WO2022037318A1 - 喷射单元清洗指令生成方法、装置、打印机和存储介质 - Google Patents

喷射单元清洗指令生成方法、装置、打印机和存储介质 Download PDF

Info

Publication number
WO2022037318A1
WO2022037318A1 PCT/CN2021/105940 CN2021105940W WO2022037318A1 WO 2022037318 A1 WO2022037318 A1 WO 2022037318A1 CN 2021105940 W CN2021105940 W CN 2021105940W WO 2022037318 A1 WO2022037318 A1 WO 2022037318A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
unit
injection
interval
time
Prior art date
Application number
PCT/CN2021/105940
Other languages
English (en)
French (fr)
Inventor
吴俊中
向东清
Original Assignee
珠海赛纳三维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海赛纳三维科技有限公司 filed Critical 珠海赛纳三维科技有限公司
Publication of WO2022037318A1 publication Critical patent/WO2022037318A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/17Cleaning arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the technical field of printers, and in particular, to a method, device, printer and storage medium for generating a cleaning instruction of an ejection unit.
  • the jetting unit in the printer needs to maintain a good state of jetting ink, so it is often necessary to control the jetting unit to stop the printing process and put the The jetting unit is moved back to the cleaning station for automatic cleaning, and then the jetting unit is cleaned by a series of mechanical steps to maintain the fluidity of the jetting unit's ink discharge.
  • the user sets the timing or quantitative method in the printer to control the jetting unit to stop the printing process and move it back to the cleaning station for automatic cleaning.
  • the timing or quantitative method is fixed in some printing scenarios. It is easy to cause frequent automatic cleaning of the ejection unit, which increases the cleaning cost and takes up more printing time, resulting in lower printing efficiency.
  • the present application provides a method, device, printer and storage medium for generating a cleaning instruction of an ejection unit, so as to solve the problems existing in the prior art.
  • the present application provides a method for generating a spray unit cleaning instruction, applied to a printer, including:
  • injection parameters of the injection unit where the injection parameters include an injection threshold for the injection unit to maintain injection smoothness
  • a cleaning instruction is generated according to the spraying threshold, and the cleaning instruction is used to control the spraying unit to perform cleaning.
  • the injection threshold includes an injection quantity threshold
  • Generating a cleaning instruction based on the spray threshold includes:
  • the injection data including the injection quantity
  • the purge command is generated when the injection amount reaches the injection amount threshold.
  • the injection threshold includes an injection time threshold, and the injection time threshold is a time during which the injection unit maintains injection smoothness within a preset injection area;
  • Generating a cleaning instruction based on the spray threshold includes:
  • the ejection time threshold and the printing layer data determine the cleaning interval of the ejection unit from the end of the last cleaning to the start of the next cleaning
  • the cleaning instruction is generated according to the cleaning interval.
  • determining the cleaning interval of the spraying unit from the end of the previous cleaning to the start of the next cleaning including:
  • the cleaning interval is determined based on the correction value, the ejection time threshold, and the print layer data.
  • the correction value includes an interval time correction value
  • the print layer data includes ejection area information of each print layer
  • the cleaning interval includes an interval time
  • the cleaning interval is determined according to the correction value, the ejection time threshold and the printing layer data, including:
  • the interval time is determined according to the interval time correction value, the ejection time threshold value, and the ejection area information of the respective print layers.
  • determining the interval time according to the interval time correction value, the ejection time threshold value and the ejection area information of the respective printing layers includes:
  • the interval time is calculated by the following formula:
  • T n is the interval time from the end of the nth cleaning to the start of the n+1th cleaning
  • is the interval time correction value
  • P is the preset spray area
  • S is the spray time threshold
  • P n is the nth The ejection area of the first printing layer to be printed after the first cleaning
  • n is a positive integer.
  • the correction value further includes an interval layer number correction value
  • the printing layer data further includes the printing time of the printing layer
  • the cleaning interval further includes the interval layer number
  • the cleaning interval is determined according to the correction value, the ejection time threshold and the printing layer data, including:
  • the number of spaced layers is determined according to the correction value of the number of spaced layers, the printing time of the printing layer, and the spaced time.
  • determining the number of spaced layers according to the correction value of the number of spaced layers, the printing time of the printing layers and the spaced time includes:
  • the interval time is calculated by the following formula:
  • F n is the interval layer number from the end of the nth cleaning to the start of the n +1th cleaning
  • Tn is the interval time from the end of the nth cleaning to the start of the n+1th cleaning
  • Q n is the nth The printing time of the first printing layer to be printed after the first cleaning
  • X is the correction value of the interval layer number
  • both Fn and n are positive integers.
  • the method further includes:
  • the number of layers of the first printing layer to be printed by the ejection unit after cleaning is obtained according to the number of spaced layers.
  • the obtaining the correction value includes:
  • the correction value is obtained according to at least one of the performance of the ejection unit, the properties of the object to be printed, the printing environment, the characteristics of the printer, and user requirements.
  • the present application provides a spray unit cleaning instruction generation device, applied to a printer, including:
  • an acquisition module configured to acquire injection parameters of the injection unit, where the injection parameters include an injection threshold at which the injection unit maintains injection smoothness;
  • a generating module configured to generate a cleaning instruction according to the spraying threshold, where the cleaning instruction is used to control the spraying unit to perform cleaning.
  • the present application provides a printer, comprising a spray unit, a controller, and the above-mentioned spray unit cleaning instruction generation device, the spray unit cleaning instruction generation device is configured to generate a cleaning command, and the controller is configured to generate a cleaning instruction according to the cleaning instruction. Instructions control the spray unit to perform cleaning.
  • the present application provides a storage medium, where the readable storage medium is used to store a computer program, and the computer program is used to implement the above-mentioned method for generating a cleaning instruction for a spray unit.
  • the method for generating a cleaning instruction for a spraying unit acquires spraying parameters of the spraying unit, where the spraying parameter includes a spraying threshold value for the spraying unit to maintain spraying smoothness, and then generates a cleaning instruction according to the spraying threshold value.
  • the process optimizes the setting method of the automatic cleaning of the spraying unit. Compared with the prior art of automatic timing cleaning, the automatic cleaning times of the spraying unit are effectively reduced, thereby improving the working efficiency of the spraying unit.
  • FIG. 1a is a schematic diagram of a three-dimensional model A of inkjet printing by a jet unit provided in an embodiment of the application;
  • FIG. 1b is a schematic diagram of a three-dimensional model B of inkjet printing by an ejection unit provided in an embodiment of the application;
  • FIG. 2 is a schematic diagram of a method for generating a spray unit cleaning instruction provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of an apparatus for generating a cleaning instruction for a spray unit provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a controller of an injection unit provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the three-dimensional model C and its printing layer provided by the jet unit inkjet printing provided by the embodiment of the application;
  • FIG. 6 is a schematic diagram of the three-dimensional model D and its printing layer provided by the jet unit inkjet printing provided by the embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of a printer provided by an embodiment of the present application.
  • inkjet printing technology through which inkjet printing of three-dimensional models can be achieved, but in the process of inkjet printing, due to the inkjet printer
  • the jetting unit needs to maintain a good ink discharge state, and the user needs to set the cleaning interval, that is, after each cleaning interval, the jetting unit needs to be moved back to the cleaning station during the printing process, and then a series of mechanical steps are used to carry out the internal cleaning of the jetting unit.
  • Ink pressure cleaning the entire cleaning process takes a long time, generally the fastest cleaning time is more than 15 seconds, and a lot of ink will be lost during cleaning.
  • the way for users to set the cleaning interval is mainly by setting a fixed interval time or a fixed number of printing layers, that is, every time a fixed interval or a fixed interval of printing layers passes, the ejection unit will Cleaning, because the cleaning interval is set to be fixed, the flexibility is poor, and it is easy to cause frequent automatic cleaning of the ejection unit, which reduces the printing efficiency of the 3D model and consumes time and materials.
  • the embodiments of the present application provide a method, device, printer and storage medium for generating a cleaning instruction for an ejection unit.
  • the data obtains the cleaning interval of the jetting unit, and the jetting unit is controlled to be cleaned by the cleaning interval, which optimizes the setting mode of automatic cleaning of the jetting unit, effectively reduces the cleaning times of the jetting unit during the printing process, and improves the printing efficiency.
  • the embodiments of the present application are mainly explained with the method for generating an ink jet unit cleaning instruction for 3D model printing.
  • the inkjet unit cleaning instruction generation method and corresponding device can also be transformed into other scenarios, and further evolved into other inkjet unit cleaning instruction generation methods and corresponding devices, which will not be described here.
  • the object to be printed is usually a 3D model.
  • the 3D model is inkjet printed, the 3D model is divided into several printing layers, and inkjet printing is performed layer by layer.
  • the inkjet printing process In the printer, there will be a corresponding control device in the printer to control the jetting unit to stop printing, and move the jetting unit to the cleaning station for cleaning.
  • the shapes of the 3D model as the object to be printed are various, such as hollow cylinder shape, solid cylinder shape, cone shape, solid cube shape and hollow cuboid shape, etc.
  • the area of each printing layer of the 3D model may be There are differences. For example, the area of the printing layer at the top of the cone-shaped 3D model is smaller than the area of the printing layer at the bottom.
  • the time it takes for the jetting unit to perform inkjet printing on different printing layers is also different, so that The entire printing process has greater flexibility.
  • Fig. 1a is a schematic diagram of the process of inkjet printing of a three-dimensional model provided by the jet unit provided by the embodiment of the application.
  • the three-dimensional model is a hollow cube
  • the filled area is a solid area
  • the blank area is a hollow area
  • the entire hollow cube is three-dimensional
  • the model can be divided into several printing layers, each printing layer is a square with a hollow center area.
  • Fig. 1b is a schematic diagram of another process of inkjet printing of a three-dimensional model by an ejection unit according to an embodiment of the application.
