WO2022036795A1 - 化湿败毒组合物的鉴别方法 - Google Patents

化湿败毒组合物的鉴别方法 Download PDF

Info

Publication number
WO2022036795A1
WO2022036795A1 PCT/CN2020/115841 CN2020115841W WO2022036795A1 WO 2022036795 A1 WO2022036795 A1 WO 2022036795A1 CN 2020115841 W CN2020115841 W CN 2020115841W WO 2022036795 A1 WO2022036795 A1 WO 2022036795A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
thin
composition
methanol
add
Prior art date
Application number
PCT/CN2020/115841
Other languages
English (en)
French (fr)
Inventor
程学仁
魏梅
孙冬梅
罗文汇
朱德全
李国卫
马瑞瑞
杨小龙
邱韵静
曾荟
胡琦萍
邓淙友
梁慧
彭劲源
Original Assignee
广东一方制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东一方制药有限公司 filed Critical 广东一方制药有限公司
Publication of WO2022036795A1 publication Critical patent/WO2022036795A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/95Detectors specially adapted therefor; Signal analysis

Definitions

  • the invention relates to the technical field of traditional Chinese medicine identification methods, in particular to an identification method of a Huashibaidu composition.
  • Huashibaidu recipe consists of 14 herbs, including raw ephedra, almond, raw gypsum, licorice, Huoxiang, Magnolia, Atractylodes, Caoguo, Pinellia, Poria, Raw Rhubarb, Raw Astragalus, Tinglizi and Red Peony .
  • Clinical experiments have shown that Huashi Baidu Fang has a prominent effect on improving the symptoms of patients and increasing the negative rate of nucleic acid.
  • the current researches on Huashi Baidu Fang are mostly focused on pharmacology and efficacy research, and there is no research on its quality standards. And the existing production is also limited to a small area, there is no large-scale industrial production, the requirements for quality control are relatively low, and there is no more mature identification method.
  • the technical problem to be solved by the present invention is to provide a method for identifying the composition for removing dampness and sepsis, which has good separation degree, no negative interference, and the method is feasible; and has strong specificity and good durability, which can be used for Drug quality control provides a data basis.
  • the present invention provides a method for identifying a composition for eliminating dampness and eliminating toxic substances, which mainly includes the following components: ephedra, fried bitter almond, gypsum, licorice, patchouli, Magnolia, bran fried Atractylodes, fried grass nuts, Pinellia, Poria, Rhubarb, Astragalus, Tinglizi, red peony;
  • the method for identifying the Huashibaidu composition includes: performing thin-layer chromatography identification on ephedra, licorice, and Magnolia respectively, to detect whether the Huashibaidu composition contains ephedrine hydrochloride.
  • the composition contains ephedrine hydrochloride can be obtained through thin-layer chromatography identification of ephedra in the composition; -MS) or infrared spectroscopy (FTIR) and other quantitative analysis means to measure the content of ephedrine hydrochloride and pseudoephedrine hydrochloride, the total content of ephedrine hydrochloride and pseudoephedrine hydrochloride in the composition is controlled to be 0.7 ⁇ 2.7mg/g; if the composition If there is no ephedrine hydrochloride in the composition, the quality of the composition is judged to be unqualified.
  • -MS thin-layer chromatography identification of ephedra in the composition
  • FTIR infrared spectroscopy
  • the method for identifying the Huashibaidu composition also includes TLC identification of Astragalus, Tinglizi, red peony and rhubarb, respectively, to detect whether the Huashibaidu composition contains peony. glycosides.
  • paeoniflorin is contained in the composition; if paeoniflorin is contained in the composition, liquid chromatography (HPLC) or gas chromatography-mass spectrometry (GC-MS) or The content of paeoniflorin is determined by quantitative analysis means such as infrared spectroscopy (FTIR), and the content of paeoniflorin in the composition is controlled to be 3-14 mg/g; if there is no paeoniflorin in the composition, the quality of the composition is determined to be unqualified.
  • FTIR infrared spectroscopy
  • the thin-layer chromatography identification method of described Ephedra is:
  • the thin-layer chromatography identification method of described licorice is:
  • step (1) (2) taking 1-3 g of licorice reference medicinal materials, and preparing according to the preparation method of licorice test solution in step (1) to obtain licorice reference medicinal material solution;
  • the thin-layer chromatography identification method of described Magnolia officinalis is:
  • the thin-layer chromatography identification method of described Astragalus membranaceus is:
  • the thin layer chromatography identification method of described Tinglizi is:
  • the thin-layer chromatography identification method of described red peony is:
  • the thin layer chromatography identification method of described rhubarb is:
  • the composition for eliminating dampness and baidu mainly includes the following components: 3-60 parts of ephedra, 4.5-90 parts of fried bitter almond, 7.5-150 parts of gypsum, 1.5-30 parts of licorice, patchouli 5-100 parts of incense, 5-100 parts of Magnolia, 7.5-150 parts of bran fried Atractylodes, 5-100 parts of fried grass nuts, 4.5-90 parts of French pinellia, 7.5-150 parts of Poria, 2.5-50 parts of rhubarb, Astragalus 5-100 parts, Tinglizi 5-100 parts, Red peony root 5-100 parts, appropriate amount of accessories;
  • the dampness-removing and poisoning composition is made into a traditional Chinese medicine preparation, and the traditional Chinese medicine preparation is a granule, a decoction, a powder, a capsule, an oral liquid, a tablet or a pill.
  • the present invention is based on the research on the molecular mechanism of action of Huashibaidu composition, the analysis of the specific situation of large production and a large amount of experimental research, in the identification standard of Huashibaidu composition, ephedra, licorice, Magnolia officinalis, Magnolia officinalis, The identification of Astragalus, Tinglizi, Red Peony and Rhubarb provides a solid data foundation for large-scale production.
  • the identification method of the present invention has better separation degree, no negative interference, and the identification method is feasible; and the development time is short, the inspection is clear, has strong specificity and good reproducibility, and can better control large-scale production The quality of the drug in the process.
  • Fig. 1 is the thin-layer chromatogram of Ephedra; Wherein, 1 ⁇ 3 are different batches of dampness and sepsis compositions, 4 are Ephedra reference substance, and 5 are Ephedra-deficiency negative samples;
  • Fig. 2 is the thin-layer chromatogram of Ephedra at 21.1°C, wherein 1 to 3 are different batches of Huashibaidu compositions, and 4 is the reference substance of Ephedra;
  • Fig. 3 is the thin-layer chromatogram of Ephedra at 6.4°C, wherein 1 to 3 are different batches of Huashibaidu compositions, and 4 is the reference substance of Ephedra;
  • Fig. 4 is the thin-layer chromatogram of Ephedra ephedra when the relative humidity is 36%, wherein, 1 to 3 are different batches of dehumidification and sepsis composition, and 4 is Ephedra reference substance;
  • Fig. 5 is the thin-layer chromatogram of Ephedra ephedra when the relative humidity is 79%, wherein, 1 to 3 are different batches of damp-disinfecting and poisoning compositions, and 4 is an ephedra reference substance;
  • Fig. 6 is the thin-layer chromatogram of Ephedra under different spotting amounts, among which, the spotting amounts of ephedra reference solution in 1-5 are 1 ⁇ L, 2 ⁇ L, 3 ⁇ L, 5 ⁇ L and 10 ⁇ L respectively, and 6-10 are ephedra test solution Spotting volumes were 1 ⁇ L, 2 ⁇ L, 3 ⁇ L, 5 ⁇ L and 10 ⁇ L;
  • Fig. 7 is the thin-layer chromatogram of Ephedra ephedra when adopting the silica gel G plate of Spectra, wherein, 1 ⁇ 3 are different batches of damp-disinfecting and poisoning compositions, and 4 is Ephedra ephedra reference substance;
  • Fig. 8 is the thin-layer chromatogram of ephedra when using Merck silica gel G plate, wherein, 1 to 3 are different batches of dehumidification and sepsis compositions, and 4 is ephedra reference substance;
  • Fig. 9 is the thin-layer chromatogram of licorice, wherein, 1 ⁇ 3 are different batches of dampness and sepsis compositions, 4 is the reference medicinal material of licorice, and 5 is the negative sample of licorice deficiency;
  • Figure 10 is a thin-layer chromatogram of licorice at 21.1°C, wherein 1 to 3 are different batches of Huashibaidu compositions, and 4 is a reference medicinal material of licorice;
  • Figure 11 is a thin-layer chromatogram of licorice at 6.4°C, wherein 1 to 3 are different batches of Huashibaidu compositions, and 4 is a reference medicinal material of licorice;
  • Fig. 12 is the thin-layer chromatogram of licorice when the relative humidity is 36%, wherein, 1-3 are different batches of damp-dampening and sepsis compositions, and 4 is the reference medicinal material of licorice;
  • Figure 13 is a thin-layer chromatogram of licorice when the relative humidity is 79%, wherein, 1 to 3 are different batches of damp-dampening and sepsis compositions, and 4 is a reference medicinal material of licorice;
  • Figure 14 is the thin-layer chromatogram of licorice under different spotting amounts, in which, 1-5 are spots of licorice test solution of 2 ⁇ L, 4 ⁇ L, 6 ⁇ L, 8 ⁇ L and 10 ⁇ L; 6-10 are spots of licorice reference medicinal material solution
  • the sample volumes were 2 ⁇ L, 4 ⁇ L, 6 ⁇ L, 8 ⁇ L and 10 ⁇ L;
  • Fig. 15 is the thin-layer chromatogram of licorice when adopting the G-plate of Spectra silica gel, wherein, 1-3 are different batches of damp-dampening and sepsis compositions, and 4 is the reference medicinal material of licorice;
  • Fig. 16 is the thin-layer chromatogram of licorice when using Merck silica gel G plate, wherein, 1-3 are different batches of damp-dampening and sepsis compositions, and 4 is the reference medicinal material of licorice;
  • Fig. 17 is the thin-layer chromatogram of Magnolia officinalis, wherein, 1-3 are different batches of Huashibaidu compositions, 4 is a magnolol reference substance, 5 is a magnolol reference substance, and 6 is Magnolia officinalis negative sample;
  • Figure 18 is a thin-layer chromatogram of Magnolia officinalis at 26.1°C, wherein 1 to 3 are different batches of Huashibaidu compositions, 4 is a reference substance of magnolol, and 5 is a reference substance of Honokiol;
  • Figure 19 is a thin-layer chromatogram of Magnolia officinalis at 3.1°C, wherein 1-3 are different batches of Huashibaidu compositions, 4 is a reference substance of magnolol, and 5 is a reference substance of Honokiol;
  • Figure 20 is the thin-layer chromatogram of Magnolia officinalis when the relative humidity is 36%, wherein, 1 to 3 are different batches of dehumidifying and sepsis compositions, 4 is a magnolol reference substance, and 5 is a magnolol reference substance;
  • Figure 21 is a thin-layer chromatogram of Magnolia officinalis when the relative humidity is 78%, wherein, 1 to 3 are different batches of dehumidifying and sepsis compositions, 4 is a magnolol reference substance, and 5 is a magnolol reference substance;
  • Figure 22 is the thin-layer chromatogram of Magnolia officinalis under different spotting amounts, wherein, the spotting amounts of Magnolia officinalis test solution in 1-4 are 2 ⁇ L, 4 ⁇ L, 6 ⁇ L, and 8 ⁇ L, respectively, and 5-8 are magnolol
  • the sample volumes of the reference solution were 2 ⁇ L, 4 ⁇ L, 6 ⁇ L, and 8 ⁇ L, respectively, and the sample volumes of 9-12 and the honokiol reference solution were 2 ⁇ L, 4 ⁇ L, 6 ⁇ L, and 8 ⁇ L, respectively;
  • Figure 23 is the thin layer chromatogram of Magnolia officinalis when using Spectra silica gel G plate, wherein, the thin layer chromatogram of Magnolia officinalis, wherein, 1-3 are different batches of Huashibaidu compositions, 4 is the magnolol control product, 5 is the reference substance with honokiol;
  • Figure 24 is the thin-layer chromatogram of Magnolia officinalis when adopting marine silica gel G plate, wherein, 1 to 3 are different batches of dehumidifying and sepsis compositions, 4 is a magnolol reference substance, and 5 is a magnolol reference substance;
  • Figure 25 is a thin-layer chromatogram of Astragalus; wherein, 1 to 3 are different batches of Huashibaidu compositions, 4 is a reference substance of Astragalus, and 5 is a negative sample of Astragalus deficiency;
  • Figure 26 is a thin-layer chromatogram of Astragalus at 25°C; wherein, 1 to 3 are different batches of Huashibaidu compositions, and 4 is a reference substance of Astragalus;
  • Figure 27 is a thin-layer chromatogram of Astragalus at 9°C; wherein, 1 to 3 are different batches of Huashibaidu compositions, and 4 is a reference substance of Astragalus;
  • Figure 28 is a thin-layer chromatogram of Astragalus when the relative humidity is 41%; wherein, 1-3 are different batches of Huashibaidu compositions, and 4 is a reference substance of Astragalus;
  • Figure 29 is a thin-layer chromatogram of Astragalus when the relative humidity is 92%; wherein, 1 to 3 are different batches of Huashibaidu compositions, and 4 is a reference substance of Astragalus;
  • Figure 30 is the thin-layer chromatogram of Astragalus under different spotting amounts, in which, 1-3 are the spotting amounts of astragalus reference solution of 3 ⁇ L, 5 ⁇ L and 8 ⁇ L respectively; 4-6 are the spotting amount of Astragalus reference solution respectively 2 ⁇ L, 3 ⁇ L and 5 ⁇ L;
  • Figure 31 is the thin-layer chromatogram of Astragalus when using marine silica gel G plate; wherein, 1 to 3 are different batches of Huashibaidu compositions, and 4 is Astragalus reference substance;
  • Figure 32 is the thin-layer chromatogram of Astragalus when using Yinlong silica gel G plate; wherein, 1 to 3 are different batches of Huashibaidu compositions, and 4 is Astragalus reference substance;
  • Figure 33 is the thin-layer chromatogram of Tinglizi; wherein, 1 to 3 are different batches of Huashibaidu compositions, 4 is a control of Tinglizi, and 5 is a negative sample of Tinglizi;
  • Figure 34 is a thin-layer chromatogram of Tinglizi at 25°C, wherein 1 to 3 are different batches of dehumidification and sepsis compositions, and 4 is a Tinglizi reference substance;
  • Figure 35 is the thin-layer chromatogram of Tinglizi at 9°C, wherein, 1-3 are different batches of dehumidifying and sepsis compositions, and 4 is the Tinglizi reference substance;
  • Figure 36 is the thin layer chromatogram of Tinglizi when the relative humidity is 41%, wherein, 1 to 3 are different batches of Huashibaidu compositions, and 4 is the reference substance of Tinglizi;
  • Figure 37 is the thin layer chromatogram of Tinglizi when the relative humidity is 92%, wherein, 1 to 3 are different batches of Huashibaidu compositions, and 4 is the Tinglizi reference substance;
  • Figure 38 is the thin-layer chromatogram of Tinglizi with different spotting amounts; in which, 1-3 are Tinglizi reference solution, the spotting amount is 1 ⁇ L, 2 ⁇ L and 3 ⁇ L respectively; 4-6 are Tinglizi for test The sample volume of the product solution was 1 ⁇ L, 2 ⁇ L and 3 ⁇ L, respectively;
  • Figure 39 is a thin-layer chromatogram of red peony, wherein 1 to 3 are different batches of Huashibaidu compositions, 4 is a reference substance of red peony, and 5 is a negative sample of red peony;
  • Figure 40 is a thin-layer chromatogram of red peony at 21.1°C, wherein 1 to 3 are different batches of Huashibaidu compositions, and 4 is a reference substance of red peony;
  • Figure 41 is a thin-layer chromatogram of red peony at 6.4°C, wherein 1-3 are different batches of Huashibaidu compositions, and 4 is a reference substance of red peony;
  • Figure 42 is the thin layer chromatogram of Radix Paeoniae Alba when the relative humidity is 36%, wherein, 1 to 3 are different batches of dehumidification and sepsis compositions, and 4 is the reference substance of Radix Paeoniae Alba;
  • Figure 43 is a thin-layer chromatogram of Radix Paeoniae Alba when the relative humidity is 79%, wherein 1 to 3 are different batches of the dehumidification and sepsis composition, and 4 is the reference substance of Radix Paeoniae Alba;
  • Figure 44 is the thin layer chromatogram of red peony under different spotting amounts, among which, the spotting amount of red peony reference solution is 1 ⁇ L, 2 ⁇ L, 3 ⁇ L, 5 ⁇ L and 10 ⁇ L in 1-5, and 6-10 is red peony for supplying
  • the sample volume of the test solution is 1 ⁇ L, 2 ⁇ L, 3 ⁇ L, 5 ⁇ L and 10 ⁇ L respectively;
  • Figure 45 is the thin-layer chromatogram of Radix Paeoniae Alba when adopting the silica gel G plate of Spectra, wherein 1 to 3 are different batches of Huashibaidu compositions, and 4 is the reference substance of Radix Paeoniae Alba;
  • Figure 46 is the thin layer chromatogram of Radix Paeoniae Alba when using Merck silica gel G plate, wherein, 1-3 are different batches of dehumidification and sepsis compositions, and 4 is the reference substance of Radix Paeoniae Alba;
  • Figure 47 is a thin-layer chromatogram of rhubarb, wherein 1 to 3 are different batches of Huashibaidu compositions, 4 is a reference medicinal material of rhubarb, and 5 is a negative sample of rhubarb deficiency;
  • Figure 48 is a thin layer chromatogram of rhubarb at 26.1°C, wherein 1 to 3 are different batches of Huashibaidu compositions, and 4 is a reference medicinal material of rhubarb;
  • Figure 49 is a thin-layer chromatogram of rhubarb at 3.1°C, wherein 1 to 3 are different batches of Huashibaidu compositions, and 4 is a reference medicinal material of rhubarb;
  • Figure 50 is a thin-layer chromatogram of rhubarb when the relative humidity is 36%, wherein 1 to 3 are different batches of damp-dampening and sepsis compositions, and 4 is a reference medicinal material of rhubarb;
  • Figure 51 is a thin-layer chromatogram of rhubarb when the relative humidity is 78%, wherein, 1-3 are different batches of damp-dampening and sepsis compositions, and 4 is a reference medicinal material of rhubarb;
  • Figure 52 is the thin layer chromatogram of rhubarb under different spotting amounts, among which, the spotting amounts of rhubarb test solution in 1-5 are 1 ⁇ L, 2 ⁇ L, 3 ⁇ L, 5 ⁇ L and 10 ⁇ L, respectively, and 6-10 are rhubarb control medicinal material solution Spotting volumes were 1 ⁇ L, 2 ⁇ L, 3 ⁇ L, 5 ⁇ L and 10 ⁇ L;
  • Figure 53 is a thin-layer chromatogram of rhubarb using the H-plate of Spectra silica gel, wherein, 1-3 are different batches of damp-dampening and sepsis compositions, and 4 is a reference medicinal material of rhubarb;
  • Figure 54 is a thin-layer chromatogram of rhubarb using Yinlong silica gel H plate, wherein, 1-3 are different batches of Huashibaidu compositions, and 4 is a reference medicinal material of rhubarb.
  • the composition for eliminating dampness and eliminating toxic substances mainly includes the following components: ephedra, fried bitter almond, gypsum, licorice, patchouli, Magnolia, bran fried Atractylodes, fried grass nuts, Pinellia, Poria, Rhubarb, Astragalus, Tinglizi, red peony.
