising:
  • the axial direction of the laser beam expander is provided with a laser through hole for passing the laser beam;
  • the transmitter embedding groove is arranged at the laser input end of the laser through hole, the peripheral wall of the transmitter embedding groove is coaxial with the peripheral wall of the laser through hole, and the bottom wall of the transmitter embedding groove is perpendicular to the laser beam the peripheral wall of the through hole, so that the output port of the laser transmitter is aligned with the laser through hole, and the laser beam is incident along the axis of the laser through hole;
  • the Powell prism embedded groove is arranged at the laser emitting end of the laser through hole, the peripheral wall of the Powell prism embedded groove is coaxial with the peripheral wall of the laser through hole, and the bottom wall of the Powell prism embedded groove is perpendicular to the laser the peripheral wall of the through hole, so that the axis of the Powell prism coincides with the axis of the laser through hole when the non-cylindrical part of the Powell prism is embedded into the Powell prism embedding groove.
  • fine threads are arranged on the inner peripheral wall of the laser through hole.
  • the inner diameter of the groove of the Powell prism is larger than the diameter of the cylindrical part of the Powell prism.
  • the laser beam expander includes a prism fixing sleeve, one end of the prism fixing sleeve is sleeved on the laser emitting end of the laser through hole, and the Powell prism embedding groove is arranged on the prism fixing sleeve.
  • the other end face of the prism fixing sleeve is rotated in the circumferential direction relative to the laser emitting end of the laser through hole;
  • the prism fixing sleeve is provided with two waist-shaped holes symmetrically in the circumferential direction on a certain circumference of the peripheral wall of one end of the laser emitting end of the laser through hole; the peripheral wall of the laser emitting end of the laser through hole is connected to the At least three circular holes are evenly opened along the circumference of the circumference in one circle of the same radial section; the circumferential length of the waist-shaped hole is not less than the value corresponding to the two circular holes, the waist
  • the shape hole cooperates with the circular hole to realize the fastening of the prism fixing sleeve relative to the laser emitting end of the laser through hole and rotate to any angle in the circumferential direction.
  • the number of the circles is two.
  • the transmitter embedding groove is embedded in the circular output port of the laser transmitter, and the inner wall of the transmitter embedding groove is provided with an inner thread matched with the thread on the outer peripheral wall of the circular output port.
  • the laser transmitter is embedded in the transmitter embedding groove, and the peripheral wall of the transmitter embedding groove is provided with fastening through holes along the radial direction of the transmitter embedding groove, and the laser transmitter is fastened with the top wire. , the output port of the laser transmitter extends into the laser through hole.
  • the fixing device provided in the embodiment of the present application further includes: a laser adapter, the laser adapter has a cylindrical structure, and a port embedding hole is provided in the center along the axial direction of the laser adapter, and the laser adapter The inner diameter of the port embedding hole is larger than the radial maximum size of the output port of the laser transmitter; the laser adapter is axially arranged around the port embedding hole with a through hole matching the fixing groove on the laser transmitter. holes for fixing the laser emitter with screws;
  • An outer thread is arranged on the outer peripheral wall of the laser adapter, and an inner thread matched with the outer thread of the laser adapter is arranged in the emitter embedding groove to insert and fix the laser adapter.
  • the laser beam expander is nested in a fixing seat, and the fixing device further comprises: a steering fixing table;
  • the steering fixed table surface is divided into a beam expander fixed area and a galvanometer fixed area;
  • the beam-expanding cylinder fixing area of the steering fixing table is arranged in the beam-expanding cylinder fixing area, the "L"-shaped adapter, and the rectangular fixing block through an “L”-shaped adapter, respectively.
  • the threaded holes and screws at the corresponding positions realize the fixation with the rectangular fixing block;
  • the galvanometer fixing hole is penetrated along the vertical direction of the table top of the steering fixing table.
  • a gap is arranged on the opposite side edge of the fixed area of the galvanometer mirror and the side adjacent to the fixed area of the beam expander in the steering fixing table;
  • the notch starts from the galvanometer fixing hole and runs through the steering fixing table along the parallel direction of the steering fixing table table, and the gap also penetrates the steering fixing table along the vertical direction of the steering fixing table table, so as to so that the peripheral wall of the galvanometer fixing hole has the ability to deform;
  • the two opposite surfaces of the notch are provided with matching threaded through holes, and the threaded through holes penetrate in the direction parallel to the table surface of the steering fixing table, so as to cooperate with the screws to realize the tightening of the galvanometer in the galvanometer fixing hole. solid.
  • serrations are provided on the adjacent side edges of the turning fixing table and the edge penetrated by the notch, so as to increase the deformability of the peripheral wall of the galvanometer fixing hole.
  • the laser emitter and the Powell prism are embedded in the laser beam expander by opening the transmitter embedding groove and the Powell prism embedding groove at both ends of the laser beam expander, so as to realize the
  • the uniform fixing of the laser emitter and the Powell prism simplifies the alignment process of the laser beam and the Powell prism compared with the prior art, and improves the use efficiency. In addition, the situation of deviation in the use process of the device in the prior art is avoided.
  • an embodiment of the present application further provides a 3D smart camera case, which includes a fixing device corresponding to the aforementioned embodiment including a steering fixing table.
  • FIG. 1a-1b are schematic structural diagrams of the prior art according to an embodiment of the application.
  • FIG. 2 is a schematic cross-sectional structure diagram of a laser beam expander according to some embodiments of the present application.
  • 3a is a schematic three-dimensional structure diagram of a laser beam expander according to some embodiments of the present application.
  • FIG. 3b is a schematic diagram of a laser transmitter embedded in a laser beam expander according to some embodiments of the present application.
  • Figure 4a is a schematic structural diagram of a Powell prism
  • 4b is another three-dimensional schematic diagram of the laser beam expander according to some embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of a laser adapter according to some embodiments of the present application.
  • Figure 6a is another three-dimensional schematic diagram of the laser beam expander according to some embodiments of the application.
  • Fig. 6a(2) is a schematic three-dimensional structure diagram of a fixing seat according to some embodiments of the present application.
  • 6b is a schematic structural diagram of a steering fixed platform according to some embodiments of the present application.
  • FIG. 6c is a schematic structural diagram of the combination of a steering fixing table and an “L”-shaped adapter according to some embodiments of the application;
  • 9a-9b are schematic diagrams showing the positional relationship between the waist-shaped hole and the circular hole according to some embodiments of the application.
