WO2022033438A1 - 一种热管理控制方法、装置和汽车 - Google Patents

一种热管理控制方法、装置和汽车 Download PDF

Info

Publication number
WO2022033438A1
WO2022033438A1 PCT/CN2021/111573 CN2021111573W WO2022033438A1 WO 2022033438 A1 WO2022033438 A1 WO 2022033438A1 CN 2021111573 W CN2021111573 W CN 2021111573W WO 2022033438 A1 WO2022033438 A1 WO 2022033438A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature threshold
duty cycle
engine
vehicle
Prior art date
Application number
PCT/CN2021/111573
Other languages
English (en)
French (fr)
Inventor
吴桐
孙明
胡康
陈明
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP21855490.5A priority Critical patent/EP4177093A4/en
Priority to US18/010,382 priority patent/US20230294508A1/en
Publication of WO2022033438A1 publication Critical patent/WO2022033438A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00807Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a specific way of measuring or calculating an air or coolant temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00849Damper doors, e.g. position control for selectively commanding the induction of outside or inside air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/06Arrangement in connection with cooling of propulsion units with air cooling

Definitions

  • the present disclosure relates to the technical field of automobiles, and in particular, to a thermal management control method and device.
  • the heat dissipation performance of the car When the heat dissipation performance of the car is insufficient, it may occur that the engine over-temperature protection is easily triggered when the engine is running at high speed and high torque under off-road conditions, resulting in engine torque limit, air conditioning cut off, etc., which affect the driving experience, and may also affect driving safety.
  • the car In order to improve the heat dissipation performance of the car, the car is usually equipped with a high-power fan and a large-sized radiator, etc., which leads to an increase in the weight and cost of the car.
  • the present disclosure aims to propose a thermal management control method, device, and vehicle, so as to solve the problem that the heat dissipation performance of the vehicle is insufficient in off-road conditions and excessive in conventional road conditions.
  • the adjustment step includes:
  • the over-temperature threshold includes at least one of an electronic thermostat startup temperature threshold, an electronic water pump startup temperature threshold, a cooling fan response temperature threshold and a high-voltage component low temperature circuit water pump response temperature threshold;
  • the working temperature includes at least one of engine outlet water temperature and transmission oil temperature
  • the driving parameter includes the duty ratio of the cooling fan , at least one of a transmission gear and an air conditioner operating parameter.
  • the adjustment of the driving parameters of the automobile according to the working temperature includes:
  • the duty cycle of the cooling fan is adjusted to be a second duty cycle, and the second duty cycle is greater than the first A duty cycle that is less than the maximum duty cycle;
  • the duty cycle of the cooling fan is adjusted to the maximum duty cycle.
  • the adjustment of the driving parameters of the automobile according to the working temperature includes:
  • the adjustment of the driving parameters of the automobile according to the working temperature includes:
  • the transmission gear is downshifted when the transmission oil temperature is greater than or equal to a fourth temperature threshold.
  • the air-conditioning working parameters include an inner cycle
  • the adjusting the driving parameters of the automobile according to the working temperature includes
  • the air conditioner of the automobile is controlled to be in internal circulation.
  • the air-conditioning operating parameters include evaporator outlet temperature
  • adjusting the driving parameters of the vehicle according to the operating temperature includes
  • the evaporator outlet temperature is increased by a preset temperature value.
  • the adjustment step also includes:
  • the opening degree of the active air intake grill is adjusted to the maximum opening degree.
  • the thermal management control method described in the present disclosure has the following advantages:
  • the thermal management control method described in the present disclosure can adjust the over-temperature threshold of the car in off-road conditions, and/or obtain the working temperature of the car, and adjust the driving parameters of the car according to the working temperature, thereby enhancing the heat dissipation of the car in off-road conditions Performance, avoid the engine over-temperature protection that is easily triggered when the engine is running at high speed and high torque in off-road conditions, resulting in engine torque limit, air conditioning cut-off, etc. affecting the driving experience, and may also affect driving safety, no additional high-power installation is required. Fans, large-sized radiators, reduce vehicle weight and manufacturing costs.
  • Another object of the present disclosure is to provide a thermal management control device to solve the problem of insufficient heat dissipation performance of automobiles in off-road conditions and excess in conventional road conditions.
  • a thermal management control device may include:
  • an off-road adjustment module which is used to perform an adjustment sub-module to improve the heat dissipation performance of the vehicle when the vehicle is in an off-road condition;
  • the off-road adjustment module includes at least one of the following adjustment sub-modules:
  • a driving parameter adjustment sub-module configured to obtain the working temperature of the automobile, and adjust the driving parameters of the automobile according to the working temperature, where the working temperature includes at least one of an engine outlet water temperature and a transmission oil temperature, and the The driving parameters include at least one of a cooling fan duty cycle, a transmission gear, and an air conditioner operating parameter.
  • the driving parameter adjustment sub-module includes:
  • a first fan adjustment unit configured to adjust the duty cycle of the cooling fan to a first duty cycle when the engine outlet water temperature is less than or equal to a first temperature threshold
  • a second fan adjustment unit configured to adjust the cooling fan duty cycle to a second duty cycle when the engine outlet water temperature is greater than a first temperature threshold and less than or equal to a second temperature threshold, and the first 2.
  • the duty cycle is greater than the first duty cycle and less than the maximum duty cycle;
  • a third fan adjustment unit configured to adjust the duty cycle of the cooling fan to the maximum duty cycle when the engine outlet water temperature is greater than a second temperature threshold.
  • the driving parameter adjustment sub-module is specifically configured to lower the transmission gear when the engine outlet water temperature is greater than a third temperature threshold and the vehicle's engine is a mechanical water pump.
  • the driving parameter adjustment sub-module is specifically configured to lower the transmission gear when the transmission oil temperature is greater than or equal to a fourth temperature threshold.
  • the air conditioning operating parameters include internal circulation
  • the driving parameter adjustment sub-module is specifically configured to control the air conditioning of the automobile to be internal circulation when the engine outlet water temperature is greater than or equal to a second temperature threshold.
  • the air-conditioning operating parameters include an evaporator outlet temperature
  • the driving parameter adjustment sub-module is specifically configured to increase the evaporator outlet temperature when the engine outlet water temperature is greater than or equal to a second temperature threshold. Preset temperature value.
  • the off-road adjustment module further includes:
  • the opening degree adjustment sub-module is used to adjust the opening degree of the active air intake grille to the maximum opening degree when the vehicle is equipped with an active air intake grille.
  • thermal management control device and the above thermal management control method have the same advantages over the prior art, which will not be repeated here.
  • the present disclosure also proposes an automobile, which can be used to implement the above-mentioned thermal management control method, or the automobile can be equipped with the above-mentioned thermal management control device.
  • FIG. 1 is a flowchart of steps of a thermal management control method provided by an embodiment of the present disclosure
  • FIG. 2 is a flowchart of steps of another management control method provided by an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram of a thermal management control device provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a hardware structure of an automobile provided by an embodiment of the present disclosure.
  • FIG. 5 is a specific example diagram of a thermal management control method provided by an embodiment of the present disclosure.
  • Figure 6 schematically shows a block diagram of a computing processing device for performing methods according to the present disclosure.
  • Figure 7 schematically shows a memory unit for holding or carrying program code implementing the method according to the present disclosure.
  • FIG. 1 is a flowchart of steps of a thermal management control method provided by an embodiment of the present disclosure. As shown in FIG. 1 , the method may include:
  • Step 101 when the vehicle is in off-road conditions, perform an adjustment step to improve the heat dissipation performance of the vehicle.
  • the car when the car is in a normal road condition, such as when the car is driving on an urban road, a suburban road, a highway, etc., since the conventional road condition does not require high heat dissipation performance, the car can be in a lower heat dissipation performance, thereby avoiding the heat dissipation performance.
  • the heat dissipation performance of the car can be improved by adjusting steps, so that the heat dissipation of the car can adapt to the requirements of off-road road conditions, and can adapt to the harsh driving environment in off-road road conditions.
  • the heat dissipation performance can be reduced to avoid excessive heat dissipation performance.
  • the heat dissipation performance is reduced by performing the adjustment steps in reverse.
  • the car may determine whether the car is in an off-road condition through a driver's operation, such as receiving an operation of the driver to activate the off-road mode of the car, and determining that the car is in an off-road condition according to the operation.
  • the selection operation of "off-road mode" on the on-board computer can also be the input operation of "turn on off-road mode” by the driver through voice input; the car can also determine whether the car is in off-road conditions through map information, such as obtaining the real-time position of the car, and Whether the map information of the car is an off-road road condition is determined according to the real-time position.
  • the map information of the car is road conditions such as desert, mud and grass
  • the car can also be determined by the collected environmental information.
  • the environmental information may include temperature, visibility, rainfall, road obstacles, and the like.
  • the adjusting step includes at least one of the following:
  • Step 102 reducing the over-temperature threshold of the vehicle, the over-temperature threshold includes at least one of the electronic thermostat startup temperature threshold, the electronic water pump startup temperature threshold, the cooling fan response temperature threshold and the high-voltage component low temperature circuit water pump response temperature threshold. kind.
  • the over-temperature threshold refers to the threshold for over-temperature protection of the automobile.
  • over-temperature protection is performed for the automobile, wherein the over-temperature protection may be to increase the engine Coolant flow, low-temperature loop coolant flow, etc., so that when the car is driving in off-road conditions, due to the increase in power, when the temperature suddenly increases, it can dissipate heat in time, so as to prevent the corresponding parts from overheating and damage due to untimely heat dissipation.
  • the timing of starting the over-temperature protection can be adjusted, and by adjusting the over-temperature threshold, the over-temperature protection can be turned on at the right time, thereby improving the heat dissipation performance of the car.
