WO2022038863A1 - 触覚センサ - Google Patents
触覚センサ Download PDFInfo
- Publication number
- WO2022038863A1 WO2022038863A1 PCT/JP2021/021591 JP2021021591W WO2022038863A1 WO 2022038863 A1 WO2022038863 A1 WO 2022038863A1 JP 2021021591 W JP2021021591 W JP 2021021591W WO 2022038863 A1 WO2022038863 A1 WO 2022038863A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- elastic member
- sensor
- light emitting
- wavelength
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 60
- 230000003287 optical effect Effects 0.000 claims abstract description 38
- 238000001514 detection method Methods 0.000 claims description 77
- 238000004458 analytical method Methods 0.000 claims description 11
- 230000005855 radiation Effects 0.000 abstract description 4
- 230000035699 permeability Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 10
- 230000005489 elastic deformation Effects 0.000 description 7
- 238000010191 image analysis Methods 0.000 description 6
- 239000003550 marker Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/16—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
- G01L5/166—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using photoelectric means
Definitions
- the present invention relates to a tactile sensor.
- the tactile sensor is realized by various configurations.
- the optical tactile sensor disclosed in Patent Document 1 includes a transparent elastic body arranged at a portion where an object comes into contact.
- a marker that reflects light is arranged inside the transparent elastic body.
- the transparent elastic body receives pressure from an object, the position of the marker changes due to the elastic deformation of the transparent elastic body. By detecting this position change with a camera, it is possible to measure the magnitude and direction of the force applied from the object to the transparent elastic body.
- the optical tactile sensor Since it is necessary to take a picture of the marker with a camera, the optical tactile sensor requires a light source for irradiating the marker with light. As a result, the optical tactile sensor is configured as a large device.
- the tactile sensor is used, for example, to adjust the gripping force when the robot grips an object by hand.
- the tactile sensor is particularly required to be miniaturized when it is assumed that it will be used in such an application. In order to make the tactile sensor smaller without narrowing the pressure detection range, it is necessary to make the tactile sensor thinner.
- One of the objects of the present invention is to reduce the size of the tactile sensor.
- a sensor substrate having a first surface on which a plurality of optical sensors capable of detecting light of the first wavelength are arranged, and the sensor substrate arranged on the first surface side of the sensor substrate, said to be described above.
- An elastic member having transparency to the first wavelength, a supported member supported by the elastic member and having optical characteristics different from those of the elastic member, and the elastic member covered with the elastic member on the sensor substrate side of the elastic member.
- a tactile sensor is provided that comprises a light emitting member that is dislocated and emits light containing the first wavelength towards the elastic member.
- the light emitting member may have a light emitting surface, be arranged in a state of being sandwiched between the sensor substrate and the elastic member, and have transparency to the first wavelength.
- the light emitting surface may be arranged between the light sensor and the elastic member.
- the light emitting member may be supported by the sensor substrate.
- the light emitting member may include a surface light source sandwiched between the sensor substrate and the elastic member.
- the surface light source may include an EL element.
- the light emitting member includes a light source and a light diffusing plate for diffusing light from the light source and guiding the light to the elastic member, and the light diffusing plate may be sandwiched between the elastic member and the sensor substrate.
- the supported member may have a spherical shape.
- the supported member may have a mesh shape.
- the sensor board may include a plurality of photodetectors arranged on the light emitting member side of the plurality of optical sensors and arranged corresponding to each of the plurality of optical sensors.
- the first wavelength may include wavelengths other than visible light.
- the first wavelength may include the wavelength of visible light.
- the sensor board is an image sensor, and is an analysis device that analyzes an image signal output from the sensor board according to the detection results of the plurality of optical sensors and outputs information related to pressure on the elastic member. May be further provided.
- the sensor board is an event detection type sensor, analyzes event information signals output from the sensor board according to the detection results of the plurality of optical sensors, and outputs information related to pressure on the elastic member.
- An analyzer may be further provided.
- the tactile sensor can be miniaturized.
- the tactile sensor according to the embodiment of the present invention will be described in detail with reference to the drawings.
- the embodiments shown below are examples, and the present invention is not construed as being limited to these embodiments.
- the same part or a part having a similar function is designated with the same code or a similar code (a code in which A, B, etc. are simply added after the number), and the process is repeated.
- the explanation may be omitted.
- the dimensional ratio of the drawing may differ from the actual ratio for convenience of explanation, or a part of the configuration may be omitted from the drawing.
- FIG. 1 is a diagram showing a configuration of a tactile sensor according to the first embodiment of the present invention.
- FIG. 2 is a diagram illustrating the structure of the detection device according to the first embodiment of the present invention.
- the tactile sensor 1 includes a detection device 10 including a pressure detection surface 60a and an analysis device 90. Among the tactile sensors shown in FIG. 1, the detection device 10 is shown assuming a structure having a cross section perpendicular to the pressure detection surface 60a.
- FIG. 2 is a diagram for explaining each configuration of the detection device 10 in an easy-to-understand manner, and corresponds to an exploded perspective view.
- the detection device 10 includes an image sensor substrate 20, a light emitting member 40, an elastic member 60, and a reflecting member 80.
- the image sensor board 20 includes a board 21, a light detection unit 25, and a light introduction unit 28.
- the substrate 21 is made of a rigid material, for example, an inorganic material such as ceramics.
- the substrate 21 is not limited to ceramics as long as it has a rigidity higher than that of the elastic member 60, and may be formed of, for example, an organic material.
- the photodetector 25 includes a plurality of photosensors 26. In this example, the plurality of optical sensors 26 are arranged in a matrix on the first surface 20a side of the image sensor substrate 20.
- the light introduction unit 28 has a plurality of openings 29 and covers the light detection unit 25.
- Each of the plurality of openings 29 is arranged at a position corresponding to each of the plurality of optical sensors 26.
- the opening 29 has a pinhole shape, limits the light arriving from the light emitting member 40 side, and is introduced into the optical sensor 26 arranged at a position corresponding to the opening 29. Since the opening 29 only needs to be able to introduce light into the optical sensor 26, the inside of the opening 29 may be filled with a transparent member.
- the shape of the opening 29 may be set, for example, so that the reflected light from the reflecting member 80 reaches the optical sensor 26 efficiently.
- the term "transparent" in the present specification means that the light emitted from the light emitting member 40 has transparency to light of at least a part of wavelengths (light of the first wavelength). Say that. As will be described later, this light is not limited to visible light. Having transparency is not clearly defined by the transmittance with respect to the wavelength, and may be within the range of transmittance that can realize the function as a tactile sensor described in the present specification.
- the image sensor board 20 outputs a signal according to the detection result by the optical sensor 26.
- the optical sensor 26 can detect light of the first wavelength. This indicates that the optical sensor 26 can detect at least the light of the first wavelength, and does not detect only the light of the first wavelength.
- This signal shows an image corresponding to the detection result of the optical sensors 26 arranged in a matrix. This image contains information indicating the position of the reflective member 80, as will be described later.
- the light emitting member 40 is a transparent member and is a surface light source arranged on the first surface 20a side of the image sensor substrate 20.
- the light emitting member 40 is a light emitting element composed of an organic EL sandwiched between transparent conductive layers, and emits light by receiving power supply.
- the wavelength of the emitted light may be in another wavelength range outside the visible light (for example, infrared light, ultraviolet light), or may be a wavelength of visible light without being limited to a wavelength outside the visible light. However, it may be both a wavelength outside the visible light and a wavelength of the visible light.
- the light emitting member 40 is not limited to the organic EL element, but may be an inorganic EL element.
- the elastic member 60 is a transparent elastic body such as silicon rubber.
- the elastic member 60 is arranged on the surface of both sides of the light emitting member 40, which is opposite to the surface on which the image sensor substrate 20 faces. Therefore, the light emitting member 40 is sandwiched between the elastic member 60 and the image sensor substrate 20.
- the surface opposite to the light emitting member 40 is the pressure detecting surface 60a.