  • Laser beam expander 100 Laser through hole 101; Emitter insertion slot 102; Powell prism insertion slot 103; Slot 1031; Fixing seat 104; Prism fixing sleeve 105; 200; Powell prism 300; cylindrical part 301; non-cylindrical part 302; roof 303; laser adapter 400; port insertion hole 401; through hole 402; Area 502; "L" shaped adapter 503; Galvo mirror fixing hole 504; Gap 505;
  • the fixing device includes: a laser beam expander 100 : a laser through hole 101 is provided in the axial direction of the laser beam expander 100 for passing the laser beam;
  • the emitter of the laser input end of the through hole 101 is embedded in the slot 102 , the peripheral wall of the emitter embedded slot 102 is coaxial with the peripheral wall of the laser through hole 101 , and the bottom wall of the emitter embedded slot 102 is perpendicular to the peripheral wall of the laser through hole 101 , so that The output port of the laser transmitter 200 is aligned with the laser through hole 101, and then the laser beam is injected along the axis of the laser through hole 101;
  • the peripheral wall is coaxial with the peripheral wall of the laser through hole 101, and the bottom wall of the Powell prism embedded groove 103 is perpendicular to the peripheral wall of the laser through hole 101, so that the non-cylindrical part 302 of the Powell prism 300 (not shown in FIG. 2-FIG. 3,
  • the shape and dimension of the radial section of the embedded groove mentioned in some embodiments is consistent with the radial section of the embedded part of the corresponding component, so that the embedded groove can be connected to the corresponding component through the peripheral wall of the embedded groove.
  • the friction between the outer peripheral walls or the way of sealing glue in the groove of the embedded groove realizes the fixing of the corresponding components in the embedded groove.
  • the laser transmitter 200 is embedded in the transmitter embedding groove 102
  • the Powell prism 300 is embedded in the Powell prism embedding groove 103 .
  • the laser beam can enter the laser through hole 101 along the axis of the laser through hole 101 , and enter the Powell prism 300 along the axis of the Powell prism 300 while emitting the laser through hole 101 , in order to output a line laser that can meet the requirements of use through the beam shaping principle of the Powell prism 300 .
  • the laser emitter and the Powell prism are embedded in the laser beam expander by opening the transmitter embedding groove and the Powell prism embedding groove at both ends of the laser beam expander, so as to realize the
  • the uniform fixing of the laser emitter and the Powell prism simplifies the alignment process of the laser beam and the Powell prism compared with the prior art, and improves the use efficiency. In addition, the situation of deviation in the use process of the device in the prior art is avoided.
  • the laser beam expander 100 includes a prism fixing sleeve 105 , one end of the prism fixing sleeve 105 is sleeved on the laser exit end of the laser through hole 101 , and the Powell prism embedding groove 103 is arranged on the other side of the prism fixing sleeve 105 .
  • the end face can realize the rotation of the prism fixing sleeve 105 relative to the laser emitting end of the laser through hole 101 along the circumferential direction. In this way, it is convenient to adjust, so that the shape of the output line laser is uniform and symmetrical to meet the application requirements.
  • the outer diameter where the laser beam expander 100 is socketed by the prism fixing sleeve 105 is smaller than the rest of the laser beam expander 100.
  • the prism is socketed at the socket.
  • the fixing sleeve 105 (not shown in FIG. 7 , the part can be seen in FIG. 8 ) has the same radial dimension as other parts of the laser beam expander 100 .
  • the above-mentioned socketed parts do not necessarily have the shape shown in FIG. 7 a , and their outer diameters are not necessarily smaller than the rest of the laser beam expander 100 .
  • the prism fixing sleeve 105 can be as shown in FIG. 8a.
  • the prism fixing sleeve 105 is sleeved on the peripheral wall of one end of the laser emitting end of the laser through hole 101 (not shown in FIG. 8, the part can be seen in FIG. 7).
  • two waist-shaped holes 1051 are opened symmetrically along the circumferential direction.
  • FIG. 8b is a schematic radial cross-sectional view of the prism fixing sleeve 105 , which shows the circumferentially symmetrical positions of the two waist-shaped holes 1051 in some embodiments.
  • FIG. 8a is a schematic radial cross-sectional view of the prism fixing sleeve 105 , which shows the circumferentially symmetrical positions of the two waist-shaped holes 1051 in some embodiments.
  • At least three circular holes 106 are uniformly formed along the circumference of the peripheral wall of the laser emitting end of the laser through hole 101 and the aforementioned circumference in the same radial section.
  • the circumferential length of the waist-shaped hole 1051 is not less than the value corresponding to including the two circular holes 106 , that is, when the prism fixing sleeve 105 and the laser emitting end of the laser through hole 101 are in the sleeve.
  • the length of the waist-shaped hole 1051 needs to be able to accommodate at least two circular holes 106, and then the waist-shaped hole 1051 cooperates with the circular hole 106 to realize the circumferential direction of the prism fixing sleeve 105 relative to the laser emitting end of the laser through hole 101. Rotate to any angle of tightening.
  • the number of circular holes 106 may be three, and the relative positional relationship between the circular holes 106 and the waist-shaped holes 1051 may be as shown in FIG. 9a; The relative positional relationship between the shaped hole 106 and the waist-shaped hole 1051 can be as shown in FIG. 9b.
  • the number of circular holes 106 may also be more.
  • the number of the above-mentioned circles is two.
  • the circular hole 106 and the waist-shaped hole 1051 are respectively arranged in a certain circle in the same radial section of their corresponding components. That is to say, two waist-shaped holes 106 are respectively provided in the two circumferences of the prism fixing sleeve 105, and correspondingly circular holes 106 are set on the corresponding two circumferences of the laser emitting end of the laser through hole 101, so that the prism The fastening between the fixing sleeve 105 and the laser emitting end of the laser through hole 101 is firmer.
  • a schematic diagram of two waist-shaped holes 106 respectively disposed in two circumferences of the prism fixing sleeve 105 can be shown in FIG. 8 c .
  • the shape of the laser beam expander cylinder 100 may be a cylinder, a square cylinder, or a cylinder with a polygonal radial section, etc., which are not specifically limited in the embodiments of the present application.
  • the size of the laser beam expander 100 it can be set according to specific usage requirements, and is based on the ability to accommodate the emitter embedding groove 102 and the Powell prism embedding groove 103 .
  • the radial dimension of the laser beam expander 100 needs to be larger than the radial maximum dimension of the emitter insertion slot 102; On the contrary, the radial dimension of the laser beam expander 100 needs to be larger than the radial maximum dimension of the Powell prism embedding groove 103 .
  • the axial dimension of the laser beam expander 100 is greater than the sum of the groove depths of the emitter embedding groove 102 and the Powell prism embedding groove 103.
  • the radial cross section of the laser through hole 101 may be circular, square, or other shapes; The radial cross-sectional shapes of the ports match.
  • the radial cross-sectional size of the laser through hole 101 is not smaller than the radial cross-section size of the output port of the laser transmitter 200 , and the axial length of the laser through hole 101 can be determined according to the laser emission The distance from the focal plane of the laser beam output by the transmitter 200 to the end face of the output port of the laser transmitter 200 is determined.
  • the output port of the laser transmitter 200 mentioned in some embodiments is the end of the laser beam emitted by the laser transmitter 200 .
  • extinction patterns are arranged on the inner peripheral wall of the laser through hole 101 to ensure high-quality transmission of the laser beam in the laser through hole 101 .
  • the extinction pattern is a fine thread.