  • composition of the invention for eliminating dampness and poisoning, in the prescription, ephedra, patchouli, and gypsum are used as king medicines, ephedra, patchouli, acrid, bitter, warm and fragrant in odor, relieve skin and relieve asthma, dispel dampness and neutralize; gypsum, Ponnet, sweet, cold, clearing the lungs and stomach, stagnant heat and promoting body fluid, the three medicines complement each other to achieve the effects of relieving the exterior and dispelling cold, aromatizing dampness, clearing heat and relieving asthma.
  • Dampness strengthens the spleen, circulates qi and unclogs the orifices, dredges the bowels, and helps the evil to go out.
  • astragalus red peony root, tincture seed, rhubarb as adjuvant, astragalus, sweet, warm and invigorating the lung and spleen, red peony root, bitter, slightly cold, cooling blood and dissipating blood stasis, used for the treatment of blood stasis caused by damage to the right qi in the later stage of the epidemic and qi stagnation.
  • Tinglizi is acrid and cold, assists the monarch medicine gypsum to clear lung heat, and also benefits water, preventing or treating "damp lung (pulmonary edema) lesions"; rhubarb, bitter cold enters the large intestine meridian and clears the fu-organs, and the lungs and the large intestine are related to each other.
  • the monarch medicine gypsum plaster is used as an adjuvant to clear the lung heat, and the red peony root is used to cool the blood and activate the blood.
  • licorice as the medicine, licorice ganping, reconciling various medicines, with red peony root and shaoyao licorice decoction to relieve emergency.
  • the whole recipe has the functions of clearing away dampness, clearing away heat and relieving asthma, nourishing qi and dissipating blood stasis.
  • Fever is the main manifestation, which is mostly low body heat, which is difficult to heal, but it can also be moderate to low fever, or even no fever;
  • wheezing and fatigue are the main symptoms;
  • Digestive system symptoms such as anorexia, loose stools, and diarrhea are often combined; 4
  • Most of the patients have thick and greasy tongue coating. Judging from the above characteristics, it is in line with the pathogenic characteristics of dampness: heavy turbidity, hindering qi and injuring yang, sticking, and descending.
  • Dampness pathogens can cause disease alone, and can also be cold and hot, manifesting as cold-dampness, dampness-heat, of which heat can be caused by dryness, or it can be transformed by dampness for a long time. Damp pathogens, cold-dampness, and damp-heat can be combined with epidemic toxins to cause disease, which can be seen in mild cold-damp stagnation of the lung, damp-heat accumulation in the lung, or common damp-toxin stagnation in the lung, and cold-dampness in the lung. The disease develops, injures the blood, reverses the pericardium, and evolves into severe new coronary pneumonia.
  • the main disease site is in the lungs, followed by the spleen and stomach.
  • the core pathogenesis is dampness and toxin stagnation. It can be divided into four stages: the initial stage, the middle stage, the critical stage and the recovery stage.
  • the lungs resolve phlegm, promote blood circulation and remove blood stasis, clear the internal organs, and nourish the righteousness. Therefore, the composition of the present invention is based on the core pathogenesis, and should be based on the core treatment method of relieving surface dampness, clearing heat and relieving asthma, and eliminating toxins, and simultaneously removing blood stasis and dredging collaterals, nourishing qi and nourishing yin.
  • the combination of epidemic toxin and cold-dampness, aversion to cold and fever, the treatment is appropriate to relieve the exterior and remove dampness and toxin; the combination of epidemic toxin and dampness and heat can cause loose stools, fatigue and fatigue, and it is suitable for clearing away heat, removing dampness and eliminating toxin, and simultaneously nourishing qi and nourishing yin; Chest and lung, wheezing, chest tightness, shortness of breath.
  • composition for dissolving dampness and eliminating toxic substances of the present invention integrates the core pathogenesis of traditional Chinese medicine treatment in the "Diagnosis and Treatment Plan for Pneumonia Infected by Novel Coronavirus (Trial Version 5)", which is a combination of warmth and dampness, which causes the lungs to lose the ability to disperse and descend, and the lung qi is blocked.” , mainly based on dampness and turbidity and heat stagnation of the lung, highlighting the effect of dampness and qi, dispelling lung and relieving asthma, clearing heat and resolving phlegm, benefiting qi and activating blood.
  • the clinical observation in the early stage shows that the present invention can improve the clinical symptoms of severe novel coronavirus infection pneumonia ,
  • it can obviously relieve the main symptoms such as cough, fatigue, dry mouth or vomiting.
  • the healing time is shortened.
  • the respiratory function of the patient is obviously improved, and the time from oxygen inhalation is shortened.
  • the symptoms are significantly relieved, and the symptoms of loss of appetite and chest tightness can also be improved.
  • the clinical symptoms such as cough, fatigue, dry mouth or vomiting of severe and common novel coronavirus pneumonia have been significantly improved, supplementing the severe and common novel coronavirus pneumonia urgently needed by the current epidemic situation. Corona Virus Infection Pneumonia Treatment Drugs.
  • the dehumidification and sepsis composition includes the following components:
  • the dampness-removing and poisoning composition is made into a traditional Chinese medicine preparation, and the traditional Chinese medicine preparation is a granule, a decoction, a powder, a capsule, an oral liquid, a tablet or a pill.
  • the present invention provides a method for identifying the Huashibaidu composition, which can have a good detection effect on the Huashibaidu composition in any dosage form.
  • a method for identifying the Huashibaidu composition which can have a good detection effect on the Huashibaidu composition in any dosage form.
  • the inventors used molecular docking technology to analyze the key targets of the invasion, replication, assembly, shedding and transfer of SARS-Cov-2, and the key targets of lung damage and inflammatory response to the host of various traditional Chinese medicines in the formula of Huashibaidu composition. .
  • the results showed that ephedra inhibited the viral invasion and shedding targets TMPRSS2, TACE, AAK1 (viral invasion, endocytosis regulation), and the key targets of tissue damage after the virus invaded the host.
  • VEGFR2 vascular permeability
  • ALK5 vascular permeability, lung fibrosis respond.
  • Licorice inhibits viral entry and shedding of the targets FURIN (viral entry, endocytosis regulation), TACE, AAK1, and the key targets of tissue damage after virus invasion into the host sPLA2, AMPK (oxidative stress, inflammation), CCR2 (inflammation), p38 ⁇ MAPK (inflammation, apoptosis), VEGFR2, and ALK5; Magnolia officinalis responds to AAK1, a target that inhibits virus invasion and shedding, and AMPK, VEGFR2, and ALK5, which are key targets of tissue damage after virus invades the host.
  • FURIN viral entry, endocytosis regulation
  • TACE endocytosis regulation
  • AAK1 oxidative stress, inflammation
  • CCR2 inflammation
  • p38 ⁇ MAPK inflammation, apoptosis
  • VEGFR2 and ALK5
  • Magnolia officinalis responds to AAK1, a target that inhibits virus invasion and shedding, and AMPK, VEGFR2, and A
  • Rhubarb responds to TMPRSS2, a target that inhibits virus entry and shedding, and AMPK, VEGFR2, and ALK5, which are key targets of tissue damage after virus invasion into the host.
  • Astragalus responds to VEGFR2, a key target of tissue damage after virus invasion into the host.
  • Paeonia lactiflora responds to targets Mpro and ACE2.
  • TLC identification of three herbs such as ephedra, licorice, and Magnolia should be preferred; at the same time, TLC identification of Astragalus, Tinglizi, red peony and rhubarb can also be selected; Establish a complete identification method to provide a solid data basis for the quality monitoring of Huashibaidu composition.
  • the present invention on the basis of considering the above factors, selects ephedra, licorice, Magnolia officinalis, Astragalus, Tinglizi, red peony and rhubarb to carry out TLC identification, in order to establish a perfect identification method, for the purpose of eliminating dampness and sepsis.
  • Quality monitoring of compositions provides a data basis.
  • Ephedra for testing solution take 5g of Huashibaidu composition, grind it finely, add 3 ⁇ 5mL of concentrated ammonia test solution to make wetting, add 25mL of chloroform, heat under reflux for 30 minutes, filter, and the filtrate Evaporate to dryness, add 1 mL of methanol to the residue to dissolve, and obtain;
  • the ephedra identification method of the present invention selects that the ephedra need testing solution spotting amount is 3 ⁇ L, and the ephedra reference substance solution spotting amount is 3 ⁇ L.
  • marine silica gel G plate is a thin-layer plate produced by Qingdao Ocean Chemical Co., Ltd.
  • Puke silica gel G plate is a thin-layer plate produced by Qingdao Puke Separation Materials Co., Ltd.
  • Merck silica gel G plate is produced by Merck Co., Ltd. Thin-layer board; the specifications of the above-mentioned thin-layer boards are all 10cm ⁇ 10cm, and the thickness is 0.20-0.25mm.
  • the licorice test solution and licorice reference medicinal material solution were drawn and spotted on silica gel G thin-layer plates of different manufacturers (Marine silica gel G plate, Spectra silica gel G plate, Merck silica gel G plate), and ethyl acetate-formic acid-ice Acetic acid-water (15:1:1:2) as developing agent, developed under normal temperature and humidity conditions (T: 21.1 ° C, RH: 47%), taken out, dried, sprayed with 10% sulfuric acid ethanol solution, at 105 °C heated until the spot color is clear, check in sunlight.
  • T 21.1 ° C, RH: 47%)
  • marine silica gel G plate is a thin-layer plate produced by Qingdao Ocean Chemical Co., Ltd.
  • Puke silica gel G plate is a thin-layer plate produced by Qingdao Puke Separation Materials Co., Ltd.
  • Merck silica gel G plate is produced by Merck Co., Ltd. Thin-layer board; the specifications of the above-mentioned thin-layer boards are all 10cm ⁇ 10cm, and the thickness is 0.20-0.25mm.
  • Preparation of Magnolia officinalis test solution take 5 g of Huashibaidu composition, grind it into small pieces, add 20 mL of methanol, ultrasonically treat it for 30 minutes, filter, and evaporate the filtrate to dryness, add 40 mL of water to the residue to dissolve it, and shake it with ethyl acetate. Shake and extract twice, 30 mL each time, combine the ethyl acetate solutions, evaporate to dryness, add 1 mL of methanol to the residue to dissolve, and get;
  • the traditional preparation method of Magnolia officinalis test solution generally only adopts methanol extraction, and the present invention adds an ethyl acetate extraction process, which can better remove other impurities in the Huashibaidu composition, Interference with target spots (honokiol, and honokiol) was removed.
  • Magnolia officinalis negative samples Take Magnolia officinalis negative samples and prepare Magnolia officinalis negative sample solution according to the preparation method of Magnolia officinalis test solution; draw 4 ⁇ L Magnolia officinalis test solution, 4 ⁇ L magnolol reference solution, 4 ⁇ L and honokiol reference solution and 4 ⁇ L respectively.
  • Magnolia officinalis negative sample solution was spotted on the same silica gel G thin-layer plate (Merck silica gel G plate), with toluene-ethyl acetate-methanol (17:3:3) as the developing solvent, at room temperature and humidity (T : 26.1°C, RH: 48%), take it out, dry it in the air, spray it with 5% vanillin sulfuric acid solution, heat until the spots are clearly colored, and inspect in sunlight.
  • T 26.1°C, RH: 48%)
  • the sample volume of Magnolia officinalis test solution is 4 ⁇ L
  • the sample volume of honokiol reference solution is 4 ⁇ L
  • the sample volume of honokiol reference solution is 4 ⁇ L
  • the chromatogram of the test sample is in the same
  • the main spot at the corresponding position in the chromatogram of the reference substance is clear without other interference. Therefore, for the Magnolia officinalis identification method of the present invention, the sampling volume of Magnolia officinalis test solution is 4 ⁇ L
  • the sampling volume of magnolol reference solution is 4 ⁇ L
  • the sampling volume of magnolol reference solution is 4 ⁇ L.
  • marine silica gel G plate is a thin-layer plate produced by Qingdao Ocean Chemical Co., Ltd.
  • Puke silica gel G plate is a thin-layer plate produced by Qingdao Puke Separation Materials Co., Ltd.
  • Merck silica gel G plate is produced by Merck Co., Ltd. Thin-layer board; the specifications of the above-mentioned thin-layer boards are all 10cm ⁇ 10cm, and the thickness is 0.20-0.25mm.
  • the TLC identification method of Astragalus is as follows:
  • astragalus test solution take an appropriate amount of the composition of Huashibaidu, grind it finely, take about 5 g, add 30 mL of methanol, ultrasonically treat for 30 minutes, let cool, filter, evaporate the filtrate to dryness, add 20 mL of water to the residue to dissolve , shaken and extracted with saturated n-butanol twice, each 20 mL, combined the n-butanol, washed with ammonia test solution twice, 20 mL each time, discarded the ammonia test solution, evaporated the n-butanol to dryness, and added methanol to the residue 1mL to dissolve, that is.
  • the silica gel G plate (Merck silica gel G plate) was taken and developed in the environment of normal temperature (T: 25°C, RH: 75%) and low temperature (T: 9°C, RH: 89%), according to the proposed method Inspection, the results are shown in Figure 26 and Figure 27.
  • the results show that at room temperature, the R f value of the spots in the chromatogram of the test sample and the reference substance is too high, and the resolution is poor ( Figure 26); while at low temperature, the R f value of the spots in the test sample chromatogram is moderate, and the separation is poor.
  • Good ( Figure 27), with good correspondence to the position spots corresponding to the control chromatogram. Therefore, in the method of the present invention, the development temperature is determined to be 4 to 10°C.
  • Merck silica gel G plate is a thin layer plate produced by Merck Co., Ltd.
  • marine silica gel G plate is a thin layer plate produced by Qingdao Ocean Chemical Co., Ltd.
  • Yinlong silica gel G plate is a thin layer plate produced by Yantai Chemical Industry Research Institute. Laminate; the specifications of the above-mentioned thin-layer boards are all 10cm ⁇ 10cm, and the thickness is 0.20-0.25mm.
  • Tinglizi is as follows:
  • Tinglizi test solution take an appropriate amount of the composition for treating dampness and sepsis, grind it into small pieces, take about 5 g, add 30 mL of 70% methanol, ultrasonically treat for 30 minutes, let cool, filter, evaporate the filtrate to dryness, add water to the residue 5mL was dissolved, passed through a D101 macroporous resin column (inner diameter of 1.5cm, column height of 12cm), first eluted with water until the eluent was colorless, and then eluted with 70% methanol until the eluent was colorless, and collected 70% The methanol eluent was evaporated to dryness, and the residue was dissolved in 1 mL of methanol.
  • Tinglizi reference substance solution take quercetin-3-O- ⁇ -D-glucose-7-O- ⁇ -D-gentiobiglycoside reference substance, add 30% methanol to prepare a solution containing 30% methanol per 1 mL 0.1mg of solution, that is.
  • the present invention adds a step of purification of the macroporous resin.
  • T. japonicus Take the negative samples of T. japonicus to prepare the negative sample solution of T. japonicus according to the preparation method of T. japonicus test solution; draw 2 ⁇ L of T. japonicus test solution, 2 ⁇ L of T. j. japonicus negative sample solution, and 2 ⁇ L of T. japonicus reference solution. Spotted on the same polyamide film, and tested according to the proposed method, the results are shown in Figure 33. As can be seen from the figure, the thin-layer chromatography identification method of the present invention is negative without interference and has good specificity.
  • the spotting amount of the red peony root test solution is 3 ⁇ L
  • the spotting amount of the red peony root reference substance solution is 3 ⁇ L
  • test solution of red peony root and the reference solution of red peony root were respectively drawn and spotted on silica gel G thin-layer plates of different manufacturers (marine silica gel G plate, Spectra silica gel G plate, Merck silica gel G plate), with chloroform-acetic acid.
  • Ethyl ester-methanol-formic acid (40:5:10:0.2) was used as a developing agent, developed at normal temperature and humidity (21.1°C, RH: 47%), taken out, air-dried, sprayed with 5% vanillin sulfuric acid solution, Heat until spots are clear and view in sunlight.
  • the results are shown in Figure 40, Figure 45 and Figure 46.
  • marine silica gel G plate is a thin-layer plate produced by Qingdao Ocean Chemical Co., Ltd.
  • Puke silica gel G plate is a thin-layer plate produced by Qingdao Puke Separation Materials Co., Ltd.
  • Merck silica gel G plate is produced by Merck Co., Ltd. Thin-layer board; the specifications of the above-mentioned thin-layer boards are all 10cm ⁇ 10cm, and the thickness is 0.20-0.25mm.
  • rhubarb test solution take 5 g of Huashibaidu composition, grind it into small pieces, add 20 mL of methanol, ultrasonically treat it for 30 minutes, filter, take 5 mL of filtrate, evaporate to dryness, add 10 mL of water to the residue to dissolve, add hydrochloric acid 1 mL, heated to reflux for 30 minutes, cooled immediately, extracted with ether by shaking twice, 20 mL each time, combined with ether solution, evaporated to dryness, and the residue was dissolved in 1 mL of chloroform to obtain;
  • marine silica gel H plate is a thin layer plate produced by Qingdao Ocean Chemical Co., Ltd.
  • Puke silica gel H plate is a thin layer plate produced by Qingdao Puke Separation Materials Co., Ltd.
  • Yinlong silica gel H plate is produced by Yantai Chemical Industry Research Institute
  • the specifications of the above-mentioned thin-layer boards are all 10cm ⁇ 10cm, and the thickness is 0.20 ⁇ 0.25mm.
  • the present invention is based on the research on the molecular mechanism of action of the Huashibaidu composition, the analysis of the specific situation of large-scale production and a large number of experimental studies, in the identification standard of the Huashibaidu composition, ephedra, licorice, The identification of Magnolia, Astragalus, Tinglizi, Red Peony and Rhubarb provides a solid data foundation for large-scale production.
  • the identification method of the present invention has good separation degree, no negative interference, and the identification method is feasible; and the development time is short, the inspection is clear, the specificity and good reproducibility are strong, and the large-scale production process can be better controlled. quality of medicines.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种化湿败毒组合物鉴别方法,其中,化湿败毒组合物主要由包括以下组分:麻黄,炒苦杏仁,生石膏,甘草,广藿香,厚朴,麸炒苍术,炒草果仁,法半夏,茯苓,大黄,黄芪,葶苈子,赤芍;化湿败毒组合物鉴别方法包括:对麻黄、甘草、厚朴分别进行薄层色谱鉴别。本发明的鉴别方法,分离度较好,阴性无干扰,展开时间短,检视清晰,具有较强的专属性和良好的耐用性,可为大生产中药品质量控制提供数据基础。