  • the three-dimensional model is a solid cube, which can be divided into several printing layers, each of which is a square, and the ejection unit needs to
  • the area of the ink jet is the area of a square.
  • Fig. 1a it can be seen that the ejection area of each printing layer in Fig. 1b is larger than that of each corresponding printing layer in Fig. 1a.
  • the ejection amount of the ejection unit corresponding to each printing layer in FIG. 1b is greater than the ejection amount of the ejection unit corresponding to each printing layer in FIG. 1a.
  • FIG. 2 is a schematic diagram of a method for generating a spray unit cleaning instruction provided by an embodiment of the application. As shown in FIG. 2 , the method includes steps:
  • a device with a data processing function may be used as an execution subject, such as a processor with a processing function, and the like.
  • the injection threshold may include at least one of an injection quantity threshold and an injection time threshold.
  • the jetting threshold can be obtained by testing the jetting unit several times and input to the processor by the user through the input interface.
  • the smoothness refers to the clear, continuous and uniform lines formed by the material jetted by the jetting unit. More specifically, the fluency refers to that when all nozzle holes of the spray unit are instructed to spray material droplets, the number of material droplets sprayed by the spray unit is greater than or equal to 90% of the total number of spray holes.
  • the processor After obtaining the injection threshold, the processor generates a cleaning instruction according to the injection threshold, and the injection threshold may include at least one of an injection quantity threshold and an injection time threshold, so that the cleaning instruction generated according to the injection threshold is more scientific and reasonable.
  • the method for generating a cleaning instruction for a spraying unit acquires spraying parameters of the spraying unit, where the spraying parameter includes a spraying threshold for the spraying unit to maintain spraying smoothness, and then generates a cleaning instruction according to the spraying threshold.
  • the process optimizes the setting method of automatic cleaning of the spraying unit. Compared with the prior art of automatic timing cleaning, the number of automatic cleanings of the spraying unit is effectively reduced, thereby improving the working efficiency of the spraying unit.
  • the injection threshold includes an injection quantity threshold
  • a cleaning instruction is generated according to the injection threshold, and the cleaning instruction is used to control the injection unit to perform cleaning, including:
  • the ejection amount threshold refers to the maximum amount of material that the ejection unit can eject under the condition of maintaining ejection smoothness.
  • the injection quantity threshold can be obtained by performing several tests on the injection unit, which can be used as a fixed parameter of the injection unit and input to the processor by the user through the input interface.
  • Fluency refers to the clear, continuous and uniform lines formed by the material sprayed by the spray unit. More specifically, the fluency refers to that when all nozzle holes of the spray unit are instructed to spray material droplets, the number of material droplets sprayed by the spray unit is greater than or equal to 90% of the total number of spray holes.
  • the spray material droplet size of a single spray hole of the spray unit can be directly obtained as a parameter of the spray unit. According to the spray material droplet size and the spray material droplet number, the spray volume threshold of the spray unit can be obtained.
  • the injection data of the injection unit may include the injection amount, injection area, injection time and other data of the injection unit.
  • the ejection data of the ejection unit may be obtained by monitoring the ejection unit in real time, or may be obtained by pre-calculating the ejection data of the ejection unit according to the acquired print data of the object to be printed.
  • the number of spray material droplets of the spray unit can be monitored in real time, so as to obtain the spray amount of the spray unit in real time as spray data.
  • the required number of droplets of the ejecting material can be obtained according to the area of the printing layer of the object to be printed, so that the ejection amount of the ejection unit is pre-calculated as ejection data.
  • the ejection area and ejection time of the ejection unit may be obtained as ejection data according to the layer print data of the object to be printed, including the layer area data and the layer print time.
  • the ejection volume of the ejection unit can be obtained by real-time monitoring of the number of ejected material droplets of the ejection unit.
  • the number of ejected material droplets of the ejection unit can be monitored and counted by monitoring equipment such as a laser detector;
  • the number of trigger signals of the jetting unit is obtained from the print data, that is, the number of jetting material drops is obtained, thereby obtaining the jetting volume of the jetting unit; the required number of jetting material drops can also be obtained according to the area of each printing layer of the object to be printed, so as to pre-calculate the jetting unit injection volume.
  • the sprayed material droplet size of a single spray hole of the spraying unit can be directly obtained as a parameter of the spraying unit, and the spraying amount of the spraying unit can be obtained according to the spraying material droplet size and the spraying material droplet number.
  • the processor will generate a cleaning instruction, which can be sent to the corresponding injection unit controller, and the injection unit controller will control the injection unit to stop working. And moved back to the cleaning tank for cleaning.
  • the method for generating an injection unit cleaning instruction receives the injection threshold value of the injection unit under the condition of maintaining the smoothness of the injection material and acquires the injection data of the injection unit, and generates the injection unit when the injection data of the injection unit reaches the injection threshold value.
  • the cleaning instruction optimizes the setting method of automatic cleaning of the spraying unit, effectively reduces the number of automatic cleanings of the spraying unit, thereby improving the working efficiency of the spraying unit.
  • the injection threshold includes an injection time threshold, and the injection time threshold is a time during which the injection unit maintains injection smoothness within a preset injection area;
  • the injection time threshold refers to the time during which the injection unit maintains the injection smoothness within the preset injection area.
  • the injection time threshold can be obtained by performing several tests on the injection unit, which can be used as a fixed parameter of the injection unit and input to the processor by the user through the input interface.
  • the preset ejection area may be a specific area value, or may be a proportion of the width of the printing platform, for example, the preset ejection area may be 80% of the width of the printing platform.
  • a cleaning instruction is generated according to the injection threshold, and the cleaning instruction is used to control the injection unit to perform cleaning, including:
  • the object to be printed is a three-dimensional model, which is divided into several printing layers, and the printing layer data may include the shape, ejection area and printing time of each printing layer, etc.
  • the ejection unit performs inkjet printing on a three-dimensional model , it is necessary to obtain the printing layer data of the 3D model to be able to effectively perform inkjet printing.
  • the printing data of each printing layer can be different.
  • the spray unit can also spray one or more materials. The material sprayed by the spray unit can be determined according to the material required by the three-dimensional model.
  • the cleaning interval can be the interval time or the interval number of layers.
  • the processor obtains the ejection time threshold of the ejection unit and the printing layer data of the object to be printed, the processor performs analysis and calculation to obtain that the ejection unit has completed the last cleaning. The cleaning interval until the start of the next cleaning.
  • the processor will generate a cleaning instruction every time a cleaning interval passes.
  • the cleaning instruction can be sent to the corresponding jetting unit controller, and the jetting unit controller will control the jetting unit to stop working. And moved back to the cleaning tank for cleaning.
  • the method for generating an ejection unit cleaning instruction can determine the cleaning interval of the ejection unit according to the ejection time threshold of the ejection unit and the printing layer data, so that the ejection unit can be flexibly adapted to different objects to be printed, and the automatic ejection unit can be reduced. Cleaning times, improve the working efficiency of the spray unit, and save time and materials.
  • determining the cleaning interval of the spraying unit from the end of the previous cleaning to the start of the next cleaning including:
  • the correction value may be input into the processor by the user through the input interface, may also be pre-stored in the processor, or may be obtained by the processor through analysis and calculation of relevant variable factors.
  • the correction value may be the correction value of the interval time or the correction value of the number of layers.
  • the correction value of the interval time may be performed by the user according to the interval time (that is, the time from the end of the last cleaning to the start of the next cleaning by the spray unit). After the correction, it is input to the processor through the input interface, and the correction value of the interval layer number can be input to the processor through the input interface after correction by the user according to the interval layer number (that is, the number of printing layers from the end of the last cleaning to the start of the next cleaning of the jet unit). device.
  • the correction value includes an interval time correction value
  • the print layer data includes ejection area information of each print layer
  • the cleaning interval includes an interval time
  • the ejection area information may be data that can obtain the ejection area of each printing layer.
  • the ejection area information may be the ejection area of the printing layer directly, or may be indirect data such as the length and width of the printing layer, that is, the data of the ejection area of the printing layer may be obtained indirectly.
  • the cleaning interval is determined according to the correction value, the ejection time threshold and the printing layer data, including:
  • S242a Determine the interval time according to the interval time correction value, the ejection time threshold value, and the ejection area information of each printing layer.
  • the time correction value may be input into the processor by the user through an input interface, may also be pre-stored in the processor, or may be obtained by the processor through analysis and calculation of relevant variable factors. Specifically, the time correction value may be input by the user to the processor through the input interface after correction according to the interval time (ie, the time from the end of the last cleaning to the start of the next cleaning by the spray unit).
  • the time correction value may be obtained according to one or more adjustment factors, that is, the processor performs analysis and calculation according to one or more adjustment factors to obtain the time correction value.
  • the adjustment factors include at least the performance of the ejection unit, the properties of the object to be printed, the printing environment, the characteristics of the printer, and user requirements.
  • the performance of the ejection unit includes the number of nozzles, the number of channels, the number of nozzle holes, and the diameter of the nozzle holes, etc.
  • the properties of the object to be printed include the geometry of the three-dimensional model, the type of material, the number of colors, the hardness of the material, and the amount of the material.
  • the characteristics of the printer include the scanning path of the jet unit, etc., the printing environment includes the ambient temperature, humidity, etc., and the user requirements refer to the user's requirements for saving time and materials in the printing process.
