WO2022033286A1 - 雾化加热控制方法、装置、气溶胶产生装置及存储介质 - Google Patents

雾化加热控制方法、装置、气溶胶产生装置及存储介质 Download PDF

Info

Publication number
WO2022033286A1
WO2022033286A1 PCT/CN2021/107736 CN2021107736W WO2022033286A1 WO 2022033286 A1 WO2022033286 A1 WO 2022033286A1 CN 2021107736 W CN2021107736 W CN 2021107736W WO 2022033286 A1 WO2022033286 A1 WO 2022033286A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
power
heating element
preset
temperature
Prior art date
Application number
PCT/CN2021/107736
Other languages
English (en)
French (fr)
Inventor
雷桂林
谢亚军
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to EP21855339.4A priority Critical patent/EP4190189A1/en
Publication of WO2022033286A1 publication Critical patent/WO2022033286A1/zh
Priority to US18/164,687 priority patent/US20230172281A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor

Definitions

  • the present application relates to the technical field of aerosol atomization, and in particular, to an atomization heating control method, device, aerosol generating device and storage medium.
  • Electronic cigarettes also known as virtual cigarettes and electronic atomization devices, are used as a substitute for cigarettes and are also used for smoking cessation.
  • Electronic cigarettes use heating elements to atomize e-liquid for users to smoke.
  • the current electronic cigarette generally controls the temperature of the heating element to increase rapidly after starting to work, so that it can quickly reach the atomization temperature, start to atomize the e-liquid, and use constant power heating after the atomization starts, so that the heating element can continue to maintain Heating at a relatively stable temperature makes the amount of aerosol produced by atomization relatively uniform.
  • the amount of e-liquid that can be heated on the heating element will gradually decrease after continuous heating, and the e-liquid is drawn from the liquid storage chamber to continue heating, but during the constant power heating process, the heating element mist
  • the vapor pressure of the gas film on the atomizing surface is relatively large, which will have an extrusion effect on the e-liquid in and near the micro-holes, so that the e-liquid on the atomizing surface cannot be replenished in time, and continued heating may cause the atomizing surface to overheat. problems, and even the phenomenon of partial dry burning. This will cause damage to the atomizing component, generate more soot, burnt smell and other harmful substances on the heating element, which will affect the normal use of the user.
  • An atomization heating control method applied to an aerosol generating device, the aerosol generating device comprising: a heater including at least one heating element configured to heat an aerosol-forming substrate; and;
  • a power source for supplying power to the heating element
  • the method includes:
  • the heating element is controlled to be heated to a preset first temperature range with a preset first power, so that the heating element starts to atomize the aerosol to form a matrix;
  • the heating power of the heating element is controlled to fluctuate, so that the temperature of the heating element fluctuates within a preset second temperature range.
  • it also includes:
  • the heating power of the heating element is adjusted to keep the temperature of the heating element within a preset third temperature range; the maximum temperature difference of the third temperature range is smaller than the second temperature range the maximum temperature difference.
  • the absolute value of the difference between the heating power obtained by two adjacent fluctuation changes of the heating element is greater than the preset first power difference.
  • the heating power of the heating element fluctuates and changes, and the absolute value of the difference between the heating power obtained by two adjacent fluctuation changes of the heating element is greater than a preset second power difference; the second power difference is smaller than the first power difference.
  • the step of adjusting the heating power of the heating element so that the temperature of the heating element fluctuates within a preset second temperature range includes:
  • the heating element After continuously heating with the second power for a preset second time, the heating element is controlled to increase the heating power to a preset third power for heating.
  • the step of adjusting the heating power of the heating element so that the temperature of the heating element fluctuates within a preset second temperature range includes:
  • the heating power of the heating element is adjusted periodically, so that the temperature of the heating element periodically fluctuates within the second temperature range.
  • An atomization heating control device the device comprises:
  • a first heating control module configured to control the heating element to be heated to a preset first temperature range with a preset first power in the first stage, so that the heating element starts to atomize aerosol to form a matrix
  • the second heating control module is used to control the fluctuation change of the heating power of the heating element in the second stage, so that the temperature of the heating element fluctuates and changes within a preset second temperature range.
  • An aerosol generating device comprising: a heater including at least one heating element configured to heat an aerosol-forming substrate; applying the atomization heating control method as described in any one of the above embodiments.
  • the heating element is a porous ceramic heating element.
  • An aerosol generating device comprising:
  • a heater comprising at least one heat generating element configured to heat the aerosol-forming substrate
  • a power source for supplying power to the heating element
  • the controller includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • the heating element is controlled to be heated to a preset first temperature range with a preset first power, so that the heating element starts to atomize the aerosol to form a matrix;
  • the heating power of the heating element is controlled to fluctuate, so that the temperature of the heating element fluctuates within a preset second temperature range.
  • the heating element is controlled to be heated to a preset first temperature range with a preset first power, so that the heating element starts to atomize the aerosol to form a matrix;
  • the heating power of the heating element is controlled to fluctuate, so that the temperature of the heating element fluctuates within a preset second temperature range.
  • the above-mentioned atomization heating control method, device, aerosol generating device and storage medium by controlling the heating element to be heated to a preset first temperature range with a first power, start the atomization aerosol to form a matrix, and then in the second stage,
  • the heating power of the heating element is controlled to fluctuate, so that the temperature of the heating element fluctuates within the second temperature range, so that the heating element can have time to cool down, instead of continuously maintaining a higher temperature for heating, reducing the vapor of the heating element film pressure, so that the heating element can fully supplement the aerosol to form the matrix, avoid local dry burning, and reduce the generation of carbonized particles.