  • the over-temperature protection can be started in advance by lowering the over-temperature threshold, thereby improving the heat dissipation performance of the vehicle. It makes the engine cooling circuit open a large cycle in advance, and increases the flow of coolant flowing through the radiator, thereby improving the heat dissipation rate of the engine, improving the heat dissipation performance of the car, and avoiding the sudden increase in the temperature of the engine coolant when the vehicle is driven excessively in off-road conditions.
  • the response temperature threshold of the low-temperature circuit water pump of the high-pressure component can also be reduced, so that the low-temperature circuit water pump of the high-pressure component can respond in advance, improve the heat dissipation rate of the high-voltage component, and prevent the vehicle from driving excessively It leads to rapid charge and discharge of high-voltage components, increased power, sudden increase of coolant temperature in the low-temperature circuit, and damage caused by over-temperature of high-voltage components; the response temperature threshold of the cooling fan can also be reduced, and the response temperature threshold of the cooling fan is the electronic device used to cool the engine in the car.
  • the temperature threshold for fan startup and reducing the response temperature threshold of the cooling fan can enable the electronic fan to be turned on in advance and improve the heat dissipation performance of the car.
  • Those skilled in the art can select the over-temperature protection to be started in advance according to the specific configuration and driving environment of the automobile, so as to improve the heat dissipation performance of the automobile.
  • the high-voltage components of the automobile may include a motor of the automobile, a motor controller, an OBC (On-board charger, on-board charger)/DCDC (Direct Current Direct Current, a DC converter) and the like.
  • Step 103 Acquire the operating temperature of the vehicle, and adjust the driving parameters of the vehicle according to the operating temperature, where the operating temperature includes at least one of engine outlet water temperature and transmission oil temperature, and the driving parameters include a cooling fan At least one of a duty cycle, a transmission gear, and an air conditioner operating parameter.
  • the working temperature of the vehicle can also be obtained.
  • the working temperature can be the engine outlet water temperature.
  • the engine outlet water temperature refers to the outlet temperature of the circulation loop in which the engine coolant cools the engine.
  • the engine outlet water temperature can be used to further Determine the temperature of the engine after the coolant is cooled; the working temperature can also include the transmission oil temperature.
  • the transmission is a mechanism used to change the speed and torque from the engine.
  • the oil is used to maintain the normal operation of the transmission and prolong the life of the mechanism.
  • the transmission oil temperature is the transmission oil temperature.
  • the temperature of the oil during the working process can be obtained through the transmission oil temperature sensor. During the working process of the engine, the high temperature of the engine outlet water or the transmission oil will cause serious damage to the engine or transmission.
  • the driving parameters of the car can be adjusted according to the engine outlet water temperature or the transmission oil temperature to improve the heat dissipation performance of the car.
  • the driving parameters may include cooling fan duty cycle, transmission gear, and air conditioning operating parameters, among others. Those skilled in the art may also select other operating temperatures according to specific vehicle specifications and performance, which are not specifically limited in the embodiments of the present disclosure.
  • FIG. 2 is a flowchart of steps of another management control method provided by an embodiment of the present disclosure. As shown in FIG. 2 , the method may include:
  • Step 201 when the vehicle is in off-road conditions, perform an adjustment step to improve the heat dissipation performance of the vehicle.
  • step 201 may correspond to the relevant description of step 101, which is not repeated here to avoid repetition.
  • the adjusting step includes at least one of the following:
  • Step 202 reducing the over-temperature threshold of the vehicle, the over-temperature threshold includes at least one of the electronic thermostat startup temperature threshold, the electronic water pump startup temperature threshold, the cooling fan response temperature threshold and the high-voltage component low temperature circuit water pump response temperature threshold. kind.
  • step 202 for the content of step 202, reference may be made to the relevant description of the foregoing step 102, which is not repeated here in order to avoid repetition.
  • Step 203 Acquire the operating temperature of the vehicle, and adjust the driving parameters of the vehicle according to the operating temperature, where the operating temperature includes at least one of an engine outlet water temperature and a transmission oil temperature, and the driving parameters include a cooling fan At least one of a duty cycle, a transmission gear, and an air conditioner operating parameter.
  • step 203 may refer to the relevant description of the foregoing step 103, which is not repeated here in order to avoid repetition.
  • the driving parameter includes a cooling fan duty cycle
  • the step 203 includes:
  • Step 2031 when the engine outlet water temperature is less than or equal to a first temperature threshold, adjust the cooling fan duty cycle to a first duty cycle;
  • Step 2032 In the case where the engine outlet water temperature is greater than the first temperature threshold and less than or equal to the second temperature threshold, adjust the duty cycle of the cooling fan to a second duty cycle, and the second duty cycle is greater than the first duty cycle is smaller than the maximum duty cycle;
  • Step 2033 In the case that the engine outlet water temperature is greater than the second temperature threshold, adjust the duty cycle of the cooling fan to the maximum duty cycle.
  • the duty cycle of the cooling fan refers to the ratio of the power-on time of the electronic fan used to cool the engine to the work cycle in one work cycle.
  • the larger the duty cycle the faster the speed of the electronic fan, which can be selected by the engine outlet water temperature.
  • Different cooling fan duty ratios so that different cooling powers can be selected for different engine outlet water temperatures.
  • the first duty cycle can be selected, and the electronic fan does not rotate at this time.
  • the electronic fan rotates slowly; when the engine outlet water temperature is greater than the first temperature threshold and less than or equal to the second temperature threshold, adjust the duty cycle of the cooling fan to the second duty cycle, which is between Between the first duty cycle and the maximum duty cycle, at this time, the second temperature threshold is greater than the first temperature threshold, and the speed of the electronic fan is faster but less than the maximum speed of the electronic fan; when the engine outlet water temperature is greater than the second temperature threshold, it can be It is considered that the water temperature at the outlet of the engine is high. At this time, the duty cycle of the cooling fan can be adjusted to the maximum duty cycle, and the heat dissipation is carried out through the maximum speed of the electronic fan.
  • the duty ratio of the cooling fan increases with the increase of the water temperature at the engine outlet, those skilled in the art can set the temperature threshold according to actual requirements, which is not specifically limited in the embodiment of the present disclosure.
  • the sizes of the first temperature threshold and the second temperature threshold are not limited, they can be set according to the performance indicators of the vehicle, and calibrated during the actual driving process of the vehicle or in the experiment to adapt to the actual driving situation, for example, When the maximum temperature resistance of the engine is 113°C, the first temperature threshold may be 85°C, the second temperature threshold may be 95°C, the first duty cycle may be 10%, and the second duty cycle may be 60%, The maximum duty cycle can be 85%.
  • the cooling fan duty ratio when the engine outlet water temperature is less than or equal to 85°C, adjust the cooling fan duty ratio to 10%; when the engine outlet water temperature is greater than 85°C and less than or equal to 95°C, adjust the cooling fan duty cycle The air ratio is 60%; when the engine outlet water temperature is greater than 95°C, the duty cycle of the cooling fan is adjusted to 85%.
  • the first temperature threshold when the maximum temperature resistance of the engine is 120°C, the first temperature threshold may be 90°C, the second temperature threshold may be 110°C, etc., which are not limited in the embodiments of the present disclosure.
  • the driving parameter includes a transmission gear
  • the step 203 includes:
  • Step 2034 In the case that the engine outlet water temperature is greater than a third temperature threshold and the engine of the automobile is a mechanical water pump, lower the transmission gear.
  • the transmission gear refers to the driving conditions that the transmission transmission mechanism and the operating mechanism can achieve.
  • the gears with small numbers are low gears, which have large transmission ratio, large traction force and low vehicle speed; the gears with large numbers are high gears, high-grade transmission ratios are small, traction force is small, and vehicle speed is high.
  • the transmission gear is lowered to reduce the vehicle speed, thereby increasing the engine speed, increasing the engine coolant flow, and improving the engine heat dissipation.
  • the third temperature threshold may be 110°C, and when the engine outlet water temperature is greater than 110°C and the engine is a mechanical water pump, the transmission gear is lowered.
  • Step 2035 when the transmission oil temperature is greater than or equal to a fourth temperature threshold, reduce the transmission gear.
  • the fourth temperature threshold when the transmission oil temperature is greater than or equal to the fourth temperature threshold, it can be considered that the transmission oil temperature may damage the structure of the transmission. At this time, the transmission gear can be lowered, thereby reducing the heat that the transmission needs to dissipate and reducing oil cooling. The load of the device is improved, and the heat dissipation of the car is improved.
  • the fourth temperature threshold may be any temperature value between 90° C. and 100° C., which is not specifically limited in this embodiment of the present disclosure.
  • the driving parameters include air-conditioning working parameters
  • the air-conditioning working parameters include internal circulation
  • the step 203 includes:
  • Step 2036 when the engine outlet water temperature is greater than or equal to the second temperature threshold, control the air conditioner of the automobile to be in internal circulation.
  • the driving parameters may further include air-conditioning operating parameters, wherein the air-conditioning operating parameters may be a cycle mode of the air-conditioning, for example, the air-conditioning is an inner cycle or an outer cycle.
  • the air conditioner of the car can be controlled to switch to internal circulation, or maintain the internal circulation, so as to avoid heat loss in the car interior, reduce the load of the car air conditioner, reduce the car, and improve the heat dissipation performance of the car.
  • Step 203 includes:
  • Step 2037 when the engine outlet water temperature is greater than or equal to a second temperature threshold, increase the evaporator outlet temperature by a preset temperature value.
  • the working parameters of the air conditioner may also include the outlet temperature of the evaporator.
  • the evaporator is one of the refrigeration components in the automobile.
  • the low-temperature liquid exchanges heat with the outside air through the evaporator, and vaporizes and absorbs heat to achieve the cooling effect.
  • Increasing the outlet temperature of the evaporator can reduce the output power of the evaporator, thereby reducing the load of the compressor, condenser, etc. of the air conditioner, thereby reducing the temperature of the radiator inlet air and reducing the engine load.
  • the preset temperature value can be 1°C, 2°C, 3°C, 4°C, 5°C, etc., which are not specifically limited in the embodiments of the present disclosure.
  • Those skilled in the art may also adopt other ways of adjusting the working parameters of the air conditioner to reduce the load of the air-conditioned vehicle, which is not specifically limited in the embodiment of the present disclosure.
  • Step 204 when the vehicle is equipped with an active air intake grille, adjust the opening degree of the active air intake grille to the maximum opening degree.