Description

化湿败毒组合物的鉴别方法 技术领域
本发明涉及中药鉴别方法技术领域,尤其涉及一种化湿败毒组合物的鉴别方法。
背景技术
2019新型冠状病毒(COVID-19)感染引起的肺炎疫情,由于传染性强,传播迅速,人群普遍易感,且特效药缺乏,已在全球范围内形成大流行,成为了全球性的超重大公共卫生突发事件。中医药在抗击新冠肺炎疫情的过程中,发挥了独特的、重要的作用。中国中医药管理局指出,经研究筛选,“三药三方”中的金花清感颗粒、连花清瘟颗粒、血必净注射液、清肺排毒汤、化湿败毒方、宣肺败毒方在此次抗击疫情中发挥了良好的作用。
化湿败毒方由14味中药组成,包括生麻黄、杏仁、生石膏、甘草、藿香、厚朴、苍术、草果、法半夏、茯苓、生大黄、生黄芪、葶苈子和赤芍。临床实验表明,化湿败毒方对改善患者症状、提高核酸转阴率具有突出的作用。但目前对于化湿败毒方的研究多集中在药理、疗效的研究,尚无对于其质量标准的研究。且现有的生产也仅限于小范围内进行,无大规模工业化生产,对质量监控的要求也相对较低,也无较为成熟的鉴别方法。
文献《抗新型冠状病毒肺炎(COVID-19)的化湿败毒组合物药味的物质基础研究》(中国现代中药,2020年第3期)研究了各味药物的物质基础。但并未对药品的具体鉴别方法进行研究。
发明内容
本发明所要解决的技术问题在于,提供一种化湿败毒组合物的鉴别方法,其分离度较好,阴性无干扰,方法可行;且具有较强的专属性和良好的耐用性,可为药品质量控制提供数据基础。
为了解决上述技术问题,本发明提供了一种化湿败毒组合物的鉴别方法, 所述化湿败毒组合物主要包括以下组分:麻黄,炒苦杏仁,生石膏,甘草,广藿香,厚朴,麸炒苍术,炒草果仁,法半夏,茯苓,大黄,黄芪,葶苈子,赤芍;
所述化湿败毒组合物的鉴别方法包括:对麻黄、甘草、厚朴分别进行薄层色谱鉴别,以检测化湿败毒组合物中是否含有盐酸麻黄碱。
具体的,通过对于组合物中的麻黄进行薄层色谱鉴定,可得到组合物中是否含有盐酸麻黄碱;若组合物含有盐酸麻黄碱,则通过液相色谱(HPLC)或气相色谱-质谱(GC-MS)或红外光谱(FTIR)等定量分析手段对盐酸麻黄碱和盐酸伪麻黄碱的含量进行测定,将组合物中盐酸麻黄碱和盐酸伪麻黄碱的总含量控制为0.7~2.7mg/g;若组合物中不存在盐酸麻黄碱,则判定组合物质量不合格。
作为上述技术方案的改进,所述化湿败毒组合物的鉴别方法还包括对黄芪、葶苈子、赤芍和大黄分别进行薄层色谱鉴别,以检测化湿败毒组合物中是否含有芍药苷。
具体的,通过对于赤芍的薄层色谱鉴定,可得到组合物中是否含有芍药苷;若组合物中含有芍药苷,则通过液相色谱(HPLC)或气相色谱-质谱(GC-MS)或红外光谱(FTIR)等定量分析手段对芍药苷的含量进行测定,将组合物中芍药苷的含量控制为3~14mg/g;若组合物中不存在芍药苷,则判定组合物质量不合格。
作为上述技术方案的改进,所述麻黄的薄层色谱鉴别方法为:
(1)取化湿败毒组合物5~10g,研细,加浓氨试液3~5mL使润湿,再加三氯甲烷25~30mL,加热回流0.5~1小时,滤过,滤液蒸干,残渣加甲醇1~2mL溶解,制得麻黄供试品溶液;
(2)取盐酸麻黄碱对照品,加甲醇制成每1mL含1mg的溶液,制得麻黄对照品溶液;
(3)吸取麻黄供试品溶液和麻黄对照品溶液各1~5μL,分别点于同一硅胶G薄层板上,以体积比为20:5:0.5的三氯甲烷、甲醇、浓氨试液的混合溶液为展开剂,展开,取出,晾干,喷以茚三酮试液,加热至斑点显色清晰;供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的斑点。
作为上述技术方案的改进,所述甘草的薄层色谱鉴别方法为:
(1)取化湿败毒组合物5~10g,研细,加乙醚40~50mL,加热回流1~2小 时,滤过,弃去醚液,残渣加甲醇30~50mL,加热回流0.5~1.5小时,滤过,滤液蒸干,残渣加水40~50mL使溶解,用正丁醇振摇提取1~3次,每次20~40mL,合并正丁醇液,用水洗涤1~3次,弃去水液,正丁醇液蒸干,残渣加甲醇5~10mL使溶解,制得甘草供试品溶液;
(2)取甘草对照药材1~3g,按照步骤(1)中的甘草供试品溶液制备方法制备,制得甘草对照药材溶液;
(3)吸取甘草供试品溶液、甘草对照药材溶液各2~5uL,分别点于同一用1%氢氧化钠溶液制备的硅胶G薄层板上,以体积比为15:1:1:2的乙酸乙酯、甲酸、冰醋酸和水的混合溶液为展开剂,展开,取出,晾干,喷以10%硫酸乙醇溶液,在100~110℃加热至斑点显色清晰;供试品色谱中,在与对照药材色谱相应的位置上,显相同颜色的斑点。
作为上述技术方案的改进,所述厚朴的薄层色谱鉴别方法为:
(1)取化湿败毒组合物5~10g,研细,加甲醇15~25mL,超声处理0.5~1小时,滤过,滤液蒸干,残渣加水40~50mL使溶解,用乙酸乙酯振摇提取1~3次,每次20~30mL,合并乙酸乙酯液,蒸干,残渣加甲醇1~2mL使溶解,制得厚朴供试品溶液;
(2)取厚朴酚对照品,加甲醇制成每1mL含1mg的溶液,制得厚朴酚对照品溶液;另取和厚朴酚对照品,加甲醇制成每1mL含1mg的溶液,制得和厚朴酚对照品溶液;
(3)吸取厚朴供试品溶液、厚朴酚对照品溶液和和厚朴酚对照品溶液各2~5uL,分别点于同一硅胶G薄层板上,以体积比为17:3:3的甲苯、乙酸乙酯、甲醇混合溶液为展开剂,展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰;供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的斑点。
作为上述技术方案的改进,所述黄芪的薄层色谱鉴别方法为:
(1)取化湿败毒组合物5~10g,加甲醇25~30mL,超声处理0.5~1小时,放冷,滤过,滤液蒸干,残渣加水20~30mL使溶解,用水饱和正丁醇振摇提取1~3次,每次15~30mL,合并正丁醇液,用氨试液洗涤1~3次,每次20~30mL,弃去氨试液,正丁醇液蒸干,残渣加甲醇1~3mL使溶解,制得黄芪供试品溶液;
(2)取黄芪甲苷对照品,加甲醇制成每1mL含1mg的溶液,制得黄芪对 照品溶液;
(3)吸取黄芪供试品溶液5~8μL,黄芪对照品溶液2~3μL,点样于同一硅胶G薄层板上,以体积比为13:7:2的三氯甲烷、甲醇、水的下层溶液为展开剂,在4~10℃条件下展开,取出,晾干,喷以10%硫酸乙醇溶液,在100~105℃加热至斑点显色清晰;在365nm紫外光下检视,供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的荧光斑点。
作为上述技术方案的改进,所述葶苈子的薄层色谱鉴别方法为:
(1)取化湿败毒组合物5~10g,研细,加70%甲醇20~30mL,超声处理0.5~1小时,放冷,滤过,滤液蒸干,残渣加水5~10mL使溶解,通过D101大孔树脂柱,先用水洗脱至洗脱液无颜色,再用70%甲醇洗脱至洗脱液无颜色,收集70%甲醇洗脱液,蒸干,残渣加甲醇1~2mL使溶解,制得葶苈子供试品溶液;
(2)取槲皮素-3-O-β-D-葡萄糖-7-O-β-D-龙胆双糖苷对照品,加30%甲醇制成每lmL含0.1mg的溶液,制得葶苈子对照品溶液;
(3)吸取葶苈子供试品溶液和葶苈子对照品溶液各1~5μL,分别点于同一聚酰胺薄膜上,以体积比为7:2:1的乙酸乙酯、甲醇、水的混合溶液为展开剂,展开,取出,晾干,喷以2%三氯化铝乙醇溶液,热风吹干,置365nm紫外光灯下检视;供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的荧光斑点。
作为上述技术方案的改进,所述赤芍的薄层色谱鉴别方法为:
(1)取化湿败毒组合物3~5g,研细,加甲醇25~40mL,超声处理0.5~1小时,滤过,滤液蒸干,残渣加甲醇1~2mL使溶解,制得赤芍供试品溶液:
(2)取芍药苷对照品,加甲醇制成每lmL含1mg的溶液,制得赤芍对照品溶液;
(3)吸取赤芍供试品溶液、赤芍对照品溶液各2~5μL,分别点于同一硅胶G薄层板上,以体积比为40:5:10:0.2的三氯甲烷、乙酸乙酯、甲醇、甲酸的混合溶液为展开剂,展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰;供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的斑点。
作为上述技术方案的改进,所述大黄的薄层色谱鉴别方法为:
(1)取化湿败毒组合物5~10g,研细,加甲醇20~30mL,超声处理20~30分钟,滤过,取滤液3~10mL,蒸干,残渣加水5~15mL使溶解,再加盐酸1~3mL, 加热回流20~60分钟,立即冷却,用乙醚振摇提取2~3次,每次20~30mL,合并乙醚液,蒸干,残渣加三氯甲烷1~3mL使溶解,制得大黄供试品溶液;
(2)取大黄对照药材0.1g,按照步骤(1)中的大黄供试品溶液的制备方法制备,制得大黄对照药材溶液;
(3)吸取上述两种溶液各1~5uL,分别点于同一硅胶H薄层板上,以体积比为15:5:1的石油醚、甲酸乙酯、甲酸的上层溶液为展开剂,展开,取出,晾干,在365nm紫外光下检视;供试品色谱中,在与对照药材色谱相应的位置上,显相同颜色的荧光斑点。
作为上述技术方案的改进,所述化湿败毒组合物主要包括下述组分:麻黄3-60份,炒苦杏仁4.5-90份,生石膏7.5-150份,甘草1.5-30份,广藿香5-100份,厚朴5-100份,麸炒苍术7.5-150份,炒草果仁5-100份,法半夏4.5-90份,茯苓7.5-150份,大黄2.5-50份,黄芪5-100份,葶苈子5-100份,赤芍5-100份,辅料适量;
所述化湿败毒组合物被制成中药制剂,所述中药制剂为颗粒剂、汤剂、散剂、胶囊剂、口服液、片剂或丸剂。
实施本发明,具有如下有益效果:
1.本发明基于对化湿败毒组合物分子作用机制的研究,大生产具体情况的分析以及大量的试验研究,在化湿败毒组合物的鉴别标准中制定了麻黄、甘草、厚朴、黄芪、葶苈子、赤芍和大黄的鉴别,为大生产提供了坚实的数据基础。
2.本发明中的鉴别方法,分离度较好,阴性无干扰,鉴别方法可行;且展开时间短,检视清晰,具有较强的专属性和良好的重现性,能更好地控制大生产过程中药品的质量。
附图说明
图1是麻黄的薄层色谱图;其中,1~3为不同批次化湿败毒组合物,4为麻黄对照品,5为缺麻黄阴性样品;
图2是21.1℃下麻黄的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为麻黄对照品;
图3是6.4℃下麻黄的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为麻黄对照品;
图4是相对湿度为36%时麻黄的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为麻黄对照品;
图5是相对湿度为79%时麻黄的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为麻黄对照品;
图6是不同点样量下麻黄的薄层色谱图,其中,1~5中为麻黄对照品溶液点样量分别为1μL、2μL、3μL、5μL和10μL,6~10为麻黄供试品溶液点样量分别为1μL、2μL、3μL、5μL和10μL;
图7是采用谱科硅胶G板时麻黄的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为麻黄对照品;
图8是采用默克硅胶G板时麻黄的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为麻黄对照品;
图9是甘草的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为甘草对照药材,5为缺甘草阴性样品;
图10是21.1℃下甘草的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为甘草对照药材;
图11是6.4℃下甘草的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为甘草对照药材;
图12是相对湿度为36%时甘草的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为甘草对照药材;
图13是相对湿度为79%时甘草的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为甘草对照药材;
图14是不同点样量下甘草的薄层色谱图,其中,1~5为甘草供试品溶液点样量分别为2μL、4μL、6μL、8μL和10μL;6~10为甘草对照药材溶液点样量分别为2μL、4μL、6μL、8μL和10μL;