  • the Powell prism 300 in some embodiments of the present application has a structure as shown in FIG.
  • the non-cylindrical part 302 is inlaid into the Powell prism embedding groove 103 for laser shaping during use, and the cylindrical part 301 is exposed (in some embodiments it may be completely exposed, in other embodiments In an example, it may be partially exposed) outside the Powell prism embedded in the groove 103, so that the Powell prism 300 can be rotated in the radial direction, and the roof ridge 303 can be rotated and adjusted to output the line laser with the best shape.
  • the non-cylindrical portion 302 is embedded in the Powell prism embedding groove 103, but it is emphasized that it is necessary to ensure that the non-cylindrical portion 302 is completely embedded in the Powell prism embedding groove 103, which does not It does not mean that other parts of the Powell prism 300 are not in the Powell prism embedding groove 103 .
  • the cylindrical portion 301 of the Powell prism 300 can be partially embedded in the Powell prism embedding groove 103 , thereby facilitating the fixing of the Powell prism 300 in the Powell prism embedding groove 103 .
  • colloid can be poured into the slot 1031 to further realize the fixation of the Powell prism 300 in the Powell prism embedding slot 103 .
  • the degree that the inner diameter of the notch 1031 is larger than that of the cylindrical portion 301 is not likely to be too large, and those skilled in the art can achieve better results.
  • the shape and size of the transmitter embedded groove 102 can be determined according to the shape and size of different types of laser transmitters.
  • fastening through holes are arranged along the radial direction of the transmitter embedding groove 102 on the peripheral wall of the transmitter embedding groove 102 to cooperate with the top wire to fasten the laser transmitter 200 and the output port of the laser transmitter 200 into the laser through hole 101 .
  • the output port of the laser transmitter 200 is circular, and the outer peripheral wall of the circular output port is provided with external threads.
  • the transmitter is embedded in the groove 102 Embedded in the circular output port of the laser transmitter 200, the inner wall of the transmitter embedding groove 102 is arranged with an inner thread that closely matches the thread on the outer peripheral wall of the circular output port, and then the laser transmitter 200 and the laser beam expander 100 can be between the inner and outer threads. It rotates in the circumferential direction under the coordination to output a line laser whose shape meets the requirements of use.
  • fastening can be achieved when the laser emitter 200 and the laser beam expander 100 are in a preferred rotation state by opening threaded holes in the radial direction on the peripheral wall of the emitter embedding groove 102 and matching screws.
  • the provided fixing device further includes: a laser adapter 400, a laser adapter
  • the connector 400 has a cylindrical structure, and a radial cross-sectional screenshot is shown in FIG. 5 .
  • the center of the laser adapter 400 is provided with a port insertion hole 401 that runs through the laser adapter 400 in the axial direction.
  • the inner diameter of the port insertion hole 401 is larger than that of the laser transmitter 200 .
  • the laser adapter 400 is axially arranged around the port embedding hole 401 with a through hole 402 that matches the fixing groove on the laser transmitter 200 to fix the laser transmitter 200 with screws;
  • An outer thread is arranged on the outer peripheral wall of the adapter 400 , and an inner thread matched with the outer thread of the laser adapter 400 is arranged in the transmitter embedding groove 102 to insert and fix the laser adapter 400 .
  • the laser beam expander 100 is nested in the fixing seat 104 to facilitate the fixing of the laser beam expander 100 .
  • the fixing base 104 may be a rectangular fixing block.
  • the laser beam expander 100 is nested in the rectangular fixed block along the parallel direction of a certain side of the rectangular fixed block, that is to say, the axis of the laser beam expander 100 is parallel to a certain side of the rectangular block. It is any side of the "length", “width” and “height" of the rectangular block, which can be optional as shown in Figure 6a(1).
  • the position where the laser beam expander 100 is nested in the rectangular fixed block 104 can be biased toward a certain surface of the rectangular block as shown in FIG. Specifically, it can be set according to actual use needs.
  • the fixing base 104 may also have an irregular shape.
  • the part of the fixing base 104 where the laser beam expander 100 is nested is cylindrical, and the part that realizes the fixing function of the laser beam expander 100 and the target plane is the same as the The target plane is in contact with each other, as shown in Fig. 6a(2) by way of example.
  • the fixing device provided by the embodiments of the present application further includes a steering fixing table 500; the table surface of the steering fixing table 500 is divided into a beam expander fixing area 501 and a galvanometer fixing area 502. 500 may appear as a rectangular flat, or as an irregularly shaped flat as shown in Figure 6b.
  • the laser beam expander 100 is fixed at the beam expander fixing area 501 of the turning fixed table 500, and the galvanometer is fixed at the galvanometer fixing area 502, and the line laser output from the laser beam expander 100 can be reflected by the galvanometer.
  • the galvanometer oscillates, and the fixing device provided in the embodiment of the present application can output a movable line laser.
  • the size of the beam expander fixed area 501 of the steering fixed table 500 can be set according to the radial size and axial size of the laser beam expander 100, and the size of the galvanometer fixed area 502 can be set according to the radial size of the galvanometer motor. Make settings.
  • the beam expander tube fixing area 501 of the steering fixing table 500 is arranged in the beam expander tube fixing area 501 , the “L” shaped adapter 503 , and the rectangular fixing block 104 through the “L”-shaped adapter 503 , respectively.
  • the threaded holes/or threaded grooves at the corresponding positions are matched with screws to realize the fixation with the rectangular fixing block 104; in the galvanometer fixing area 502 of the steering fixing table 500, the galvanometer fixing holes 504 are penetrated in the direction perpendicular to the table top of the steering fixing table 500.
  • the “L”-shaped adapter 503 can be shown in FIG. 6c .
  • the “L”-shaped adapter 503 presents an “L” shape from a certain angle of view, and is actually constructed as two rigid planes perpendicular to each other, one of which is fixed to the steering
  • the beam expander tube fixing area 501 of the stage 500 is in contact, and is fixed through the cooperation of the threaded hole and the screw; the other plane is connected to the fixing seat 104 (not shown in FIG. )) are in contact with one side, and are fixed through the cooperation of the threaded hole and the screw.
  • the "L"-shaped adapter 503 can realize the fixing of the laser beam expander 100 in the beam expander fixing area 501 of the steering fixing table 500 .
  • a gap 505 is arranged on the opposite side edge of the galvanometer fixing area 502 and the adjacent side of the beam expander fixing area 501;
  • the steering fixing table 500 is penetrated in the direction parallel to the table surface of the steering fixing table 500, and the gap 505 also penetrates the steering fixing table 500 in the vertical direction of the table surface of the steering fixing table 500, so that the peripheral wall of the galvanometer fixing hole 504 has the ability to deform;
  • the opposite surface is provided with a matching threaded through hole 506 , and the threaded through hole 506 penetrates along the direction parallel to the table surface of the steering fixing table 500 , so as to cooperate with screws to realize the fastening of the galvanometer in the galvanometer fixing hole 504 .