- the elastic member 60 is elastically deformed by the pressure applied to the pressure detecting surface 60a by the object 1000.
- the elastic member 60 since the elastic member 60 is supported by the rigidity of the image sensor substrate 20 (substrate 21) on the surface (the surface opposite to the pressure detection surface 60a) on the image sensor substrate 20 side, the elastic member 60. Is greatly deformed on the pressure detection surface 60a side.
- the pressure on the pressure detecting surface 60a is not limited to the case where the pressure is applied in the direction perpendicular to the surface, but may be applied in the direction along the surface.
- the reflective member 80 is an elastic member having a spherical shape and having optical characteristics different from those of the elastic member 60.
- the sphere shape referred to here is not limited to a perfect sphere, but is a concept that indicates a substantially sphere and allows some distortion.
- the reflective member 80 does not have to be an elastic member.
- the reflective member 80 reflects the light from the light emitting member 40 because it has different optical characteristics from the elastic member 60. In other words, it can be said that the fact that the light emitting member 40 can reflect the light in the reflecting member 80 means that the elastic member 60 surrounding the reflecting member 80 and the reflecting member 80 have different optical characteristics.
- the plurality of reflective members 80 are supported by the elastic member 60 in a state of being arranged in a matrix in a plane substantially parallel to the first surface 20a inside the elastic member 60.
- the plurality of reflective members 80 are not limited to the case where they are arranged inside the elastic member 60, and may be arranged along, for example, the pressure detection surface 60a.
- the plurality of reflective members 80 may be arranged at positions that move following the elastic deformation of the elastic member 60 due to the pressure on the pressure detecting surface 60a, that is, they may be supported by the elastic member 60.
- the reflective member 80 is not limited to having a spherical shape, and may take various forms.
- the analysis device 90 includes an image analysis unit 95 and a power supply unit 98.
- the power supply unit 98 supplies the power consumed by the detection device 10. For example, this electric power is used for light emission in the light emitting member 40 and operation of the image sensor substrate 20.
- the power supply source may be a device different from the analysis device 90.
- the image analysis unit 95 analyzes a signal output from the detection device 10 (image sensor board 20) (hereinafter, may be referred to as an image signal), and applies pressure to the pressure detection surface 60a of the detection device 10. Relevant information (eg, pressure magnitude, pressure direction) is calculated and output. The specific analysis method will be described later. The above is the description of the structure of the tactile sensor 1.
- FIG. 3 is a diagram showing an example of a change in the position of the reflective member when a pressure is received from an object with respect to the pressure detection surface. It is assumed that the object 1000 applies pressure to the pressure detection surface 60a. In this example, the direction in which the pressure is applied is perpendicular to the pressure detection surface 60a. In the following description, this direction is referred to as the z direction, the left direction in FIG. 3 is referred to as the x direction, and the direction perpendicular to the z direction and the x direction is referred to as the y direction.
- the elastic member 60 When the object 1000 applies pressure to the pressure detection surface 60a in the z direction, the elastic member 60 is deformed. As shown in FIG. 1, when the object 1000 is separated from the pressure detection surface 60a, the elastic member 60 is restored to its original shape by the elastic force.
- the reflective member 80 moves following the deformation.
- the position of the reflective member 80 after movement is shown by a solid line, and the original position is shown by a broken line.
- the reflective member 80 relatively moves in the z direction because the object 1000 compresses the elastic member 60 in the z direction (direction approaching the image sensor substrate 20) due to the elastic deformation of the elastic member 60.
- the pressure component exists not only in the z direction but also in the xy plane direction such as the x direction. Therefore, the moving direction of the reflective member 80 existing in the peripheral portion of the object 1000 also has a component other than the z direction (a component in the xy plane direction).
- the light emitting member 40 is a surface light source as described above, at least the light directed at the image sensor substrate 20 (hereinafter, may be referred to as light Ld1, Ld2, Ld3 as an example) and the light directed at the elastic member 60. (Hereinafter, as an example, it may be referred to as light Lr1, Lr2, Lr3). That is, the light emitting member 40 has a light emitting surface on the image sensor substrate 20 side and the elastic member 60 side.
- the light Ld1, Ld2, and Ld3 all reach the photodetector 25.
- the light Lr1 passes through the elastic member 60 and is emitted to the outside from the pressure detecting surface 60a.
- a part of the light Lr1 may be returned to the photodetector 25.
- the light Lr2 passes through the elastic member 60, is reflected by the reflective member 80, and reaches the photodetector 25.
- the light Lr3 passes through the elastic member 60, is reflected by the object 1000 at the portion in contact with the pressure detection surface 60a, and reaches the photodetection unit 25.
- the image obtained by the image sensor substrate 20 when these lights reach the photodetector 25 will be described with reference to FIGS. 4 and 5.
- FIG. 4 is a diagram showing an example of a photographed image of a reflective member when pressure is received from an object with respect to the pressure detection surface.
- the image obtained by the image sensor substrate 20 in the situation shown in FIG. 3 is shown.
- the light Ld1, Ld2, and Ld3 from the light emitting member 40 reach the light detection unit 25 of the image sensor substrate 20 as the entire light of the surface light source, but the light Lr2 and Lr3 also reach as reflected light. Therefore, by removing the components of the light Ld1, Ld2, and Ld3 as the background, the image of the reflective member 80 can be obtained by extracting the components of the light Lr2. Further, by extracting the component of the light Lr3, an image of the object 1000 (particularly the portion in contact with the pressure detection surface 60a) can be obtained.
- the reflective member 80 (for example, 80d1) directly under the object 1000 moves in the z direction and approaches the image sensor substrate 20.
- the reflective member 80d1 is obtained as a larger image than the reflective member 80 before the movement.
- the reflective member 80d2 moves so as to be pushed outward with respect to the object 1000.
- the reflective member 80d2 is obtained as an image moved in a direction away from the object 1000 (X direction in the example of FIG. 4) with respect to the reflective member 80 before movement.
- the reflective member 80d3 is obtained as an image moved in a direction away from the object 1000 with respect to the reflective member 80 before movement (in the example of FIG.
- both the reflective members 80d2 and 80d3 include movement in the z direction, an image larger than that of the reflective member 80 before the movement can be obtained as in the case of the reflective member 80d1, but as an image smaller than the reflective member 80d1. can get.
- FIG. 5 is a diagram showing an example of a photographed image of a reflective member when pressure is received from an object with respect to the pressure detection surface.
- the object 1000 applies pressure to the pressure detection surface 60a in the z direction, but in FIG. 5, the object 1000 applies pressure to the pressure detection surface 60a not only in the z direction but also in the x direction. Is also supposed to apply pressure.
- the reflective member 80d4 at the position corresponding to the reflective member 80d1 is obtained as an image moved in the x direction from the reflective member 80d1.
- the image analysis unit 95 described above analyzes change information (size change, position change, and position change amount) regarding each of the plurality of reflective members 80. ). Since the size of the reflective member 80 changes on the image, the position of the reflective member 80 is treated as the center of gravity of the reflective member 80 (in this example, since the reflective member 80 is a sphere, it corresponds to the center of the circle on the image).
- the image analysis unit 95 calculates tactile information regarding the pressure of the object 1000 on the pressure detection surface 60a based on the change information.
- the tactile information indicates, for example, the magnitude and direction of the pressure corresponding to each coordinate in the xy plane of the pressure detection surface 60a, and can be said to be the vector information of the pressure at each coordinate.
- the position of the object 1000 (particularly the portion in contact with the pressure detection surface 60a) obtained from the image may also be used for the calculation.
- the tactile sensor 1 in one embodiment has a configuration in which a light emitting member 40 serving as a surface light source is sandwiched between the image sensor substrate 20 and the elastic member 60. Assuming that the elastic member 60 and the light emitting member 40 are transparent to the light emitted from the light emitting member 40, the light emitting member 40 is sandwiched between the image sensor substrate 20 and the elastic member 60. Also, the image sensor substrate 20 can detect the reflected light from the reflecting member 80 arranged on the elastic member 60.