  • FIG. 1 is a schematic flowchart of an atomization heating control method in one embodiment
  • Fig. 2 is in one embodiment, adopts the power variation diagram of constant power heating and atomization heating control method
  • Fig. 3 is in one embodiment, adopts the temperature change diagram of constant power heating and atomization heating control method
  • FIG. 4 is a schematic diagram of a heating element heating to generate a gas film in one embodiment
  • FIG. 5 is a schematic flowchart of a method for controlling atomization heating in another embodiment
  • FIG. 6 is a schematic flowchart of a step of controlling the heating power of the heating element to fluctuate and change so that the temperature of the heating element fluctuates within a preset second temperature range in one embodiment
  • FIG. 7 is a schematic flowchart of a method for controlling atomization heating in yet another embodiment
  • FIG. 8 is a structural block diagram of an atomizing heating control device in one embodiment
  • FIG. 9 is a structural block diagram of an atomizing heating control device in another embodiment.
  • first, second, etc. used in this application can be used to describe various technical features herein, but these technical features are not limited by these terms. These terms are only used to distinguish the first technical feature from another.
  • first temperature range and the second temperature range are two temperature ranges corresponding to different stages, which may be the same temperature range or different temperature ranges.
  • the aerosol atomization devices in the prior art have the problem of easy generation of soot and burnt smell.
  • the inventor found that the reason for this problem is that the e-liquid is formed when the e-liquid is heated and atomized. A certain degree of superheat is required for aerosol, and there are many components in e-liquid, including propylene glycol, glycerol, and flavors and fragrances.
  • the mixture of these components is a non-azeotropic substance, and the boiling point of some components is much lower than
  • the constant power heating mode keeps some components in the e-liquid under superheated conditions for a long time, which causes the low-boiling substances in the e-liquid to undergo a coking reaction during the process of atomizing the e-liquid, resulting in carbonized particulate matter.
  • the carbonized particles Under the continuous operation of the atomizing device, the carbonized particles continue to accumulate and deteriorate, and the carbonized particles accumulated on the atomization surface will produce a burnt smell after being heated and baked at a high temperature for a long time.
  • the present application provides a heating control solution that can reduce the generation of soot and burnt smell, and at the same time can ensure the amount of atomization without affecting the user's experience.
  • an atomization heating control method applied to an aerosol generating device comprising: a heater including a heater configured to heat an aerosol-forming substrate at least one heating element; and;
  • the method includes:
  • the power supplied to the heating element is controlled so that the following steps are performed:
  • Step S100 in the first stage, the heating element is controlled to be heated to a preset first temperature range with a preset first power, so that the heating element starts to atomize the aerosol to form a matrix.
  • the first stage may be the first heating stage during each atomization heating process performed by the aerosol generating device, or the first heating stage in one of the heating cycles during each atomization heating process performed by the aerosol generating device. stage.
  • the first power needs to use a relatively large power, and the heating element is heated with the first power, which can quickly reach the atomization temperature and start atomization, so as to ensure the speed at which the aerosol generating device starts to generate aerosol.
  • the first temperature range is the temperature range in which the aerosol-forming substrate can be atomized. In one embodiment, the lower limit temperature of the first temperature range is greater than the critical atomization temperature of the aerosol-form substrate, and the critical atomization temperature refers to the aerosol. The critical temperature at which atomization of the form substrate can begin.
  • Step S200 in the second stage, the heating power of the heating element is controlled to fluctuate and change, so that the temperature of the heating element fluctuates and changes within a preset second temperature range.
  • the second stage may be the second heating stage during each atomization heating process performed by the aerosol generating device, or may be the second heating cycle in one of the heating cycles during each atomization heating process performed by the aerosol generating device stage.
  • the heating power of the heating element is controlled to fluctuate and change, but the temperature of the heating element needs to be maintained within the second temperature range to fluctuate, that is, the temperature of the heating element fluctuates within the second temperature range by alternately using high and low power. , reduce the heating temperature after heating at high temperature for a period of time, and perform high temperature heating again after heating at low temperature for a period of time.
  • the heating element When the heating element is heated at low power, the vapor pressure in the gas film can be reduced, so that the aerosol-forming matrix in the ceramic micropores can overcome the vapor pressure force under the action of capillary force, and add e-liquid to the atomizing surface of the heating element.
  • the heating when entering high-power heating in the next time period, there is sufficient aerosol-forming matrix to be able to heat, avoiding local dry burning, reducing continuous high temperature to produce soot, and avoiding burning smell.
  • the heating is different.
  • This temperature control method takes advantage of the thermal inertia of the heating element. When switching between high and low power, the temperature will not drop sharply to the temperature that cannot be atomized, so as to ensure the amount of smoke.
  • FIG. 2 is a power variation diagram of heating with constant power and heating with the atomization temperature control method of the present application in one embodiment.
  • the temperature change diagram of using constant power heating (curve b) and heating by the atomization temperature control method of the present application (curve a) it can be seen that the time when the temperature exceeds 300°C is reduced nearly half.