图15是采用谱科硅胶G板时甘草的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为甘草对照药材;
图16是采用默克硅胶G板时甘草的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为甘草对照药材;
图17是厚朴的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为厚朴酚对照品,5为和厚朴酚对照品,6为缺厚朴阴性样品;
图18是26.1℃下厚朴的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为厚朴酚对照品,5为和厚朴酚对照品;
图19是3.1℃下厚朴的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为厚朴酚对照品,5为和厚朴酚对照品;
图20是相对湿度为36%时厚朴的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为厚朴酚对照品,5为和厚朴酚对照品;
图21是相对湿度为78%时厚朴的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为厚朴酚对照品,5为和厚朴酚对照品;
图22是不同点样量下厚朴的薄层色谱图,其中,1~4中为厚朴供试品溶液点样量分别为2μL、4μL、6μL、和8μL,5~8为厚朴酚对照品溶液点样量分别为2μL、4μL、6μL、和8μL,9~12为和厚朴酚对照品溶液点样量分别为2μL、4μL、6μL、和8μL;
图23是采用谱科硅胶G板时厚朴的薄层色谱图,其中,厚朴的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为厚朴酚对照品,5为和厚朴酚对照品;
图24是采用海洋硅胶G板时厚朴的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为厚朴酚对照品,5为和厚朴酚对照品;
图25是黄芪的薄层色谱图;其中,1~3为不同批次化湿败毒组合物,4为黄芪对照品,5为缺黄芪阴性样品;
图26是25℃下黄芪的薄层色谱图;其中,1~3为不同批次化湿败毒组合物,4为黄芪对照品;
图27是9℃下黄芪的薄层色谱图;其中,1~3为不同批次化湿败毒组合物,4为黄芪对照品;
图28是相对湿度为41%时黄芪的薄层色谱图;其中,1~3为不同批次化湿败毒组合物,4为黄芪对照品;
图29是相对湿度为92%时黄芪的薄层色谱图;其中,1~3为不同批次化湿败毒组合物,4为黄芪对照品;
图30是不同点样量下黄芪的薄层色谱图,其中,1~3分别为黄芪供试品溶液点样量为3μL、5μL和8μL;4~6分别为黄芪对照品溶液点样量为2μL、3μL和5μL;
图31是采用海洋硅胶G板时黄芪的薄层色谱图;其中,1~3为不同批次化湿败毒组合物,4为黄芪对照品;
图32是采用银龙硅胶G板时黄芪的薄层色谱图;其中,1~3为不同批次化湿败毒组合物,4为黄芪对照品;
图33是葶苈子的薄层色谱图;其中,1~3为不同批次化湿败毒组合物,4为葶苈子对照品,5为缺葶苈子阴性样品;
图34是25℃下葶苈子的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为葶苈子对照品;
图35是9℃下葶苈子的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为葶苈子对照品;
图36是相对湿度为41%时葶苈子的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为葶苈子对照品;
图37是相对湿度为92%时葶苈子的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为葶苈子对照品;
图38是不同点样量下葶苈子的薄层色谱图;其中,1~3分别为葶苈子对照品溶液点样量分别为1μL、2μL和3μL;4~6分别为葶苈子供试品溶液点样量分别为1μL、2μL和3μL;
图39是赤芍的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为赤芍对照品,5为缺赤芍阴性样品;
图40是21.1℃下赤芍的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为赤芍对照品;
图41是6.4℃下赤芍的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为赤芍对照品;
图42是相对湿度为36%时赤芍的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为赤芍对照品;
图43是相对湿度为79%时赤芍的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为赤芍对照品;
图44是不同点样量下赤芍的薄层色谱图,其中,1~5中为赤芍对照品溶液点样量分别为1μL、2μL、3μL、5μL和10μL,6~10为赤芍供试品溶液点样量分别为1μL、2μL、3μL、5μL和10μL;
图45是采用谱科硅胶G板时赤芍的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为赤芍对照品;
图46是采用默克硅胶G板时赤芍的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为赤芍对照品;
图47是大黄的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为大黄对照药材,5为缺大黄阴性样品;
图48是26.1℃下大黄的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为大黄对照药材;
图49是3.1℃下大黄的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为大黄对照药材;
图50是相对湿度为36%时大黄的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为大黄对照药材;
图51是相对湿度为78%时大黄的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为大黄对照药材;
图52是不同点样量下大黄的薄层色谱图,其中,1~5中为大黄供试品溶液点样量分别为1μL、2μL、3μL、5μL和10μL,6~10为大黄对照药材溶液点样量分别为1μL、2μL、3μL、5μL和10μL;
图53是采用谱科硅胶H板大黄的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为大黄对照药材;
图54是采用银龙硅胶H板大黄的薄层色谱图,其中,1~3为不同批次化湿败毒组合物,4为大黄对照药材。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图及具体实施方式对本发明作进一步地详细描述。
本发明中,化湿败毒组合物主要包括以下组分:麻黄,炒苦杏仁,生石膏,甘草,广藿香,厚朴,麸炒苍术,炒草果仁,法半夏,茯苓,大黄,黄芪,葶苈子,赤芍。
本发明化湿败毒组合物,方中以麻黄、广藿香、石膏为君药,麻黄、广藿香,辛、苦、温兼气味芳香,解表平喘,化湿和中;石膏,辛、甘、寒,清泻 肺胃郁热兼以生津,三药相辅,以达解表散寒、芳香化湿、清热平喘之效。炒苦杏仁、法半夏、厚朴、麸炒苍术、炒草果仁、茯苓共为臣药,炒苦杏仁、法半夏、厚朴,辛、苦、温,行气降逆,开结平喘;麸炒苍术、炒草果仁,辛烈、苦温,入脾胃经,燥湿健脾、破戾气所结;茯苓,淡渗除湿健脾;六味药共用以达助君药燥湿健脾,行气通窍,疏泄腠理,助邪外出之效。以黄芪、赤芍、葶苈子、大黄为佐药,黄芪,甘温益肺脾气,赤芍,苦、微寒,凉血散瘀,用以治疗疫病后期伤其正气,气机郁闭导致的血瘀等;葶苈子辛寒,辅助君药石膏清泄肺热,兼以利水,预防或治疗“湿肺(肺水肿)病变”;大黄,苦寒入大肠经而通腑,肺与大肠相表里,辅助君药石膏清泄肺热,并配合赤芍凉血活血,四药共为佐药,以达顾护正气、泻热凉血、活血化瘀之效。以甘草为使药,甘草甘平,调和诸药,配赤芍取芍药甘草汤意缓急。全方共奏解表化湿,清热平喘、益气散瘀之功。
临床发现新冠肺炎重型患者具有如下特点:①发热为主要表现多为身热不扬,缠绵难愈,但亦可为中低热,甚至不发热;②喘憋、乏力显著,亦为主要表现;③多合并纳差、便溏、腹泻等消化系统症状;④大多舌苔厚腻。从上述特点来看,符合湿邪致病特点:重浊、碍气伤阳、黏滞、趋下。湿邪既可单独致病,又可兼寒、兼热,表现为寒湿、湿热,其中热可为伏燥所致,亦可为湿邪久郁所化。湿邪、寒湿、湿热均可与疫毒合而致病,可见于轻型的寒湿郁肺、湿热蕴肺,普通型的湿毒郁肺、寒湿阻肺,若失治误治,或疾病发展,伤及营血,逆传心包,演变为新冠肺炎重型。因此,认为新冠肺炎突出表现为“湿毒疫”,病位在肺,与脾密切相关,病理性质为寒热错杂、虚实并见,病理因素为毒、湿、热、寒、瘀、虚,其中疫毒为根本,核心病机为疫毒与湿邪博结,可兼寒、热侵袭机体,闭阻胸肺,气机升降失常,血脉瘀阻,气阴耗伤。新冠肺炎病理性质复杂,涉及多个病理因素。
主要病位在肺,其次在脾胃,湿毒郁闭是其核心病机,可分为初期、中期、危重期及恢复期四期进行辨证论治,治法有化湿行气,辟秽解毒,清肺化痰,活血化瘀、通腑攻下和补益正气等方法。因此,本发明化湿败毒组合物配伍依据核心病机,当以解表化湿,清热平喘,祛毒为核心治法,兼以化瘀通络,益气养阴。疫毒与寒湿相合,恶寒发热,治宜解表化湿祛毒;疫毒与湿热相合,便溏不爽,倦怠乏力,治宜清热化湿祛毒,兼以益气养阴;闭阻胸肺,喘憋、 胸闷、气短,治宜平喘,兼以化瘀通络。
本发明化湿败毒组合物融合了《新型冠状病毒感染的肺炎诊疗方案(试行第五版)》中医治疗的核心病机,属温热夹湿,致肺失宣降,肺气壅闭”,以湿浊化热郁肺为主,突显化湿行气,宣肺平喘,清热化痰,益气活血之功效。前期临床观察显示,本发明能够改善重型新型冠状病毒感染肺炎的临床症状,对于重症患者,可明显缓解咳嗽、乏力、口干或呕吐等主要症状,中西医结合治疗后,治愈时间缩短。明显改善患者的呼吸功能,脱离吸氧时间缩短。对于普通型患者,对发热症状明显缓解,还可改善食欲减退、胸闷症状。对于重型及普通型新型冠状病毒感染肺炎的咳嗽、乏力、口干或呕吐等临床症状改善显著,补充了目前疫情形势急需的重型及普通型新型冠状病毒感染肺炎治疗用药。
优选的,化湿败毒组合物包括以下组分:
麻黄3-60份,炒苦杏仁4.5-90份,生石膏7.5-150份,甘草1.5-30份,广藿香5-100份,厚朴5-100份,麸炒苍术7.5-150份,炒草果仁5-100份,法半夏4.5-90份,茯苓7.5-150份,大黄2.5-50份,黄芪5-100份,葶苈子5-100份,赤芍5-100份,辅料适量。
所述化湿败毒组合物被制成中药制剂,所述中药制剂为颗粒剂、汤剂、散剂、胶囊剂、口服液、片剂或丸剂。
本发明提供了一种化湿败毒组合物的鉴别方法,其对任意剂型的化湿败毒组合物均可以起到良好的检测效果。而在化湿败毒组合物药方的研究过程中,
发明人采用分子对接技术对化湿败毒组合物配方各味中药与SARS-Cov-2侵入、复制、组装、脱落转移的关键靶标以及对宿主产生肺部损伤和炎症反应的关键作用靶标进行分析。结果表明:麻黄对抑制病毒侵入和脱落的靶标TMPRSS2、TACE、AAK1(病毒侵入、内吞调节),病毒侵入宿主后产生的组织损伤关键靶标VEGFR2(血管通透)和ALK5(血管通透、肺部纤维化)有响应。甘草对抑制病毒侵入和脱落的靶标FURIN(病毒侵入、内吞调节)、TACE、AAK1,病毒侵入宿主后产生的组织损伤关键靶标sPLA2、AMPK(氧化应激、炎症)、CCR2(炎症)、p38αMAPK(炎症、凋亡)、VEGFR2、ALK5有相应;厚朴对抑制病毒侵入和脱落的靶标AAK1,病毒侵入宿主后产生的组织损伤关键靶标AMPK、VEGFR2和ALK5有响应。大黄对于抑制病毒侵入和脱落的靶标TMPRSS2,病毒侵入宿主后产生的组织损伤关键靶标AMPK、VEGFR2和ALK5 有响应。黄芪对病毒侵入宿主后产生的组织损伤关键靶标VEGFR2有响应。赤芍对于靶标Mpro和ACE2有响应。通过上述组分与上述靶标的作用,发挥了化湿败毒组合物的抗COVID-19的作用。由此可见,麻黄、甘草、厚朴响应靶标较多,可有效抑制病毒侵入、组装和脱落转移,属于核心中药。黄芪、葶苈子、赤芍、大黄的响应靶标较少,但其对于抗COVID-19也具有重要的意义。因此,从药效角度出发,应优先选择对麻黄、甘草、厚朴等三味药物进行薄层色谱鉴别;同时,也可选择对黄芪、葶苈子、赤芍和大黄进行薄层色谱鉴别;以建立完善的鉴别方法,为化湿败毒组合物质量监控提供坚实的数据基础。