- the light source that provides light to the reflective member 80 can be arranged as a very thin surface light source, so that the tactile sensor 1 can be miniaturized (thinned). Since the image sensor substrate 20 has a rigidity higher than that of the elastic member 60, the image sensor substrate 20 (board 21) can function as a member for supporting the elastic member 60 that receives pressure on the pressure detection surface 60a.
- the light emitting member 40 When the elastic member 60 covers the light emitting member 40, the light emitting member 40 emits light to the reflecting member 80 from directly under the reflecting member 80 (direction along the z direction), and the reflected light from the reflecting member 80. Will travel in the z direction to reach the image sensor board 20. Therefore, the processing load can be reduced in various image processing (for example, perspective transformation). By making the reflective member 80 a sphere, the load of image processing can be reduced.
- the light from the light emitting member 40 is light other than visible light such as infrared light, it is possible to prevent the light leaking from the pressure detection surface 60a from being visually recognized.
- the detection device 10A having the light emitting member 40A forming the surface light source in a pseudo manner instead of the light emitting member 40 which is the surface light source will be described.
- FIG. 6 is a diagram illustrating the structure of the detection device according to the second embodiment of the present invention.
- the detection device 10A includes a light emitting member 40A. Since the configurations other than the light emitting member 40A are the same as those in the first embodiment, the description thereof will be omitted.
- the light emitting member 40A includes a light diffusing plate 45 and a light source 48.
- the light diffusion plate 45 is arranged so as to be sandwiched between the elastic member 60 and the image sensor board 20 on the first surface 20a side of the image sensor board 20.
- the light diffusing plate 45 is provided with light from the light source 48, diffuses the light at least toward the elastic member 60, and has transparency to the light.
- the light radiated from the light diffusing plate 45 to the elastic member 60 is reflected by the reflecting member 80. This reflected light passes through the light diffusing plate 45 and reaches the photodetector 25. Since the light diffusing plate 45 has a light diffusing effect, the transmittance may be lower than that of the light emitting member 40 in the first embodiment, but the light provided from the light source 48 is finally obtained. It suffices to reach the light detection unit 25.
- the detection device 10A having such a configuration can have the same function as the detection device 10 in the first embodiment.
- a detection device 10B having a plurality of point light source light emitting members 40B in order to form a pseudo surface light source instead of the surface light source light emitting member 40 will be described.
- FIG. 7 is a diagram illustrating the structure of the detection device according to the third embodiment of the present invention.
- the detection device 10B includes an image sensor substrate 20B and a light emitting member 40B. Since the configurations other than the image sensor substrate 20B and the light emitting member 40B are the same as those in the first embodiment, the description thereof will be omitted.
- the photodetector 25B has a configuration in which a part of the photosensor 26 does not exist with respect to the photodetector 25 in the first embodiment.
- the light emitting member 40B is arranged in a region of the first surface 20Ba of the substrate 21 where the light sensor 26 does not exist.
- the light emitting member 40B is a light emitting element such as an LED.
- the light introduction portion 28B has an opening in a portion corresponding to the region in which the light radiation member 40B is arranged. The light emitting member 40B may be exposed by this opening. The light emitted from the light emitting member 40B reaches the elastic member 60 through this opening.
- the light emission angle of the light emission member 40B may be determined so that the light emitted from the light emission member 40B reaches the reflection member 80 existing in the pressure detection range.
- the light diffusing plate 45 as in the second embodiment may be provided between the elastic member 60 and the image sensor substrate 20B.
- the detection device 10B having such a configuration can have the same function as the detection device 10 in the first embodiment.
- FIG. 8 is a diagram illustrating the structure of the image sensor substrate according to the fourth embodiment of the present invention.
- the image sensor board 20C includes an optical introduction unit 28C which is a collimator array.
- the light introduction unit 28C is arranged on the first surface 20Ca side of the substrate 21 and includes a plurality of holes 29C.
- Each of the plurality of holes 29C is arranged at a position corresponding to each of the plurality of optical sensors 26.
- the hole 29C extends vertically to the first surface 20Ca and introduces the light arriving from the light emitting member 40 side into the optical sensor 26 arranged at the position corresponding to the hole 29C. Since the hole 29C only needs to be able to introduce light into the optical sensor 26, the inside of the hole 29C may be filled with a transparent member.
- the image sensor board 20C having such a configuration can have the same function as the image sensor board 20 in the first embodiment.
- an image sensor substrate 20D having a light introduction unit 28D having a light collecting function by a microlens array instead of the light introduction unit 28 including a pinhole-shaped opening 29 will be described.
- FIG. 9 is a diagram illustrating the structure of the image sensor substrate according to the fifth embodiment of the present invention.
- the image sensor substrate 20D includes a light introduction unit 28D arranged on the first surface 20Da side.
- the light introduction unit 28D includes a plurality of sets of the microlens array 27D and the opening portion 29D. Each of the plurality of sets is arranged at a position corresponding to each of the plurality of optical sensors 26, and the light arriving from the light emitting member 40 side is introduced into the optical sensor 26.
- the image sensor board 20D having such a configuration can have the same function as the image sensor board 20 in the first embodiment.
- a light-shielding film that can block the light from the light emitting member 40 and can be deformed following the elastic deformation of the elastic member 60 is arranged. You may. In this case, the image of the object 1000 cannot be acquired depending on the light-shielding performance of the light-shielding film, but the light leaking to the pressure detection surface 60a can be reduced.
- an event detection type sensor may be used instead of using the image sensor board 20.
- the event detection type sensor does not output an image signal obtained from the light detected by the light detection unit 25, but event information detected based on a change in the image (for example, there is a change in brightness above a threshold value in the image). Outputs a signal indicating the coordinates).
- the analysis device 90 includes an event analysis unit having a function of analyzing event information instead of the function of the image analysis unit 95.
- the event analysis unit analyzes a signal (event information signal) output from the event detection type sensor, and provides information related to the pressure applied to the pressure detection surface 60a of the detection device 10 (for example, the magnitude of the pressure, etc.). The direction of pressure) is calculated and output.
- the light introduction unit 28 is arranged closer to the light emitting member 40 than the light sensor 26, and the light from the light emitting member 40 (particularly the light related to the reflecting member 80 such as the light Lr2) is sent to the light sensor 26.
- the optical introduction units 28B, 28C, and 28D having the same function have been exemplified, the configuration is not limited to the illustrated configuration as long as it has such a function.
- the reflecting member 80 has a function of reflecting light of at least the first wavelength in order to allow the light from the light emitting member 40 to reach the light sensor 26.
- the configuration corresponding to the reflective member 80 can be recognized by the image sensor substrate 20 by allowing the light from the light emitting member 40 to reach the optical sensor 26, it does not necessarily have to have this reflective function.
- the elastic member 60 may not support the reflective member 80, but may support, for example, an absorbent member having an absorption function for light of a first wavelength. While the light from the light emitting member 40 is reflected by, for example, the pressure detection surface 60a and reaches the light sensor 26, the light is absorbed by the absorbing member. As a result, the image sensor substrate 20 can obtain an image of the absorbing member.
- the member (supported member) supported by the elastic member 60 so as to be able to move following the elastic deformation of the elastic member 60 is not limited to the reflective member 80, and has optical characteristics different from those of the elastic member 60. It can be adopted from various members.
- the elastic member 60 may support a plurality of types of supported members (for example, both the reflective member 80 and the absorbent member).
- one reflective member may be supported.
- One reflective member may have, for example, a mesh shape.
- the mesh-shaped member referred to here is a surface-shaped member in which a plurality of openings are formed.
- the mesh-shaped member has rectangular openings arranged in a matrix and has a grid-like pattern shape.