  • an embodiment of the present application further provides a 3D smart camera case, in which a fixing device corresponding to any of the foregoing embodiments including the steering fixing table 500 is fixed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Laser Surgery Devices (AREA)

Abstract

一种用于线激光输出的固定装置,包括:激光扩束筒(100):所述激光扩束筒(100)的轴向设置激光通孔(101)用于穿过激光束;设置在所述激光通孔(101)的激光射入端的发射器嵌入槽(102),所述发射器嵌入槽(102)的周壁同轴于所述激光通孔(101)的周壁,所述发射器嵌入槽(102)的底壁垂直于所述激光通孔(101)的周壁,以使得激光发射器(200)的输出端口对准所述激光通孔(101),进而所述激光束沿所述激光通孔(101)轴线射入;设置在所述激光通孔(101)的激光射出端的鲍威尔棱镜(300)嵌入槽(103),所述鲍威尔棱镜(300)嵌入槽(103)的周壁同轴于所述激光通孔(101)的周壁且,所述鲍威尔棱镜(300)嵌入槽(103)的底壁垂直于所述激光通孔(101)的周壁,以使得鲍威尔棱镜(300)的非柱形部位嵌入至所述鲍威尔棱镜(300)嵌入槽(103)的同时所述鲍威尔棱镜(300)的轴线重合于所述激光通孔(101)的轴线。相对现有技术简化了激光束与鲍威尔棱镜(300)轴向的对准过程,提高了使用效率。

Description

一种用于线激光输出的固定装置 技术领域
本申请涉及激光扩束技术领域,尤其涉及一种用于线激光输出的固定装置。
背景技术
随着激光应用的普及,各领域从应用角度对激光的要求也逐渐增多,例如需要将激光以固定形状输出、或者要求激光投影到某一平面时携带不少于某一数值的能量等。在激光扫描成像领域,需要激光以“一”字形的直线段输出。通常情况下,将激光束输入至鲍威尔棱镜进行整形得以输出“一”字形激光,但是激光束很难与鲍威尔棱镜的中心进行对准,即激光束很难沿鲍威尔棱镜的轴线射入。现有技术中存在一种如图1所示的固定装置,可以实现前述所提及的对准。
图1a为该装置的立体图,图1b为从鲍威尔棱镜一侧观察的正视图,该装置通过调整调节孔1-调节孔10中顶丝的松紧度,实现鲍威尔棱镜的俯仰角、偏航角的大幅度调整以及微调,以实现鲍威尔棱镜与激光发射器的相对位置移动,进而实现激光束与鲍威尔棱镜间的对准。从该装置的调节过程来看,其对准方式复杂,难以实现对准,此外后续使用时若顶丝脱落激光束与棱镜相对位置将出现较大偏差。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请提供一种用于线激光输出的固定装置,包括:
激光扩束筒:
所述激光扩束筒的轴向设置激光通孔用于穿过激光束;
设置在所述激光通孔的激光射入端的发射器嵌入槽,所述发射器嵌入槽的周壁同轴于所述激光通孔的周壁,所述发射器嵌入槽的底壁垂直于所述激光通孔的周壁,以使得激光发射器的输出端口对准所述激光通孔,进而所述激光束沿所述激光通孔轴线射入;
设置在所述激光通孔的激光射出端的鲍威尔棱镜嵌入槽,所述鲍威尔棱镜嵌入槽的周壁同轴于所述激光通孔的周壁且,所述鲍威尔棱镜嵌入槽的底壁垂直于所述激光通孔的周壁,以使得鲍威尔棱镜的非柱形部位嵌入至所述鲍威尔棱镜嵌入槽的同时所述鲍威尔棱镜的轴线重合于所述激光通孔的轴线。
可选的,所述激光通孔内周壁布设细牙螺纹;和/或
所述鲍威尔棱镜嵌入槽槽口内径大于所述鲍威尔棱镜的柱形部位直径。
可选的,所述激光扩束筒包括棱镜固定套筒,所述棱镜固定套筒一端套设在所述激光通孔的激光射出端,所述鲍威尔棱镜嵌入槽设置在所述棱镜固定套筒的另一端面,实现所述棱镜固定套筒相对于所述激光通孔的激光射出端间沿周向的旋转;
所述棱镜固定套筒,于套接所述激光通孔的激光射出端一端周壁的某圆周上,沿周向对称开设两个腰形孔;所述激光通孔的激光射出端周壁与所述圆周在同一径向截面的一周,沿周向均匀开设至少三个圆形孔;所述腰形孔的周向长度为,不小于包括两个所述圆形孔所对应的数值,所述腰形孔配合所述圆形孔实现所述棱镜固定套筒相对于所述激光通孔的激光射出端沿周向旋转至任一角度的紧固。
可选的,所述圆周的数量为两个。
可选的,所述发射器嵌入槽嵌入所述激光发射器的圆形输出端口,所述发射器嵌入槽内壁布设与所述圆形输出端口外周壁的螺纹相配合的内螺纹。
可选的,所述发射器嵌入槽嵌入所述激光发射器,所述发射器嵌入槽的周壁沿所述发射器嵌入槽径向布设紧固贯穿孔,配合顶丝紧固所述激光发射器,所述激光发射器的输出端口伸入所述激光通孔内。
可选的,本申请实施例提供的固定装置还包括:激光转接件,所述激光转接件呈圆柱结构,中心设有沿所述激光转接件轴向贯穿的端口嵌入孔,所述端口嵌入孔内径大于所述激光发射器的输出端口径向最大尺寸;所述激光转接件在所述端口嵌入孔的四周沿轴向布设与所述激光发射器上的固定槽相匹配的贯穿孔,以配合螺钉固定所述激光发射器;
所述激光转接件外周壁布设外螺纹,所述发射器嵌入槽布设与所述激光转接件的外螺纹相配合的内螺纹,以嵌入固定所述激光转接件。
可选的,所述激光扩束筒嵌套于固定座内,所述固定装置还包括:转向固定台;
所述转向固定台台面划分为扩束筒固定区、以及振镜固定区;
所述转向固定台的所述扩束筒固定区,通过“L”形转接件,以及分别布设在所述扩束筒固定区、所述“L”形转接件、所述矩形固定块相应位置的螺纹孔和螺钉,实现与所述矩形固定块的固定;
所述转向固定台的所述振镜固定区内,沿所述转向固定台台面垂直的方向贯穿振镜固定孔。
可选的,所述转向固定台,在所述振镜固定区的与所述扩束筒固定区相邻一侧的相对侧边缘布设豁口;
所述豁口从所述振镜固定孔始、沿所述转向固定台台面平行方向贯穿所述转向固定台, 且所述豁口还沿所述转向固定台台面垂直方向贯穿所述转向固定台,以使得所述振镜固定孔周壁具有形变能力;
所述豁口的两相对面设有相匹配的螺纹贯穿孔,所述螺纹贯穿孔沿所述转向固定台台面平行方向贯穿,以配合螺钉实现所述振镜在所述振镜固定孔内的紧固。
可选的,所述转向固定台的、在被所述豁口贯穿的边缘的相邻侧边缘开设锯齿,以增加所述振镜固定孔周壁的形变能力。
本申请实施例提供的用于线激光输出的固定装置,通过在激光扩束筒两端开设发射器嵌入槽、鲍威尔棱镜嵌入槽,将激光发射器、鲍威尔棱镜嵌入至激光扩束筒,实现了对激光发射器、鲍威尔棱镜的统一固定,进而相对现有技术简化了激光束与鲍威尔棱镜的对准过程,提高了使用效率。此外,避免了现有技术中装置使用过程出现偏差的情况。
另一方面,本申请实施例还提供一种3D智能相机壳,包括前述含有转向固定台的实施例所对应的固定装置。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1a-图1b为本申请实施例的现有技术的结构示意图;