综上,本发明在考虑上述因素的基础上,选择对麻黄、甘草、厚朴、黄芪、葶苈子、赤芍和大黄进行薄层色谱鉴别,以建立完善的鉴别方法,为化湿败毒组合物的质量监控提供数据基础。
下面分别对各个药物的薄层色谱鉴别方法进行说明:
(一)麻黄的薄层色谱鉴别方法
1.1鉴别方法
(1)麻黄供试品溶液制备:取化湿败毒组合物5g,研细,加浓氨试液3~5mL使润湿,再加三氯甲烷25mL,加热回流30分钟,滤过,滤液蒸干,残渣加甲醇1mL使溶解,即得;
(2)麻黄对照品溶液制备:取盐酸麻黄碱对照品,加甲醇制成每1mL含1mg的溶液,即得;
(3)吸取上述两种溶液各3μL,分别点于同一硅胶G薄层板上,以三氯甲烷-甲醇-浓氨试液(20:5:0.5)为展开剂,展开,取出,晾干,喷以茚三酮试液,加热至斑点显色清晰;供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的斑点。
1.2方法学验证
1.2.1专属性
取麻黄阴性样品按照麻黄供试品溶液制备方法制备缺麻黄阴性样品溶液;将3μL麻黄供试品溶液、3μL缺麻黄阴性样品溶液、3μL麻黄对照品溶液点样于同一硅胶G薄层板(海洋硅胶G板)上,以三氯甲烷-甲醇-浓氨试液(20:5:0.5)为展开剂,在常温常湿(T:21.1℃,RH:47%)条件下展开,取出,晾干,喷以茚三酮试液,加热至斑点显色清晰,在日光下检视。实验结果见图1。由图 中可以看出,本发明的薄层色谱鉴别方法阴性无干扰,方法专属性良好。
1.2.2耐用性考察:
(1)不同温度的比较
分别吸取3μL麻黄供试品溶液、3μL麻黄对照品溶液点样于同一硅胶G薄层板(海洋硅胶G板)上,以三氯甲烷-甲醇-浓氨试液(20:5:0.5)为展开剂,分别在常温(T:21.1℃,RH:47%)和低温(T:6.4℃,RH:90%)条件下展开,取出,晾干,喷以茚三酮试液,加热至斑点显色清晰,在日光下检视。实验结果见图2和图3。
由图2和图3可见,在常温和低温条件下,分离效果均较好,且化湿败毒组合物色谱在与对照品色谱相应的位置处,均显示相同颜色的主斑点。实验结果表明,温度对化湿败毒组合物中麻黄的薄层鉴别影响较小,说明该薄层鉴别方法对不同温度耐用性好。
(2)不同湿度的比较
分别吸取3μL麻黄供试品溶液、3μL麻黄对照品溶液点样于同一硅胶G薄层板(海洋硅胶G板)上,以三氯甲烷-甲醇-浓氨试液(20:5:0.5)为展开剂,分别在常湿(T:21.1℃,RH:47%)、低湿(T:21.1℃,RH:36%)和高湿(T:21.1℃,RH:79%)条件下展开,取出,晾干,喷以茚三酮试液,加热至斑点显色清晰,在日光下检视。实验结果见图2、图4和图5。
由图2、图4和图5可见,常湿、低湿和高湿条件下,分离效果均较好,且化湿败毒组合物色谱在与对照品色谱相应的位置处,显示相同颜色的主斑点。实验结果表明,湿度对化湿败毒组合物中麻黄的薄层鉴别影响较小,说明该薄层鉴别方法对不同湿度耐用性好。
(3)不同点样量的比较
分别吸取麻黄供试品溶液、麻黄对照品溶液点样于同一硅胶G薄层板(海洋硅胶G板)上,以三氯甲烷-甲醇-浓氨试液(20:5:0.5)为展开剂,展开,取出,晾干,喷以茚三酮试液,加热至斑点显色清晰,在日光下检视。实验结果见图6。
由图6可见,当麻黄供试品溶液点样量为3μL、麻黄对照品溶液点样量为3μL时,供试品色谱在与对照品色谱相应的位置处主斑点清晰,无其他干扰。因此,本发明的麻黄鉴别方法选择麻黄供试品溶液点样量为3μL、麻黄对照品溶液点样 量为3μL。
(4)不同厂家薄层板的比较
分别吸取3μL麻黄供试品溶液、3μL麻黄对照品溶液点样于不同厂家硅胶G薄层板(海洋硅胶G板、谱科硅胶G板、默克硅胶G板)上,以三氯甲烷-甲醇-浓氨试液(20:5:0.5)为展开剂,分别在同一温湿度(T:21.1℃,RH:47%)条件下展开,取出,晾干,喷以茚三酮试液,加热至斑点显色清晰,在日光下检视。实验结果见图2、图7和图8。
其中,海洋硅胶G板为青岛海洋化工有限公司生产的薄层板;谱科硅胶G板为青岛谱科分离材料有限公司生产的薄层板;默克硅胶G板为默克股份有限公司生产的薄层板;上述薄层板的规格均为10cm×10cm,厚度为0.20~0.25mm。
结果表明:不同厂家硅胶G薄层板(海洋硅胶G板、谱科硅胶G板、默克硅胶G板)对化湿败毒组合物中麻黄的薄层鉴别无显著影响,说明该薄层鉴别方法对不同厂家硅胶G薄层板的耐用性良好。
(二)甘草的薄层色谱鉴别方法
2.1鉴别方法
(1)甘草供试品溶液制备:取化湿败毒组合物5g,研细,加乙醚40mL,加热回流1小时,滤过,弃去醚液,残渣加甲醇30mL,加热回流1小时,滤过,滤液蒸干,残渣加水40mL使溶解,用正丁醇振摇提取3次,每次20mL,合并正丁醇液,用水洗涤3次,弃去水液,正丁醇液蒸干,残渣加甲醇5mL使溶解,即得;
(2)甘草对照药材溶液制备:取甘草对照药材1g,采用甘草供试品溶液制备方法制备,即得;
(3)吸取上述两种溶液各4uL,分别点于同一用1%氢氧化钠溶液制备的硅胶G薄层板上,以乙酸乙酯-甲酸-冰醋酸-水(15:1:1:2)为展开剂,展开,取出,晾干,喷以10%硫酸乙醇溶液,在105℃加热至斑点显色清晰;供试品色谱中,在与对照药材色谱相应的位置上,显相同颜色的斑点。
2.2方法学验证
2.2.1专属性考察
取甘草阴性样品按照甘草供试品溶液制备方法制备缺甘草阴性样品溶液;将4μL甘草试品溶液、4μL甘草对照药材溶液、4μL缺甘草阴性样品溶液分别 点样于同一硅胶G薄层板(海洋硅胶G板)上,以乙酸乙酯-甲酸-冰醋酸-水(15:1:1:2)为展开剂,在常温常湿(T:21.1℃,RH:47%)条件下展开,取出,晾干,喷以10%硫酸乙醇溶液,在105℃加热至斑点显色清晰,在日光下检视。实验结果见图9。由图中可以看出,本发明的薄层色谱鉴别方法阴性无干扰,方法专属性良好。
2.2.1耐用性考察
(1)不同温度的比较
分别吸取4μL甘草供试品溶液、4μL甘草对照药材溶液点样于同一硅胶G薄层板(海洋硅胶G板)上,以乙酸乙酯-甲酸-冰醋酸-水(15:1:1:2)为展开剂,分别在常温(T:21.1℃,RH:47%)和低温(T:6.4℃,RH:90%)条件下展开,取出,晾干,喷以10%硫酸乙醇溶液,在105℃加热至斑点显色清晰,在日光下检视。实验结果见图10和图11。
由图10和图11可见,在常温和低温条件下,分离效果均较好,且化湿败毒组合物色谱在与对照品色谱相应的位置处,均显示相同颜色的主斑点。实验结果表明,温度对化湿败毒组合物中甘草的薄层鉴别影响较小,说明该薄层鉴别方法对不同温度耐用性好。
(2)不同湿度的比较
分别吸取4μL甘草供试品溶液、4μL甘草对照药材溶液点样于同一硅胶G薄层板(海洋硅胶G板)上,以乙酸乙酯-甲酸-冰醋酸-水(15:1:1:2)为展开剂,分别在常湿(T:21.1℃,RH:47%)、低湿(T:21.1℃,RH:36%)和高湿条件(T:21.1℃,RH:79%)下展开,取出,晾干,喷以10%硫酸乙醇溶液,在105℃加热至斑点显色清晰,在日光下检视。实验结果见图10、图12和图13:
由图10、图12和图13可见,常湿、低湿和高湿条件下,分离效果均较好,且化湿败毒组合物色谱在与对照品色谱相应的位置处,显示相同颜色的主斑点。实验结果表明,湿度对化湿败毒组合物中甘草的薄层鉴别影响较小,说明该薄层鉴别方法对不同湿度耐用性好。
(3)不同点样量的比较
分别吸取甘草供试品溶液、甘草对照药材溶液点样于同一硅胶G薄层板(海洋硅胶G板)上,以乙酸乙酯-甲酸-冰醋酸-水(15:1:1:2)为展开剂,在常 温常湿(T:21.1℃,RH:47%)条件下展开,取出,晾干,喷以10%硫酸乙醇溶液,在105℃加热至斑点显色清晰,在日光下检视。实验结果见图14。
由图14可见,当甘草供试品溶液点样量为4μL、甘草对照药材溶液点样量为4μL时,供试品色谱在与对照品色谱相应的位置处主斑点清晰,无其他干扰。因此,本发明的甘草鉴别方法选择甘草供试品溶液点样量为4μL、甘草对照药材溶液点样量为4μL。
(4)不同厂家薄层板的比较
分别吸取甘草供试品溶液、甘草对照药材溶液点样于不同厂家硅胶G薄层板(海洋硅胶G板、谱科硅胶G板、默克硅胶G板)上,以乙酸乙酯-甲酸-冰醋酸-水(15:1:1:2)为展开剂,在常温常湿条件下(T:21.1℃,RH:47%)展开,取出,晾干,喷以10%硫酸乙醇溶液,在105℃加热至斑点显色清晰,在日光下检视。实验结果见图10、图15和图16。
其中,海洋硅胶G板为青岛海洋化工有限公司生产的薄层板;谱科硅胶G板为青岛谱科分离材料有限公司生产的薄层板;默克硅胶G板为默克股份有限公司生产的薄层板;上述薄层板的规格均为10cm×10cm,厚度为0.20~0.25mm。
结果表明:不同厂家硅胶G薄层板(海洋硅胶G板、谱科硅胶G板、默克硅胶G板)对化湿败毒组合物中甘草的薄层鉴别无显著影响,说明该薄层鉴别方法对不同厂家硅胶G薄层板的耐用性良好。
(三)厚朴的薄层色谱鉴别方法
3.1鉴别方法
(1)厚朴供试品溶液制备:取化湿败毒组合物5g,研细,加甲醇20mL,超声处理30分钟,滤过,滤液蒸干,残渣加水40mL使溶解,用乙酸乙酯振摇提取2次,每次30mL,合并乙酸乙酯液,蒸干,残渣加甲醇1mL使溶解,即得;
需要说明的是,传统的厚朴供试品溶液制备方法,一般仅采用甲醇提取,而本发明增加了乙酸乙酯提取工序,其可更好地除去化湿败毒组合物中的其他杂质,去除对目标斑点(厚朴酚、和厚朴酚)的干扰。
(2)厚朴酚对照品溶液制备:取厚朴酚对照品,加甲醇制成每1mL含1mg的溶液,即得;
(3)和厚朴酚对照品溶液制备:取和厚朴酚对照品,加甲醇制成每1mL 含1mg的溶液,即得;
(4)吸取上述三种溶液各4uL,分别点于同一硅胶G薄层板上,以甲苯-乙酸乙酯-甲醇(17:3:3)为展开剂,展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰;供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的斑点。
3.2方法学验证
3.2.1专属性
取厚朴阴性样品按照厚朴供试品溶液制备方法制备缺厚朴阴性样品溶液;分别吸取4μL厚朴供试品溶液、4μL厚朴酚对照品溶液、4μL和厚朴酚对照品溶液和4μL缺厚朴阴性样品溶液,点样于同一硅胶G薄层板(默克硅胶G板)上,以甲苯-乙酸乙酯-甲醇(17:3:3)为展开剂,在常温常湿(T:26.1℃,RH:48%)条件下展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰,在日光下检视。实验结果见图17。由图中可以看出,本发明的薄层色谱鉴别方法阴性无干扰,方法专属性良好。
3.2.2耐用性考察:
(1)不同温度的比较
分别吸取4μL厚朴供试品溶液、4μL厚朴酚对照品溶液、4μL和厚朴酚对照品溶液点样于同一硅胶G薄层板(默克硅胶G板)上,以甲苯-乙酸乙酯-甲醇(17:3:3)为展开剂,分别在常温(T:26.1℃,RH:48%)和低温(T:3.1℃,RH:91%)条件下展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰,在日光下检视。实验结果见图18和图19。
由图18和图19可见,在常温和低温条件下,分离效果均较好,且化湿败毒组合物色谱在与对照品色谱相应的位置处,均显示相同颜色的主斑点。实验结果表明,温度对化湿败毒组合物中厚朴的薄层鉴别影响较小,说明该薄层鉴别方法对不同温度耐用性好。
(2)不同湿度的比较
分别吸取4μL厚朴供试品溶液、4μL厚朴酚对照品溶液、4μL和厚朴酚对照品溶液点样于同一硅胶G薄层板(默克硅胶G板)上,以甲苯-乙酸乙酯-甲醇(17:3:3)为展开剂,分别在常湿(T:26.1℃,RH:48%)、低湿(T:26.1℃,RH:36%)和高湿条件(T:26.1℃,RH:78%)下展开,取出,晾干,喷以 5%香草醛硫酸溶液,加热至斑点显色清晰,在日光下检视。实验结果见图18、图20和图21。
由图18、图20和图21可见,常湿、低湿和高湿条件下,分离效果均较好,且化湿败毒组合物色谱在与对照品色谱相应的位置处,显示相同颜色的主斑点。实验结果表明,湿度对化湿败毒组合物中厚朴的薄层鉴别影响较小,说明该薄层鉴别方法对不同湿度耐用性好。
(3)不同点样量的比较
分别吸取厚朴供试品溶液、厚朴酚对照品溶液、和厚朴酚对照品溶液点样于同一硅胶G薄层板(默克硅胶G板)上,以甲苯-乙酸乙酯-甲醇(17:3:3)为展开剂,在常温常湿(T:26.1℃,RH:48%)条件下展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰,在日光下检视。实验结果见图22。