  • the Active Grille System is a grille grille installed in front of the radiator of the car, and has blades that can be rotated by 90°, so that the blades can be adjusted according to the level of the water temperature at the engine outlet.
  • the size of the opening In off-road conditions, the opening of the active air intake grille can be adjusted to the maximum opening. For example, when the maximum opening of the active air intake grille is 90°, adjust the blade opening to 90° to increase the air intake of the car. Thereby ensuring the maximum heat dissipation of the radiator and improving the heat dissipation performance of the car.
  • the thermal management control method described in the present disclosure can adjust the over-temperature threshold of the car in off-road conditions, and/or obtain the working temperature of the car, and adjust the driving parameters of the car according to the working temperature, thereby enhancing the heat dissipation of the car in off-road conditions.
  • Performance avoid the engine over-temperature protection that is easily triggered when the engine is running at high speed and high torque in off-road conditions, resulting in engine torque limit, air conditioning cut-off, etc. affecting the driving experience, and may also affect driving safety, no additional high-power installation is required.
  • Fig. 3 is a structural block diagram of a thermal management control device provided by an embodiment of the present disclosure. As shown in Fig. 3, the device may include:
  • the off-road adjustment module 301 is used to execute the adjustment sub-module to improve the heat dissipation performance of the vehicle when the vehicle is in an off-road condition;
  • the off-road adjustment module 301 includes at least one of the following adjustment sub-modules:
  • the temperature adjustment sub-module 3011 is used to reduce the over-temperature threshold of the vehicle, the over-temperature threshold includes the electronic thermostat start-up temperature threshold, the electronic water pump start-up temperature threshold, the cooling fan response temperature threshold and the high-voltage component low-temperature circuit water pump response temperature at least one of the thresholds;
  • the driving parameter adjustment sub-module 3012 is used to obtain the working temperature of the automobile, and adjust the driving parameters of the automobile according to the working temperature.
  • the working temperature includes at least one of the engine outlet water temperature and the transmission oil temperature, so
  • the driving parameters include at least one of a cooling fan duty cycle, a transmission gear, and an air conditioner operating parameter.
  • the driving parameter adjustment sub-module 3012 includes:
  • a first fan adjustment unit configured to adjust the duty cycle of the cooling fan to a first duty cycle when the engine outlet water temperature is less than or equal to a first temperature threshold
  • a second fan adjustment unit configured to adjust the cooling fan duty cycle to a second duty cycle when the engine outlet water temperature is greater than a first temperature threshold and less than or equal to a second temperature threshold, and the first 2.
  • the duty cycle is greater than the first duty cycle and less than the maximum duty cycle;
  • a third fan adjustment unit configured to adjust the duty cycle of the cooling fan to the maximum duty cycle when the engine outlet water temperature is greater than a second temperature threshold.
  • the driving parameter adjustment sub-module 3012 is specifically configured to lower the transmission gear when the engine outlet water temperature is greater than a third temperature threshold and the vehicle's engine is a mechanical water pump.
  • the driving parameter adjustment sub-module 3012 is specifically configured to lower the transmission gear when the transmission oil temperature is greater than or equal to a fourth temperature threshold.
  • the air-conditioning operating parameters include an internal cycle
  • the driving parameter adjustment sub-module 3012 is specifically configured to control the air-conditioning of the vehicle to be internal when the engine outlet water temperature is greater than or equal to the second temperature threshold. cycle.
  • the air-conditioning operating parameter includes an evaporator outlet temperature
  • the driving parameter adjustment sub-module 3012 is specifically configured to adjust the evaporator outlet temperature when the engine outlet water temperature is greater than or equal to a second temperature threshold. The temperature is increased by the preset temperature value.
  • the off-road adjustment module 301 further includes:
  • the opening degree adjustment sub-module is used to adjust the opening degree of the active air intake grille to the maximum opening degree when the vehicle is equipped with an active air intake grille.
  • the thermal management control device described in the present disclosure can adjust the over-temperature threshold of the car in off-road conditions, and/or obtain the working temperature of the car, and adjust the driving parameters of the car according to the working temperature, thereby enhancing the heat dissipation of the car in off-road conditions Performance, avoid the engine over-temperature protection that is easily triggered when the engine is running at high speed and high torque in off-road conditions, resulting in engine torque limit, air conditioning cut-off, etc. affecting the driving experience, and may also affect driving safety, no additional high-power installation is required. Fans, large-sized radiators, reduce vehicle weight and manufacturing costs.
  • Embodiments of the present disclosure further provide an automobile, which can be used to implement the thermal management control method shown in FIG. 1 to FIG. 2 , or the automobile can be equipped with the thermal management control device shown in FIG. 3 .
  • FIG. 4 is a schematic diagram of an automobile hardware structure provided by an embodiment of the present disclosure.
  • the automobile may include an AC (Air conditioning, air conditioning system controller) 401, a relay 402, an ESP (Electronic stability program, body electronics) Stability system) 403, ECM (Engine Control Module, engine control module) 404, AGS405, TCU (Transmission Control Unit, transmission controller) 406, FAN (electronic fan) 407, HCU (Hybrid Control Unit, vehicle controller) 408 , OBC/DCDC409, MCU (Motor Control Unit, motor controller) 410, electronic water pump 411, TS (Temperature Sensor) 412.
  • the MCU 410 can control motors at any position in the car, including P0 motors, P1 motors, P2 motors, and so on.
  • FIG. 5 is a specific example diagram of a thermal management control method provided by an embodiment of the present disclosure. As shown in FIG. 5 , through the automotive hardware structure shown in FIG. 4 , the steps of implementing the thermal management control method are as follows, wherein “Y” For yes, "N" for no:
  • Step 501 when the car is in an off-road condition, the ESP403 sends an off-road mode signal to the HCU 408 through the relay 402 .
  • Step 502 the HCU 408 judges whether the received signal is an off-road mode signal, and if so, executes steps 503 and 504; if not, adopts a conventional mode thermal management control strategy.
  • Step 503 The HCU 408 lowers the electronic thermostat startup temperature threshold, the electronic water pump 411 startup temperature threshold, the FAN407 response temperature threshold, the OBC/DCDC409 low temperature circuit water pump response temperature threshold, and the MCU410 low temperature circuit water pump response temperature threshold; the ECM 404 controls the AGS405 The opening is the maximum opening.
  • Step 504 the relay 402 relays the off-road mode signal to the TCU 406 , the ECM 404 and the AC 401 .
  • Step 505 The HCU 408 obtains the engine outlet water temperature collected by the TS412, and judges whether the engine outlet water temperature is greater than the first temperature threshold. If not, send the fan speed request of the first duty cycle to the ECM 404; if so, execute Step 506.
  • Step 506 the HCU 408 judges whether the engine outlet water temperature is greater than the second temperature threshold, if not, sends the fan speed request of the second duty cycle to the ECM 404; if so, sends the maximum duty cycle to the ECM 404 the fan speed request; the second duty cycle is greater than the first duty cycle and less than the maximum duty cycle.
  • Step 507 The ECM 404 controls the FAN 407 according to the fan speed request.
  • Step 508 the ECM 404 determines whether the engine outlet water temperature is greater than the third temperature threshold, if so, go to step 509 , if not, go to step 510 .
  • Step 509 the TCU 408 controls the transmission to downshift.
  • Step 510 the TCU 408 controls the transmission gear to remain unchanged.
  • Step 511 the TCU 408 judges whether the transmission oil temperature is greater than or equal to the fourth temperature threshold, if yes, go to step 509 ; if not, go to step 510 .
  • Step 512 the AC401 judges whether the water temperature at the engine outlet is greater than or equal to the second temperature threshold, and if so, execute step 512; if not, the AC401 controls the air conditioner operating parameters to remain unchanged.
  • Step 513 the AC401 controls the air conditioner to be in internal circulation, and increases the outlet temperature of the evaporator by 3°C.
  • the conventional mode thermal management control strategy is a thermal management method with low heat dissipation performance adopted when the vehicle is running under conventional road conditions.
  • the conventional mode management control strategy may be based on the above-mentioned thermal management method for off-road road conditions
  • the heat dissipation performance of the car is reduced by increasing the over-temperature threshold, controlling the air conditioner to external circulation, and reducing the outlet temperature of the evaporator, so as to adapt to the low heat dissipation demand of conventional road conditions and avoid excessive heat dissipation performance of the vehicle.
  • the above components in the hardware structure of the automobile are only used as examples. In practical applications, the components in the hardware structure may be added or deleted according to requirements.
  • the vehicle described in the present disclosure can adjust the over-temperature threshold of the vehicle under off-road conditions, and/or obtain the working temperature of the vehicle, and adjust the driving parameters of the vehicle according to the working temperature, thereby enhancing the heat dissipation performance of the vehicle under off-road conditions, avoiding In off-road conditions, when the engine is running at high speed and high torque, it is very easy to trigger the engine over-temperature protection, which will affect the driving experience such as engine torque limit and air conditioner cut-off, and may also affect driving safety. Specification radiator, reducing car weight and manufacturing cost.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
  • Various component embodiments of the present disclosure may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in a computing processing device according to embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure can also be implemented as apparatus or apparatus programs (eg, computer programs and computer program products) for performing some or all of the methods described herein.
  • Such a program implementing the present disclosure may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from Internet sites, or provided on carrier signals, or in any other form.
  • Figure 6 illustrates a computing processing device that may implement methods in accordance with the present disclosure.
  • the computing processing device traditionally includes a processor 1010 and a computer program product or computer readable medium in the form of a memory 1020 .
  • the memory 1020 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has storage space 1030 for program code 1031 for performing any of the method steps in the above-described methods.
  • the storage space 1030 for program codes may include various program codes 1031 for implementing various steps in the above methods, respectively. These program codes can be read from or written to one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks. Such computer program products are typically portable or fixed storage units as described with reference to FIG. 7 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 6 .
  • the program code may, for example, be compressed in a suitable form.
  • the storage unit includes computer readable code 1031', ie code readable by a processor such as 1010, for example, which, when executed by a computing processing device, causes the computing processing device to perform any of the methods described above. of the various steps.