  • the aerosol-forming substrate is e-liquid
  • the boiling points of different substances are different. If continuous high-temperature heating will cause the low-boiling point substances to undergo high-temperature cracking and produce harmful substances, this application actively controls the temperature in the second stage, so that the temperature of the atomizing surface of the heating element fluctuates within a temperature range, which can not only make the e-liquid in the e-liquid
  • Each component substance is boiled and atomized separately, which reduces the reaction degree of high temperature cracking of e-liquid and reduces the production of harmful substances.
  • the overheated boiling of e-liquid will form bubbles, and the vapor pressure generated by the bubbles is determined by the temperature of the atomizing surface of the heating element.
  • the superheat of the e-liquid is too low to form large bubbles.
  • the vapor pressure of the bubbles is low, and the e-liquid in the liquid guide hole of the heating element can supply liquid to the atomizing surface under the capillary force.
  • the e-liquid will overheat and generate large bubbles.
  • the vapor pressure of the bubbles is greater than the capillary force, so that the e-liquid through the liquid guide hole is squeezed towards the oil storage tank.
  • the above-mentioned atomization heating control method by controlling the heating element to be heated to a preset first temperature range with a first power, to start atomizing aerosol to form a matrix, and then in the second stage, control the heating power of the heating element to fluctuate and change, to The temperature of the heating element fluctuates within the second temperature range, so that the heating element can have time to cool down, instead of continuously maintaining a high temperature for heating, reducing the vapor pressure of the heating element film, so that the heating element can fully replenish the aerosol Form a matrix, avoid local dry burning, and reduce the generation of carbonized particles.
  • the atomization heating control method further includes:
  • Step S300 in the third stage, the heating power of the heating element is adjusted to keep the temperature of the heating element within a preset third temperature range; the maximum temperature difference in the third temperature range is smaller than the maximum temperature difference in the second temperature range.
  • the maximum temperature difference refers to the difference between the upper limit and the lower limit of the temperature range
  • the maximum temperature difference of the third temperature range is the difference between the upper limit temperature and the lower limit temperature of the third temperature range
  • the maximum temperature difference of the second temperature range is the second temperature range. The difference between the upper limit temperature and the lower limit temperature.
  • the third stage may be the third heating stage during each atomization heating process performed by the aerosol generating device, or may be the third heating stage in one of the heating cycles during each atomization heating process performed by the aerosol generating device stage.
  • the temperature of the heating element is controlled to fluctuate within a smaller temperature range, which further ensures the amount of smoke generated by the aerosol generating device.
  • the heating power of the heating element can be constant power or fluctuating power.
  • the absolute value of the difference between the heating power obtained by two adjacent fluctuation changes of the heating element is greater than the preset first power difference.
  • the temperature difference of the temperature fluctuation of the heating element is large enough to allow sufficient time for the temperature to rise from a lower temperature to a higher temperature.
  • the various components can be boiled sufficiently. Therefore, it is necessary to control the difference between the high and low power of the heating element to be large enough for each alternate change, and the power regulation can be controlled through the preset first power difference.
  • the high power can be a fixed power value or a variable power value in the heating power that alternates each time;
  • the absolute value of the difference in heating power is greater than the first power difference.
  • the first high power is used at time t1
  • the first low power is used at time t2
  • the second high power is used at time t3.
  • Time t1, time t2 and time t3 are three consecutive time periods, wherein the first high power and the third time.
  • the absolute value of the difference between a low power needs to be greater than the first power difference; the absolute value of the difference between the first low power and the second high power also needs to be greater than the first power difference.
  • the heating power of the heating element fluctuates and changes, and the absolute value of the difference between the heating power obtained by two adjacent fluctuation changes of the heating element is greater than the preset second power difference; the The second power difference is smaller than the first power difference.
  • the heating power of the heating element is controlled to fluctuate with a lower fluctuation difference than the second stage.
  • the heating power fluctuation of the heating element is controlled by the preset second power difference, so as to ensure that the temperature of the heating element has a certain level change, but the temperature difference is smaller than the second stage.
  • the step of adjusting the heating power of the heating element so that the temperature of the heating element fluctuates within a preset second temperature range includes:
  • Step S210 after the heating with the first power is continued for a preset first time, the heating element is controlled to reduce the heating power to a preset second power for heating.
  • the heating element After continuously heating with the first power for a preset first time, that is, after the first stage, the heating element is controlled to reduce the heating power to a preset second power for heating. Since the first stage needs to quickly reach the temperature that can be atomized, the value of the first power is relatively high. After the first stage, the heating power is reduced, and the second power lower than the first power is used for heating, thereby reducing the heating power.
  • the temperature of the heating element provides time for the heating element to replenish the e-liquid, and provides sufficient aerosol-forming matrix for the high-power heating in the next time period.
  • Step S220 after the heating with the second power is continued for a preset second time, the heating element is controlled to increase the heating power to a preset third power for heating.
  • the heating power is increased to the third power, and the third power is greater than the second power, so that the heating element enters the heating element.
  • the aerosol is fully atomized to form a matrix.
  • the second stage can be divided into several time periods to control the fluctuation of heating power, and alternately use high and low power for heating.
  • the second stage is divided into N time periods, including the n1 to nN time periods, the first low power is used in the n1 time period, the first high power is used in the n2 time period, and the second low power is used in the n3 time period...
  • the n(N-1) time period uses the nth low power, and the nth high power is used for the nN time period.
  • Each time period in the time period from n1 to nN may be equal or unequal, or partially equal and partially unequal. Both n and N are natural numbers.