  • determining the interval time according to the interval time correction value, the ejection time threshold value and the ejection area information of the respective printing layers includes:
  • the interval time is calculated by the following formula:
  • T n is the interval time from the end of the nth cleaning to the start of the n+1th cleaning
  • is the interval time correction value
  • P is the preset spray area
  • S is the spray time threshold
  • P n is the nth The ejection area of the first printing layer to be printed after the first cleaning
  • n is a positive integer.
  • the value range of the time correction value ⁇ may be 0 ⁇ ? 5.
  • the time correction value ⁇ is used to correct the interval time. After the calculated value is obtained by calculating S*(P/P n ), the calculated value is corrected by the time correction value ⁇ to finally obtain the interval time T n .
  • the time correction value ⁇ can be determined by the user through a limited number of experiments in advance. For example, the user performs multiple inkjet printing experiments on a 3D model of a certain shape, and continuously adjusts the time correction value according to the above adjustment factors.
  • the size of ⁇ determines a size standard for the time correction value ⁇ , and the optimal interval time T n can be obtained from the size standard. Afterwards, when printing a 3D model of this shape, the user can directly input the size standard, that is, the size standard is taken as the time correction value ⁇ .
  • the user has measured several sets of P and S through limited experiments in advance, where P is the preset spray area, and S is the time that the spray unit can maintain the smoothness of the spray material within the preset spray area P.
  • P is the preset spray area
  • S is the time that the spray unit can maintain the smoothness of the spray material within the preset spray area P.
  • the proportional relationship between P and S constantly adjusts the size of the time correction value ⁇ , and determines a group of P and S as standard reference values.
  • the optimal interval time T n can be obtained from the standard reference value and the time correction value.
  • the ejection area refers to the area of the area where the ejection unit needs to eject the material, not the entire area of the printing layer.
  • the printing layer is a hollow square, the area of the hollow area is not counted in the ejection area.
  • the jetting smoothness means that the lines formed by the jetting unit jetting material are clear, continuous and uniform.
  • P1 is the area of the first printing layer of the 3D model
  • T1 is the end of the first cleaning of the jetting unit.
  • the interval time for the start of the second cleaning when the interval time elapses, the jetting unit will start the second cleaning, and so on until the inkjet printing of the entire 3D model is completed.
  • the preset jetting area P can be preset,
  • the time S during which the spraying unit can maintain the fluidity of the spraying material within the preset spraying area P can be obtained according to the spraying material of the spraying unit and the preset spraying area P.
  • the correction value further includes an interval layer number correction value
  • the printing layer data further includes the printing time of the printing layer
  • the cleaning interval further includes the interval layer number
  • the cleaning interval is determined according to the correction value, the ejection time threshold and the printing layer data, including:
  • the print layer data may also include the print time of the print layer.
  • the print time is the time it takes for the ejection unit to complete the ejection of each print layer. .
  • the correction value of the interval layers can be obtained according to one or more adjustment factors.
  • the adjustment factors include at least the performance of the ejection unit, the properties of the object to be printed, the printing environment, the characteristics of the printer and user requirements.
  • the printing time of the printing layer can be based on the printing layer.
  • the print area is calculated.
  • the performance of the ejection unit includes the number of nozzles, the number of channels, the number of nozzle holes, and the diameter of the nozzle holes, etc.
  • the properties of the object to be printed include the geometry of the three-dimensional model, the type of material, the number of colors, the hardness of the material, and the amount of the material.
  • the characteristics of the printer include the scanning path of the ejection unit, etc., the printing environment includes the ambient temperature, humidity, etc., and the user requirements refer to the user's requirements for saving time and materials in the printing process, which can be determined by the user.
  • determining the number of spaced layers according to the correction value of the number of spaced layers, the printing time of the printing layers and the spaced time includes:
  • the interval time is calculated by the following formula:
  • F n is the interval layer number from the end of the nth cleaning to the start of the n +1th cleaning
  • Tn is the interval time from the end of the nth cleaning to the start of the n+1th cleaning
  • Q n is the nth The printing time of the first printing layer to be printed after the first cleaning
  • X is the correction value of the interval layer number
  • both Fn and n are positive integers.
  • the value range of the layer number correction value may be -20 ⁇ X ⁇ 20. Similar to the above-mentioned time correction value ⁇ , the layer number correction value is used to correct the interval layer number, and T n can be calculated by the above The formula is calculated, and the value obtained after T n /Q n is summed with the layer number correction value X, that is, the final interval layer number F n is obtained.
  • the method further includes: acquiring, according to the number of spaced layers, the number of layers of the first printing layer printed by the ejection unit after cleaning is completed.
  • the number of layers of the first printing layer printed by the jetting unit after the last cleaning is calculated by the following formula:
  • N n+1 F n +N n
  • N n+1 is the number of layers of the first printing layer to be printed after the n+1th cleaning
  • N n is the number of layers of the first printing layer to be printed after the nth cleaning
  • F n is the interval layer number from the end of the n-th automatic cleaning to the n+1-th automatic cleaning
  • N n+1 , N n and n are all integers not less than 1.
  • the interval layer number F 1 of the second cleaning, and then according to N 2 F 1 +N 1 , the number of layers of the first printing layer to be printed after the second automatic cleaning is obtained, and the cleaning instruction is generated according to the number of layers N 2 , Instruct the jetting unit to perform a 2nd automatic cleaning before printing the N2th print layer of the 3D model.
  • FIG. 3 is a schematic structural diagram of a spray unit cleaning instruction generating apparatus provided by an embodiment of the application. As shown in FIG. 3 , the spray unit cleaning instruction generating apparatus 30 includes:
  • an acquisition module 301 configured to acquire injection parameters of an injection unit, where the injection parameters include an injection threshold for the injection unit to maintain injection smoothness;
  • the generating module 302 is configured to generate a cleaning instruction according to the spraying threshold, where the cleaning instruction is used to control the spraying unit to perform cleaning.
  • the acquisition module 301 is configured to receive injection parameters of the injection unit, where the injection parameters include an injection threshold for the injection unit to maintain injection smoothness; the injection threshold may include at least one of an injection quantity threshold and an injection time threshold .
  • the ejection threshold of the ejection unit can be obtained by performing multiple experiments on the ejection unit.
  • the ejection material can be the same as the material of the object to be printed.
  • the ejection unit can also eject one or more materials.
  • the smoothness refers to the lines formed by the ejection material of the ejection unit. Clear, continuous and even. More specifically, the fluency refers to that when all nozzle holes of the spray unit are instructed to spray material droplets, the number of material droplets sprayed by the spray unit is greater than or equal to 90% of the total number of spray holes.
  • the generating module 302 is configured to generate a cleaning instruction according to the spraying threshold, and the generated cleaning instruction can be sent to the corresponding spraying unit controller, and the spraying unit controller controls the spraying unit to stop working and move back to the cleaning pool for cleaning.
  • the spraying threshold of the spraying unit can be directly input by the user to the spraying unit cleaning instruction generating device 30 through the input interface, or directly obtained from the storage unit of the printer through the obtaining module 301, which is not specifically limited in this embodiment.
  • the spray unit cleaning instruction generation device provided in the embodiment of the present application can be used to execute the technical solutions in the above method embodiments, and the implementation principle and technical effect thereof are similar, and are not repeated in the embodiment of the present application.
  • each module in the above-mentioned apparatus for generating a cleaning instruction for a spraying unit may be implemented in whole or in part by software, hardware, or a combination thereof.
  • the above modules can be embedded in or independent of the processor in the display device in the form of hardware, or can be stored in the memory in the display device in the form of software, so that the processor can call and execute operations corresponding to the above modules.
  • FIG. 4 is a schematic structural diagram of a controller of an injection unit provided by an embodiment of the present application.
  • the controller 43 of the injection unit may include at least one part of an embedded computing device that forms, for example, an additive manufacturing system.
  • the processor, the memory 44 may include volatile and/or non-volatile memory, such as a non-transitory storage medium, arranged to store computer program code, for example in the form of firmware, which may include machine-readable instructions and/or Executable code comprising instructions for at least one processor.
  • a jetting unit controller 43 may be communicatively coupled to jetting unit 41, which may jet material to perform automated cleaning, jetting unit 41 comprising jetting head 411, jetting head 412, and jetting head 413, and in other cases, jetting unit 41 may include more or fewer or additional components, and spray unit 41 may also spray one or more materials.
  • the controller 43 of the spray unit first controls the spray unit 41 to move to a position corresponding to the cleaning station 42 , and then controls the spray unit 41 to spray material for automatic cleaning, and the sprayed material is received by the cleaning station 42 .
  • the ejection area of the printing layer of the hollow cube model A is smaller than that of the solid cube model B.
  • FIG. 5 is a schematic diagram of a three-dimensional model C and its printing layer provided by the jet unit inkjet printing provided by the embodiment of the application.
  • the hollow part of the three-dimensional hollow cube model C is an inverted quadrangular pyramid structure.
  • FIG. 6 is a schematic diagram of a three-dimensional model D and its printing layer provided by the jet unit inkjet printing provided by the embodiment of the application.
  • the three-dimensional model is a cone-type model.
  • the jetting area is smaller than the bottom.
  • FIG. 7 is a schematic structural diagram of a printer provided by an embodiment of the application.
  • the printer 70 includes a spray unit 73 , a controller 72 , and the above-mentioned spray unit cleaning instruction generating device 71 .
  • the spray unit cleaning instruction generates
  • the device 71 is used for generating a cleaning instruction
  • the controller 72 is used for controlling the spraying unit 71 to perform cleaning according to the cleaning instruction.
  • Embodiments of the present application further provide a readable storage medium on which a computer program is stored, where the computer program is used to implement the above-mentioned method for generating a spray unit cleaning instruction.
  • Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ink Jet (AREA)