Abstract

一种热管理控制方法、装置和汽车,可以在越野路况下降低汽车的超温阈值,和/或获取汽车的工作温度,并根据工作温度调节汽车的行驶参数,从而增强汽车在越野路况下的散热性能,避免在越野路况下发动机高转速、大扭矩工况行驶时极易触发发动机超温保护,导致汽车出现发动机限扭、空调切断等现象影响驾驶体验,还可能影响驾驶安全,不需要额外加装大功率风扇、大规格散热器,降低了汽车重量和制造成本。

Description

一种热管理控制方法、装置和汽车
相关申请的交叉引用
本公开要求在2020年08月11日提交中国专利局、申请号为202010803407.3、名称为“一种热管理控制方法、装置和汽车”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及汽车技术领域,特别涉及一种热管理控制方法和装置。
背景技术
随着越野爱好者越来越多,汽车在越野路况如沙漠、乱石、泥浆和草丛等路况下行驶的应用场景也越来越广泛。由于在越野路况下行驶,需要应对高温度、严苛路况的环境,因此,对汽车的驾驶性能、散热性能等提出了更高的要求。
汽车的散热性能不足时,可能出现在越野路况下发动机高转速、大扭矩工况行驶时极易触发发动机超温保护,导致发动机限扭、空调切断等影响驾驶体验,还可能影响驾驶安全;而目前为了提升汽车的散热性能,通常为汽车配置大功率风扇和大规格散热器等,导致汽车重量、成本上升。
发明内容
有鉴于此,本公开旨在提出一种热管理控制方法、装置和汽车,以解决汽车散热性能在越野路况下不足,在常规路况下过剩的问题。
为达到上述目的,本公开的技术方案是这样实现的:
在汽车处于越野路况的情况下,执行调节步骤以提高所述汽车的散热性能;
所述调节步骤包括:
降低所述汽车的超温阈值,所述超温阈值包括电子节温器启动温度阈值、电子水泵启动温度阈值、冷却风扇响应温度阈值和高压部件低温回路水泵响应温度阈值中的至少一种;
获取所述汽车的工作温度,并根据所述工作温度调节所述汽车的行驶参数,所述工作温度包括发动机出口水温和变速器油温中的至少一种,所述行驶参数包括冷却风扇占空比、变速器档位和空调工作参数中的至少一种。
进一步的,所述根据所述工作温度调节所述汽车的行驶参数,包括:
在所述发动机出口水温小于或等于第一温度阈值的情况下,调节所述冷却风扇占空比为第一占空比;
在所述发动机出口水温大于第一温度阈值,且小于或等于第二温度阈值的情况下,调节所述冷却风扇占空比为第二占空比,所述第二占空比大于所述第一占空比,且小于最大占空比;
在所述发动机出口水温大于第二温度阈值的情况下,调节所述冷却风扇占空比为所述最大占空比。
进一步的,所述根据所述工作温度调节所述汽车的行驶参数,包括:
在所述发动机出口水温大于第三温度阈值,且所述汽车的发动机为机械水泵的情况下,降低所述变速器档位。
进一步的,所述根据所述工作温度调节所述汽车的行驶参数,包括:
在所述变速器油温大于或等于第四温度阈值的情况下,降低所述变速器档位。
进一步的,所述空调工作参数包括内循环,所述根据所述工作温度调节所述汽车的行驶参数,包括
在所述发动机出口水温大于或等于第二温度阈值的情况下,控制所述汽车的空调为内循环。
进一步的,所述空调工作参数包括蒸发器出口温度,所述根据所述工作温度调节所述汽车的行驶参数,包括
在所述发动机出口水温大于或等于第二温度阈值的情况下,将所述蒸发器出口温度提高预设温度值。
进一步的,所述调节步骤还包括:
在所述汽车搭载主动进气格栅的情况下,将所述主动进气格栅的开度调整为最大开度。
相对于现有技术,本公开所述的热管理控制方法具有以下优势:
本公开所述的热管理控制方法,可以在越野路况下调节汽车的超温阈值, 和/或获取汽车的工作温度,并根据工作温度调节汽车的行驶参数,从而增强汽车在越野路况下的散热性能,避免在越野路况下发动机高转速、大扭矩工况行驶时极易触发发动机超温保护,导致发动机限扭、空调切断等影响驾驶体验,还可能影响驾驶安全,不需要额外加装大功率风扇、大规格散热器,降低了汽车重量和制造成本。
本公开的另一目的在于提出一种热管理控制装置,以解决汽车散热性能在越野路况下不足,在常规路况下过剩的问题。
为达到上述目的,本公开的技术方案是这样实现的:
一种热管理控制装置,该装置可以包括:
越野调节模块,用于在汽车处于越野路况的情况下,执行调节子模块以提高所述汽车的散热性能;
所述越野调节模块,包括以下至少一个调节子模块:
温度调节子模块,用于降低所述汽车的超温阈值,所述超温阈值包括电子节温器启动温度阈值、电子水泵启动温度阈值、冷却风扇响应温度阈值和高压部件低温回路水泵响应温度阈值中的至少一种;
行驶参数调节子模块,用于获取所述汽车的工作温度,并根据所述工作温度调节所述汽车的行驶参数,所述工作温度包括发动机出口水温和变速器油温中的至少一种,所述行驶参数包括冷却风扇占空比、变速器档位和空调工作参数中的至少一种。
进一步的,所述行驶参数调节子模块,包括:
第一风扇调节单元,用于在所述发动机出口水温小于或等于第一温度阈值的情况下,调节所述冷却风扇占空比为第一占空比;
第二风扇调节单元,用于在所述发动机出口水温大于第一温度阈值,且小于或等于第二温度阈值的情况下,调节所述冷却风扇占空比为第二占空比,所述第二占空比大于所述第一占空比,且小于最大占空比;
第三风扇调节单元,用于在所述发动机出口水温大于第二温度阈值的情况下,调节所述冷却风扇占空比为所述最大占空比。
进一步的,所述行驶参数调节子模块,具体用于在所述发动机出口水温大于第三温度阈值,且所述汽车的发动机为机械水泵的情况下,降低所述变速器档位。
进一步的,所述行驶参数调节子模块,具体用于在所述变速器油温大于或等于第四温度阈值的情况下,降低所述变速器档位。
进一步的,所述空调工作参数包括内循环,所述行驶参数调节子模块,具体用于在所述发动机出口水温大于或等于第二温度阈值的情况下,控制所述汽车的空调为内循环。
进一步的,所述空调工作参数包括蒸发器出口温度,所述行驶参数调节子模块,具体用于在所述发动机出口水温大于或等于第二温度阈值的情况下,将所述蒸发器出口温度提高预设温度值。
进一步的,所述越野调节模块,还包括:
开度调节子模块,用于在所述汽车搭载主动进气格栅的情况下,将所述主动进气格栅的开度调整为最大开度。
所述热管理控制装置与上述热管理控制方法相对于现有技术所具有的优势相同,在此不再赘述。
本公开还提出了一种汽车,该汽车可以用于实现上述热管理控制方法,或者,所述汽车可以搭载上述热管理控制装置。
所述汽车与上述热管理控制方法相对于现有技术所具有的优势相同,在此不再赘述。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开实施例提供的一种热管理控制方法的步骤流程图;
图2是本公开实施例提供的另一种管理控制方法的步骤流程图;
图3是本公开实施例提供的一种热管理控制装置的结构框图;
图4是本公开实施例提供的一种汽车硬件结构示意图;
图5是本公开实施例提供的一种热管理控制方法的具体示例图;
图6示意性地示出了用于执行根据本公开的方法的计算处理设备的框图;并且
图7示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
具体实施例
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本公开。
图1是本公开实施例提供的一种热管理控制方法的步骤流程图,如图1所示,该方法可以包括:
步骤101、在汽车处于越野路况的情况下,执行调节步骤以提高所述汽车的散热性能。
本公开实施例中,在汽车处于常规路况,如汽车在城市道路、郊区道路和高速公路行驶等时,由于常规路况对散热性能要求不高,因此汽车可以处于较低散热性能,从而避免散热性能过剩;在汽车处于越野路况时,可以通过调节步骤提升汽车的散热性能,从而使得汽车的散热性能够适应越野路况的要求,在越野路况下能够适应严苛的行驶环境。可选地,汽车在常规路况中,可以降低散热性能,避免散热性能过剩,如汽车在常规路况的情况下,通过逆向执行调节步骤的方式降低散热性能。