  • the step of adjusting the heating power of the heating element so that the temperature of the heating element fluctuates within a preset second temperature range includes:
  • Step S230 periodically adjusting the heating power of the heating element, so that the temperature of the heating element periodically fluctuates within the second temperature range.
  • the heating power of the heating element is adjusted periodically, that is, the second stage is divided into N time periods, and the heating element is heated by alternately controlling the high power and low power of the heating element in the N time periods, so that the temperature of the heating element is in the second period. Periodic fluctuations in the temperature range.
  • the N time periods include n1 to nN, the first low power is used in the n1 time period, the first high power is used in the n2 time period, the second low power is used in the n3 time period...in the n(N-1) time period
  • the nth low power is used, the nth high power is used in the nN time period, and each time period in the n1-nN time period is equal, so that the temperature of the heating element fluctuates periodically.
  • the superheat degree of the aerosol-forming matrix changes periodically, which can promote the intermittent increase and shrinkage of the boiling bubbles, thereby forming a squeezing effect on the aerosol-forming matrix around the micropores of the heating element, so that the carbonized particles are not easily attached to the surface of the heating element. Or blocked in the liquid conduction hole of the heating element.
  • FIG. 1 and FIGS. 5-7 are shown in sequence according to the arrows, these steps are not necessarily executed in the sequence indicated by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in FIG. 1 and FIGS. 5-7 may include multiple steps or multiple stages. These steps or stages are not necessarily executed at the same time, but may be executed at different times. These steps or The order of execution of the stages is also not necessarily sequential, but may be performed alternately or alternately with other steps or at least a portion of the steps or stages in the other steps.
  • an atomization heating control device 100 is provided, and the device includes:
  • the first heating control module 110 is used to control the heating element to be heated to a preset first temperature range with a preset first power in the first stage, so that the heating element starts to atomize the aerosol to form a matrix;
  • the second heating control module 120 is configured to control the fluctuation change of the heating power of the heating element in the second stage, so that the temperature of the heating element fluctuates and changes within a preset second temperature range.
  • the atomization heating control device 100 further includes:
  • the third heating control module 130 is configured to adjust the heating power of the heating element in the third stage, so that the temperature of the heating element is kept within a preset third temperature range; the maximum temperature difference in the third temperature range is smaller than the second temperature The maximum temperature difference of the range.
  • the second heating control module includes:
  • a second power heating unit configured to control the heating element to reduce the heating power to a preset second power for heating after the heating with the first power for a preset first time
  • the third power heating unit is configured to control the heating element to increase the heating power to a preset third power for heating after the heating at the second power is continued for a preset second time.
  • Each module in the above-mentioned atomization heating control device can be realized in whole or in part by software, hardware and combinations thereof.
  • the above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • an aerosol-generating device comprising: a heater including at least one heat generating element configured to heat the aerosol-forming substrate; applying the method as described in any of the above embodiments Atomization heating control method.
  • the heating element is a porous ceramic heating element.
  • an aerosol generating device comprising:
  • a heater comprising at least one heat generating element configured to heat the aerosol-forming substrate
  • a power source for supplying power to the heating element
  • the controller includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • the heating element is controlled to be heated to a preset first temperature range with a preset first power, so that the heating element starts to atomize the aerosol to form a matrix;
  • the heating power of the heating element is controlled to fluctuate, so that the temperature of the heating element fluctuates within a preset second temperature range.
  • the processor further implements the following steps when executing the computer program:
  • the heating power of the heating element is adjusted to keep the temperature of the heating element within a preset third temperature range; the maximum temperature difference of the third temperature range is smaller than the second temperature range the maximum temperature difference.
  • the processor further implements the following steps when executing the computer program:
  • the absolute value of the difference between the heating power obtained by two adjacent fluctuation changes of the heating element is greater than the preset first power difference.
  • the processor further implements the following steps when executing the computer program:
  • the heating power of the heating element fluctuates and changes, and the absolute value of the difference between the heating power obtained by two adjacent fluctuation changes of the heating element is greater than a preset second power difference; the second power The difference is less than the first power difference.
  • the processor further implements the following steps when executing the computer program:
  • the heating element After continuously heating with the second power for a preset second time, the heating element is controlled to increase the heating power to a preset third power for heating.
  • the processor further implements the following steps when executing the computer program:
  • the heating power of the heating element is adjusted periodically, so that the temperature of the heating element periodically fluctuates within the second temperature range.
  • a computer-readable storage medium is provided on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the heating element is controlled to be heated to a preset first temperature range with a preset first power, so that the heating element starts to atomize the aerosol to form a matrix;
  • the heating power of the heating element is controlled to fluctuate, so that the temperature of the heating element fluctuates within a preset second temperature range.
  • the computer program further implements the following steps when executed by the processor:
  • the heating power of the heating element is adjusted to keep the temperature of the heating element within a preset third temperature range; the maximum temperature difference of the third temperature range is smaller than the second temperature range the maximum temperature difference.
  • the computer program further implements the following steps when executed by the processor:
  • the absolute value of the difference between the heating power obtained by two adjacent fluctuation changes of the heating element is greater than the preset first power difference.
  • the computer program further implements the following steps when executed by the processor:
  • the heating power of the heating element fluctuates and changes, and the absolute value of the difference between the heating power obtained by two adjacent fluctuation changes of the heating element is greater than a preset second power difference; the second power The difference is less than the first power difference.