Abstract

本申请提供一种喷射单元清洗指令生成方法,通过获取喷射单元的喷射参数,所述喷射参数包括所述喷射单元维持喷射流畅性的喷射阈值,然后根据所述喷射阈值生成清洗指令,上述处理过程优化了喷射单元自动清洗的设置方法,相比于自动定时清洗的现有技术,有效的减少了喷射单元的自动清洗次数,从而提高了喷射单元的工作效率。

Description

喷射单元清洗指令生成方法、装置、打印机和存储介质
本申请要求于2021年06月29日提交中国专利局、申请号为202110725191.8、申请名称为“喷射单元清洗指令生成方法、装置、打印机和存储介质”的中国专利申请、于2020年08月21日提交中国专利局、申请号为202010847239.8、申请名称为“喷射单元清洗指令生成方法、装置、打印机和存储介质”的中国专利申请、以及于2021年05月18日提交中国专利局、申请号为202110540498.0、申请名称为“喷射单元清洗指令生成方法、装置、打印机和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及打印机技术领域,尤其涉及一种喷射单元清洗指令生成方法、装置、打印机和存储介质。
背景技术
随着打印技术的发展,出现了三维喷墨打印技术,在三维喷墨打印机工作过程中,打印机中的喷射单元由于需要保持良好的喷射出墨状态,往往需要控制喷射单元停止打印过程,并将喷射单元移回到清洗站进行自动清洗,然后通过一系列的机械步骤对喷射单元进行压墨清洗,以维持喷射单元的出墨流畅性。
现有技术中,主要是通过用户在打印机中设置定时或定量的方式以控制喷射单元停止打印过程并移回清洗站自动清洗,这种方式定时或定量的方式是固定的,在一些打印情景中容易造成喷射单元频繁的进行自动清洗,增加清洗成本并且占用较多的打印时间,使得打印效率变低。
发明内容
本申请提供一种喷射单元清洗指令生成方法、装置、打印机和存储介质,用以解决现有技术存在的问题。
第一方面,本申请提供一种喷射单元清洗指令生成方法,应用于打印机,包括:
获取喷射单元的喷射参数,所述喷射参数包括所述喷射单元维持喷射流畅性的喷射阈值;
根据所述喷射阈值生成清洗指令,所述清洗指令用于控制所述喷射单元进行清洗。
在一些实施例中,所述喷射阈值包括喷射量阈值;
根据所述喷射阈值生成清洗指令,包括:
获取所述喷射单元的喷射数据,所述喷射数据包括喷射量;
在所述喷射量达到所述喷射量阈值时生成所述清洗指令。
在一些实施例中,所述喷射阈值包括喷射时间阈值,所述喷射时间阈值为所述喷射单元在预设喷射面积内维持喷射流畅性的时间;
根据所述喷射阈值生成清洗指令,包括:
获取待打印对象的打印层数据;
根据所述喷射时间阈值以及所述打印层数据,确定所述喷射单元在上一次清洗结束到下一次清洗开始的清洗间隔;
根据所述清洗间隔生成所述清洗指令。
在一些实施例中,根据所述喷射时间阈值以及所述打印层数据,确定所述喷射单元在上一次清洗结束到下一次清洗开始的清洗间隔,包括:
获取修正值;
根据所述修正值、所述喷射时间阈值以及所述打印层数据,确定所述清洗间隔。
在一些实施例中,所述修正值包括间隔时间修正值,所述打印层数据包括各个打印层的喷射面积信息,所述清洗间隔包括间隔时间;
根据所述修正值、所述喷射时间阈值以及所述打印层数据,确定所述清洗间隔,包括:
根据所述间隔时间修正值、所述喷射时间阈值以及所述各个打印层的喷射面积信息,确定所述间隔时间。
在一些实施例中,根据所述间隔时间修正值、所述喷射时间阈值以及所述各个打印层的喷射面积信息,确定所述间隔时间,包括:
通过以下公式计算得到所述间隔时间:
Figure PCTCN2021105940-appb-000001
上式中,T n为第n次清洗结束到第n+1次清洗开始的间隔时间,δ为间隔时间修正值,P为预设的喷射面积,S为喷射时间阈值,P n为第n次清洗结束后进行打印的第一层打印层的喷射面积,n为正整数。
在一些实施例中,所述修正值还包括间隔层数修正值,所述打印层数据还包括打印层的打印时间,所述清洗间隔还包括间隔层数;
根据所述修正值、所述喷射时间阈值以及所述打印层数据,确定所述清洗间隔,包括:
获取所述间隔时间;
根据所述间隔层数修正值、所述打印层的打印时间以及所述间隔时间,确定所述间隔层数。
在一些实施例中,根据所述间隔层数修正值、所述打印层的打印时间以及所述间隔时间,确定所述间隔层数,包括:
通过以下公式计算得到所述间隔时间:
Figure PCTCN2021105940-appb-000002
上式中,F n为第n次清洗结束到第n+1次清洗开始的间隔层数,T n为第n次清洗结束到第n+1次清洗开始的间隔时间,Q n为第n次清洗结束后进行打印的第一层打印层的打印时间,X为间隔层数修正值,F n和n都为正整数。
在一些实施例中,所述方法还包括:
根据所述间隔层数获取所述喷射单元在清洗结束后进行打印的第一层打印层的层数。
在一些实施例中,所述获取修正值,包括:
根据喷射单元的性能、待打印对象的属性、打印环境、打印机特性和用户要求中的至少一种,获取所述修正值。
第二方面,本申请提供一种喷射单元清洗指令生成装置,应用于打印机,包括:
获取模块,用于获取喷射单元的喷射参数,所述喷射参数包括所述喷射单元维持喷射流畅性的喷射阈值;
生成模块,用于根据所述喷射阈值生成清洗指令,所述清洗指令用于 控制所述喷射单元进行清洗。
第三方面,本申请提供一种打印机,包括喷射单元、控制器和上述的喷射单元清洗指令生成装置,所述喷射单元清洗指令生成装置用于生成清洗指令,所述控制器用于根据所述清洗指令控制所述喷射单元进行清洗。
第四方面,本申请提供一种存储介质,所述可读存储介质用于存储计算机程序,所述计算机程序用于实现上述的喷射单元清洗指令生成方法。
本申请实施例提供的喷射单元清洗指令生成方法,通过获取喷射单元的喷射参数,所述喷射参数包括所述喷射单元维持喷射流畅性的喷射阈值,然后根据所述喷射阈值生成清洗指令,上述处理过程优化了喷射单元自动清洗的设置方法,相比于自动定时清洗的现有技术,有效的减少了喷射单元的自动清洗次数,从而提高了喷射单元的工作效率。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1a为本申请实施例提供的喷射单元喷墨打印三维模型A的示意图;
图1b为本申请实施例提供的喷射单元喷墨打印三维模型B的示意图;
图2为本申请实施例提供的喷射单元清洗指令生成方法示意图;
图3为本申请实施例提供的喷射单元清洗指令生成装置结构示意图;
图4为本申请实施例提供的喷射单元的控制器的结构示意图;
图5为本申请实施例提供的喷射单元喷墨打印三维模型C及其打印层的示意图;
图6为本申请实施例提供的喷射单元喷墨打印三维模型D及其打印层的示意图;
图7为本申请实施例提供的打印机的结构示意图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
随着打印技术的发展,各种各样的打印技术层出不穷,例如喷墨打印技术,通过喷墨打印技术可以实现三维模型的喷墨打印,但是在进行喷墨打印的过程中,由于喷墨打印机的喷射单元需要保持良好的出墨状态,用户需要设置清洗间隔,即每经过一个清洗间隔,喷射单元在打印过程中都需要移回到清洗站,然后通过一系列的机械步骤对喷射单元内部进行压墨清洗,整个清洗的过程花费的时间较长,一般最快的清洗时长也需要15秒以上,并且清洗时也会损耗大量的墨水。现有技术中,用户设置清洗间隔的方式主要是通过设置一个固定的间隔时间或者固定的打印层数间隔,即每经过一个固定的间隔时间或者一个固定的打印层数间隔,喷射单元就进行一次清洗,这种方式由于清洗间隔是被设置为固定的,灵活性较差,容易造成喷射单元频繁的进行自动清洗,使得三维模型的打印效率变低,且费时费材。
针对上述问题,本申请实施例提供了一种喷射单元清洗指令生成方法、装置、打印机和存储介质,当喷射单元在对待打印对象进行打印时,根据修正值、喷射参数和待打印对象的打印层数据得到喷射单元的清洗间隔,通过该清洗间隔控制喷射单元进行清洗,优化了喷射单元自动清洗的设置方式,有效的减少喷射单元在打印过程中的清洗次数,提高打印效率。
可以理解的是,本申请的实施例主要以用于三维模型打印的喷墨单元清洗指令生成方法进行解释说明。在实际应用中,喷墨单元清洗指令生成方法和对应装置也可以变形到其他场景实现,进而演化到其他的喷墨单元清洗指令生成方法和对应装置,此处不再说明。
下面在介绍本申请的技术方案之前,首先对本方案中的具体应用场景进行说明。
在三维喷墨打印技术领域中,待打印对象通常为一个三维模型,在对 三维模型进行喷墨打印时会将三维模型划分为若干个打印层,依次逐层进行喷墨打印,喷墨打印过程中,打印机中会有相应的控制装置控制喷射单元停止打印,并将喷射单元移动至清洗站进行清洗。
作为待打印对象的三维模型的形状是各种各样的,例如空心柱体形状、实心柱体形状、圆锥体形状、实心正方体形状和空心长方体形状等等,三维模型每一个打印层的面积可能是存在区别的,例如圆锥体形的三维模型顶部位置的打印层的面积就比底部位置的打印层面积小,相应的,喷射单元对不同打印层进行喷墨打印所花费的时间也是不同的,使得整个打印过程具备较大的灵活性。
下面,通过具体实施例对本申请的技术方案进行详细说明。需要说明的是,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图1a为本申请实施例提供的喷射单元喷墨打印三维模型的过程示意图,如图1a所示,该三维模型为空心正方体,填充区域为实心区域,空白区域则为空心区域,整个空心正方体三维模型可划分为若干个打印层,每一个打印层为一个中心区域为空心的正方形,在喷射单元进行喷墨打印时,从最底部进行喷墨打印,逐层向上完成整个三维模型的喷墨打印。