本公开实施例中,汽车可以通过驾驶员的操作确定汽车是否处于越野路况,如接收驾驶员激活汽车越野模式的操作,根据该操作确定汽车处于越野路况下,其中,可以是接收驾驶员在汽车车载电脑上对“越野模式”的选择操作,也可以是驾驶员通过语音输入“开启越野模式”的输入操作;汽车还可以通过地图信息确定汽车是否处于越野路况,如获取汽车的实时位置,并 根据实时位置确定汽车的地图信息是否为越野路况,可选地,可以是当汽车的地图信息为沙漠、泥浆和草丛等路况时,确定汽车处于越野路况;汽车还可以通过采集到的环境信息确定是否处于越野路况,可选地,环境信息可以包括温度、能见度、降雨量和道路障碍物等。
可选地,所述调节步骤包括以下至少一种:
步骤102、降低所述汽车的超温阈值,所述超温阈值包括电子节温器启动温度阈值、电子水泵启动温度阈值、冷却风扇响应温度阈值和高压部件低温回路水泵响应温度阈值中的至少一种。
本公开实施例中,超温阈值指对汽车进行超温保护的阈值,当汽车指定部件的温度大于或等于超温阈值时,则对汽车进行超温保护,其中,超温保护可以是增加发动机冷却液流量、低温回路冷却液流量等,从而使得汽车在越野路况行驶,由于功率增大,导致温度突增时,能够及时散热,避免相应部件由于散热不及时导致温度超温,出现损坏。通过对超温阈值的调节可以调节超温保护启动的时机,调节超温阈值可以在合适的时机开启超温保护,从而提升汽车的散热性能。
本公开实施例中,可以通过降低超温阈值的方式,使超温保护提前启动,从而提升汽车的散热性能,可选地,可以降低电子节温器启动温度阈值、电子水泵启动温度阈值,从而使得发动机冷却回路提前开启大循环,增加冷却液流经散热器的流量,从而提升发动机的散热速率,提升汽车的散热性能,避免在越野路况下车辆过激驾驶时发动机冷却液温度突增,但电子节温器和电子水泵响应缓慢导致的发动机散热差的问题;也可以降低高压部件低温回路水泵响应温度阈值,从而使得高压部件的低温回路水泵提前响应,提升高压部件的散热速率,防止车辆过激驾驶导致高压部件快速充放电,功率增大,低温回路冷却液温度突增,高压部件温度超温导致损坏;也可以降低冷却风扇响应温度阈值,冷却风扇响应温度阈值为汽车中用于冷却发动机的电子风扇启动的温度阈值,降低冷却风扇响应温度阈值,可以使得电子风扇提前开启,提高汽车的散热性能。本领域技术人员可以根据汽车的具体配置和行驶环境,选择提前启动的超温保护,以提升汽车的散热性能。可选地,汽车的高压部件可以包括汽车的电机、电机控制器、OBC(On-board charger,车载充电机)/DCDC(Direct Current Direct Current,直流变换器)等。
步骤103、获取所述汽车的工作温度,并根据所述工作温度调节所述汽车的行驶参数,所述工作温度包括发动机出口水温和变速器油温中的至少一种,所述行驶参数包括冷却风扇占空比、变速器档位和空调工作参数中的至少一种。
本公开实施例中,还可以获取汽车的工作温度,可选地,工作温度可以是发动机出口水温,发动机出口水温指发动机冷却液对发动机进行冷却的循环回路的出口温度,通过发动机出口水温可以进一步确定冷却液冷却后发动机的温度;工作温度还可以包括变速器油温,变速器是用来改变来自发动机的转速和转矩的机构,通过油液维持变速器正常工作并延长机构寿命,变速器油温为变速器在工作过程中的油液的温度,可以通过变速器油温传感器获取。由于发动机工作过程中,发动机出口水温或变速器油温过高会导致发动机或变速器的严重损坏,因此,可以根据发动机出口水温或变速器油温调节汽车的行驶参数,以提升汽车的散热性能,可选地,行驶参数可以包括冷却风扇占空比、变速器档位和空调工作参数等。本领域技术人员也可以按照具体汽车规格、性能选择其他工作温度,本公开实施例对此不作具体限制。
图2是本公开实施例提供的另一种管理控制方法的步骤流程图,如图2所示,该方法可以包括:
步骤201、在汽车处于越野路况的情况下,执行调节步骤以提高所述汽车的散热性能。
本公开实施例中,步骤201的内容可对应参照步骤101的相关描述,为避免重复,在此不再赘述。
所述调节步骤包括以下至少一种:
步骤202、降低所述汽车的超温阈值,所述超温阈值包括电子节温器启动温度阈值、电子水泵启动温度阈值、冷却风扇响应温度阈值和高压部件低温回路水泵响应温度阈值中的至少一种。
本公开实施例中,步骤202的内容可对应参照前述步骤102的相关描述,为避免重复,在此不再赘述。
步骤203、获取所述汽车的工作温度,并根据所述工作温度调节所述汽车的行驶参数,所述工作温度包括发动机出口水温和变速器油温中的至少一种,所述行驶参数包括冷却风扇占空比、变速器档位和空调工作参数中的至少一 种。
本公开实施例中,步骤203可对应参照前述步骤103的相关描述,为避免重复,在此不再赘述。
可选地,所述行驶参数包括冷却风扇占空比,所述步骤203包括:
步骤2031、在所述发动机出口水温小于或等于第一温度阈值的情况下,调节所述冷却风扇占空比为第一占空比;
步骤2032、在所述发动机出口水温大于第一温度阈值,且小于或等于第二温度阈值的情况下,调节所述冷却风扇占空比为第二占空比,所述第二占空比大于所述第一占空比,且小于最大占空比;
步骤2033、在所述发动机出口水温大于第二温度阈值的情况下,调节所述冷却风扇占空比为所述最大占空比。
本公开实施例中,冷却风扇占空比指用于冷却发动机的电子风扇在一个工作周期内通电时间占工作周期的比值,通常占空比越大电子风扇转速越快,可以通过发动机出口水温选择不同的冷却风扇占空比,从而对不同的发动机出口水温选择不同的散热功率,可选地,可以在发动机出口水温小于第一温度阈值时,选择第一占空比,此时电子风扇不转动,或电子风扇转动较慢;在发动机出口水温大于第一温度阈值,且小于或等于第二温度阈值的情况下,调节冷却风扇占空比为第二占空比,第二占空比介于第一占空比和最大占空比之间,此时,第二温度阈值大于第一温度阈值,电子风扇转速较快但小于电子风扇最大转速;在发动机出口水温大于第二温度阈值时,可以认为发动机出口水温较高,此时,可以调节冷却风扇占空比为最大占空比,通过电子风扇最大转速进行散热。在冷却风扇占空比随发动机出口水温升高而增大的基础上,本领域技术人员可以根据实际需求设置温度阈值,本公开实施例对此不做具体限制。
本公开实施例中,对第一温度阈值、第二温度阈值的大小不作限定,可以根据汽车的性能指标进行设定,并在汽车实际行驶过程中或实验中标定以适应实际行驶情况,如,在发动机最高耐温为113℃的情况下,第一温度阈值可以是85℃,第二温度阈值可以是95℃,第一占空比可以是10%,第二占空比可以是60%,最大占空比可以是85%。此时,当发动机出口水温小于或等于85℃的情况下,调节所述冷却风扇占空比为10%;当发动机出口水温大于 85℃,且小于或等于95℃的情况下,调节冷却风扇占空比为60%;在发动机出口水温度大于95℃的情况下,调节冷却风扇占空比为85%。根据汽车具体性能指标,当发动机最高耐温为120℃时,第一温度阈值可以是90℃,第二温度阈值可以是110℃等,本公开实施例对此不作限制。
可选地,所述行驶参数包括变速器档位,所述步骤203包括:
步骤2034、在所述发动机出口水温大于第三温度阈值,且所述汽车的发动机为机械水泵的情况下,降低所述变速器档位。
在实际应用中,变速器档位是指变速器传动机构与操纵机构能够实现的驾驶条件,变速器档位数越多,汽车对行驶条件的适应性越好,油耗越低,但也使得操纵困难,成本也高。在变速器档位中,数字小的档位为低档,低档传动比大、牵引力大、车速低;数字大的档位为高档,高档传动比小、牵引力小,车速高。本公开实施例中,在发动机出口水温大于第三温度阈值,且发动机为机械水泵时,降低变速器档位,以降低汽车的车速,从而提升发动机转速,提高发动机冷却液流量,提高发动机散热。
如,在发动机最高耐温为113℃的情况下,第三温度阈值可以是110℃,在发动机出口水温大于110℃,且发动机为机械水泵的情况下,降低变速器档位。