- Tactile sensor 10,10A, 10B ... Detection device, 20,20B, 20C, 20D ... Image sensor board, 20a, 20Ba, 20Ca, 20Da ... First surface, 21 ... Board, 25 , 25B ... Photodetector, 26 ... Optical sensor, 27D ... Microlens array, 28, 28B, 28C, 28D ... Optical introduction unit, 29 ... Opening, 29C ... Hole, 29D ... Opening, 40, 40A, 40B ... Light radiation member, 45 ... Light diffuser, 48 ... Light source, 60 ... Elastic member, 60a ... Pressure detection surface, 80, 80d1, 80d2, 80d 3, 80d4 ... Reflection member, 90 ... Analysis device, 95 ... Image analysis unit, 98 ... power supply, 1000 ... object
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Push-Button Switches (AREA)
- Electrophonic Musical Instruments (AREA)
Abstract
触覚センサは、センサ基板、弾性部材、被支持部材、および光放射部材を備える。センサ基板は、第1波長の光を検出可能な複数の光センサが配置された第1面を有する。弾性部材は、センサ基板の第1面側に配置され、第1波長に対して透過性を有する。被支持部材は、弾性部材に支持され、弾性部材とは異なる光学特性を有する。光放射部材は、弾性部材よりセンサ基板側において弾性部材に覆われて配置され、弾性部材に向けて第1波長を含む光を放射する。
Description
本発明は、触覚センサに関する。
触覚センサは、様々な構成により実現されている。例えば、特許文献1に開示される光学式の触覚センサは、物体が接触する部分に配置される透明弾性体を含む。透明弾性体の内部には、光を反射するマーカが配置されている。物体によって透明弾性体が圧力を受けると、透明弾性体の弾性変形によってマーカの位置が変化する。この位置変化をカメラによって検出することによって、物体から透明弾性体に与えられた力の大きさおよび向きを測定することができる。
マーカをカメラで撮影する必要があるため、光学式の触覚センサは、マーカに光を照射するための光源を必要とする。その結果、光学式の触覚センサは、大型の装置として構成される。一方、触覚センサは、例えば、ロボットが手で物体を掴むときに、その掴む力を調整するために用いられる。触覚センサは、このような用途で用いられることを想定する場合には、特に小型化が求められる。圧力の検出範囲を狭くせずに、触覚センサを小型にするためには、触覚センサを薄型にする必要がある。
本発明の目的の一つは、触覚センサを小型化することにある。
本発明の一実施形態によれば、第1波長の光を検出可能な複数の光センサが配置された第1面を有するセンサ基板と、前記センサ基板の前記第1面側に配置され、前記第1波長に対して透過性を有する弾性部材と、前記弾性部材に支持され、前記弾性部材とは異なる光学特性を有する被支持部材と、前記弾性部材より前記センサ基板側において前記弾性部材に覆われて配置され、前記弾性部材に向けて前記第1波長を含む光を放射する光放射部材と、を備える触覚センサが提供される。
前記光放射部材は、光放射面を有し、前記センサ基板と前記弾性部材との間に挟まれた状態で配置され、前記第1波長に対して透過性を有してもよい。前記光放射面は、前記光センサと前記弾性部材との間に配置されてもよい。前記光放射部材は前記センサ基板に支持されてもよい。
前記光放射部材は、前記センサ基板と前記弾性部材との間に挟まれた面光源を含んでもよい。前記面光源はEL素子を含んでもよい。
前記光放射部材は、光源および前記光源からの光を拡散して前記弾性部材に導くための光拡散板を含み、前記光拡散板は、前記弾性部材と前記センサ基板に挟まれてもよい。
前記被支持部材は球体形状を有してもよい。
前記被支持部材はメッシュ形状を有してもよい。
前記センサ基板は、前記複数の光センサよりも前記光放射部材側に配置され当該複数の光センサのそれぞれに対応して配置された複数の光導入部を含んでもよい。
前記第1波長は、可視光外の波長を含んでもよい。
前記第1波長は、可視光の波長を含んでもよい。
前記センサ基板は、イメージセンサであり、前記複数の光センサの検出結果に応じて前記センサ基板から出力される画像信号を解析して、前記弾性部材への圧力に関連する情報を出力する解析装置をさらに備えてもよい。
前記センサ基板は、イベント検出型センサであり、前記複数の光センサの検出結果に応じて前記センサ基板から出力されるイベント情報信号を解析して、前記弾性部材への圧力に関連する情報を出力する解析装置をさらに備えてもよい。
本発明によれば、触覚センサを小型化することができる。
以下、本発明の一実施形態における触覚センサについて、図面を参照しながら詳細に説明する。以下に示す実施形態は一例であって、本発明はこれらの実施形態に限定して解釈されるものではない。なお、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号(数字の後にA、Bなど付しただけの符号)を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なったり、構成の一部が図面から省略されたりする場合がある。
<第1実施形態>
[1.触覚センサの構成]
図1は、本発明の第1実施形態における触覚センサの構成を示す図である。図2は、本発明の第1実施形態における検出装置の構造を説明する図である。触覚センサ1は、圧力検出面60aを含む検出装置10および解析装置90を含む。図1に示す触覚センサのうち、検出装置10については、圧力検出面60aに垂直な断面の構造を想定して図示されている。図2は、検出装置10の各構成をわかりやすく説明するための図であって、分解斜視図に対応する。検出装置10は、イメージセンサ基板20、光放射部材40、弾性部材60および反射部材80を含む。
[1.触覚センサの構成]
図1は、本発明の第1実施形態における触覚センサの構成を示す図である。図2は、本発明の第1実施形態における検出装置の構造を説明する図である。触覚センサ1は、圧力検出面60aを含む検出装置10および解析装置90を含む。図1に示す触覚センサのうち、検出装置10については、圧力検出面60aに垂直な断面の構造を想定して図示されている。図2は、検出装置10の各構成をわかりやすく説明するための図であって、分解斜視図に対応する。検出装置10は、イメージセンサ基板20、光放射部材40、弾性部材60および反射部材80を含む。
イメージセンサ基板20は、基板21、光検出部25および光導入部28を含む。基板21は、剛性を有する材料、例えば、セラミックス等の無機材料で形成されている。基板21は、弾性部材60よりも剛性を有していれば、セラミックスに限らず、例えば、有機材料で形成されてもよい。光検出部25は、複数の光センサ26を含む。この例では、複数の光センサ26は、イメージセンサ基板20の第1面20a側において、マトリクス状に配置されている。
光導入部28は、複数の開口部29を有し、光検出部25を覆っている。複数の開口部29のそれぞれは、複数の光センサ26のそれぞれに対応した位置に配置されている。開口部29は、ピンホール形状を有し、光放射部材40側から到達する光を限定し、その開口部29に対応する位置に配置された光センサ26に導入する。開口部29は光センサ26に光を導入できればよいから、開口部29の内部には透明な部材が充填されていてもよい。開口部29の形状は、例えば、反射部材80からの反射光が光センサ26に対して効率よく到達するように設定されればよい。
以下、本明細書において「透明」という場合には、光放射部材40から放射される光のうち、少なくとも一部の波長の光(第1波長の光)に対して透過性を有していることをいう。後述するように、この光は可視光である場合に限られない。透過性を有することは、その波長に対する透過率によって明確に規定するものではなく、本明細書で説明される触覚センサとしての機能が実現できる透過率の範囲であればよい。
イメージセンサ基板20は、光センサ26による検出結果に応じた信号を出力する。光センサ26は、第1波長の光を検出可能である。これは、光センサ26が少なくとも第1波長の光を検出できることを示し、第1波長の光のみを検出するものではない。この信号は、マトリクス状に配置された光センサ26の検出結果に応じた画像を示している。この画像は、後述するように、反射部材80の位置を示す情報を含む。
光放射部材40は、透明な部材であって、イメージセンサ基板20の第1面20a側に配置される面光源である。光放射部材40は、この例では、透明導電層で挟まれた有機ELに構成される発光素子であり、電力の供給を受けることによって光を放射する。放射される光の波長は、可視光外の他の波長範囲(例えば、赤外光、紫外光)であってもよいし、可視光外の波長に限られず可視光の波長であってもよいし、可視光外の波長と可視光の波長との双方であってもよい。光放射部材40は、有機EL素子に限らず、無機EL素子であってもよい。