由图22可见,当厚朴供试品溶液点样量为4μL、厚朴酚对照品溶液点样量为4μL、和厚朴酚对照品溶液点样量为4μL时,供试品色谱在与对照品色谱相应的位置处主斑点清晰,无其他干扰。因此,本发明的厚朴鉴别方法选择厚朴供试品溶液点样量为4μL、厚朴酚对照品溶液点样量为4μL、和厚朴酚对照品溶液点样量为4μL。
(4)不同厂家薄层板的比较
分别吸取4μL厚朴供试品溶液、4μL厚朴酚对照品溶液、4μL和厚朴酚对照品溶液点样于不同厂家硅胶G薄层板(海洋硅胶G板、谱科硅胶G板、默克硅胶G板)上,以甲苯-乙酸乙酯-甲醇(17:3:3)为展开剂,在常温常湿(T:26.1℃,RH:48%)条件下展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰,在日光下检视。其结果见图18、图23和图24。
其中,海洋硅胶G板为青岛海洋化工有限公司生产的薄层板;谱科硅胶G板为青岛谱科分离材料有限公司生产的薄层板;默克硅胶G板为默克股份有限公司生产的薄层板;上述薄层板的规格均为10cm×10cm,厚度为0.20~0.25mm。
结果表明:不同厂家硅胶G薄层板(海洋硅胶G板、谱科硅胶G板、默克硅胶G板)对化湿败毒组合物中厚朴的薄层鉴别无显著影响,说明该薄层鉴别方法对不同厂家硅胶G薄层板的耐用性良好。
(四)黄芪的薄层色谱鉴别方法
4.1鉴别方法
具体的,黄芪的薄层色谱鉴别方法如下:
(1)黄芪供试品溶液制备:取化湿败毒组合物适量,研细,取约5g,加甲醇30mL,超声处理30分钟,放冷,滤过,滤液蒸干,残渣加水20mL使溶解,用水饱和正丁醇振摇提取2次,每次20mL,合并正丁醇液,用氨试液洗涤2次,每次20mL,弃去氨试液,正丁醇液蒸干,残渣加甲醇1mL使溶解,即得。
(2)黄芪对照品溶液制备:取黄芪甲苷对照品,加甲醇制成每1mL含1mg的溶液,即得。
(3)分别吸取上述黄芪供试品溶液5~8μL,黄芪对照品溶液2μL,点样于同一硅胶G薄层板上,以三氯甲烷-甲醇-水(13:7:2)的下层溶液为展开剂,在4~10℃条件下展开,取出,晾干,喷以10%硫酸乙醇溶液,在105℃加热至斑点显色清晰,在紫外光(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的荧光斑点;
4.2方法学验证
4.2.1专属性考察
取黄芪阴性样品按照黄芪供试品溶液制备方法制备缺黄芪阴性样品溶液;将供试品溶液、缺黄芪阴性样品溶液、黄芪对照品溶液点样于同一硅胶G薄层板(默克硅胶G板)上,按拟定的方法进行试验。结果见图25,由图中可以看出,本发明的薄层色谱鉴别方法阴性无干扰,方法专属性良好。
1.2.2耐用性考察
(1)不同温度的比较
取点样后的硅胶G板(默克硅胶G板),在常温(T:25℃,RH:75%)、低温(T:9℃,RH:89%)的环境下展开,按照拟定方法进行检视,结果见图26和图27。结果表明,在常温下,供试品色谱和对照品色谱中斑点的R f值过高,且分离度较差(图26);而在低温下,供试品色谱斑点R f值适中,分离良好(图27),与对照品色谱相应的位置斑点对应良好。因此,本发明方法中确定展开温度为4~10℃。
(2)不同湿度的比较
取点样后的硅胶G板(默克硅胶G板)上,分别低温低湿(T:8.9℃,RH:41%)、低温高湿(T:8.9℃,RH:92%)环境下展开,按拟定方法进行检视,结果见图28和图29;结果表明,湿度对化湿败毒组合物中黄芪的薄层鉴别影响 较小,说明该薄层鉴别方法对不同湿度耐用性好。
(3)不同点样量的比较
取黄芪供试品溶液、黄芪对照品溶液以不同体积点样于同一硅胶G薄层板(默克硅胶G板)上,按拟定的方法进行试验。结果见图30,从图中可以看出,当黄芪供试品溶液点样量为5~8μL,黄芪对照品溶液点样量为2~3μL时,供试品色谱中与对照品相应位置荧光斑点清晰。因此,本发明方法中,选择点样量为黄芪供试品溶液5~8μL,黄芪对照品溶液2~3μL。
(4)不同薄层板的比较
取黄芪供试品溶液、黄芪对照品溶液点样于不同厂家硅胶G薄层板(默克硅胶G板、海洋硅胶G板、银龙硅胶G板)上,按拟定方法进行试验,结果见图27、图31、图32。
其中,默克硅胶G板为默克股份有限公司生产的薄层板;海洋硅胶G板为青岛海洋化工有限公司生产的薄层板;银龙硅胶G板为烟台市化学工业研究所生产的薄层板;上述薄层板的规格均为10cm×10cm,厚度为0.20~0.25mm。
结果表明:3种硅胶G薄层板都可以达到较好的分离效果,说明该薄层鉴别方法对不同厂家硅胶G薄层板的耐用性良好。
(五)葶苈子的薄层色谱鉴别方法
5.1鉴别方法
具体的,葶苈子的薄层色谱鉴别方法如下:
(1)葶苈子供试品溶液制备:取化湿败毒组合物适量,研细,取约5g,加70%甲醇30mL,超声处理30分钟,放冷,滤过,滤液蒸干,残渣加水5mL使溶解,通过D101大孔树脂柱(内径为1.5cm,柱高为12cm),先用水洗脱至洗脱液无颜色,再用70%甲醇洗脱至洗脱液无颜色,收集70%甲醇洗脱液,蒸干,残渣加甲醇1mL使溶解,即得。
(2)葶苈子对照品溶液制备:取槲皮素-3-O-β-D-葡萄糖-7-O-β-D-龙胆双糖苷对照品,加30%甲醇制成每lmL含0.1mg的溶液,即得。
(3)吸取上述两种溶液各2μL,分别点于同一聚酰胺薄膜上,以乙酸乙酯-甲醇-水(7:2:1)为展开剂,展开,取出,晾干,喷以2%三氯化铝乙醇溶液,热风吹干,置紫外光灯(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的荧光斑点。
需要说明的是,在现有的葶苈子的薄层色谱鉴别过程中,一般直接采用甲醇溶解相关样品,加热回流,滤过的方法制备供试品溶液。然而,由于本发明中化湿败毒组合物中组分较多,其对于鉴别方法影响较大。因此,本发明增加了大孔树脂纯化的步骤。
5.2方法学验证
5.2.1专属性考察
取葶苈子阴性样品按照葶苈子供试品溶液制备方法制备缺葶苈子阴性样品溶液;分别吸取2μL葶苈子供试品溶液、2μL缺葶苈子阴性样品溶液、2μL葶苈子对照品溶液点样于同一聚酰胺薄膜上,按拟定的方法进行试验,其结果如图33所示。由图中可以看出,本发明的薄层色谱鉴别方法阴性无干扰,专属性良好。
5.2.2耐用性考察:
(1)不同温度的比较
分别吸取2μL葶苈子供试品溶液、2μL葶苈子对照品溶液点样于聚酰胺薄膜上,以乙酸乙酯-甲醇-水(7:2:1)为展开剂,分别在常温(T:25℃,RH:75%)和低温(T:9℃,RH:89%)条件下展开,取出,晾干,喷以2%三氯化铝乙醇溶液,热风吹干,置紫外光灯(365nm)下检视。实验结果见图34和图35。
由图34和图35可见,在常温和低温条件下,分离效果均较好,且化湿败毒组合物色谱在与对照品色谱相应的位置处,均显示相同颜色的主斑点。实验结果表明,温度对化湿败毒组合物中葶苈子的薄层鉴别影响较小,说明该薄层鉴别方法对不同温度耐用性好。
(2)不同湿度的比较
分别吸取2μL葶苈子供试品溶液、2μL葶苈子对照品溶液点样于聚酰胺薄膜上,以乙酸乙酯-甲醇-水(7:2:1)为展开剂,分别在常湿(T:25℃,RH:75%)、低湿(T:25℃,RH:41%)和高湿条件(T:25℃,RH:92%)下展开,取出,晾干,喷以2%三氯化铝乙醇溶液,热风吹干,置紫外光灯(365nm)下检视。实验结果见图34、图36和图37。
由图34、图36和图37可见,常湿、低湿和高湿条件下,分离效果均较好,且化湿败毒组合物色谱在与对照品色谱相应的位置处,显示相同颜色的主斑点。实验结果表明,湿度对化湿败毒组合物中葶苈子的薄层鉴别影响较小,说明该 薄层鉴别方法对不同湿度耐用性好。
(3)不同点样量的比较
取葶苈子供试品溶液、葶苈子对照品溶液以不同体积点样于同一聚酰胺薄膜上,按拟定的方法进行试验,其结果如图38所示。由图中可以看出:当葶苈子供试品溶液和葶苈子对照品溶液点样量为2μL,供试品色谱中与对照品相应位置荧光斑点清晰,因此选择点样量2μL。
(六)赤芍的薄层色谱鉴别方法
6.1鉴别方法
(1)赤芍供试品溶液的制备:取化湿败毒组合物3g,研细,加甲醇25mL,超声处理30分钟,滤过,滤液蒸干,残渣加甲醇2mL使溶解,即得;
(2)赤芍对照品溶液制备:取芍药苷对照品,加甲醇制成每lmL含1mg的溶液,即得;
(3)吸取上述两种溶液各3μL,分别点于同一硅胶G薄层板上,以三氯甲烷-乙酸乙酯-甲醇-甲酸(40:5:10:0.2)为展开剂,展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰。供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的斑点。
6.2方法学验证
6.2.1专属性
取赤芍阴性样品按照赤芍供试品溶液制备方法制备缺赤芍阴性样品溶液;将3μL赤芍供试品溶液、3μL缺赤芍阴性样品溶液、3μL赤芍对照品溶液点样于同一硅胶G薄层板(海洋硅胶G板)上,以三氯甲烷-乙酸乙酯-甲醇-甲酸(40:5:10:0.2)为展开剂,在常温常湿条件(T:21.1℃,RH:47%)下展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰,在日光下检视。实验结果见图39。由图中可以看出,本发明的薄层色谱鉴别方法阴性无干扰,方法专属性良好。
6.2.2耐用性考察:
(1)不同温度的比较
分别吸取3μL赤芍供试品溶液、3μL赤芍对照品溶液点样于同一硅胶G薄层板(海洋硅胶G板)上,以三氯甲烷-乙酸乙酯-甲醇-甲酸(40:5:10:0.2)为展开剂,分别在常温(T:21.1℃,RH:47%)和低温(T:6.4℃,RH:90%) 条件下展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰,在日光下检视。实验结果见图40和图41。
由图40和图41可见,在常温和低温条件下,分离效果均较好,且化湿败毒组合物色谱在与对照品色谱相应的位置处,均显示相同颜色的主斑点。实验结果表明,温度对化湿败毒组合物中赤芍的薄层鉴别影响较小,说明该薄层鉴别方法对不同温度耐用性好。
(2)不同湿度的比较
分别吸取3μL赤芍供试品溶液、3μL赤芍对照品溶液点样于同一硅胶G薄层板(海洋硅胶G板)上,以三氯甲烷-乙酸乙酯-甲醇-甲酸(40:5:10:0.2)为展开剂,分别在常湿(T:21.1℃,RH:47%)、低湿(T:21.1℃,RH:36%)和高湿(T:21.1℃,RH:79%)条件下展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰,在日光下检视。实验结果见图40、图42和图43。
由图40、图42和图43可见,常湿、低湿和高湿条件下,分离效果均较好,且化湿败毒组合物色谱在与对照品色谱相应的位置处,显示相同颜色的主斑点。实验结果表明,湿度对化湿败毒组合物中赤芍的薄层鉴别影响较小,说明该薄层鉴别方法对不同湿度耐用性好。
(3)不同点样量的比较
分别吸取赤芍供试品溶液、赤芍对照品溶液点样于同一硅胶G薄层板上,以三氯甲烷-乙酸乙酯-甲醇-甲酸(40:5:10:0.2)为展开剂,展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰,在日光下检视。实验结果见图44。
由图44可见,当赤芍供试品溶液点样量为3μL、赤芍对照品溶液点样量为3μL时,供试品色谱在与对照品色谱相应的位置处主斑点清晰,无其他干扰。因此,本发明的赤芍鉴别方法选择赤芍供试品溶液点样量为3μL、赤芍对照品溶液点样量为3μL。
(4)不同厂家薄层板的比较
分别吸取赤芍供试品溶液、赤芍对照品溶液点样于不同厂家硅胶G薄层板(海洋硅胶G板、谱科硅胶G板、默克硅胶G板)上,以三氯甲烷-乙酸乙酯-甲醇-甲酸(40:5:10:0.2)为展开剂,在常温常湿(21.1℃,RH:47%)条 件下展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰,在日光下检视。结果见图40、图45和图46。
其中,海洋硅胶G板为青岛海洋化工有限公司生产的薄层板;谱科硅胶G板为青岛谱科分离材料有限公司生产的薄层板;默克硅胶G板为默克股份有限公司生产的薄层板;上述薄层板的规格均为10cm×10cm,厚度为0.20~0.25mm。
结果表明:不同厂家硅胶G薄层板对化湿败毒组合物中赤芍的薄层鉴别无显著影响,说明该薄层鉴别方法对不同厂家硅胶G薄层板的耐用性良好。
(七)大黄的薄层色谱鉴别方法
7.1鉴别方法
(1)大黄供试品溶液制备:取化湿败毒组合物5g,研细,加甲醇20mL,超声处理30分钟,滤过,取滤液5mL,蒸干,残渣加水10mL使溶解,再加盐酸1mL,加热回流30分钟,立即冷却,用乙醚振摇提取2次,每次20mL,合并乙醚液,蒸干,残渣加三氯甲烷1mL使溶解,即得;
(2)大黄对照药材溶液制备:取大黄对照药材0.1g,采用大黄供试品溶液制备方法制备,即得;