  • the computer program further implements the following steps when executed by the processor:
  • the heating element After continuously heating with the second power for a preset second time, the heating element is controlled to increase the heating power to a preset third power for heating.
  • the computer program further implements the following steps when executed by the processor:
  • the heating power of the heating element is adjusted periodically, so that the temperature of the heating element periodically fluctuates within the second temperature range.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory, or optical memory, and the like.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • the RAM may be in various forms, such as Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本申请涉及一种雾化加热控制方法、装置、气溶胶产生装置及存储介质。所述方法包括:控制向发热元件提供的电力,从而使得,在第一阶段,控制发热元件以预设的第一功率加热至预设的第一温度范围,以使发热元件开始雾化气溶胶形成基质;在第二阶段,控制发热元件的加热功率波动变化,以使发热元件的温度在预设的第二温度范围内波动变化。本申请通过控制发热元件以第一功率先加热至预设的第一温度范围,开始雾化气溶胶形成基质,随后在第二阶段,控制发热元件的加热功率波动变化,以使发热元件的温度在第二温度范围内波动变化,使得发热元件能够有降温的时间,使发热元件能够充分补充气溶胶形成基质,避免发生局部干烧,减少碳化颗粒物的产生。

Description

雾化加热控制方法、装置、气溶胶产生装置及存储介质
本申请要求于2020年8月13日提交中国专利局,申请号为2020108122939,申请名称为“雾化加热控制方法、装置、气溶胶产生装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及气溶胶雾化技术领域,特别是涉及一种雾化加热控制方法、装置、气溶胶产生装置及存储介质。
背景技术
随着雾化技术的发展,出现了电子烟技术,电子烟又名虚拟香烟、电子雾化装置,用于作为替代香烟的用品,也被用于戒烟。电子烟是利用发热元件对烟油进行雾化后供用户抽吸。
目前的电子烟一般在启动工作后,控制发热元件的温度迅速升高,使得能够快速达到雾化温度,开始雾化烟油,并在开始雾化后采用恒功率加热,使发热元件能够持续保持相对稳定的温度进行加热,使得雾化产生的气溶胶量比较均匀。
然而,目前的加热方式,在持续加热后发热元件上能够被加热的烟油会逐渐减少,同时再从储液腔内吸取烟油继续进行加热,但在恒功率加热的过程中,发热元件雾化面的气膜的蒸汽压较大,会对微孔内和微孔附近的烟油产生挤出效应,使得雾化面的烟油无法及时补充,继续持续可能加热会使雾化面发生过热的问题,甚至出现局部干烧的现象。进而造成雾化组件的损坏,在发热元件上产生较多烟垢、产生焦味和其他有害物质,影响用户的正常使用。
发明内容
基于此,有必要针对上述技术问题,提供一种能够减少雾化面过热情况发生的雾化加热控制方法、装置、气溶胶产生装置及存储介质。
一种雾化加热控制方法,应用于气溶胶产生装置,所述气溶胶产生装置包括:加热器,其包括被配置用于加热气溶胶形成基质的至少一个发热元件;以及;
用于向所述发热元件提供电力的电源;
所述方法包括:
控制向发热元件提供的电力,从而使得,
在第一阶段,控制所述发热元件以预设的第一功率加热至预设的第一温度范围,以使所述发热元件开始雾化气溶胶形成基质;
在第二阶段,控制发热元件的加热功率波动变化,以使所述发热元件的温度在预设的第二温度范围内波动变化。
在其中一个实施例中,还包括:
在第三阶段,调整所述发热元件的加热功率,以使所述发热元件的温度保持在预设的第三温度范围内;所述第三温度范围的最大温度差小于所述第二温度范围的最大温度差。
在其中一个实施例中,在第二阶段,所述发热元件相邻的两次波动变化得到的加热功率之差的绝对值大于预设的第一功率差。
在其中一个实施例中,在第三阶段,所述发热元件的加热功率波动变化,且所述发热元件相邻的两次波动变化得到的加热功率之差的绝对值大于预设的第二功率差;所述第二功率差小于所述第一功率差。
在其中一个实施例中,所述在第二阶段,调整发热元件的加热功率,以使所述发热元件的温度在预设的第二温度范围内波动变化的步骤包括:
在持续以所述第一功率加热预设的第一时间后,控制所述发热元件将加热功率降低至预设的第二功率进行加热;