图2为本申请部分实施例的激光扩束筒的一剖面结构示意图;
图3a为本申请部分实施例的激光扩束筒的一立体结构示意图;
图3b为本申请部分实施例的激光发射器嵌入激光扩束筒的一示意图;
图4a为鲍威尔棱镜的结构示意图;
图4b为本申请部分实施例的激光扩束筒的另一立体结构示意图;
图5为本申请部分实施例的激光转接件的一结构示意图;
图6a(1)为本申请部分实施例的激光扩束筒的又一立体结构示意图;
图6a(2)为本申请部分实施例的固定座的一立体结构示意图;
图6b为本申请部分实施例的转向固定台的一结构示意图;
图6c为本申请部分实施例的转向固定台与“L”形转接件组合的一结构示意图;
图7a-图7b为本申请部分实施例的激光扩束筒的另一些立体结构示意图;
图8a-图8c为本申请部分实施例的棱镜固定套筒的一些结构示意图;
图9a-图9b为本申请部分实施例的腰形孔与圆形孔位置关系示意图;
附图标记:
激光扩束筒100;激光通孔101;发射器嵌入槽102;鲍威尔棱镜嵌入槽103;槽口1031; 固定座104;棱镜固定套筒105;腰形孔1051;圆形孔106;激光发射器200;鲍威尔棱镜300;柱形部位301;非柱形部位302;屋脊303;激光转接件400;端口嵌入孔401;贯穿孔402;转向固定台500;扩束筒固定区501;振镜固定区502;“L”形转接件503;振镜固定孔504;豁口505;螺纹贯穿孔506;锯齿507。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例提供的一种用于线激光输出的固定装置。
如图2-图3所示,部分实施例中本申请提供的固定装置,包括:激光扩束筒100:激光扩束筒100的轴向设置激光通孔101用于穿过激光束;设置在激光通孔101的激光射入端的发射器嵌入槽102,发射器嵌入槽102的周壁同轴于激光通孔101的周壁,发射器嵌入槽102的底壁垂直于激光通孔101的周壁,以使得激光发射器200的输出端口对准激光通孔101,进而激光束沿激光通孔101轴线射入;以及,设置在激光通孔101的激光射出端的鲍威尔棱镜嵌入槽103,鲍威尔棱镜嵌入槽103的周壁同轴于激光通孔101的周壁且,鲍威尔棱镜嵌入槽103的底壁垂直于激光通孔101的周壁,以使得鲍威尔棱镜300的非柱形部位302(图2-图3未示出,该部位请参见图4a)嵌入至鲍威尔棱镜嵌入槽103的同时鲍威尔棱镜300的轴线重合于激光通孔101的轴线。
本领域技术人员可以理解到的是,部分实施例所提及的嵌入槽,其径向切面的形状尺寸与所对应部件的嵌入部分的径向切面相吻合,进而可通过嵌入槽周壁与相应部件外周壁间的摩擦作用或者在嵌入槽槽口封胶的方式实现相应部件在嵌入槽内的固定。
在实际使用时,将激光发射器200嵌入至发射器嵌入槽102,将鲍威尔棱镜300嵌入至鲍威尔棱镜嵌入槽103,由于发射器嵌入槽102、鲍威尔棱镜嵌入槽103与激光通孔101间的位置关系,当激光发射器200发出激光束时,激光束可沿激光通孔101的轴线射入激光通孔101、并在射出激光通孔101的同时沿鲍威尔棱镜300的轴线射入至鲍威尔棱镜300,以通过鲍威尔棱镜300对于光束的整形原理,输出能够满足使用要求的线激光。
本申请实施例提供的用于线激光输出的固定装置,通过在激光扩束筒两端开设发射器嵌入槽、鲍威尔棱镜嵌入槽,将激光发射器、鲍威尔棱镜嵌入至激光扩束筒,实现了对激光发射器、鲍威尔棱镜的统一固定,进而相对现有技术简化了激光束与鲍威尔棱镜的对准过程,提高了使用效率。此外,避免了现有技术中装置使用过程出现偏差的情况。
部分实施例中,激光扩束筒100包括棱镜固定套筒105,棱镜固定套筒105一端套设 在激光通孔101的激光射出端,鲍威尔棱镜嵌入槽103设置在棱镜固定套筒105的另一端面,实现棱镜固定套筒105相对于激光通孔101的激光射出端间沿周向的旋转。以此方便进行调整,进而使得所输出的线激光形状均匀对称,满足应用要求。
部分可选实施例中,激光扩束筒100被棱镜固定套筒105套接处外径小于激光扩束筒100的其余部位,可选的可如图7a所示,使得套接处套接棱镜固定套筒105(图7未示出,该部件可见图8)后与激光扩束筒100的其他部位具有相同径向尺寸。当然,另一些可选实施例中,上述套接部位并不一定呈现图7a所示形态,其外径不一定小于激光扩束筒100的其余部位。
部分实施例中,棱镜固定套筒105可如图8a所示,棱镜固定套筒105,于套接激光通孔101(图8未示出,该部件可见图7)的激光射出端一端周壁的某圆周上,沿周向对称开设两个腰形孔1051,图8b为棱镜固定套筒105的径向截面示意图,其中示意了部分实施例中两个腰形孔1051沿周向对称的位置。部分实施例中,如图7b所示,激光通孔101的激光射出端周壁与前述圆周在同一径向截面的一周,沿周向均匀开设至少三个圆形孔106。部分实施例中,腰形孔1051的周向长度为,不小于包括两个圆形孔106所对应的数值,也就是说,当棱镜固定套筒105与激光通孔101的激光射出端处于套接状态时,腰形孔1051的长度至少需要能容纳两个圆形孔106,进而腰形孔1051配合圆形孔106实现棱镜固定套筒105相对于激光通孔101的激光射出端沿周向旋转至任一角度的紧固。
部分实施例中,圆形孔106的数量可以为三个,则圆形孔106与腰形孔1051相对位置关系可以如图9a所示;或者圆形孔106的数量可以为四个,则圆形孔106与腰形孔1051相对位置关系可以如图9b所示。当然,圆形孔106的数量还可以为更多个。
部分可选实施例中,上述圆周的数量为两个。由上述实施例介绍,圆形孔106以及腰形孔1051分别在其相应部件的同一径向截面内的某圆周内配合设置,在一些较佳实施例中,前述圆周数量可以为两个,也就是说,棱镜固定套筒105的两个圆周内分别设置两个腰形孔106,相配合地,激光通孔101的激光射出端的相应两个圆周上配合设置相应圆形孔106,以使得棱镜固定套筒105与激光通孔101的激光射出端间的紧固更为牢固。棱镜固定套筒105的两个圆周内分别设置两个腰形孔106的示意图,可如图8c所示。
部分可选实施例中,激光扩束筒100的形状可以为圆筒、方筒、或者还可以为径向截面为多边形的筒等等,本申请实施例不做具体限定。而对于激光扩束筒100的尺寸,可依据具体使用需求进行设定,以能够容纳发射器嵌入槽102、鲍威尔棱镜嵌入槽103为准。举例而言,若发射器嵌入槽102的径向最大尺寸大于鲍威尔棱镜嵌入槽103的径向最大尺寸,则激光扩束筒100的径向尺寸需大于发射器嵌入槽102的径向最大尺寸;反之则激光扩束筒100的径向尺寸需大于鲍威尔棱镜嵌入槽103的径向最大尺寸。再例如,激光扩束 筒100的轴向尺寸大于发射器嵌入槽102以及鲍威尔棱镜嵌入槽103的槽深度之和。
部分可选实施例中,激光通孔101的径向截面可以呈现为圆形、方形、或者其他形状;较佳实施例中,激光通孔101的径向截面的形状与激光发射器200的输出端口的径向截面形状相吻合。对于激光通孔101的尺寸,可选的,激光通孔101的径向截面尺寸不小于激光发射器200的输出端口的径向截面的尺寸,激光通孔101的轴向长度具体可以根据激光发射器200所输出激光束的焦面至激光发射器200的输出端口端面的距离确定。