图1b为本申请实施例提供的另一种喷射单元喷墨打印三维模型的过程示意图,该三维模型为实心正方体,其可划分为若干个打印层,每一个打印层为一个正方形,喷射单元需要喷墨的面积即正方形的面积,相对于图1a可以看出,图1b中每一个打印层的喷射面积大于图1a中对应的每一个打印层的喷射面积。
因此,在控制打印层厚相等的情况下,则可以理解的是,图1b中每一个打印层对应的喷射单元的喷射量大于图1a中对应的每一个打印层对应的喷射单元的喷射量。
图2为本申请实施例提供的喷射单元清洗指令生成方法示意图,如图2所示,该方法包括步骤:
S100、获取喷射单元的喷射参数,所述喷射参数包括所述喷射单元维持喷射流畅性的喷射阈值;
在本申请实施例中,可以采用具有数据处理功能的装置作为执行主体,如具有处理功能的处理器等等。
具体的,喷射阈值可以包括喷射量阈值和喷射时间阈值中的至少一种。喷射阈值可以通过对喷射单元进行若干次测试得到,并由用户通过输入界面输入至处理器,流畅性指的是喷射单元喷射的材料所形成的线条清晰、连续且均匀。更具体的,流畅性指的是在指示喷射单元所有喷孔喷射材料滴时,喷射单元喷射的材料滴的数目大于或等于喷孔总数的90%。
S200、根据所述喷射阈值生成清洗指令,所述清洗指令用于控制所述喷射单元进行清洗。
在获取喷射阈值后,处理器根据该喷射阈值生成清洗指令,喷射阈值可以包括喷射量阈值和喷射时间阈值中的至少一种,从而,根据喷射阈值生成的清洗指令更加科学合理。
本申请实施例提供的喷射单元清洗指令生成方法,通过获取喷射单元的喷射参数,所述喷射参数包括所述喷射单元维持喷射流畅性的喷射阈值,然后根据所述喷射阈值生成清洗指令,上述处理过程优化了喷射单元自动清洗的设置方法,相比于自动定时清洗的现有技术,有效的减少了喷射单元的自动清洗次数,从而提高了喷射单元的工作效率。
在一些实施例中,所述喷射阈值包括喷射量阈值;
本实施例中,根据所述喷射阈值生成清洗指令,所述清洗指令用于控制所述喷射单元进行清洗,包括:
S210、获取所述喷射单元的喷射数据,所述喷射数据包括喷射量;
S220、在所述喷射量达到所述喷射量阈值时生成所述清洗指令。
其中,喷射量阈值指的是喷射单元在维持喷射流畅性的情况下所能喷射的材料量的最大值。喷射量阈值可以通过对喷射单元进行若干次测试得到,可作为喷射单元的一个固定参数,并由用户通过输入界面输入至处理器。流畅性指的是喷射单元喷射的材料所形成的线条清晰、连续且均匀。更具体的,流畅性指的是在指示喷射单元所有喷孔喷射材料滴时,喷射单元喷射的材料滴的数目大于或等于喷孔总数的90%。喷射单元的单个喷孔的喷射材料滴尺寸作为喷射单元的参数可以直接获取,根据喷射材料滴尺 寸和喷射材料滴数,即可得到喷射单元的喷射量阈值。
此外,喷射单元的喷射数据可以包括喷射单元的喷射量、喷射面积、喷射时间等数据。喷射单元的喷射数据可以通过对喷射单元进行实时监控得到,也可以根据获取待打印对象的打印数据来对喷射单元的喷射数据进行预先计算得到。在一些实施例中,可以对喷射单元的喷射材料滴数进行实时监控,从而实时获取喷射单元的喷射量来作为喷射数据。在另一些实施例中,可以根据待打印对象的打印层的面积获得所需喷射材料滴数,从而预先计算喷射单元的喷射量来作为喷射数据。在其它实施例中,还可以根据待打印对象的层打印数据,包括层面积数据和层打印时间,得到喷射单元的喷射面积和喷射时间来作为喷射数据。
喷射单元的喷射量可以通过对喷射单元的喷射材料滴数进行实时监控来获取,例如可以通过激光检测仪等监测设备对喷射单元的喷射材料滴数进行监测和计数;也可以根据待打印对象的打印数据得到喷射单元的触发信号数,即获得喷射材料滴数,从而获取喷射单元的喷射量;还可以根据待打印对象的各个打印层的面积获得所需喷射材料滴数,从而预先计算喷射单元的喷射量。喷射单元的单个喷孔的喷射材料滴尺寸作为喷射单元的参数可以直接获取,根据喷射材料滴尺寸和喷射材料滴数,即可得到喷射单元的喷射量。
在获取的喷射单元的喷射量每达到一次该喷射量阈值时,处理器就会生成一个清洗指令,该清洗指令可以发送给对应的喷射单元控制器,由喷射单元控制器控制喷射单元停止工作,并移回到清洗池进行清洗。
本申请实施例提供的喷射单元清洗指令生成方法,通过接收在维持喷射材料的流畅性的情况下喷射单元的喷射阈值并获取喷射单元的喷射数据,在喷射单元的喷射数据达到该喷射阈值时生成清洗指令,优化了喷射单元自动清洗的设置方法,有效的减少了喷射单元的自动清洗次数,从而提高了喷射单元的工作效率。
在一些实施例中,所述喷射阈值包括喷射时间阈值,所述喷射时间阈值为所述喷射单元在预设喷射面积内维持喷射流畅性的时间;
具体的,喷射时间阈值指的是喷射单元在预设喷射面积内维持喷射流 畅性的时间。喷射时间阈值可以通过对喷射单元进行若干次测试得到,可作为喷射单元的一个固定参数,并由用户通过输入界面输入至处理器。预设喷射面积可以是具体的面积数值,也可以是占打印平台幅面的比例,例如预设喷射面积可以为80%的打印平台幅面。
本实施例中,根据所述喷射阈值生成清洗指令,所述清洗指令用于控制所述喷射单元进行清洗,包括:
S230、获取待打印对象的打印层数据;
S240、根据所述喷射时间阈值以及所述打印层数据,确定所述喷射单元在上一次清洗结束到下一次清洗开始的清洗间隔;
S250、根据所述清洗间隔生成所述清洗指令。
具体的,待打印对象为三维模型,其划分为若干个打印层,打印层数据可以包括每一个打印层的形状、喷射面积和打印时间等等,在喷射单元对一个三维模型进行喷墨打印时,需要获取该三维模型的打印层数据才能够有效的进行喷墨打印,应当说明的是,每一个打印层的打印数据都可以不相同,例如图1a中的三维模型中每一个打印层的喷射面积都不相同,喷射单元也可以喷射一种或多种材料,可以根据三维模型所需要的材料来决定喷射单元喷射出来的材料。
在本实施例中,清洗间隔可以是间隔时间或者间隔层数,当处理器获取喷射单元的喷射时间阈值和待打印对象的打印层数据,处理器进行分析计算可以得到喷射单元在上一次清洗结束到下一次清洗开始的清洗间隔。具体的,在喷射单元进行喷墨打印时,每经过一个清洗间隔处理器就会生成一个清洗指令,该清洗指令可以发送给对应的喷射单元控制器,由喷射单元控制器控制喷射单元停止工作,并移回到清洗池进行清洗。
本实施例提供的喷射单元清洗指令生成方法,可以根据喷射单元的喷射时间阈值和打印层数据,来确定喷射单元的清洗间隔,能够使得喷射单元灵活的适应不同待打印对象,减少喷射单元的自动清洗次数,提高喷射单元的工作效率,且省时省材。
在一些实施例中,根据所述喷射时间阈值以及所述打印层数据,确定所述喷射单元在上一次清洗结束到下一次清洗开始的清洗间隔,包括:
S241、获取修正值;
S242、根据所述修正值、所述喷射时间阈值以及所述打印层数据,确定所述清洗间隔。
其中,修正值可以是用户通过输入界面输入至处理器中的,也可以是预存在处理器中的,还可以是处理器根据相关变量因素分析计算得到的。
示例性的,修正值可以是间隔时间修正值或者间隔层数修正值,具体的,间隔时间修正值可以是用户根据间隔时间(即喷射单元在上一次清洗结束到下一次清洗开始的时间)进行修正之后通过输入界面输入至处理器,间隔层数修正值可以是用户根据间隔层数(即喷射单元在上一次清洗结束到下一次清洗开始的打印层数)进行修正之后通过输入界面输入至处理器。
在一些实施例中,所述修正值包括间隔时间修正值,所述打印层数据包括各个打印层的喷射面积信息,所述清洗间隔包括间隔时间;
其中,喷射面积信息可以是能得到各个打印层的喷射面积的数据。示例性的,喷射面积信息可以直接是打印层的喷射面积,也可以是间接的打印层的长和宽等数据,即可以间接得到打印层的喷射面积的数据。
本实施例中,根据所述修正值、所述喷射时间阈值以及所述打印层数据,确定所述清洗间隔,包括:
S242a、根据所述间隔时间修正值、所述喷射时间阈值以及所述各个打印层的喷射面积信息,确定所述间隔时间。
时间修正值可以是用户通过输入界面输入至处理器中的,也可以是预存在处理器中的,还可以是处理器根据相关变量因素分析计算得到的。具体的,时间修正值可以是用户根据间隔时间(即喷射单元在上一次清洗结束到下一次清洗开始的时间)进行修正之后通过输入界面输入至处理器。
在本申请实施例中,时间修正值可以根据一种或多种调整因素获取得到,即处理器根据一种和多种调整因素进行分析计算得到时间修正值。其中,调整因素至少包括喷射单元的性能、待打印对象的属性、打印环境、打印机特性和用户要求。
示例性的,喷射单元的性能包括喷头数目、通道数目、喷孔数目以及喷孔口径等,待打印对象的属性包括三维模型的几何形状、材料种类、颜 色数量、材料的软硬度以及材料的粘度等,打印机特性包括喷射单元的扫描路径等,打印环境包括环境温度、湿度等,用户要求则是指用户对此次打印过程省时省材的要求程度。
在一些实施例中,根据所述间隔时间修正值、所述喷射时间阈值以及所述各个打印层的喷射面积信息,确定所述间隔时间,包括:
通过以下公式计算得到所述间隔时间:
Figure PCTCN2021105940-appb-000003
上式中,T n为第n次清洗结束到第n+1次清洗开始的间隔时间,δ为间隔时间修正值,P为预设的喷射面积,S为喷射时间阈值,P n为第n次清洗结束后进行打印的第一层打印层的喷射面积,n为正整数。
示例性的,时间修正值δ的取值范围可以为0<δ?5,时间修正值δ用于进行修正间隔时间,通过S*(P/P n)计算得到计算值之后,再通过时间修正值δ来对该计算值进行修正,最终得到间隔时间T n
应当说明的是,时间修正值δ可以是用户事先通过有限次实验确定得到的,例如用户对某一个形状的三维模型进行多次喷墨打印实验,根据上述的调整因素不断的调整该时间修正值δ的大小,确定一个时间修正值δ的大小标准,由该大小标准即可得到最佳的间隔时间T n,之后如果有对这种形状的三维模型进行打印时,用户就可以直接输入该大小标准,即将该大小标准作为时间修正值δ。举例,用户事先通过有限次实验测得多组P和S,其中P为预设的喷射面积,S为喷射单元在预设的喷射面积P内可维持喷射材料的流畅性的时间,根据多组P和S的比例关系不断的调整该时间修正值δ的大小,并确定一组P和S作为标准参考值,由该标准参考值和该时间修正值即可得到最佳的间隔时间T n