弾性部材60は、例えば、シリコンゴムなどの透明な弾性体である。弾性部材60は、光放射部材40の両面のうち、イメージセンサ基板20が対向する面とは反対側の面に配置される。したがって、光放射部材40は、弾性部材60とイメージセンサ基板20とによって挟まれている。弾性部材60の両面のうち光放射部材40とは反対側の面が圧力検出面60aである。例えば、物体1000による圧力検出面60aへの圧力によって、弾性部材60は弾性変形する。このとき、弾性部材60におけるイメージセンサ基板20側の面(圧力検出面60aとは反対側の面)側においては、イメージセンサ基板20(基板21)の剛性によって支持されているため、弾性部材60は、圧力検出面60a側において大きく変形する。圧力検出面60aへの圧力は、面に垂直方向に加わる場合に限らず、面に沿った方向に加わってもよい。
反射部材80は、球体形状を有し、弾性部材60とは異なる光学特性を有する弾性部材である。ここでいう球体形状とは、完全な球である場合に限らず、略球体のことを示し、多少の歪みを許容する概念である。反射部材80は、弾性部材でなくてもよい。反射部材
80は、弾性部材60とは異なる光学特性を有することにより、光放射部材40からの光を反射する。言い換えれば、反射部材80において光放射部材40からの光が反射できることは、反射部材80を取り囲む弾性部材60と反射部材80とが異なる光学特性を有しているといえる。
80は、弾性部材60とは異なる光学特性を有することにより、光放射部材40からの光を反射する。言い換えれば、反射部材80において光放射部材40からの光が反射できることは、反射部材80を取り囲む弾性部材60と反射部材80とが異なる光学特性を有しているといえる。
複数の反射部材80は、弾性部材60の内部において、第1面20aと略平行な面内においてマトリクス状に配置された状態で、弾性部材60に支持されている。複数の反射部材80は、弾性部材60の内部に配置される場合に限られず、例えば、圧力検出面60aに沿って配置されていてもよい。複数の反射部材80は、圧力検出面60aへの圧力による弾性部材60の弾性変形に追従して動く位置に配置されていればよく、すなわち、弾性部材60に支持されていればよい。反射部材80は、球体形状を有する場合に限らず、様々な形態を取り得る。
図1に戻って説明を続ける。解析装置90は、画像解析部95および電力供給部98を含む。電力供給部98は、検出装置10において消費される電力を供給する。例えば、この電力は、光放射部材40における発光およびイメージセンサ基板20の動作に用いられる。電力の供給源は、解析装置90とは別の装置であってもよい。
画像解析部95は、検出装置10(イメージセンサ基板20)から出力される信号(以下、画像信号という場合がある)を解析して、検出装置10の圧力検出面60aに対して加わった圧力に関連する情報(例えば、圧力の大きさ、圧力の向き)を算出して出力する。具体的な解析方法については、後述する。以上が触覚センサ1の構造についての説明である。
[検出原理]
次に、触覚センサ1による圧力の検出原理について説明する。ここでは、圧力検出面60aが物体1000から圧力を受けた場合における構造上の変化(弾性部材60および反射部材80の変化)が生じたことを想定する。
次に、触覚センサ1による圧力の検出原理について説明する。ここでは、圧力検出面60aが物体1000から圧力を受けた場合における構造上の変化(弾性部材60および反射部材80の変化)が生じたことを想定する。
図3は、圧力検出面に対して物体から圧力を受けたときの反射部材の位置変化の一例を示す図である。物体1000が圧力検出面60aに対して圧力を加えていることを想定している。この例では、その圧力が加わる方向は、圧力検出面60aに垂直である。以下の説明では、この方向をz方向といい、z方向に垂直であり図3における左方向をx方向といい、z方向とx方向とに垂直な方向をy方向という。
物体1000が圧力検出面60aに対してz方向に圧力を加えると、弾性部材60が変形する。図1に示すように物体1000が圧力検出面60aから離れれば、弾性部材60は、弾性力によって元の形に復元される。
弾性部材60が変形すると、その変形に追従して反射部材80が移動する。図3に示す例では、反射部材80は、移動後の位置が実線で示され、元の位置が破線で示されている。図示されるように、物体1000によって弾性部材60の弾性変形によりz方向(イメージセンサ基板20に近づく方向)に圧縮されていることにより、反射部材80が相対的にz方向に移動する。物体1000の周辺部においては、圧力の成分がz方向だけでなく、x方向などxy平面方向にも存在する。したがって、物体1000の周辺部に存在する反射部材80の移動方向は、z方向以外の成分(xy平面方向の成分)も有する。
光放射部材40は、上述したように面光源であるから、少なくとも、イメージセンサ基板20に向けた光(以下、例示として光Ld1、Ld2、Ld3という場合がある)および弾性部材60に向けた光(以下、例示として光Lr1、Lr2、Lr3という場合があ
る)を放射する。すなわち、光放射部材40は、イメージセンサ基板20側と弾性部材60側に光放射面を有する。
る)を放射する。すなわち、光放射部材40は、イメージセンサ基板20側と弾性部材60側に光放射面を有する。
光Ld1、Ld2、Ld3は、いずれも光検出部25に到達する。光Lr1は、弾性部材60を透過して圧力検出面60aから外に放出される。放出された光Lr1が何らかの物体に反射されたり、圧力検出面60aにおける反射されたりすることによって、光Lr1の一部が光検出部25まで戻ってくる場合もある。例えば、物体1000のうち圧力検出面60aに接触しない部分が想定される。光Lr2は、弾性部材60を透過し、反射部材80において反射されて、光検出部25に到達する。光Lr3は、弾性部材60を透過し、圧力検出面60aに接触する部分の物体1000において反射されて、光検出部25に到達する。光検出部25にこれらの光が到達することによって、イメージセンサ基板20によって得られる画像について図4および図5を用いて説明する。
図4は、圧力検出面に対して物体から圧力を受けたときの反射部材の撮影画像の一例を示す図である。この例では、図3に示す状況において、イメージセンサ基板20によって得られる画像を示している。イメージセンサ基板20の光検出部25には、光放射部材40からの光Ld1、Ld2、Ld3が面光源の全体の光として到達するが、光Lr2、Lr3も反射光として到達する。したがって、光Ld1、Ld2、Ld3の成分をバックグラウンドとして除去することで、光Lr2の成分を取り出すことで反射部材80の画像を得ることができる。また、光Lr3の成分を取り出すことで物体1000(特に圧力検出面60aに接触している部分)の画像を得ることができる。
図4によれば、物体1000の直下にある反射部材80(例えば、80d1)が、z方向に移動してイメージセンサ基板20に近づく。その結果、反射部材80d1は、移動前の反射部材80よりも大きい画像として得られる。物体1000の周辺部に対応する位置の反射部材80のうち反射部材80d2は、物体1000に対して外側に押し出されるように移動する。その結果、反射部材80d2は、移動前の反射部材80に対して物体1000から離れる方向(図4の例ではX方向)に移動した画像として得られる。反射部材80d3も同様に、移動前の反射部材80に対して物体1000から離れる方向(図4の例ではX方向とY方向とを合成した方向)に移動した画像として得られる。反射部材80d2、80d3のいずれも、z方向への移動も含んでいるから、反射部材80d1と同様に、移動前の反射部材80よりも大きい画像として得られるが、反射部材80d1よりは小さい画像として得られる。
図5は、圧力検出面に対して物体から圧力を受けたときの反射部材の撮影画像の一例を示す図である。図4では、物体1000が圧力検出面60aに対してz方向に圧力を加えることを想定していたが、図5では、物体1000が圧力検出面60aに対してz方向だけではなくx方向にも圧力を加えることを想定している。図5によれば、反射部材80d1に対応する位置の反射部材80d4が、反射部材80d1よりもx方向へ移動した画像として得られる。
上述した画像解析部95は、このようにイメージセンサ基板20で取得された画像を解析することによって、複数の反射部材80のそれぞれに関する変化情報(大きさの変化、位置の変化および位置の変化量)を取得する。画像上では、反射部材80の大きさが変わるため、反射部材80の位置は反射部材80の重心(この例では反射部材80が球体であるため、画像上では円の中心に相当)として扱う。
画像解析部95は、変化情報に基づいて、圧力検出面60aへの物体1000の圧力に関する触覚情報を算出する。触覚情報は、例えば、圧力検出面60aのxy平面における各座標に対応した圧力の大きさおよび向きを示し、各座標における圧力のベクトル情報と
もいえる。このとき、画像から得られる物体1000(特に圧力検出面60aに接触する部分)の位置も算出に用いてもよい。
もいえる。このとき、画像から得られる物体1000(特に圧力検出面60aに接触する部分)の位置も算出に用いてもよい。
以上、一実施形態における触覚センサ1は、イメージセンサ基板20と弾性部材60との間に面光源となる光放射部材40を挟む構成を有する。弾性部材60および光放射部材40が、光放射部材40から放射される光に対して透明であることによって、光放射部材40がイメージセンサ基板20と弾性部材60との間に挟まれていたとしても、弾性部材60に配置された反射部材80からの反射光をイメージセンサ基板20で検出することができる。