需要说明的是,部分实施例中提及的激光发射器200的输出端口为激光发射器200激光发出的端部。
部分可选实施例中,激光通孔101内周壁布设消光纹,用于保证激光束在激光通孔101内的高质量传输,可选的,消光纹为细牙螺纹。
本领域技术人员可以理解到,本申请部分实施例中鲍威尔棱镜300为如图4a所示的结构,包括柱形部位301、非柱形部位302、屋脊303。本申请部分实施例中,将非柱形部位302镶嵌至鲍威尔棱镜嵌入槽103,用以在使用过程中进行激光整形,柱形部位301则裸露(一些实施例中可以是全部裸露,另一些实施例中可以是部分裸露)在鲍威尔棱镜嵌入槽103之外,方便沿径向旋转鲍威尔棱镜300,对屋脊303进行旋转调整以输出形状最佳的线激光。需要说明的是,部分实施例中所提及的,非柱形部位302镶嵌至鲍威尔棱镜嵌入槽103,所强调的是需要保证非柱形部位302完全嵌入至鲍威尔棱镜嵌入槽103内,其并不意味着鲍威尔棱镜300的其他部位不在鲍威尔棱镜嵌入槽103。具体的,鲍威尔棱镜300的柱形部位301可部分嵌入至鲍威尔棱镜嵌入槽103,进而方便实现鲍威尔棱镜300在鲍威尔棱镜嵌入槽103内的固定。
针对前述柱形部位301裸露在外的部分实施例,本申请部分可选实施例中,如图4b所示,鲍威尔棱镜嵌入槽103的槽口1031部分的内径大于鲍威尔棱镜300的柱形部位301直径,由此,实际使用时可在槽口1031处灌注胶体,进一步实现鲍威尔棱镜300在鲍威尔棱镜嵌入槽103内的固定。在部分较佳实施例中,槽口1031内径大于柱形部位301的程度不易过大,以本领域技术人员能够实现较佳效果为准。
本领域技术人员可以理解到的是,实际应用中的激光发射器存在多种型号,因此部分可选实施例中,发射器嵌入槽嵌102的形状尺寸可依据不同型号的激光发射器形状尺寸而设定,以完全嵌入相应激光发射器200。部分较佳实施例中,在发射器嵌入槽102的周壁沿发射器嵌入槽102的径向布设紧固贯穿孔,用以配合顶丝紧固激光发射器200,且激光发射器200的输出端口伸入激光通孔101内。
在实际使用中,存在激光发射器200的输出端口为圆形的情况,且圆形输出端口外周壁布设外螺纹,针对此种情况,本申请的部分较佳实施例中,发射器嵌入槽102嵌入激光 发射器200的圆形输出端口,发射器嵌入槽102内壁布设与圆形输出端口外周壁的螺纹严密配合的内螺纹,进而激光发射器200与激光扩束筒100间可在内外螺纹的配合下沿周向旋转,以输出形状满足使用要求的线激光。可选的,可通过在发射器嵌入槽102周壁沿径向开设螺纹孔、配合螺钉的方式,在激光发射器200与激光扩束筒100间呈现较佳旋转状态时实现紧固。
在另一种实际情况下,可能存在激光发射器200无法与发射器嵌入槽102匹配的情况,进而本申请的部分实施例中,所提供的固定装置还包括:激光转接件400,激光转接件400呈圆柱结构,径向剖面截图如图5所示,激光转接件400中心设有沿激光转接件400轴向贯穿的端口嵌入孔401,端口嵌入孔401内径大于激光发射器200的输出端口径向最大尺寸;激光转接件400在端口嵌入孔401的四周沿轴向布设与激光发射器200上的固定槽相匹配的贯穿孔402,以配合螺钉固定激光发射器200;激光转接件400外周壁布设外螺纹,发射器嵌入槽102布设与激光转接件400的外螺纹相配合的内螺纹,以嵌入固定激光转接件400。
本发明的部分实施例中,激光扩束筒100嵌套于固定座104内,便于激光扩束筒100的固定。
本发明的部分实施例中,固定座104可以为矩形固定块。部分较佳实施例中,激光扩束筒100沿矩形固定块的某一边的平行方向嵌套于矩形固定块内,也就是说激光扩束筒100的轴线平行于矩形块的某一边,具体可以为矩形块的“长”“宽”“高”任一条边,可选的可如图6a(1)所示。本领域技术人员可以理解的是,激光扩束筒100在矩形固定块104内嵌套的位置,可以如图6a(1)中所示偏向矩形块的某一个面,当然也可以处于居中位置,具体可以依据实际使用需要设定。
另一些实施例中,固定座104还可以为不规则形状,例如,固定座104的嵌套激光扩束筒100的部位为筒状,而实现激光扩束筒100与目标平面固定功能的部位与该目标平面相贴合,实例性地可如图6a(2)所示。
部分实施例中,本申请实施例提供的固定装置还包括转向固定台500;转向固定台500的台面划分为扩束筒固定区501、以及振镜固定区502,部分实施例中,转向固定台500可以呈现为矩形扁块,或者呈现为如图6b所示的不规则形状扁块。在实际使用中,转向固定台500的扩束筒固定区501处固定激光扩束筒100,振镜固定区502处固定振镜,进而激光扩束筒100输出的线激光可由振镜反射,配合振镜振荡,本申请实施例提供的固定装置能够输出可移动的线激光。部分实施例中转向固定台500的扩束筒固定区501尺寸可根据激光扩束筒100的径向尺寸、轴向尺寸进行设定,振镜固定区502尺寸可根据振镜电机的径向尺寸进行设定。
部分实施例中,转向固定台500的扩束筒固定区501,通过“L”形转接件503以及分别布设在扩束筒固定区501、“L”形转接件503、矩形固定块104相应位置的螺纹孔/或螺纹槽配合螺钉,实现与矩形固定块104的固定;转向固定台500的振镜固定区502内,沿转向固定台500台面垂直的方向贯穿振镜固定孔504。“L”形转接件503可如图6c所示,“L”形转接件503的某一视角呈现“L”形,实际构造为相互垂直的两个刚性平面,其中一个平面与转向固定台500的扩束筒固定区501接触,并通过螺纹孔与螺钉的配合实现固定;另一个平面与固定座104(图6c未示出,该部件可参见图6a(1)或图6a(2))的一面接触,并通过螺纹孔与螺钉的配合实现固定。进而,“L”形转接件503可实现激光扩束筒100在转向固定台500的扩束筒固定区501内的固定。
部分实施例中,如图6b所示,转向固定台500,在振镜固定区502的与扩束筒固定区501相邻一侧的相对侧边缘布设豁口505;豁口505从振镜固定孔504始、沿转向固定台500台面平行方向贯穿转向固定台500,且豁口505还沿转向固定台500台面垂直方向贯穿转向固定台500,以使得振镜固定孔504周壁具有形变能力;豁口505的两相对面设有相匹配的螺纹贯穿孔506,螺纹贯穿孔506沿转向固定台500台面平行方向贯穿,以配合螺钉实现振镜在振镜固定孔504内的紧固。
本领域技术人员可以理解到的是,部分实施例中,若振镜固定区502面积过多的大于振镜固定孔504的径向面积,则振镜固定孔504周壁过厚,不利于振镜在其中的紧固。故而,部分可选实施中,如图6b所示,在转向固定台500的、在被豁口505贯穿的边缘的相邻侧边缘开设锯齿507,以减小转向固定台500相应边缘的应力,进而增加与相应边缘相连接的振镜固定孔504周壁的形变能力。
另一方面,本申请实施例还提供一种3D智能相机壳,其中固定有包括前述任意含有转向固定台500实施例所对应的固定装置。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”、“部分实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