在持续以所述第二功率加热预设的第二时间后,控制所述发热元件将加热功率增大至预设的第三功率进行加热。
在其中一个实施例中,所述在第二阶段,调整发热元件的加热功率,以使所述发热元件的温度在预设的第二温度范围内波动变化的步骤包括:
周期性地调整所述发热元件的加热功率,以使所述发热元件的温度在所述第二温度范围内周期性地波动变化。
一种雾化加热控制装置,所述装置包括:
第一加热控制模块,用于在第一阶段,控制所述发热元件以预设的第一功率加热至预设的第一温度范围,以使所述发热元件开始雾化气溶胶形成基质;
第二加热控制模块,用于在第二阶段,控制发热元件的加热功率波动变化,以使所述发热元件的温度在预设的第二温度范围内波动变化。
一种气溶胶产生装置,包括:加热器,其包括被配置用于加热气溶胶形成基质的至少一个发热元件;应用如上述任一项实施例中所述的雾化加热控制方法。
在其中一个实施例中,所述发热元件为多孔陶瓷发热元件。
一种气溶胶产生装置,包括:
加热器,其包括被配置用于加热气溶胶形成基质的至少一个发热元件;
用于向所述发热元件提供电力的电源;以及
控制器,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
在第一阶段,控制所述发热元件以预设的第一功率加热至预设的第一温度范围,以使所述发热元件开始雾化气溶胶形成基质;
在第二阶段,控制发热元件的加热功率波动变化,以使所述发热元件的温度在预设的第二温度范围内波动变化。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
在第一阶段,控制所述发热元件以预设的第一功率加热至预设的第一温度范围,以使所述发热元件开始雾化气溶胶形成基质;
在第二阶段,控制发热元件的加热功率波动变化,以使所述发热元件的温度在预设的第二温度范围内波动变化。
上述雾化加热控制方法、装置、气溶胶产生装置及存储介质,通过控制发热元件以第一功率先加热至预设的第一温度范围,开始雾化气溶胶形成基质,随后在第二阶段,控制发热元件的加热功率波动变化,以使发热元件的温度在第二温度范围内波动变化,使得发热元件能够有降温的时间,而非持续保持较高温度进行加热,降低发热元件气膜的蒸汽压,使发热元件能够充分补充气溶胶形成基质,避免发生局部干烧,减少碳化颗粒物的产生。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中,雾化加热控制方法的流程示意图;
图2为一个实施例中,采用恒功率加热和雾化加热控制方法的功率变化图;
图3为一个实施例中,采用恒功率加热和雾化加热控制方法的温度变化图;
图4为一个实施例中,发热元件加热产生气膜的示意图;
图5为另一个实施例中,雾化加热控制方法的流程示意图;
图6为一个实施例中,控制发热元件的加热功率波动变化,以使发热元件的温度在预设的第二温度范围内波动变化步骤的流程示意图;
图7为又一个实施例中,雾化加热控制方法的流程示意图;
图8为一个实施例中,雾化加热控制装置的结构框图;
图9为另一个实施例中,雾化加热控制装置的结构框图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种技术特征,但这些技术特征不受这些术语限制。这些术语仅用于将第一个技术特征与另一个技术特征区分。例如第一温度范围和第二温度范围为对应于不同阶段的两个温度范围,可以是相同的温度范围,也可以是不同的温度范围。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。同时,在本说明书中使用的术语“和/或”包括相关所列项目的任何及所有组合。
正如背景技术所述,现有技术中的气溶胶雾化装置存在容易产生烟垢和焦味的问题,经发明人研究发现,出现这种问题的原因在于,由于烟油在被加热雾化形成气溶胶时需要由一定的过热度,而烟油中存在多种成分,包括丙二醇、丙三醇及香精香料等,这些成分的混合物为非共沸物质,其中的某些成分的沸点远低于过热度,然而恒功率的加热模式使 得烟油中的一些成分长期处于过热条件下,导致烟油中低沸点的物质在雾化烟油的过程中发生焦化反应,产生碳化颗粒物,在气溶胶雾化装置的持续工作下,碳化颗粒物不断累积和恶化,在雾化面上积累的碳化颗粒物长期经高温加热烘烤则会产生焦味。
基于以上原因,本申请提供了一种能够减少产生烟垢和焦味的加热控制方案,同时还能保证雾化量,不影响用户的体验。
在其中一个实施例中,如图1所示,提供了一种雾化加热控制方法,应用于气溶胶产生装置,气溶胶产生装置包括:加热器,其包括被配置用于加热气溶胶形成基质的至少一个发热元件;以及;
用于向发热元件提供电力的电源;
所述方法包括:
控制向发热元件提供的电力,从而使得,执行以下步骤:
步骤S100,在第一阶段,控制发热元件以预设的第一功率加热至预设的第一温度范围,以使发热元件开始雾化气溶胶形成基质。
第一阶段可以是气溶胶产生装置每次执行雾化加热工作过程中的第一个加热阶段,也可以是气溶胶产生装置每次执行雾化加热工作过程中其中一个加热周期的第一个加热阶段。第一功率需要采用较大功率,发热元件以第一功率进行加热,能够快速达到雾化温度开始雾化,保证气溶胶产生装置开始产生气溶胶的速度。第一温度范围为气溶胶形成基质能够进行雾化的温度范围,在其中一个实施例中,第一温度范围的下限温度大于气溶胶形式基质的雾化临界温度,雾化临界温度是指气溶胶形式基质能够开始雾化的临界温度。
步骤S200,在第二阶段,控制发热元件的加热功率波动变化,以使发热元件的温度在预设的第二温度范围内波动变化。