この構成によれば、反射部材80へ光を提供する光源を、非常に薄い面光源として配置することができるため、触覚センサ1を小型化(薄型化)することができる。イメージセンサ基板20が弾性部材60よりも剛性を有することで、圧力検出面60aに圧力を受ける弾性部材60を支持するための部材として、イメージセンサ基板20(基板21)を機能させることもできる。
弾性部材60が光放射部材40を覆うことにより、光放射部材40が反射部材80の直下(z方向に沿った方向)から反射部材80に対して光を放射し、反射部材80からの反射光がz方向に進んでイメージセンサ基板20に到達する。そのため、様々な画像処理(例えば透視変換)において処理負荷を低減することができる。反射部材80を球体にすることで画像処理の負荷を低減することもできる。光放射部材40からの光が赤外光などの可視光外の光である場合には、圧力検出面60aから漏れ出る光が視認されないようにすることもできる。
<第2実施形態>
第2実施形態では、面光源である光放射部材40に代えて、擬似的に面光源を形成する光放射部材40Aを有する検出装置10Aについて説明する。
第2実施形態では、面光源である光放射部材40に代えて、擬似的に面光源を形成する光放射部材40Aを有する検出装置10Aについて説明する。
図6は、本発明の第2実施形態における検出装置の構造を説明する図である。検出装置10Aは、光放射部材40Aを含む。光放射部材40A以外の構成については、第1実施形態と同じであるため、その説明を省略する。
光放射部材40Aは、光拡散板45および光源48を含む。光拡散板45は、イメージセンサ基板20の第1面20a側において弾性部材60とイメージセンサ基板20との間に挟まれて配置されている。光源48は、例えば、光拡散板45は、光源48から光が提供され、その光を少なくとも弾性部材60側に拡散するとともに、その光に対して透過性も有する。
光拡散板45から弾性部材60に放射された光は、反射部材80において反射される。この反射光は、光拡散板45を透過して光検出部25に到達する。光拡散板45は、光の拡散効果を有していることから、第1実施形態における光放射部材40よりも透過率が低い場合もあるが、光源48から提供される光が、最終的に光検出部25まで到達すればよい。
このような構成を有する検出装置10Aであっても、第1実施形態における検出装置10と同様の機能を有することができる。
<第3実施形態>
第3実施形態では、面光源である光放射部材40に代えて、擬似的に面光源を形成するために複数の点光源の光放射部材40Bを有する検出装置10Bについて説明する。
第3実施形態では、面光源である光放射部材40に代えて、擬似的に面光源を形成するために複数の点光源の光放射部材40Bを有する検出装置10Bについて説明する。
図7は、本発明の第3実施形態における検出装置の構造を説明する図である。検出装置10Bは、イメージセンサ基板20Bおよび光放射部材40Bを含む。イメージセンサ基板20Bおよび光放射部材40B以外の構成については、第1実施形態と同じであるため、その説明を省略する。
光検出部25Bは、第1実施形態における光検出部25に対して一部の光センサ26が存在しない構成を有する。光放射部材40Bは、基板21の第1面20Baのうち光センサ26が存在しない領域に配置されている。光放射部材40Bは、LEDなどの発光素子である。光導入部28Bは、光放射部材40Bが配置された領域に対応する部分に開口部を有する。この開口部によって光放射部材40Bが露出されてもよい。この開口部を通して光放射部材40Bから放射される光が弾性部材60に到達する。光放射部材40Bから放射される光が、圧力検出範囲に存在する反射部材80に到達するように、光放射部材40Bの光放射角度が決められればよい。光放射部材40Bの一部として、第2実施形態のような光拡散板45が、弾性部材60とイメージセンサ基板20Bとの間に設けられてもよい。
このような構成を有する検出装置10Bであっても、第1実施形態における検出装置10と同様の機能を有することができる。
<第4実施形態>
第4実施形態では、ピンホール形状の開口部29を含む光導入部28に代えて、コリメータの機能を有する光導入部28Cを有するイメージセンサ基板20Cについて説明する。
第4実施形態では、ピンホール形状の開口部29を含む光導入部28に代えて、コリメータの機能を有する光導入部28Cを有するイメージセンサ基板20Cについて説明する。
図8は、本発明の第4実施形態におけるイメージセンサ基板の構造を説明する図である。イメージセンサ基板20Cは、コリメータアレイである光導入部28Cを含む。光導入部28Cは、基板21の第1面20Ca側に配置され、複数の孔29Cを含む。複数の孔29Cのそれぞれは、複数の光センサ26のそれぞれに対応した位置に配置されている。孔29Cは、第1面20Caに垂直に延び、光放射部材40側から到達する光を、その孔29Cに対応する位置に配置された光センサ26に導入する。孔29Cは光センサ26に光を導入できればよいから、孔29Cの内部には透明な部材が充填されていてもよい。
このような構成を有するイメージセンサ基板20Cであっても、第1実施形態におけるイメージセンサ基板20と同様の機能を有することができる。
<第5実施形態>
第5実施形態では、ピンホール形状の開口部29を含む光導入部28に代えて、マイクロレンズアレイによる集光機能を有する光導入部28Dを有するイメージセンサ基板20Dについて説明する。
第5実施形態では、ピンホール形状の開口部29を含む光導入部28に代えて、マイクロレンズアレイによる集光機能を有する光導入部28Dを有するイメージセンサ基板20Dについて説明する。
図9は、本発明の第5実施形態におけるイメージセンサ基板の構造を説明する図である。イメージセンサ基板20Dは、第1面20Da側に配置された光導入部28Dを含む。光導入部28Dは、マイクロレンズアレイ27Dと開口部29Dとの複数の組を含む。複数の組のそれぞれは、複数の光センサ26のそれぞれに対応した位置に配置され、光放射部材40側から到達する光を光センサ26に導入する。
このような構成を有するイメージセンサ基板20Dであっても、第1実施形態におけるイメージセンサ基板20と同様の機能を有することができる。
<変形例>
以上、本発明の一実施形態について説明したが、本発明の一実施形態は、以下のように様々な形態に変形することもできる。また、上述した実施形態および以下に説明する変形例は、それぞれ互いに組み合わせて適用することもできる。
以上、本発明の一実施形態について説明したが、本発明の一実施形態は、以下のように様々な形態に変形することもできる。また、上述した実施形態および以下に説明する変形例は、それぞれ互いに組み合わせて適用することもできる。
(1)反射部材80より圧力検出面60a側(例えば、圧力検出面60a上)において、光放射部材40からの光を遮るとともに弾性部材60の弾性変形に追従して変形できる遮光膜が配置されてもよい。この場合には、遮光膜の遮光性能によっては物体1000の画像を取得できなくなるが、圧力検出面60aに漏れ出る光を低減することができる。
(2)触覚センサは、イメージセンサ基板20を用いる代わりに、イベント検出型センサを用いてもよい。イベント検出型センサは、光検出部25によって検出された光から得られる画像の信号を出力するのではなく、画像の変化に基づいて検出されるイベント情報(例えば画像において閾値以上の輝度変化のあった座標)を示す信号を出力する。この場合には、解析装置90は、画像解析部95の機能に代えて、イベント情報を解析する機能を有するイベント解析部を含む。イベント解析部は、イベント検出型センサから出力される信号(イベント情報信号)を解析して、検出装置10の圧力検出面60aに対して加わった圧力に関連する情報(例えば、圧力の大きさ、圧力の向き)を算出して出力する。
(3)光導入部28は、光センサ26よりも光放射部材40側に配置され、光放射部材40からの光(特に光Lr2のような反射部材80に関連する光)を光センサ26に導入する。同様な機能の光導入部28B、28C、28Dを例示したが、このような機能を有していれば、例示された構成に限らない。
(4)反射部材80は、光放射部材40からの光を光センサ26に到達させるために、少なくとも第1波長の光に対する反射機能を有する。一方、光放射部材40からの光を光センサ26に到達させることによって、反射部材80に相当する構成がイメージセンサ基板20において認識できれば、必ずしもこの反射機能を有していなくてもよい。弾性部材60は、反射部材80を支持するのではなく、例えば、第1波長の光に対する吸収機能を有する吸収部材を支持してもよい。光放射部材40からの光が、例えば圧力検出面60aで反射して光センサ26に到達する間に、吸収部材によって光が吸収される。これによって、イメージセンサ基板20は、吸収部材の画像を得ることができる。
このように、弾性部材60の弾性変形に追従して移動できるように弾性部材60に支持される部材(被支持部材)は、反射部材80に限られず、弾性部材60とは異なる光学特性を有する様々な部材から採用されることができる。弾性部材60は、複数種類の被支持部材(例えば、反射部材80と吸収部材との双方)を支持してもよい。