可以理解的是,喷射面积是指喷射单元需要喷射材料的区域的面积,而不是打印层的整个面积,例如当打印层为空心正方形时,空心区域的面积不计入喷射面积中。喷射流畅性是指喷射单元喷射材料所形成的线条清晰、连续且均匀。
下面以n=1为例,在喷射单元开始打印之前,喷射单元已经进行了第1次清洗,P 1为三维模型的第一层打印层的面积,T 1为喷射单元第1次清 洗结束到第2次清洗开始的间隔时间,当经过该间隔时间之后,喷射单元将开始进行第2次清洗,依次类推直到完成整个三维模型的喷墨打印,预设的喷射面积P可以是预设的,喷射单元在预设的喷射面积P内可维持喷射材料的流畅性的时间S则可以根据喷射单元的喷射材料以及预设的喷射面积P得到。
在一些实施例中,所述修正值还包括间隔层数修正值,所述打印层数据还包括打印层的打印时间,所述清洗间隔还包括间隔层数;
根据所述修正值、所述喷射时间阈值以及所述打印层数据,确定所述清洗间隔,包括:
S242b、获取所述间隔时间;根据所述间隔层数修正值、所述打印层的打印时间以及所述间隔时间,确定所述间隔层数。
在本申请实施例中,打印层数据除了包括上述的各个打印层的喷射面积信息之外,还可以包括打印层的打印时间,打印时间即喷射单元完成每一个打印层的喷射所需花费的时间。
间隔层数修正值可以根据一种或多种调整因素获取得到,调整因素至少包括喷射单元的性能、待打印对象的属性、打印环境、打印机特性和用户要求,打印层的打印时间可以根据打印层的打印面积计算得到。
示例性的,喷射单元的性能包括喷头数目、通道数目、喷孔数目以及喷孔口径等,待打印对象的属性包括三维模型的几何形状、材料种类、颜色数量、材料的软硬度以及材料的粘度等,打印机特性包括喷射单元的扫描路径等,打印环境包括环境温度、湿度等,用户要求则是指用户对此次打印过程省时省材的要求程度,其可以由用户决定。
在一些实施例中,根据所述间隔层数修正值、所述打印层的打印时间以及所述间隔时间,确定所述间隔层数,包括:
通过以下公式计算得到所述间隔时间:
Figure PCTCN2021105940-appb-000004
上式中,F n为第n次清洗结束到第n+1次清洗开始的间隔层数,T n为第n次清洗结束到第n+1次清洗开始的间隔时间,Q n为第n次清洗结束后 进行打印的第一层打印层的打印时间,X为间隔层数修正值,F n和n都为正整数。
示例性的,层数修正值的取值范围可以为-20≤X≤20,与上述的时间修正值δ类似,层数修正值用于进行修正间隔层数,T n可以通过上文的计算公式计算得到,当T n/Q n之后得到的值再与层数修正值X求和,即得到了最终的间隔层数F n
在一些实施例中,所述方法还包括:根据所述间隔层数获取所述喷射单元在清洗结束后进行打印的第一层打印层的层数。
具体的,通过以下公式计算得到喷射单元在上一次清洗结束后进行打印的第一层打印层的层数:
N n+1=F n+N n
上式中,N n+1为第n+1次清洗结束后进行打印的第一层打印层的层数,N n为第n次清洗结束后进行打印的第一层打印层的层数,F n为第n次自动清洗结束到第n+1次自动清洗的间隔层数,N n+1、N n和n都为不小于1的整数。
其中,喷射单元在执行打印前进行了第1次自动清洗,则N 1=1,P 1为三维模型的第1层打印层的面积,Q 1为三维模型的第1层打印层的打印时间,先根据T 1=δ*S*P/P 1得到第1次清洗结束到第2次清洗的间隔时间T 1,再根据F 1=T 1/Q 1+X得到第1次清洗结束到第2次清洗的间隔层数F 1,再根据N 2=F 1+N 1得到第2次自动清洗结束后进行打印的第一层打印层的层数,根据层数N 2生成清洗指令,指示喷射单元在打印三维模型的第N 2层打印层前执行第2次自动清洗。同样的,找到第N 2层打印层的喷射面积P 2和打印时间Q 2,先根据T 2=δ*S*P/P 2得到第2次清洗结束到第3次清洗的间隔时间T 2,再根据F 2=T 2/Q 2+X得到第2次清洗结束到第3次清洗的间隔层数F 2,再根据N 3=F 2+N 2得到第3次清洗结束后进行打印的第一层打印层的层数,根据层数N 3生成自动清洗指令,指示喷射单元在打印三维模型的第N 3层打印层前执行第3次自动清洗。
图3为本申请实施例提供的喷射单元清洗指令生成装置结构示意图, 如图3所示,该喷射单元清洗指令生成装置30包括:
获取模块301,用于获取喷射单元的喷射参数,所述喷射参数包括所述喷射单元维持喷射流畅性的喷射阈值;
生成模块302,用于根据所述喷射阈值生成清洗指令,所述清洗指令用于控制所述喷射单元进行清洗。
其中,获取模块301被配置成用于接收喷射单元的喷射参数,所述喷射参数包括所述喷射单元维持喷射流畅性的喷射阈值;喷射阈值可以包括喷射量阈值和喷射时间阈值中的至少一种。喷射单元的喷射阈值可以通过对喷射单元进行多次实验得到,喷射材料与待打印对象的材料可以相同,喷射单元也可以喷射一种或多种材料,流畅性指喷射单元的喷射材料形成的线条清晰、连续且均匀。更具体的,流畅性指的是在指示喷射单元所有喷孔喷射材料滴时,喷射单元喷射的材料滴的数目大于或等于喷孔总数的90%。
生成模块302被配置成根据所述喷射阈值生成清洗指令,生成的清洗指令可以发送给对应的喷射单元控制器,由喷射单元控制器控制喷射单元停止工作,并移回到清洗池进行清洗。
上述喷射单元的喷射阈值可以由用户直接通过输入界面输入到喷射单元清洗指令生成装置30,也可以通过获取模块301直接从打印机的存储单元中获取,本实施例在此不做具体限制。
本申请实施例提供的喷射单元清洗指令生成装置,可用于执行上述方法实施例中的技术方案,其实现原理和技术效果类似,本申请实施例在此不再赘述。
关于喷射单元清洗指令生成装置的具体限定可以参见上文中对于喷射单元清洗指令生成方法的限定,在此不再赘述。上述喷射单元清洗指令生成装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于显示设备中的处理器中,也可以以软件形式存储于显示设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
图4是本申请实施例提供的喷射单元的控制器的结构示意图,如图4 所示,喷射单元的控制器43可包括形成例如用于控制增材制造系统的嵌入式计算设备一部分的至少一个处理器,存储器44可包括易失性和/或非易失性存储器,例如非暂时性存储介质,其设置为例如以固件的形式储存计算机程序代码,固件可包括机器可读的指令和/或包括用于至少一个处理器的指令的可执行代码。
喷射单元的控制器43可以通信的耦合到喷射单元41,喷射单元41可喷射材料以执行自动清洗,喷射单元41包括了喷射头411、喷射头412和喷射头413,在其他情况下,喷射单元41可包括更多或更少的或另外的组件,喷射单元41也可以喷射一种或多种材料。喷射单元的控制器43先控制喷射单元41移动到与清洗站42相对应的位置,再控制喷射单元41喷射材料进行自动清洗,喷射的材料被清洗站42接收。
应当说明的是,在本实施例不限制图4中显示的单元模块和组件的排列和形状,每个组件的精确排列和形状将根据实施的生产技术和打印装置的具体结构而发生改变。
继续参考图1a和图1b,对比外边长相等的一个空心正方体模型A和一个实心正方体模型B,空心正方体模型A的打印层的喷射面积小于实心正方体模型B的打印层的喷射面积,当两个模型的每个打印层的打印时间一致时,由于F n=(δ*S*P/P n)/Q n+X,当P n更小,Q n相等时,空心正方体模型A每次自动清洗之间的间隔层数大于实心正方体模型B每次自动清洗之间的间隔层数,即在空心正方体模型A和实心正方体模型B的总层数相同的情况下,本申请提供的方案减少了空心正方体模型A自动清洗的次数,提高了打印效率。
图5为本申请实施例提供的喷射单元喷墨打印三维模型C及其打印层的示意图,如图5所示,空心正方体三维模型C中的空心部分为倒四棱锥结构,当三维模型顶部的打印层的喷射面积小于底部打印层的喷射面积,而每个打印层的打印时间一致时,随着喷射单元打印的进行,则存在P 1>P 2>…>P n,Q 1=Q 2=…=Q n,由于F n=(δ*S*P/P n)/Q n+X,当P n逐渐变小,Q n不变时,两次自动清洗之间的间隔层数会逐渐增大,即在三维模型的总层数不变的情况下,本申请方案提供的方法使得此类模型 在打印过程中的自动清洗的次数减少,达到了省时省材的效果。
图6为本申请实施例提供的喷射单元喷墨打印三维模型D及其打印层的示意图,如图6所示,该三维模型为锥类模型,当三维模型存在顶部打印层的喷射面积小于底部打印层的喷射面积,顶部打印层的打印时间也小于底部打印层的打印时间,即每个打印层的打印时间不一致时,例如,随着喷射单元开始进行打印,则会存在有P 1>P 2>…>P n,Q 1>Q 2>…>Q n,由于F n=(δ*S*P/P n)/Q n+X,当P n和Q n都逐渐变小时,则每两次自动清洗之间的间隔层数会逐渐增大,即在三维模型的总层数不变的情况下,本申请方法使得此类模型在打印过程中的自动清洗的次数减少,达到了省时省材的效果。
图7为本申请实施例提供的一种打印机的结构示意图,如图7所示,该打印机70包括有喷射单元73、控制器72和上述的喷射单元清洗指令生成装置71,喷射单元清洗指令生成装置71用于生成清洗指令,控制器72用于根据清洗指令控制喷射单元71进行清洗。
本申请实施例还提供一种可读存储介质,其上存储有计算机程序,计算机程序用于实现上述的喷射单元清洗指令生成方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本 申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。