对于本申请实施例的构造,尽管上面已经示出和描述了本申请的实施例,可以理解的 是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种用于线激光输出的固定装置,其特征在于,包括:
    激光扩束筒:
    所述激光扩束筒的轴向设置激光通孔用于穿过激光束;
    设置在所述激光通孔的激光射入端的发射器嵌入槽,所述发射器嵌入槽的周壁同轴于所述激光通孔的周壁,所述发射器嵌入槽的底壁垂直于所述激光通孔的周壁,以使得激光发射器的输出端口对准所述激光通孔,进而所述激光束沿所述激光通孔轴线射入;
    设置在所述激光通孔的激光射出端的鲍威尔棱镜嵌入槽,所述鲍威尔棱镜嵌入槽的周壁同轴于所述激光通孔的周壁且,所述鲍威尔棱镜嵌入槽的底壁垂直于所述激光通孔的周壁,以使得鲍威尔棱镜的非柱形部位嵌入至所述鲍威尔棱镜嵌入槽的同时所述鲍威尔棱镜的轴线重合于所述激光通孔的轴线。
  2. 根据权利要求1所述的装置,其特征在于,所述激光通孔内周壁布设细牙螺纹;和/或
    所述鲍威尔棱镜嵌入槽槽口内径大于所述鲍威尔棱镜的柱形部位直径。
  3. 根据权利要求1所述的装置,其特征在于,所述激光扩束筒包括棱镜固定套筒,所述棱镜固定套筒一端套设在所述激光通孔的激光射出端,所述鲍威尔棱镜嵌入槽设置在所述棱镜固定套筒的另一端面,实现所述棱镜固定套筒相对于所述激光通孔的激光射出端间沿周向的旋转;
    所述棱镜固定套筒,于套接所述激光通孔的激光射出端一端周壁的某圆周上,沿周向对称开设两个腰形孔;所述激光通孔的激光射出端周壁与所述圆周在同一径向截面的一周,沿周向均匀开设至少三个圆形孔;所述腰形孔的周向长度为,不小于包括两个所述圆形孔所对应的数值,所述腰形孔配合所述圆形孔实现所述棱镜固定套筒相对于所述激光通孔的激光射出端沿周向旋转至任一角度的紧固。
  4. 根据权利要求3所述的装置,其特征在于,所述圆周的数量为两个。
  5. 根据权利要求1所述的装置,其特征在于,所述发射器嵌入槽嵌入所述激光发射器的圆形输出端口,所述发射器嵌入槽内壁布设与所述圆形输出端口外周壁的螺纹相配合的内螺纹;或者
    所述发射器嵌入槽嵌入所述激光发射器,所述发射器嵌入槽的周壁沿所述发射器嵌入槽径向布设紧固贯穿孔,配合顶丝紧固所述激光发射器,所述激光发射器的输出端口伸入所述激光通孔内。
  6. 根据权利要求1所述的装置,其特征在于,还包括:激光转接件,所述激光转接件 呈圆柱结构,中心设有沿所述激光转接件轴向贯穿的端口嵌入孔,所述端口嵌入孔内径大于所述激光发射器的输出端口径向最大尺寸;所述激光转接件在所述端口嵌入孔的四周沿轴向布设与所述激光发射器上的固定槽相匹配的贯穿孔,以配合螺钉固定所述激光发射器;
    所述激光转接件外周壁布设外螺纹,所述发射器嵌入槽布设与所述激光转接件的外螺纹相配合的内螺纹,以嵌入固定所述激光转接件。
  7. 根据权利要求1所述的装置,其特征在于,所述激光扩束筒嵌套于固定座内,所述固定装置还包括:转向固定台;
    所述转向固定台台面划分为扩束筒固定区、以及振镜固定区;
    所述转向固定台的所述扩束筒固定区,通过“L”形转接件,以及分别布设在所述扩束筒固定区、所述“L”形转接件、所述矩形固定块相应位置的螺纹孔和螺钉,实现与所述矩形固定块的固定;
    所述转向固定台的所述振镜固定区内,沿所述转向固定台台面垂直的方向贯穿振镜固定孔。
  8. 根据权利要求7所述的装置,其特征在于,所述转向固定台,在所述振镜固定区的与所述扩束筒固定区相邻一侧的相对侧边缘布设豁口;
    所述豁口从所述振镜固定孔始、沿所述转向固定台台面平行方向贯穿所述转向固定台,且所述豁口还沿所述转向固定台台面垂直方向贯穿所述转向固定台,以使得所述振镜固定孔周壁具有形变能力;
    所述豁口的两相对面设有相匹配的螺纹贯穿孔,所述螺纹贯穿孔沿所述转向固定台台面平行方向贯穿,以配合螺钉实现所述振镜在所述振镜固定孔内的紧固。
  9. 根据权利要求8所述的装置,其特征在于,所述转向固定台的、在被所述豁口贯穿的边缘的相邻侧边缘开设锯齿,以增加所述振镜固定孔周壁的形变能力。
  10. 一种3D智能相机壳,其特征在于,包括权利要求7-9任一项所述的固定装置。
PCT/CN2020/115311 2020-08-31 2020-09-15 一种用于线激光输出的固定装置 WO2022041338A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/043,046 US11749958B2 (en) 2020-08-31 2020-09-15 Fixing device for line laser output

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010893209.0A CN112068282B (zh) 2020-08-31 2020-08-31 一种用于线激光输出的固定装置
CN202010893209.0 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022041338A1 true WO2022041338A1 (zh) 2022-03-03

Family

ID=73664777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115311 WO2022041338A1 (zh) 2020-08-31 2020-09-15 一种用于线激光输出的固定装置

Country Status (3)

Country Link
US (1) US11749958B2 (zh)
CN (3) CN113126237A (zh)
WO (1) WO2022041338A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113639636A (zh) * 2021-08-10 2021-11-12 梅卡曼德(北京)机器人科技有限公司 激光3d相机及机器人
CN115903105A (zh) * 2021-09-30 2023-04-04 梅卡曼德(北京)机器人科技有限公司 鲍威尔棱镜、一字线激光器、激光投影模组及激光3d相机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237457A (en) * 1990-10-04 1993-08-17 Asahi Kogaku Kogyo Kabushiki Kaisha Apparatus for adjusting an optical axis including a laser beam source and a beam shaping prism
CN1437001A (zh) * 2002-02-08 2003-08-20 株式会社扫佳 激光对中装置
CN101477236A (zh) * 2009-01-16 2009-07-08 中国科学院上海光学精密机械研究所 干涉仪主镜调整机构及其制备方法