(5)弾性部材60によって複数の反射部材80が支持されている場合に限らず、一つの反射部材が支持されてもよい。一つの反射部材は、例えば、メッシュ形状を有してもよい。ここでいうメッシュ形状の部材は、複数の開口が形成された面形状の部材である。メッシュ形状の部材は、一例として、矩形の開口がマトリクス状に配置され、格子状のパターン形状を有する。面形状の部材が弾性部材60に支持されることによって、弾性部材60の弾性変形に追従して、この部材が変形する。イメージセンサ基板20は、例えば、この弾性変形によって開口部分の形状が変化したり、開口部分が移動したりする画像を得ることができる。
1…触覚センサ、10,10A,10B…検出装置、20,20B,20C,20D…イメージセンサ基板、20a,20Ba,20Ca,20Da…第1面、21…基板、25
,25B…光検出部、26…光センサ、27D…マイクロレンズアレイ、28,28B,28C,28D…光導入部、29…開口部、29C…孔、29D…開口部、40,40A,40B…光放射部材、45…光拡散板、48…光源、60…弾性部材、60a…圧力検出面、80,80d1,80d2,80d3,80d4…反射部材、90…解析装置、95…画像解析部、98…電力供給部、1000…物体
,25B…光検出部、26…光センサ、27D…マイクロレンズアレイ、28,28B,28C,28D…光導入部、29…開口部、29C…孔、29D…開口部、40,40A,40B…光放射部材、45…光拡散板、48…光源、60…弾性部材、60a…圧力検出面、80,80d1,80d2,80d3,80d4…反射部材、90…解析装置、95…画像解析部、98…電力供給部、1000…物体
Claims (14)
- 第1波長の光を検出可能な複数の光センサが配置された第1面を有するセンサ基板と、
前記センサ基板の前記第1面側に配置され、前記第1波長に対して透過性を有する弾性部材と、
前記弾性部材に支持され、前記弾性部材とは異なる光学特性を有する被支持部材と、
前記弾性部材より前記センサ基板側において前記弾性部材に覆われて配置され、前記弾性部材に向けて前記第1波長を含む光を放射する光放射部材と、
を備える触覚センサ。 - 前記光放射部材は、光放射面を有し、前記センサ基板と前記弾性部材との間に挟まれた状態で配置され、前記第1波長に対して透過性を有する、請求項1に記載の触覚センサ。
- 前記光放射面は、前記光センサと前記弾性部材との間に配置され、
前記光放射部材は前記センサ基板に支持される、請求項2に記載の触覚センサ。 - 前記光放射部材は、前記センサ基板と前記弾性部材との間に挟まれた面光源を含む、請求項1から請求項3のいずれかに記載の触覚センサ。
- 前記面光源はEL素子を含む、請求項4に記載の触覚センサ。
- 前記光放射部材は、光源および前記光源からの光を拡散して前記弾性部材に導くための光拡散板を含み、
前記光拡散板は、前記弾性部材と前記センサ基板に挟まれる、請求項1から請求項3のいずれかに記載の触覚センサ。 - 前記被支持部材は球体形状を有する、請求項1から請求項6のいずれかに記載の触覚センサ。
- 前記被支持部材はメッシュ形状を有する、請求項1から請求項6のいずれかに記載の触覚センサ。
- 前記センサ基板は、前記複数の光センサよりも前記光放射部材側に配置され当該複数の光センサのそれぞれに対応して配置された複数の光導入部を含む、請求項1から請求項8のいずれかに記載の触覚センサ。
- 前記光放射部材は、前記センサ基板と前記弾性部材との間に配置されている、請求項9に記載の触覚センサ。
- 前記第1波長は、可視光外の波長を含む、請求項1から請求項10のいずれかに記載の触覚センサ。
- 前記第1波長は、可視光の波長を含む、請求項1から請求項10のいずれかに記載の触覚センサ。
- 前記センサ基板は、イメージセンサであり、
前記複数の光センサの検出結果に応じて前記センサ基板から出力される画像信号を解析して、前記弾性部材への圧力に関連する情報を出力する解析装置をさらに備える、請求項1から請求項12のいずれかに記載の触覚センサ。 - 前記センサ基板は、イベント検出型センサであり、
前記複数の光センサの検出結果に応じて前記センサ基板から出力されるイベント情報信号を解析して、前記弾性部材への圧力に関連する情報を出力する解析装置をさらに備える、請求項1から請求項12のいずれかに記載の触覚センサ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180004175.8A CN114402183B (zh) | 2020-08-17 | 2021-06-07 | 触觉传感器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-137633 | 2020-08-17 | ||
JP2020137633A JP6864401B1 (ja) | 2020-08-17 | 2020-08-17 | 触覚センサ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022038863A1 true WO2022038863A1 (ja) | 2022-02-24 |
Family
ID=75638785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/021591 WO2022038863A1 (ja) | 2020-08-17 | 2021-06-07 | 触覚センサ |
Country Status (4)
Country | Link |
---|---|
JP (2) | JP6864401B1 (ja) |
CN (1) | CN114402183B (ja) |
TW (1) | TWI788919B (ja) |
WO (1) | WO2022038863A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023100515A1 (ja) * | 2021-12-02 | 2023-06-08 | ソニーグループ株式会社 | 触覚センサ装置、接触センサモジュールおよびロボットアーム装置 |
KR20230096431A (ko) * | 2021-12-23 | 2023-06-30 | 삼성전자주식회사 | 광학식 촉각 센서 |
WO2023210376A1 (ja) * | 2022-04-28 | 2023-11-02 | 富士フイルム株式会社 | 圧力センサおよびロボット |
KR20240069210A (ko) * | 2022-11-11 | 2024-05-20 | 삼성전자주식회사 | 물체에 대한 접촉 정보를 획득하기 위한 전자 장치 및 그 제어 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60209128A (ja) * | 1984-04-02 | 1985-10-21 | Oki Electric Ind Co Ltd | 感圧センサ |
JP2001330415A (ja) * | 2000-05-23 | 2001-11-30 | Akira Todoroki | 光透過繊維強化複合材料の変形検出装置 |
JP2008197078A (ja) * | 2007-02-08 | 2008-08-28 | Nara Institute Of Science & Technology | 触覚センサ及び触覚情報検出方法 |
JP2011525284A (ja) * | 2008-06-19 | 2011-09-15 | マサチューセッツ インスティテュート オブ テクノロジー | 弾性撮像を使用する接触センサ |
US20120240691A1 (en) * | 2011-03-23 | 2012-09-27 | University Of Southern California | Elastomeric optical tactile sensor |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07128163A (ja) * | 1993-11-08 | 1995-05-19 | Fuji Electric Co Ltd | 触覚センサ |
US6267014B1 (en) * | 2000-01-14 | 2001-07-31 | National Research Council Of Canada | Apparatus for sensing a load of pressure applied to a surface |
US6909084B2 (en) * | 2000-08-31 | 2005-06-21 | Toudai Tlo, Ltd | Optical tactile sensor having a transparent elastic tactile portion |
JP4087238B2 (ja) * | 2002-12-10 | 2008-05-21 | シャープ株式会社 | 触覚センサ |
JP2006003137A (ja) * | 2004-06-16 | 2006-01-05 | Toudai Tlo Ltd | 光学式触覚センサ及び該センサにおける情報取得方法 |
JP5013507B2 (ja) * | 2006-06-29 | 2012-08-29 | 国立大学法人東北大学 | 反射像を用いた触覚センサ |
ITPI20070085A1 (it) * | 2007-07-23 | 2009-01-24 | Scuola Superiore Di Studi Univ | Sensore tattile flessibile e metodo per ottenerlo |