(3)吸取上述两种溶液各2uL,分别点于同一硅胶H薄层板上,以石油醚(30~60℃)-甲酸乙酯-甲酸(15:5:1)的上层溶液为展开剂,展开,取出,晾干,在紫外光下检视;供试品色谱中,在与对照药材色谱相应的位置上,显相同颜色的荧光斑点。
7.2方法学验证
7.2.1专属性考察
取大黄阴性样品按照大黄供试品溶液制备方法制备缺大黄阴性样品溶液;将2μL大黄供试品溶液、2μL缺大黄阴性样品溶液、2μL大黄对照药材溶液点样于硅胶H薄层板(海洋硅胶H板)上,以石油醚(30~60℃)-甲酸乙酯-甲酸(15:5:1)的上层溶液为展开剂,在常温常湿(T:26.1℃,RH:48%)条件下展开,取出,晾干,在紫外光下检视。结果见图47,由图中可以看出,本发明的薄层色谱鉴别方法阴性无干扰,方法专属性良好。
7.2.2耐用性考察:
(1)不同温度的比较
分别吸取2μL大黄供试品溶液、2μL大黄对照药材溶液点样于同一硅胶H 薄层板(海洋硅胶H板)上,以石油醚(30~60℃)-甲酸乙酯-甲酸(15:5:1)的上层溶液为展开剂,分别在常温(T:26.1℃,RH:48%)和低温条件(T:3.1℃,RH:91%)下展开,取出,晾干,置紫外灯(365nm)下检视。实验结果见图48和图49。
由图48和图49可见,在常温和低温条件下,分离效果均较好,且化湿败毒组合物色谱在与对照品色谱相应的位置处,均显示相同颜色的主斑点。实验结果表明,温度对化湿败毒组合物中大黄的薄层鉴别影响较小,说明该薄层鉴别方法对不同温度耐用性好。
(2)不同湿度的比较
分别吸取2μL大黄供试品溶液、2μL大黄对照药材溶液点样于同一硅胶H薄层板(海洋硅胶H板)上,以石油醚(30~60℃)-甲酸乙酯-甲酸(15:5:1)的上层溶液为展开剂,分别在(T:26.1℃,RH:48%)、低湿(T:26.1℃,RH:36%)和高湿条件(T:26.1℃,RH:78%)下展开,取出,晾干,置紫外灯(365nm)下检视。实验结果见图48、图50和图51。
由图48、图50和图51可见,常湿、低湿和高湿条件下,分离效果均较好,且化湿败毒组合物色谱在与对照品色谱相应的位置处,显示相同颜色的主斑点。实验结果表明,湿度对化湿败毒组合物中大黄的薄层鉴别影响较小,说明该薄层鉴别方法对不同湿度耐用性好。
(3)不同点样量的比较
分别吸取2μL大黄供试品溶液、2μL大黄对照药材溶液点样于同一硅胶H薄层板(海洋硅胶H板)上,以石油醚(30~60℃)-甲酸乙酯-甲酸(15:5:1)的上层溶液为展开剂,在常温常湿(T:26.1℃,RH:48%)条件下展开,取出,晾干,置紫外灯(365nm)下检视。实验结果见图52。
由图52可见,当大黄供试品溶液点样量为2μL、大黄对照药材溶液点样量为2μL时,供试品色谱在与对照品色谱相应的位置处主斑点清晰,无其他干扰。因此,本发明的大黄鉴别方法选择大黄供试品溶液点样量为2μL、大黄对照药材溶液点样量为2μL。
(4)不同厂家薄层板的比较
分别吸取2μL大黄供试品溶液、2μL大黄对照药材溶液点样于不同厂家硅胶H薄层板(海洋硅胶H板、谱科硅胶H板、银龙硅胶H板)上,以石油醚 (30~60℃)-甲酸乙酯-甲酸(15:5:1)的上层溶液为展开剂,在常温常湿(T:26.1℃,RH:48%)条件下展开,取出,晾干,置紫外灯(365nm)下检视,结果见图48、图53和图54。
其中,海洋硅胶H板为青岛海洋化工有限公司生产的薄层板;谱科硅胶H板为青岛谱科分离材料有限公司生产的薄层板;银龙硅胶H板为烟台市化学工业研究所生产的薄层板;上述薄层板的规格均为10cm×10cm,厚度为0.20~0.25mm。
结果表明:不同厂家硅胶H薄层板(海洋硅胶H板、谱科硅胶H板、银龙硅胶H板)对化湿败毒组合物中大黄的薄层鉴别无显著影响,说明该薄层鉴别方法对不同厂家硅胶H薄层板的耐用性良好。
综上所述,本发明基于对化湿败毒组合物分子作用机制的研究,大生产具体情况的分析以及大量的试验研究,在化湿败毒组合物的鉴别标准中制定了麻黄、甘草、厚朴、黄芪、葶苈子、赤芍和大黄的鉴别,为大生产提供了坚实的数据基础。
本发明中的鉴别方法,分离度较好,阴性无干扰,鉴别方法可行;且展开时间短,检视清晰,具有较强的专属性和良好的重现性,能更好地控制大生产过程中药品的质量。
以上所述是发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种化湿败毒组合物的鉴别方法,其特征在于,化湿败毒组合物主要包括以下组分:麻黄,炒苦杏仁,生石膏,甘草,广藿香,厚朴,麸炒苍术,炒草果仁,法半夏,茯苓,大黄,黄芪,葶苈子,赤芍;
    所述化湿败毒组合物的鉴别方法包括:对麻黄、甘草、厚朴分别进行薄层色谱鉴别。
  2. 如权利要求1所述的化湿败毒组合物的鉴别方法,其特征在于,所述化湿败毒组合物的鉴别方法还包括对黄芪、葶苈子、赤芍和大黄分别进行薄层色谱鉴别。
  3. 如权利要求1所述的化湿败毒组合物的鉴别方法,其特征在于,所述麻黄的薄层色谱鉴别方法为:
    (1)取化湿败毒组合物5~10g,研细,加浓氨试液3~5mL使润湿,再加三氯甲烷25~30mL,加热回流0.5~1小时,滤过,滤液蒸干,残渣加甲醇1~2mL溶解,制得麻黄供试品溶液;
    (2)取盐酸麻黄碱对照品,加甲醇制成每1mL含1mg的溶液,制得麻黄对照品溶液;
    (3)吸取麻黄供试品溶液和麻黄对照品溶液各1~5μL,分别点于同一硅胶G薄层板上,以体积比为20:5:0.5的三氯甲烷、甲醇、浓氨试液的混合溶液为展开剂,展开,取出,晾干,喷以茚三酮试液,加热至斑点显色清晰;供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的斑点。
  4. 如权利要求1所述的化湿败毒组合物的鉴别方法,其特征在于,所述甘草的薄层色谱鉴别方法为:
    (1)取化湿败毒组合物5~10g,研细,加乙醚40~50mL,加热回流1~2小时,滤过,弃去醚液,残渣加甲醇30~50mL,加热回流0.5~1.5小时,滤过,滤液蒸干,残渣加水40~50mL使溶解,用正丁醇振摇提取1~3次,每次20~40mL,合并正丁醇液,用水洗涤1~3次,弃去水液,正丁醇液蒸干,残渣加甲醇5~10mL使溶解,制得甘草供试品溶液;
    (2)取甘草对照药材1~3g,按照步骤(1)中的甘草供试品溶液制备方法制备,制得甘草对照药材溶液;
    (3)吸取甘草供试品溶液、甘草对照药材溶液各2~5uL,分别点于同一用1%氢氧化钠溶液制备的硅胶G薄层板上,以体积比为15:1:1:2的乙酸乙酯、甲酸、冰醋酸和水的混合溶液为展开剂,展开,取出,晾干,喷以10%硫酸乙醇溶液,在100~110℃加热至斑点显色清晰;供试品色谱中,在与对照药材色谱相应的位置上,显相同颜色的斑点。
  5. 如权利要求1所述的化湿败毒组合物的鉴别方法,其特征在于,所述厚朴的薄层色谱鉴别方法为:
    (1)取化湿败毒组合物5~10g,研细,加甲醇15~25mL,超声处理0.5~1小时,滤过,滤液蒸干,残渣加水40~50mL使溶解,用乙酸乙酯振摇提取1~3次,每次20~30mL,合并乙酸乙酯液,蒸干,残渣加甲醇1~2mL使溶解,制得厚朴供试品溶液;
    (2)取厚朴酚对照品,加甲醇制成每1mL含1mg的溶液,制得厚朴酚对照品溶液;另取和厚朴酚对照品,加甲醇制成每1mL含1mg的溶液,制得和厚朴酚对照品溶液;
    (3)吸取厚朴供试品溶液、厚朴酚对照品溶液和和厚朴酚对照品溶液各2~5uL,分别点于同一硅胶G薄层板上,以体积比为17:3:3的甲苯、乙酸乙酯、甲醇混合溶液为展开剂,展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰;供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的斑点。
  6. 如权利要求2所述的化湿败毒组合物的鉴别方法,其特征在于,所述黄芪的薄层色谱鉴别方法为:
    (1)取化湿败毒组合物5~10g,加甲醇25~30mL,超声处理0.5~1小时,放冷,滤过,滤液蒸干,残渣加水20~30mL使溶解,用水饱和正丁醇振摇提取1~3次,每次15~30mL,合并正丁醇液,用氨试液洗涤1~3次,每次20~30mL,弃去氨试液,正丁醇液蒸干,残渣加甲醇1~3mL使溶解,制得黄芪供试品溶液;
    (2)取黄芪甲苷对照品,加甲醇制成每1mL含1mg的溶液,制得黄芪对照品溶液;
    (3)吸取黄芪供试品溶液5~8μL,黄芪对照品溶液2~3μL,点样于同一硅胶G薄层板上,以体积比为13:7:2的三氯甲烷、甲醇、水的混合溶液为展开剂,在4~10℃条件下展开,取出,晾干,喷以10%硫酸乙醇溶液,在100~105℃加热至斑点显色清晰;在紫外光下检视,供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的荧光斑点。
  7. 如权利要求2所述的化湿败毒组合物的鉴别方法,其特征在于,所述葶苈子的薄层色谱鉴别方法为:
    (1)取化湿败毒组合物5~10g,研细,加70%甲醇20~30mL,超声处理0.5~1小时,放冷,滤过,滤液蒸干,残渣加水5~10mL使溶解,通过D101大孔树脂柱,先用水洗脱至洗脱液无颜色,再用70%甲醇洗脱至洗脱液无颜色,收集70%甲醇洗脱液,蒸干,残渣加甲醇1~2mL使溶解,制得葶苈子供试品溶液;
    (2)取槲皮素-3-O-β-D-葡萄糖-7-O-β-D-龙胆双糖苷对照品,加30%甲醇制成每lmL含0.1mg的溶液,制得葶苈子对照品溶液;
    (3)吸取葶苈子供试品溶液和葶苈子对照品溶液各1~5μL,分别点于同一聚酰胺薄膜上,以体积比为7:2:1的乙酸乙酯、甲醇、水的混合溶液为展开剂,展开,取出,晾干,喷以2% 三氯化铝乙醇溶液,热风吹干,置紫外光灯下检视;供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的荧光斑点。
  8. 如权利要求2所述的化湿败毒组合物的鉴别方法,其特征在于,所述赤芍的薄层色谱鉴别方法为:
    (1)取化湿败毒组合物3~5g,研细,加甲醇25~40mL,超声处理0.5~1小时,滤过,滤液蒸干,残渣加甲醇1~2mL使溶解,制得赤芍供试品溶液:
    (2)取芍药苷对照品,加甲醇制成每lmL含1mg的溶液,制得赤芍对照品溶液;
    (3)吸取赤芍供试品溶液、赤芍对照品溶液各2~5μL,分别点于同一硅胶G薄层板上,以体积比为40:5:10:0.2的三氯甲烷、乙酸乙酯、甲醇、甲酸的混合溶液为展开剂,展开,取出,晾干,喷以5%香草醛硫酸溶液,加热至斑点显色清晰;供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的斑点。
  9. 如权利要求2所述的化湿败毒组合物的鉴别方法,其特征在于,所述大黄的薄层色谱鉴别方法为:
    (1)取化湿败毒组合物5~10g,研细,加甲醇20~30mL,超声处理20~30分钟,滤过,取滤液3~10mL,蒸干,残渣加水5~15mL使溶解,再加盐酸1~3mL,加热回流20~60分钟,立即冷却,用乙醚振摇提取2~3次,每次20~30mL,合并乙醚液,蒸干,残渣加三氯甲烷1~3mL使溶解,制得大黄供试品溶液;
    (2)取大黄对照药材0.1g,按照步骤(1)中的大黄供试品溶液的制备方法制备,制得大黄对照药材溶液;
    (3)吸取上述两种溶液各1~5uL,分别点于同一硅胶H薄层板上,以体积比为15:5:1的石油醚、甲酸乙酯、甲酸的混合溶液为展开剂,展开,取出,晾干,在紫外光下检视;供试品色谱中,在与对照药材色谱相应的位置上,显相同颜色的荧光斑点。
  10. 如权利要求1所述的化湿败毒组合物的质量控制方法,其特征在于,所述化湿败毒组合物主要包括下述组分:麻黄3-60份,炒苦杏仁4.5-90份,生石膏7.5-150份,甘草1.5-30份,广藿香5-100份,厚朴5-100份,麸炒苍术7.5-150份,炒草果仁5-100份,法半夏4.5-90份,茯苓7.5-150份,大黄2.5-50份,黄芪5-100份,葶苈子5-100份,赤芍5-100份,辅料适量;
    所述化湿败毒组合物被制成中药制剂,所述中药制剂为颗粒剂、汤剂、散剂、胶囊剂、口服液、片剂或丸剂。
PCT/CN2020/115841 2020-08-19 2020-09-17 化湿败毒组合物的鉴别方法 WO2022036795A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010834341.4A CN112067738A (zh) 2020-08-19 2020-08-19 化湿败毒组合物的鉴别方法
CN202010834341.4 2020-08-19