CN202486369U (zh) * 2012-02-16 2012-10-10 深圳市新岸通讯技术有限公司 一种调节装置
CN202975558U (zh) * 2012-12-27 2013-06-05 北京康拓红外技术股份有限公司 一种为线阵相机提供补偿光源的激光镜头
CN203433174U (zh) * 2013-08-14 2014-02-12 常州市璟胜自动化科技有限公司 反射镜固定架
CN109739024A (zh) * 2019-03-09 2019-05-10 无锡厦泰生物科技有限公司 一种伽利略式扩束镜装置
CN209256082U (zh) * 2018-12-05 2019-08-16 广州镭码标识设备有限公司 一种基于激光打码机光路设计的激光光学装置
CN110488448A (zh) * 2019-08-01 2019-11-22 无锡亮源激光技术有限公司 一种迷你型调焦一字型镜头

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9400391B2 (en) * 2012-09-27 2016-07-26 Coherent, Inc. Uniformity adjustment method for a diode-laser line-projector
US10463243B2 (en) * 2017-03-16 2019-11-05 Carestream Dental Technology Topco Limited Structured light generation for intraoral 3D camera using 1D MEMS scanning
CN209664594U (zh) * 2019-02-20 2019-11-22 广东铭钰科技股份有限公司 一种激光机
CN110687687B (zh) * 2019-09-25 2021-05-04 腾景科技股份有限公司 一种激光光斑匀化装置
CN210224582U (zh) * 2019-09-25 2020-03-31 深圳市杰普特光电股份有限公司 一种激光系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237457A (en) * 1990-10-04 1993-08-17 Asahi Kogaku Kogyo Kabushiki Kaisha Apparatus for adjusting an optical axis including a laser beam source and a beam shaping prism
CN1437001A (zh) * 2002-02-08 2003-08-20 株式会社扫佳 激光对中装置
CN101477236A (zh) * 2009-01-16 2009-07-08 中国科学院上海光学精密机械研究所 干涉仪主镜调整机构及其制备方法
CN202486369U (zh) * 2012-02-16 2012-10-10 深圳市新岸通讯技术有限公司 一种调节装置
CN202975558U (zh) * 2012-12-27 2013-06-05 北京康拓红外技术股份有限公司 一种为线阵相机提供补偿光源的激光镜头
CN203433174U (zh) * 2013-08-14 2014-02-12 常州市璟胜自动化科技有限公司 反射镜固定架
CN209256082U (zh) * 2018-12-05 2019-08-16 广州镭码标识设备有限公司 一种基于激光打码机光路设计的激光光学装置
CN109739024A (zh) * 2019-03-09 2019-05-10 无锡厦泰生物科技有限公司 一种伽利略式扩束镜装置
CN110488448A (zh) * 2019-08-01 2019-11-22 无锡亮源激光技术有限公司 一种迷你型调焦一字型镜头

Also Published As

Publication number Publication date
CN112068282B (zh) 2021-07-13
CN113126236B (zh) 2023-04-25
CN112068282A (zh) 2020-12-11
CN113126236A (zh) 2021-07-16
CN113126237A (zh) 2021-07-16
US20230246410A1 (en) 2023-08-03
US11749958B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2022041338A1 (zh) 一种用于线激光输出的固定装置
US6796761B2 (en) Bolt and nut
RU2271899C2 (ru) Инструментальное соединение
US6301406B1 (en) Optical fiber with lens
US20070261320A1 (en) Collapsible structural members
JP2006521840A (ja) 固定要素のためのハウジングおよび固定要素
JPH0914244A (ja) セルフロッキングナット
JPH03189411A (ja) 変形可能なねじ孔を備えたロックナット
JP2014214767A (ja) ロケーションピンの取付構造
CN108808439B (zh) 一种具有对准调节装置的半导体激光器
US6665331B2 (en) Light adjustment device for oscillating laser cavity
JP2003239923A (ja) 継ねじ付きポール
CN103851550B (zh) 灯具调节装置
CN205121018U (zh) 一种可以精确定位的光纤连接器
US9110224B2 (en) Reflector with focused output
CN2686044Y (zh) 一种微调定位装置
US6710924B1 (en) Spectroscope with multiple laser beams
JP2007127874A (ja) レンズ鏡筒
GB2058987A (en) Locking of screw threaded connections
WO2021127838A1 (zh) 防眩光透镜单元及led光源系统
TWI747927B (zh) 螺釘、螺釘之使用方法、及藉由螺釘來將板件固定至基材之方法
JP2023103739A (ja) ナット構造体
JPH018270Y2 (zh)
TWI434478B (zh) 平貼式線雷射模組
TWM652257U (zh) 超音波熔接裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951007

Country of ref document: EP

Kind code of ref document: A1