JP2010190770A (ja) * | 2009-02-19 | 2010-09-02 | Nitta Ind Corp | 複合型光学式触覚センサ |
EP2446238B1 (en) * | 2009-06-23 | 2016-08-03 | Imec | Optical tactile sensors |
JP5825604B2 (ja) * | 2011-09-13 | 2015-12-02 | 国立大学法人名古屋大学 | 6軸力計測装置、及び6軸力計測方法 |
HUP1100633A2 (en) * | 2011-11-17 | 2013-06-28 | Pazmany Peter Katolikus Egyetem | Device with optical feedback for measuring force and pressure |
TWI438393B (zh) * | 2011-12-14 | 2014-05-21 | Zygo Corp | 使用調變照明作非接觸式表面特性檢測 |
US9085381B2 (en) * | 2012-02-17 | 2015-07-21 | S7 Ip Holdings, Llc | Load fill sensor system for grain trailers |
EP2910009A4 (en) * | 2012-10-17 | 2016-07-27 | Gelsight Inc | THREE DIMENSIONAL DIGITAL PRINTING AND VISUALIZATION OF OBJECTS |
JP5983845B2 (ja) * | 2015-01-15 | 2016-09-06 | 大日本印刷株式会社 | 圧力センサおよび接続部材の製造方法 |
US10038854B1 (en) * | 2015-08-14 | 2018-07-31 | X Development Llc | Imaging-based tactile sensor with multi-lens array |
CN107710115B (zh) * | 2016-03-31 | 2021-01-29 | 深圳市汇顶科技股份有限公司 | 触控响应模组、键盘、触控装置、具反馈功能的触控设备 |
JP6685821B2 (ja) * | 2016-04-25 | 2020-04-22 | キヤノン株式会社 | 計測装置、インプリント装置、物品の製造方法、光量決定方法、及び、光量調整方法 |
TR201606370A2 (ja) * | 2016-05-13 | 2017-11-21 | Sensobright Ind Llc | |
CN106052914A (zh) * | 2016-07-21 | 2016-10-26 | 清华大学 | 一种基于视觉的触觉测量传感器 |
TWI597910B (zh) * | 2016-10-03 | 2017-09-01 | 國立交通大學 | 光學元件、壓力感測元件以及壓力感測裝置 |
GB2607548A (en) * | 2018-05-18 | 2022-12-07 | 1004335 Ontario Inc Carrying On Business As A D Metro | Optical touch sensor devices and systems |
WO2020154393A1 (en) * | 2019-01-24 | 2020-07-30 | The Regents Of The University Of Michigan | Light-based tactile sensing with directional sensitivity |
EP3693139A1 (en) * | 2019-02-11 | 2020-08-12 | Université d'Aix-Marseille | Optical tactile sensor |
-
2020
- 2020-08-17 JP JP2020137633A patent/JP6864401B1/ja active Active
-
2021
- 2021-03-26 JP JP2021053177A patent/JP2022033691A/ja active Pending
- 2021-06-07 WO PCT/JP2021/021591 patent/WO2022038863A1/ja active Application Filing
- 2021-06-07 CN CN202180004175.8A patent/CN114402183B/zh active Active
- 2021-07-15 TW TW110126148A patent/TWI788919B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60209128A (ja) * | 1984-04-02 | 1985-10-21 | Oki Electric Ind Co Ltd | 感圧センサ |
JP2001330415A (ja) * | 2000-05-23 | 2001-11-30 | Akira Todoroki | 光透過繊維強化複合材料の変形検出装置 |
JP2008197078A (ja) * | 2007-02-08 | 2008-08-28 | Nara Institute Of Science & Technology | 触覚センサ及び触覚情報検出方法 |
JP2011525284A (ja) * | 2008-06-19 | 2011-09-15 | マサチューセッツ インスティテュート オブ テクノロジー | 弾性撮像を使用する接触センサ |
US20120240691A1 (en) * | 2011-03-23 | 2012-09-27 | University Of Southern California | Elastomeric optical tactile sensor |
Also Published As
Publication number | Publication date |
---|---|
JP2022033634A (ja) | 2022-03-02 |
TWI788919B (zh) | 2023-01-01 |
JP6864401B1 (ja) | 2021-04-28 |
TW202208811A (zh) | 2022-03-01 |
JP2022033691A (ja) | 2022-03-02 |
CN114402183B (zh) | 2024-03-08 |
CN114402183A (zh) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022038863A1 (ja) | 触覚センサ | |
CN210983445U (zh) | 电子设备 | |
US9201524B2 (en) | Lensless optical navigation device for directing radiation via reflection by three total internal surfaces | |
TWI502212B (zh) | 光學裝置、使用微透鏡之感光元件及其製作方法 | |
KR20140016390A (ko) | 디스플레이들 및 정보입력장치들 | |
JP2008502008A (ja) | 3次元レンズを持つポリマー導波路を製造する方法 | |
TWI391844B (zh) | 多維度光學控制裝置及其方法 | |
US20190384141A1 (en) | Lighting device comprising led and grating | |
WO2018216619A1 (ja) | 非接触入力装置 | |
CN102375621B (zh) | 光学导航设备 | |
JP5368731B2 (ja) | タッチパネル | |
JP2007178391A (ja) | 傾斜角検出装置 | |
CN102346574A (zh) | 电子装置及其光学感应模块 | |
TWI622765B (zh) | 照明裝置及檢查裝置 | |
JPH1153102A (ja) | 入力装置 | |
CN101673147B (zh) | 多维度光学控制装置及多维度光学控制方法 | |
CN114529955A (zh) | 取像装置 | |
CN109960971B (zh) | 一种光学指纹检测装置 | |
JP7504300B2 (ja) | 故障検出装置及び表示装置 | |
CN215581493U (zh) | 镜头检测装置 | |
WO2024079832A1 (ja) | インタフェース装置 | |
JP2015095210A (ja) | 操作入力装置 | |
JPH0540573A (ja) | 座標入力装置 | |
KR20240091384A (ko) | 검사 장치 및 검사 방법 | |
JP2002243442A (ja) | 傾き検知装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21858014 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21858014 Country of ref document: EP Kind code of ref document: A1 |