第二阶段可以是气溶胶产生装置每次执行雾化加热工作过程中的第二个加热阶段,也可以是气溶胶产生装置每次执行雾化加热工作过程中其中一个加热周期的第二个加热阶段。此阶段控制发热元件的加热功率高低波动变化,但需要使发热元件的温度维持在第二温度范围内进行波动变化,即通过交替采用高低功率,使发热元件的温度在第二温度范围内上下波动,在高温加热一段时间后降低加热温度,低温加热一段时间后再次进行高温加热。发热元件在低功率加热时,气膜内的蒸汽压能够降低,使陶瓷微孔中的气溶胶形成基质在毛细作用力的作用下克服蒸汽压作用力,向发热元件的雾化面补充烟油,在下一个时间段进入高功率加热时有充足的气溶胶形成基质能够进行加热,避免局部干烧,减少持续高温产生烟垢,避免产生焦味,同时由于温度保持在一定范围内波动,与间断加热不同, 这种控温方式利用了发热体具备热惯性的特点,高低功率切换时温度不会急剧下降至无法雾化的温度,保证烟雾量。如图2所示为在一个实施例中采用恒功率加热及采用本申请的雾化温度控制方法加热的功率变化图。如图3所示为在一个实施例中,采用恒功率加热(曲线b)及采用本申请的雾化温度控制方法加热(曲线a)的温度变化图,可以看到温度超过300℃的时间减少了近一半。
在其中一个实施例中,若气溶胶形成基质为烟油,由于烟油的成分复杂,不同物质的沸点不同,例如一些常见的烟油中主要物质的沸点一般在189℃~300℃之间,若持续高温加热会使得低沸点物质发生高温裂解产生有害物质,本申请通过在第二阶段主动控温,使得发热元件雾化面的温度在一个温度范围区间内波动变化,既可以使烟油中各成分物质分别进行沸腾雾化,又降低了烟油高温裂解的反应程度,减少有害物质的产生。
如图4所示,烟油过热沸腾会形成气泡,气泡产生的蒸汽压大小由发热元件雾化面的温度决定。在低功率加热时,烟油的过热度较低还无法形成大气泡,此时气泡的蒸汽压力较低,发热元件导液孔内的烟油在毛细作用力下可以往雾化面进行供液;而在高功率加热时,由于雾化面温度高,烟油过热产生大气泡,此时气泡的蒸汽压大于毛细作用力,使导液孔烟油被往储油仓方向挤压。通过采用高、低功率交替加热,能够使得烟油不断的运动,使得碳化颗粒物难以停留附着在发热元件的雾化面,从而减少了烟垢的积累。
上述雾化加热控制方法,通过控制发热元件以第一功率先加热至预设的第一温度范围,开始雾化气溶胶形成基质,随后在第二阶段,控制发热元件的加热功率波动变化,以使发热元件的温度在第二温度范围内波动变化,使得发热元件能够有降温的时间,而非持续保持较高温度进行加热,降低发热元件气膜的蒸汽压,使发热元件能够充分补充气溶胶形成基质,避免发生局部干烧,减少碳化颗粒物的产生。
在其中一个实施例中,如图5所示,雾化加热控制方法还包括:
步骤S300,在第三阶段,调整发热元件的加热功率,以使发热元件的温度保持在预设的第三温度范围内;第三温度范围的最大温度差小于第二温度范围的最大温度差。
最大温度差是指温度范围的上限与下限之差,第三温度范围的最大温度差为第三温度范围的上限温度与下限温度之差;第二温度范围的最大温度差为第二温度范围的上限温度与下限温度之差。
第三阶段可以是气溶胶产生装置每次执行雾化加热工作过程中的第三个加热阶段,也可以是气溶胶产生装置每次执行雾化加热工作过程中其中一个加热周期的第三个加热阶段。在第三阶段,控制发热元件温度在一个较小的温度范围内波动,进一步保证气溶胶产 生装置的产生烟雾的量。在第三阶段,发热元件的加热功率可以是恒定功率,也可以是波动变化的功率。
在其中一个实施例中,在第二阶段,发热元件相邻的两次波动变化得到的加热功率之差的绝对值大于预设的第一功率差。
在第二阶段,为了保证发热元件能够充分且及时地补充烟油,需要保证发热元件温度波动的温差足够大,使得温度从较低的温度上升到较高的温度这一过程有充足的时间,同时还能使各种成分都能够充分进行沸腾。因此需要控制发热元件每次交替变化高低功率之间的差值足够大,可以通过预设的第一功率差进行功率调控的控制。每次交替变化的加热功率中高功率可以是固定的功率值,也可以变化的功率值;低功率可以是固定的功率值,也可以是变化的功率值,只需满足相邻两次波动变化的加热功率之差的绝对值大于第一功率差。例如在t1时间采用第一高功率,t2时间采用第一低功率,t3时间采用第二高功率,t1时间、t2时间和t3时间为连续的三个时间段,其中,第一高功率与第一低功率之差的绝对值,需要大于第一功率差;第一低功率与第二高功率之差的绝对值也需要大于第一功率差。
在其中一个实施例中,在第三阶段,发热元件的加热功率波动变化,且发热元件相邻的两次波动变化得到的加热功率之差的绝对值大于预设的第二功率差;所述第二功率差小于所述第一功率差。
在第三阶段中,为了保证烟雾量的同时,避免长时间维持过热使得产生烟垢或是发热元件无法及时补充烟油,控制发热元件的加热功率以相对第二阶段较低的波动差进行波动变化,通过预设的第二功率差来对发热元件的加热功率波动进行控制,保证发热元件温度有一定的高低变化,但温差相对于第二阶段较小。
在其中一个实施例中,如图6所示,所述在第二阶段,调整发热元件的加热功率,以使所述发热元件的温度在预设的第二温度范围内波动变化的步骤包括:
步骤S210,在持续以第一功率加热预设的第一时间后,控制发热元件将加热功率降低至预设的第二功率进行加热。
持续以第一功率加热预设的第一时间后,即第一阶段后,控制发热元件将加热功率降低至预设的第二功率进行加热。由于第一阶段需要快速达到能够雾化的温度,因此第一功率的值较高,在第一阶段结束后,降低加热功率,采用相比第一功率要低的第二功率进行加热,进而降低发热元件的温度,为发热元件提供补充烟油的时间,为下一个时间段的高功率加热提供充足的气溶胶形成基质。