Claims (13)

  1. 一种喷射单元清洗指令生成方法,其特征在于,应用于打印机,包括:
    获取喷射单元的喷射参数,所述喷射参数包括所述喷射单元维持喷射流畅性的喷射阈值;
    根据所述喷射阈值生成清洗指令,所述清洗指令用于控制所述喷射单元进行清洗。
  2. 根据权利要求1所述的方法,其特征在于,所述喷射阈值包括喷射量阈值;
    根据所述喷射阈值生成清洗指令,包括:
    获取所述喷射单元的喷射数据,所述喷射数据包括喷射量;
    在所述喷射量达到所述喷射量阈值时生成所述清洗指令。
  3. 根据权利要求1所述的方法,其特征在于,所述喷射阈值包括喷射时间阈值,所述喷射时间阈值为所述喷射单元在预设喷射面积内维持喷射流畅性的时间;
    根据所述喷射阈值生成清洗指令,包括:
    获取待打印对象的打印层数据;
    根据所述喷射时间阈值以及所述打印层数据,确定所述喷射单元在上一次清洗结束到下一次清洗开始的清洗间隔;
    根据所述清洗间隔生成所述清洗指令。
  4. 根据权利要求3所述的方法,其特征在于,根据所述喷射时间阈值以及所述打印层数据,确定所述喷射单元在上一次清洗结束到下一次清洗开始的清洗间隔,包括:
    获取修正值;
    根据所述修正值、所述喷射时间阈值以及所述打印层数据,确定所述清洗间隔。
  5. 根据权利要求4所述的方法,其特征在于,所述修正值包括间隔时间修正值,所述打印层数据包括各个打印层的喷射面积信息,所述清洗间隔包括间隔时间;
    根据所述修正值、所述喷射时间阈值以及所述打印层数据,确定所述清洗间隔,包括:
    根据所述间隔时间修正值、所述喷射时间阈值以及所述各个打印层的喷射面积信息,确定所述间隔时间。
  6. 根据权利要求5所述的方法,其特征在于,根据所述间隔时间修正值、所述喷射时间阈值以及所述各个打印层的喷射面积信息,确定所述间隔时间,包括:
    通过以下公式计算得到所述间隔时间:
    Figure PCTCN2021105940-appb-100001
    上式中,T n为第n次清洗结束到第n+1次清洗开始的间隔时间,δ为间隔时间修正值,P为预设的喷射面积,S为喷射时间阈值,P n为第n次清洗结束后进行打印的第一层打印层的喷射面积,n为正整数。
  7. 根据权利要求6所述的方法,其特征在于,所述修正值还包括间隔层数修正值,所述打印层数据还包括打印层的打印时间,所述清洗间隔还包括间隔层数;
    根据所述修正值、所述喷射时间阈值以及所述打印层数据,确定所述清洗间隔,包括:
    获取所述间隔时间;
    根据所述间隔层数修正值、所述打印层的打印时间以及所述间隔时间,确定所述间隔层数。
  8. 根据权利要求7所述的方法,其特征在于,根据所述间隔层数修正值、所述打印层的打印时间以及所述间隔时间,确定所述间隔层数,包括:
    通过以下公式计算得到所述间隔时间:
    Figure PCTCN2021105940-appb-100002
    上式中,F n为第n次清洗结束到第n+1次清洗开始的间隔层数,T n为第n次清洗结束到第n+1次清洗开始的间隔时间,Q n为第n次清洗结束后进行打印的第一层打印层的打印时间,X为间隔层数修正值,F n和n都为正整数。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    根据所述间隔层数获取所述喷射单元在清洗结束后进行打印的第一层打印层的层数。
  10. 根据权利要求4-9任意一项所述的方法,其特征在于,所述获取修正值,包括:
    根据喷射单元的性能、待打印对象的属性、打印环境、打印机特性和用户要求中的至少一种,获取所述修正值。
  11. 一种喷射单元清洗指令生成装置,其特征在于,应用于打印机,包括:
    获取模块,用于获取喷射单元的喷射参数,所述喷射参数包括所述喷射单元维持喷射流畅性的喷射阈值;
    生成模块,用于根据所述喷射阈值生成清洗指令,所述清洗指令用于控制所述喷射单元进行清洗。
  12. 一种打印机,其特征在于,包括喷射单元、控制器和权利要求11所述的喷射单元清洗指令生成装置,所述喷射单元清洗指令生成装置用于生成清洗指令,所述控制器用于根据所述清洗指令控制所述喷射单元进行清洗。
  13. 一种存储介质,其特征在于,所述可读存储介质用于存储计算机程序,所述计算机程序用于实现权利要求1至10任意一项所述的喷射单元清洗指令生成方法。
PCT/CN2021/105940 2020-08-21 2021-07-13 喷射单元清洗指令生成方法、装置、打印机和存储介质 WO2022037318A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010847239.8 2020-08-21
CN202010847239 2020-08-21
CN202110540498.0 2021-05-18
CN202110540498 2021-05-18
CN202110725191.8 2021-06-29
CN202110725191.8A CN113927903B (zh) 2020-08-21 2021-06-29 喷射单元清洗指令生成方法、装置、打印机和存储介质