Publications (1)

Publication Number Publication Date
WO2022036795A1 true WO2022036795A1 (zh) 2022-02-24

Family

ID=73662138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115841 WO2022036795A1 (zh) 2020-08-19 2020-09-17 化湿败毒组合物的鉴别方法

Country Status (2)

Country Link
CN (1) CN112067738A (zh)
WO (1) WO2022036795A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114814068A (zh) * 2022-05-13 2022-07-29 中山市中智药业集团有限公司 一种鸡骨草与毛鸡骨草高效薄层鉴别方法
CN114814002A (zh) * 2022-03-31 2022-07-29 浙江工业大学 一种瓜蒌子与变质瓜蒌子的快速鉴别方法
CN115494181A (zh) * 2022-10-17 2022-12-20 山东省食品药品检验研究院 一种同时鉴别通络化痰胶囊中五种原料药的检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113150052B (zh) * 2021-04-20 2022-07-22 烟台大学 一种葶苈子中槲皮素糖苷的纯化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101199812A (zh) * 2007-12-18 2008-06-18 咸阳步长医药科技发展有限公司 治疗心功能衰竭的中药颗粒剂及其制法和质量控制方法
CN101732553A (zh) * 2010-01-28 2010-06-16 昆明中药厂有限公司 止咳丸的质量检测方法
CN111407877A (zh) * 2020-05-08 2020-07-14 北京汉典制药有限公司 治疗新型冠状病毒肺炎的中药组合物、制备方法、检测方法及其用途
CN111983106A (zh) * 2020-08-19 2020-11-24 广东一方制药有限公司 化湿败毒组合物的质量控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100919625B1 (ko) * 2007-08-31 2009-09-30 서울대학교산학협력단 후박 추출물 또는 추출정제물을 포함하는 지방간 질환 예방및 치료용 조성물, 및 추출정제물의 제조방법
CN106198810B (zh) * 2016-08-12 2018-11-20 常熟雷允上制药有限公司 一种具有治疗肿瘤放化疗骨髓抑制的中药组合物的质量检测方法
CN107884508B (zh) * 2017-04-16 2021-01-12 湖南安邦制药有限公司 银黄清肺胶囊的质量检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101199812A (zh) * 2007-12-18 2008-06-18 咸阳步长医药科技发展有限公司 治疗心功能衰竭的中药颗粒剂及其制法和质量控制方法
CN101732553A (zh) * 2010-01-28 2010-06-16 昆明中药厂有限公司 止咳丸的质量检测方法
CN111407877A (zh) * 2020-05-08 2020-07-14 北京汉典制药有限公司 治疗新型冠状病毒肺炎的中药组合物、制备方法、检测方法及其用途
CN111983106A (zh) * 2020-08-19 2020-11-24 广东一方制药有限公司 化湿败毒组合物的质量控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHINESE PHARMACOPOEIA COMMISSION: "Chinese Herbes and Decoction Pieces", PHARMACOPOEIA OF THE PEOPLE'S REPUBLIC OF CHINA, 2015, VOLUME I, 30 June 2015 (2015-06-30) *
DAI WEIHONG, ZHANG SUFEN, TIAN SIQI: "Preparation and Clinical Application of Huang Qi Fu Zheng Granules", JOURNAL OF BETHUNE MILITARY MEDICAL COLLEGE, vol. 5, no. 4, 20 August 2007 (2007-08-20), pages 227 - 228, XP055901089, ISSN: 2095-7858, DOI: 10.16485/j.issn.2095-7858.2007.04.015 *
YANG XIUWEI: "Material Basis Research of Anti-COVID-19 Huashibaidu Granule Gormula", MODERN CHINESE MEDICINE, ZHONG GUO XIAN DAI ZHONG YAO BIAN JI BU, CN, vol. 22, no. 5, 16 May 2020 (2020-05-16), CN , pages 672 - 689, XP055901093, ISSN: 1673-4890, DOI: 10.13313/j.issn.1673-4890.20200331002 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114814002A (zh) * 2022-03-31 2022-07-29 浙江工业大学 一种瓜蒌子与变质瓜蒌子的快速鉴别方法
CN114814002B (zh) * 2022-03-31 2024-05-03 浙江工业大学 一种瓜蒌子与变质瓜蒌子的快速鉴别方法
CN114814068A (zh) * 2022-05-13 2022-07-29 中山市中智药业集团有限公司 一种鸡骨草与毛鸡骨草高效薄层鉴别方法
CN114814068B (zh) * 2022-05-13 2023-11-17 中山市中智药业集团有限公司 一种鸡骨草与毛鸡骨草高效薄层鉴别方法
CN115494181A (zh) * 2022-10-17 2022-12-20 山东省食品药品检验研究院 一种同时鉴别通络化痰胶囊中五种原料药的检测方法
CN115494181B (zh) * 2022-10-17 2024-05-17 山东省食品药品检验研究院 一种同时鉴别通络化痰胶囊中五种原料药的检测方法

Also Published As

Publication number Publication date
CN112067738A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
WO2022036781A1 (zh) 化湿败毒组合物的质量控制方法
WO2022036795A1 (zh) 化湿败毒组合物的鉴别方法
CN112274620B (zh) 治疗新型冠状病毒肺炎的中药组合物、制备方法、检测方法及其用途
CN111735896B (zh) 化湿败毒组合物特征图谱的构建方法
CN101732463B (zh) 金花消痤丸的质量检测方法
CN101366876A (zh) 一种治疗咽喉肿痛的中药制剂及其制备方法
CN101396486B (zh) 治疗咳喘病的中药组合物及其制备方法和质量控制方法
CN107102093B (zh) 复方丹茵膏的检测方法
CN101195007B (zh) 一种治疗感冒咳嗽的药物及其制剂的制备方法及质量控制方法
WO2022036780A1 (zh) 化湿败毒组合物的检测方法
CN101732552B (zh) 清肺化痰丸的质量检测方法
CN101108228A (zh) 一种药物组合物及其制备方法
WO2013044570A1 (zh) 一种用于治疗乳腺炎、乳腺增生的药物的检测方法
CN115389694B (zh) 同时鉴别蠲痹汤中羌活、独活、当归和川芎的薄层色谱法
CN110585404B (zh) 一种中药组合物的检测方法
CN110585405B (zh) 一种止咳平喘的中药组合物
CN110585403B (zh) 一种止咳平喘的中药组合物的制备方法
RU2815993C1 (ru) Композиция традиционной китайской медицины для лечения новой коронавирусной пневмонии, способ ее получения, способ ее определения и ее применение
CN101062096B (zh) 一种治疗温毒型上呼吸道感染的药物及制备方法
CN113499382B (zh) 一种清肺解毒的中药组合物和药物制剂及其制备方法和应用
CN117607335A (zh) 一种同时鉴别十一味清感合剂中广藿香、羌活、北苍术和薄荷的薄层色谱法
CN113648389B (zh) 豁痰除湿药物组合物及其应用
CN114917297B (zh) 一种用于慢性阻塞性肺疾病重度急性加重的药物及其制备方法
CN111693641B (zh) 一种仁术健胃颗粒的薄层鉴别的方法
CN113827669B (zh) 一种治疗急性肺损伤/急性呼吸窘迫综合征的中药组合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949999

Country of ref document: EP

Kind code of ref document: A1