步骤2035、在所述变速器油温大于或等于第四温度阈值的情况下,降低所述变速器档位。
本公开实施例中,在变速器油温大于或等于第四温度阈值时,可以认为变速器油温可能损坏变速器的结构,此时,可以降低变速器档位,从而降低变速器需要散发的热量,降低油冷器负荷,提高汽车散热。可选地,第四温度阈值可以是90℃至100℃间的任意温度值,本公开实施例对此不作具体限制。
可选地,所述行驶参数包括空调工作参数,所述空调工作参数包括内循环,所述步骤203,包括:
步骤2036、在所述发动机出口水温大于或等于第二温度阈值的情况下,控制所述汽车的空调为内循环。
本公开实施例中,行驶参数还可以包括空调工作参数,其中,空调工作参数可以是空调的循环模式,如空调为内循环或外循环等。当发动机出口水 温大于或等于第三温度阈值时,可以控制汽车的空调切换为内循环,或保持内循环,从而避免汽车室内热量散失,降低汽车空调负荷,减小汽车,提升汽车散热性能。
可选地,所述行驶参数包括空调工作参数,所述空调工作参数包括蒸发器出口温度,所述步骤203,包括:
步骤2037、在所述发动机出口水温大于或等于第二温度阈值的情况下,将所述蒸发器出口温度提高预设温度值。
本公开实施例中,空调工作参数还可以包括蒸发器出口温度,蒸发器是汽车中的制冷部件之一,低温的液体通过蒸发器与外界的空气进行热交换,汽化吸热达到制冷的效果,提升蒸发器出口温度可以降低蒸发器制冷的输出功率,从而降低空调的压缩机、冷凝器等的负荷,从而降低散热器前进风温度,减小发动机负荷,可选地,预设温度值可以是1℃、2℃、3℃、4℃、5℃等,本公开实施例对此不作具体限定。本领域技术人员还可以采取其他的空调工作参数调整方式,以降低空调汽车负荷,本公开实施例对此不做具体限制。
步骤204、在所述汽车搭载主动进气格栅的情况下,将所述主动进气格栅的开度调整为最大开度。
本公开实施例中,主动进气格栅(Active Grille System,AGS)是一种安装在汽车散热器前方的格栅口位置,具有可90°旋转的叶片,从而根据发动机出口水温的高低调整叶片开度的大小。在越野路况下,可以将主动进气格栅的开度调为最大开度,如当主动进气格栅的最大开度为90°时调节叶片开度为90°,增加汽车进风风量,从而保证散热器的最大散热,提升汽车的散热性能。
本公开所述的热管理控制方法,可以在越野路况下调节汽车的超温阈值,和/或获取汽车的工作温度,并根据工作温度调节汽车的行驶参数,从而增强汽车在越野路况下的散热性能,避免在越野路况下发动机高转速、大扭矩工况行驶时极易触发发动机超温保护,导致发动机限扭、空调切断等影响驾驶体验,还可能影响驾驶安全,不需要额外加装大功率风扇、大规格散热器,降低了汽车重量和制造成本。
图3是本公开实施例提供的一种热管理控制装置的结构框图,如图3所 示,该装置可以包括:
越野调节模块301,用于在汽车处于越野路况的情况下,执行调节子模块以提高所述汽车的散热性能;
所述越野调节模块301,包括以下至少一个调节子模块:
温度调节子模块3011,用于降低所述汽车的超温阈值,所述超温阈值包括电子节温器启动温度阈值、电子水泵启动温度阈值、冷却风扇响应温度阈值和高压部件低温回路水泵响应温度阈值中的至少一种;
行驶参数调节子模块3012,用于获取所述汽车的工作温度,并根据所述工作温度调节所述汽车的行驶参数,所述工作温度包括发动机出口水温和变速器油温中的至少一种,所述行驶参数包括冷却风扇占空比、变速器档位和空调工作参数中的至少一种。
可选地,所述行驶参数调节子模块3012,包括:
第一风扇调节单元,用于在所述发动机出口水温小于或等于第一温度阈值的情况下,调节所述冷却风扇占空比为第一占空比;
第二风扇调节单元,用于在所述发动机出口水温大于第一温度阈值,且小于或等于第二温度阈值的情况下,调节所述冷却风扇占空比为第二占空比,所述第二占空比大于所述第一占空比,且小于最大占空比;
第三风扇调节单元,用于在所述发动机出口水温大于第二温度阈值的情况下,调节所述冷却风扇占空比为所述最大占空比。
可选地,所述行驶参数调节子模块3012,具体用于在所述发动机出口水温大于第三温度阈值,且所述汽车的发动机为机械水泵的情况下,降低所述变速器档位。
可选地,所述行驶参数调节子模块3012,具体用于在所述变速器油温大于或等于第四温度阈值的情况下,降低所述变速器档位。
可选地,所述空调工作参数包括内循环,所述行驶参数调节子模块3012,具体用于在所述发动机出口水温大于或等于第二温度阈值的情况下,控制所述汽车的空调为内循环。
可选地,所述空调工作参数包括蒸发器出口温度,所述行驶参数调节子模块3012,具体用于在所述发动机出口水温大于或等于第二温度阈值的情况下,将所述蒸发器出口温度提高预设温度值。
可选地,所述越野调节模块301,还包括:
开度调节子模块,用于在所述汽车搭载主动进气格栅的情况下,将所述主动进气格栅的开度调整为最大开度。
本公开所述的热管理控制装置,可以在越野路况下调节汽车的超温阈值,和/或获取汽车的工作温度,并根据工作温度调节汽车的行驶参数,从而增强汽车在越野路况下的散热性能,避免在越野路况下发动机高转速、大扭矩工况行驶时极易触发发动机超温保护,导致发动机限扭、空调切断等影响驾驶体验,还可能影响驾驶安全,不需要额外加装大功率风扇、大规格散热器,降低了汽车重量和制造成本。
本公开实施例还提供一种汽车,该汽车可以用于实现上述图1至图2所示的热管理控制方法,或者,该汽车可以搭载上述图3所示的热管理控制装置。
图4是本公开实施例提供的一种汽车硬件结构示意图,如图4所示,该汽车可以包括AC(Air conditioning,空调系统控制器)401、中转器402、ESP(Electronic stability program,车身电子稳定系统)403、ECM(Engine Control Module,发动机控制模块)404、AGS405、TCU(Transmission Control Unit,变速器控制器)406、FAN(电子风扇)407、HCU(Hybrid Control Unit,整车控制器)408、OBC/DCDC409、MCU(Motor Control Unit,电机控制器)410、电子水泵411、TS(Temperature Sensor)412。可选地,MCU410可以控制汽车中任意位置的电机,包括P0电机、P1电机、P2电机等等。
图5是本公开实施例提供的一种热管理控制方法的具体示例图,如图5所示,通过图4所示的汽车硬件结构,实现热管理控制方法的步骤如下,其中,“Y”表示是,“N”表示否:
步骤501、在汽车处于越野路况的情况下,ESP403通过中转器402向HCU408发送越野模式信号。
步骤502、所述HCU408判断接收到的信号是否为越野模式信号,若是,这执行步骤503和步骤504;若否,则采用常规模式热管理控制策略。
步骤503、所述HCU408降低电子节温器启动温度阈值、电子水泵411启动温度阈值、FAN407响应温度阈值和OBC/DCDC409低温回路水泵响应温度阈值、MCU410低温回路水泵响应温度阈值;所述ECM404控制AGS405 的开度为最大开度。
步骤504、中转器402将所述越野模式信号中转给TCU406、ECM404和AC401。
步骤505、所述HCU408获取TS412采集的发动机出口水温,判断所述发动机出口水温是否大于第一温度阈值,若否,则向所述ECM404发送第一占空比的风扇转速请求;若是,则执行步骤506。
步骤506、所述HCU408判断所述发动机出口水温是否大于第二温度阈值,若否,则向所述ECM404发送第二占空比的风扇转速请求;若是,则向所述ECM404发送最大占空比的风扇转速请求;所述第二占空比大于所述第一占空比,小于所述最大占空比。
步骤507、所述ECM404根据所述风扇转速请求控制所述FAN407。