Publications (1)

Publication Number Publication Date
WO2022037318A1 true WO2022037318A1 (zh) 2022-02-24

Family

ID=79274311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105940 WO2022037318A1 (zh) 2020-08-21 2021-07-13 喷射单元清洗指令生成方法、装置、打印机和存储介质

Country Status (2)

Country Link
CN (1) CN113927903B (zh)
WO (1) WO2022037318A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102189768A (zh) * 2010-01-27 2011-09-21 精工爱普生株式会社 打印装置、打印装置的维护方法
CN104647920A (zh) * 2015-02-15 2015-05-27 佛山市峰华卓立制造技术有限公司 一种喷头喷墨检测和控制系统及其工作方法
JP2017031244A (ja) * 2015-07-29 2017-02-09 東洋インキScホールディングス株式会社 3次元造形装置洗浄用樹脂組成物とその製造方法、および、3次元造形装置洗浄用樹脂フィラメント
CN106696292A (zh) * 2015-07-31 2017-05-24 三纬国际立体列印科技股份有限公司 立体打印装置
US20170210064A1 (en) * 2016-01-26 2017-07-27 Auckland Uniservices Limited Apparatus and methods for printing three dimensional objects
CN107175831A (zh) * 2017-06-19 2017-09-19 合肥斯科尔智能科技有限公司 一种3d打印机喷头功能异常检测系统
CN108202474A (zh) * 2016-12-16 2018-06-26 三纬国际立体列印科技股份有限公司 用于粉末式喷印三维印表机的自动清洁喷头方法
CN109353121A (zh) * 2018-09-28 2019-02-19 共享智能铸造产业创新中心有限公司 基于喷墨式打印头的喷墨衰减量的计算方法和装置
US20190176473A1 (en) * 2016-04-18 2019-06-13 Brother Kogyo Kabushiki Kaisha Ink-jet printer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2859128B1 (fr) * 2003-08-29 2006-03-10 Centre Nat Rech Scient Procede et dispositif de fabrication d'un composant multimateriaux tridimensionnel par impression du type jet d'encre
KR20160109706A (ko) * 2015-03-12 2016-09-21 엘지전자 주식회사 3차원 인쇄 장치
CN109421266A (zh) * 2017-08-31 2019-03-05 三纬国际立体列印科技股份有限公司 具打印头维护功能的3d打印机及其移动路径控制方法
CN108556483B (zh) * 2018-01-17 2019-08-09 森大(深圳)技术有限公司 修改印前数据补偿异常喷嘴的方法、装置、设备及介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102189768A (zh) * 2010-01-27 2011-09-21 精工爱普生株式会社 打印装置、打印装置的维护方法
CN104647920A (zh) * 2015-02-15 2015-05-27 佛山市峰华卓立制造技术有限公司 一种喷头喷墨检测和控制系统及其工作方法
JP2017031244A (ja) * 2015-07-29 2017-02-09 東洋インキScホールディングス株式会社 3次元造形装置洗浄用樹脂組成物とその製造方法、および、3次元造形装置洗浄用樹脂フィラメント
CN106696292A (zh) * 2015-07-31 2017-05-24 三纬国际立体列印科技股份有限公司 立体打印装置
US20170210064A1 (en) * 2016-01-26 2017-07-27 Auckland Uniservices Limited Apparatus and methods for printing three dimensional objects
US20190176473A1 (en) * 2016-04-18 2019-06-13 Brother Kogyo Kabushiki Kaisha Ink-jet printer
CN108202474A (zh) * 2016-12-16 2018-06-26 三纬国际立体列印科技股份有限公司 用于粉末式喷印三维印表机的自动清洁喷头方法
CN107175831A (zh) * 2017-06-19 2017-09-19 合肥斯科尔智能科技有限公司 一种3d打印机喷头功能异常检测系统
CN109353121A (zh) * 2018-09-28 2019-02-19 共享智能铸造产业创新中心有限公司 基于喷墨式打印头的喷墨衰减量的计算方法和装置

Also Published As

Publication number Publication date
CN113927903B (zh) 2023-03-21
CN113927903A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
CN108944045B (zh) 喷墨打印方法、装置、存储介质和计算机设备
US9914264B2 (en) System and method for missing ejector correction in three-dimensional object printing by waveform adjustment
JP6029311B2 (ja) 画像処理装置および画像処理方法
US20070195120A1 (en) Method of controlling ink ejecting characteristics of inkjet head
US8042900B2 (en) Inkjet recording apparatus and inkjet recording method
JP2018034494A (ja) プラットホーム移動式3dプリント方法
WO2022037318A1 (zh) 喷射单元清洗指令生成方法、装置、打印机和存储介质
CN114030301A (zh) 喷墨打印控制方法、控制装置以及喷墨打印系统
JP2016168797A (ja) インクジェット印字装置の制御方法
US10137681B2 (en) Image processing apparatus generating print data including dot formation states for respective pixels by using image data
US10906326B2 (en) Method for generating substrate-dependent compensation profiles and for compensating for position-dependent density fluctuations
WO2023221687A1 (zh) 供墨方法、打印控制模块、墨路负压控制系统及喷墨打印机
US10322579B2 (en) Inkjet printing system and method to reduce system-dependent streaking
US10889111B2 (en) Method and printer for reducing intensity fluctuations
JP7451603B2 (ja) 記録装置および記録方法
CN114103459B (zh) 一种喷墨控制方法、装置、设备及存储介质
JP2016083604A (ja) インクジェット印刷装置
JP2009166273A (ja) 液体噴射装置
US10118386B2 (en) Method to activate a nozzle arrangement of an inkjet printing system
KR20220157036A (ko) 복수의 헤드의 높이 조절이 가능하고 잉크의 침전이 방지되며 잉크가 자동으로 보충되는 연속적 잉크 분사식 프린터기
US20200079080A1 (en) Method and device for improving the droplet positioning in an inkjet
CN114055941B (zh) 喷墨位移参数校正方法、校正装置以及校正系统
JP5738253B2 (ja) 画像形成装置
CN113771519B (zh) 一种喷墨打印机的打印方法及喷墨打印机
JP4952590B2 (ja) 液体噴射装置の製造方法、液体噴射装置および液体噴射装置製造プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 04.07.23.

122 Ep: pct application non-entry in european phase

Ref document number: 21857413

Country of ref document: EP

Kind code of ref document: A1