步骤508、所述ECM404判断所述发动机出口水温是否大于第三温度阈值,若是,则执行步骤509,若否,则执行步骤510。
步骤509、所述TCU408控制变速器降档。
步骤510、所述TCU408控制变速器档位不变。
步骤511、所述TCU408判断变速器油温是否大于或等于第四温度阈值,若是,则执行步骤509;若否,则执行步骤510。
步骤512、所述AC401判断所述发动机出口水温是否大于或等于第二温度阈值,若是,则执行步骤512;若否,则所述AC401控制空调工作参数不变。
步骤513、所述AC401控制空调为内循环,并将蒸发器出口温度提高3℃。
本公开实施例中,常规模式热管理控制策略为汽车在常规路况下行驶时,采用的低散热性能热管理方法,可选地,常规模式管理控制策略可以在上述越野路况的热管理方法的基础上,通过提高超温阈值、控制空调为外循环、降低蒸发器出口温度等降低汽车的散热性能,以适应常规路况的低散热需求,避免汽车散热性能过剩。
本公开实施例中,上述汽车硬件结构中的零部件仅用于举例,在实际应用中,可以根据需求对硬件结构中的零部件增添或删减。
本公开所述的汽车,可以在越野路况下调节汽车的超温阈值,和/或获取 汽车的工作温度,并根据工作温度调节汽车的行驶参数,从而增强汽车在越野路况下的散热性能,避免在越野路况下发动机高转速、大扭矩工况行驶时极易触发发动机超温保护,导致发动机限扭、空调切断等影响驾驶体验,还可能影响驾驶安全,不需要额外加装大功率风扇、大规格散热器,降低了汽车重量和制造成本。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图6示出了可以实现根据本公开的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图7所述的便携式或者固定存储单元。 该存储单元可以具有与图6的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种热管理控制方法,其特征在于,所述方法包括:
    在汽车处于越野路况的情况下,执行调节步骤以提高所述汽车的散热性能;
    所述调节步骤包括以下至少一种:
    降低所述汽车的超温阈值,所述超温阈值包括电子节温器启动温度阈值、电子水泵启动温度阈值、冷却风扇响应温度阈值和高压部件低温回路水泵响应温度阈值中的至少一种;
    获取所述汽车的工作温度,并根据所述工作温度调节所述汽车的行驶参数,所述工作温度包括发动机出口水温和变速器油温中的至少一种,所述行驶参数包括冷却风扇占空比、变速器档位和空调工作参数中的至少一种。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述工作温度调节所述汽车的行驶参数,包括:
    在所述发动机出口水温小于或等于第一温度阈值的情况下,调节所述冷却风扇占空比为第一占空比;
    在所述发动机出口水温大于第一温度阈值,且小于或等于第二温度阈值的情况下,调节所述冷却风扇占空比为第二占空比,所述第二占空比大于所述第一占空比,且小于最大占空比;
    在所述发动机出口水温大于第二温度阈值的情况下,调节所述风扇占空比为所述最大占空比。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述工作温度调节所述汽车的行驶参数,包括:
    在所述发动机出口水温大于第三温度阈值,且所述汽车的发动机为机械水泵的情况下,降低所述变速器档位。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述工作温度调节所述汽车的行驶参数,包括:
    在所述变速器油温大于或等于第四温度阈值的情况下,降低所述变速器档位。
  5. 根据权利要求1所述的方法,其特征在于,所述空调工作参数包括内循环,所述根据所述工作温度调节所述汽车的行驶参数,包括
    在所述发动机出口水温大于或等于第二温度阈值的情况下,控制所述汽车的空调为内循环。
  6. 根据权利要求1所述的方法,其特征在于,所述空调工作参数包括蒸发器出口温度,所述根据所述工作温度调节所述汽车的行驶参数,包括
    在所述发动机出口水温大于或等于第二温度阈值的情况下,将所述蒸发器出口温度提高预设温度值。
  7. 根据权利要求1所述的方法,其特征在于,所述调节步骤还包括:
    在所述汽车搭载主动进气格栅的情况下,将所述主动进气格栅的开度调整为最大开度。
  8. 一种热管理控制装置,其特征在于,所述装置包括:
    越野调节模块,用于在汽车处于越野路况的情况下,执行调节子模块以提高所述汽车的散热性能;
    所述越野调节模块,包括以下至少一个调节子模块:
    温度调节子模块,用于降低所述汽车的超温阈值,所述超温阈值包括电子节温器启动温度阈值、电子水泵启动温度阈值、冷却风扇响应温度阈值和高压部件低温回路水泵响应温度阈值中的至少一种;
    行驶参数调节子模块,用于获取所述汽车的工作温度,并根据所述工作温度调节所述汽车的行驶参数,所述工作温度包括发动机出口水温和变速器油温中的至少一种,所述行驶参数包括风扇占空比、变速器档位和空调工作参数中的至少一种。
  9. 根据权利要求8所述的装置,其特征在于,所述行驶参数调节子模块,包括:
    第一风扇调节单元,用于在所述发动机出口水温小于或等于第一温度阈值的情况下,调节所述冷却风扇占空比为第一占空比;
    第二风扇调节单元,用于在所述发动机出口水温大于第一温度阈值,且小于或等于第二温度阈值的情况下,调节所述冷却风扇占空比为第二占空比,所述第二占空比大于所述第一占空比,且小于最大占空比;
    第三风扇调节单元,用于在所述发动机出口水温大于第二温度阈值的情况下,调节所述冷却风扇占空比为所述最大占空比。
  10. 根据权利要求8所述的装置,其特征在于,所述行驶参数调节子模 块,具体用于在所述发动机出口水温大于第三温度阈值,且所述汽车的发动机为机械水泵的情况下,降低所述变速器档位。
  11. 根据权利要求8所述的装置,其特征在于,所述行驶参数调节子模块,具体用于在所述变速器油温大于或等于第四温度阈值的情况下,降低所述变速器档位。
  12. 一种汽车,其特征在于,所述汽车用于实现权利要求1-7任一所述的热管理控制方法,或者,所述汽车搭载权利要求8-11任一项所述的热管理控制装置。
  13. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-7任一所述的热管理控制方法。
  14. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-7任一所述的热管理控制方法。
  15. 一种计算机可读介质,其中存储了如权利要求14所述的计算机程序。
PCT/CN2021/111573 2020-08-11 2021-08-09 一种热管理控制方法、装置和汽车 WO2022033438A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21855490.5A EP4177093A4 (en) 2020-08-11 2021-08-09 METHOD AND APPARATUS FOR CONTROLLING THERMAL AND VEHICLE MANAGEMENT
US18/010,382 US20230294508A1 (en) 2020-08-11 2021-08-09 Thermal management control method and apparatus, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010803407.3A CN112060902B (zh) 2020-08-11 2020-08-11 一种热管理控制方法、装置和汽车
CN202010803407.3 2020-08-11

Publications (1)

Publication Number Publication Date
WO2022033438A1 true WO2022033438A1 (zh) 2022-02-17

Family

ID=73661125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111573 WO2022033438A1 (zh) 2020-08-11 2021-08-09 一种热管理控制方法、装置和汽车

Country Status (4)

Country Link
US (1) US20230294508A1 (zh)
EP (1) EP4177093A4 (zh)
CN (1) CN112060902B (zh)
WO (1) WO2022033438A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646477A (zh) * 2022-04-01 2022-06-21 南通高敦汽车部件科技有限公司 一种汽车混合动力系统的测试方法及系统
CN115247596A (zh) * 2022-06-24 2022-10-28 东风汽车集团股份有限公司 一种发动机热管理系统的控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112060902B (zh) * 2020-08-11 2022-06-17 长城汽车股份有限公司 一种热管理控制方法、装置和汽车
CN112648356B (zh) * 2020-12-16 2024-02-27 益阳富佳科技有限公司 一种履带拖拉机多段自动无级变速箱
CN114645769A (zh) * 2020-12-21 2022-06-21 长城汽车股份有限公司 发动机控制方法、装置及车辆
CN115030827A (zh) * 2021-10-20 2022-09-09 长城汽车股份有限公司 发动机水温保护方法、装置、控制器及汽车
CN114043841A (zh) * 2021-11-12 2022-02-15 上汽通用五菱汽车股份有限公司 汽车热管理方法、设备及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049646A (ja) * 2001-08-02 2003-02-21 Mazda Motor Corp 車両の冷却用電動ファン装置
CN104863685A (zh) * 2014-12-19 2015-08-26 北汽福田汽车股份有限公司 一种车用电动风扇控制方法和系统
CN106515428A (zh) * 2016-10-27 2017-03-22 广州汽车集团股份有限公司 进气格栅的控制方法、装置和发动机管理系统
CN108790786A (zh) * 2018-05-29 2018-11-13 南京汽车集团有限公司 一种分布式越野车动力总成换热系统及其控制方法
CN208486936U (zh) * 2018-07-18 2019-02-12 龙城电装(常州)有限公司 一种水冷发动机智能热管理系统
CN112060902A (zh) * 2020-08-11 2020-12-11 长城汽车股份有限公司 一种热管理控制方法、装置和汽车

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108583270B (zh) * 2018-05-29 2020-08-04 湖北航天技术研究院特种车辆技术中心 一种多轴特种越野车调温系统及多轴特种越野车
CN210239829U (zh) * 2019-06-28 2020-04-03 潍柴动力股份有限公司 一种发动机的冷却系统
US11274595B1 (en) * 2020-09-17 2022-03-15 Ford Global Technologies, Llc System and method for engine cooling system
CN115247593A (zh) * 2021-04-27 2022-10-28 比亚迪股份有限公司 一种车辆及其热管理控制方法、设备和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049646A (ja) * 2001-08-02 2003-02-21 Mazda Motor Corp 車両の冷却用電動ファン装置
CN104863685A (zh) * 2014-12-19 2015-08-26 北汽福田汽车股份有限公司 一种车用电动风扇控制方法和系统
CN106515428A (zh) * 2016-10-27 2017-03-22 广州汽车集团股份有限公司 进气格栅的控制方法、装置和发动机管理系统
CN108790786A (zh) * 2018-05-29 2018-11-13 南京汽车集团有限公司 一种分布式越野车动力总成换热系统及其控制方法
CN208486936U (zh) * 2018-07-18 2019-02-12 龙城电装(常州)有限公司 一种水冷发动机智能热管理系统
CN112060902A (zh) * 2020-08-11 2020-12-11 长城汽车股份有限公司 一种热管理控制方法、装置和汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4177093A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646477A (zh) * 2022-04-01 2022-06-21 南通高敦汽车部件科技有限公司 一种汽车混合动力系统的测试方法及系统
CN115247596A (zh) * 2022-06-24 2022-10-28 东风汽车集团股份有限公司 一种发动机热管理系统的控制方法

Also Published As

Publication number Publication date
CN112060902A (zh) 2020-12-11
US20230294508A1 (en) 2023-09-21
CN112060902B (zh) 2022-06-17
EP4177093A4 (en) 2024-04-24
EP4177093A1 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
WO2022033438A1 (zh) 一种热管理控制方法、装置和汽车
US9242532B2 (en) Air conditioner system control method for vehicle
JP2004136877A (ja) ハイブリッド電気自動車のパワートレインの熱制御
CN112848879B (zh) 车辆散热方法、存储介质以及车辆
KR101588767B1 (ko) 차량용 에어컨 시스템 제어방법
KR101534724B1 (ko) 차량용 에어컨 시스템 제어방법
JP2013524074A (ja) 空調回路のためのハイブリッド圧縮機
US11274595B1 (en) System and method for engine cooling system
CN116353334B (zh) 一种可适用于多种车型的智能格栅控制系统
CN108032702B (zh) 汽车空调系统、汽车空调系统的控制方法以及电动汽车
CN115570968A (zh) 主动格栅的开启比例方法、装置和处理器
CN214215469U (zh) 一种结合车载空调的车辆驱动冷却系统
JP5027289B2 (ja) エンジン冷却装置
KR20110001363A (ko) 차가운 공기 유입 방지를 위한 냉각팬의 제어방법
JP5708293B2 (ja) 車両の空調装置
JP2006336489A (ja) ファンクラッチ制御方法及び装置
JP2004231097A (ja) 車両用空調制御装置
CN216033738U (zh) 整车热管理系统以及车辆
CN103541923B (zh) 汽车前端冷却模块除尘控制装置及方法
JP2018096241A (ja) 制御システムおよび制御システムを備えた送風装置
KR101633934B1 (ko) 압축기 예상토크 산출방법
JP2003262124A (ja) エンジンの冷却ファン制御装置
CN117681627A (zh) 一种phev车型空调系统高温环境下运行稳定性控制方法
CN115257289A (zh) 车辆空调外风机的控制方法
JP6536236B2 (ja) エンジンの冷却システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021855490

Country of ref document: EP

Effective date: 20221228

NENP Non-entry into the national phase

Ref country code: DE