步骤S220,在持续以第二功率加热预设的第二时间后,控制发热元件将加热功率增大至预设的第三功率进行加热。
以第二功率加热预设的第二时间后,为了实现在第二阶段发热元件的加热功率的波动变化,将加热功率增大至第三功率,第三功率大于第二功率,使得发热元件进入高温加热状态,充分雾化气溶胶形成基质。
根据不同发热元件的升温特性,可以将第二阶段分为若干个时间段,控制加热功率波动变化,交替使用高低功率进行加热。例如第二阶段分为N个时间段,包括n1~nN时间段,在n1时间段采用第一低功率,在n2时间段采用第一高功率,在n3时间段采用第二低功率……在n(N-1)时间段采用第n低功率,在nN时间段采用第n高功率。n1~nN时间段内每个时间段可以是相等的,也可以是不相等的,或是部分相等部分不相等。n和N均为自然数。通过交替使用高低功率进行加热,能够缩短高温加热的时间,减少发热元件过热时间,在保证烟雾量的同时,减少烟垢的产生,避免产生焦味,避免发生局部干烧。
在其中一个实施例中,如图7所示,所述在第二阶段,调整发热元件的加热功率,以使发热元件的温度在预设的第二温度范围内波动变化的步骤包括:
步骤S230,周期性地调整发热元件的加热功率,以使发热元件的温度在第二温度范围内周期性地波动变化。
周期性地调整发热元件的加热功率,即将第二阶段等分为N个时间段,通过在N个时间段内交替控制发热元件的高功率和低功率进行加热,使发热元件的温度在第二温度范围内周期性的波动变化。例如N个时间段包括n1~nN,在n1时间段采用第一低功率,在n2时间段采用第一高功率,在n3时间段采用第二低功率……在n(N-1)时间段采用第n低功率,在nN时间段采用第n高功率,n1~nN时间段内每个时间段均相等,使得发热元件的温度周期性地波动变化。气溶胶形成基质过热度呈周期性变化,能够促使沸腾气泡间隙性地增大缩小,从而对发热元件微孔周围的气溶胶形成基质形成挤压效应,使得碳化颗粒物不容易附着在发热元件表面,或是堵塞在发热元件的导液孔中。
应该理解的是,虽然图1及图5-7的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1及图5-7中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或 者交替地执行。
在其中一个实施例中,如图8所示,提供了一种雾化加热控制装置100,所述装置包括:
第一加热控制模块110,用于在第一阶段,控制发热元件以预设的第一功率加热至预设的第一温度范围,以使发热元件开始雾化气溶胶形成基质;
第二加热控制模块120,用于在第二阶段,控制发热元件的加热功率波动变化,以使发热元件的温度在预设的第二温度范围内波动变化。
在其中一个实施例中,如图9所示,雾化加热控制装置100还包括:
第三加热控制模块130,用于在第三阶段,调整发热元件的加热功率,以使发热元件的温度保持在预设的第三温度范围内;第三温度范围的最大温度差小于第二温度范围的最大温度差。
在其中一个实施例中,第二加热控制模块包括:
第二功率加热单元,用于在持续以所述第一功率加热预设的第一时间后,控制所述发热元件将加热功率降低至预设的第二功率进行加热;
第三功率加热单元,用于在持续以所述第二功率加热预设的第二时间后,控制所述发热元件将加热功率增大至预设的第三功率进行加热。
关于雾化加热控制装置的具体限定可以参见上文中对于雾化加热控制方法的限定,在此不再赘述。上述雾化加热控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在其中一个实施例中,提供了一种气溶胶产生装置,包括:加热器,其包括被配置用于加热气溶胶形成基质的至少一个发热元件;应用如上述任一项实施例中所述的雾化加热控制方法。
在其中一个实施例中,发热元件为多孔陶瓷发热元件。
在其中一个实施例中,提供了一种气溶胶产生装置,包括:
加热器,其包括被配置用于加热气溶胶形成基质的至少一个发热元件;
用于向所述发热元件提供电力的电源;以及
控制器,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
在第一阶段,控制所述发热元件以预设的第一功率加热至预设的第一温度范围,以使所述发热元件开始雾化气溶胶形成基质;
在第二阶段,控制发热元件的加热功率波动变化,以使所述发热元件的温度在预设的第二温度范围内波动变化。
在其中一个实施例中,处理器执行计算机程序时还实现以下步骤:
在第三阶段,调整所述发热元件的加热功率,以使所述发热元件的温度保持在预设的第三温度范围内;所述第三温度范围的最大温度差小于所述第二温度范围的最大温度差。
在其中一个实施例中,处理器执行计算机程序时还实现以下步骤:
在第二阶段,所述发热元件相邻的两次波动变化得到的加热功率之差的绝对值大于预设的第一功率差。
在其中一个实施例中,处理器执行计算机程序时还实现以下步骤:
在第三阶段,所述发热元件的加热功率波动变化,且所述发热元件相邻的两次波动变化得到的加热功率之差的绝对值大于预设的第二功率差;所述第二功率差小于所述第一功率差。
在其中一个实施例中,处理器执行计算机程序时还实现以下步骤:
在持续以所述第一功率加热预设的第一时间后,控制所述发热元件将加热功率降低至预设的第二功率进行加热;
在持续以所述第二功率加热预设的第二时间后,控制所述发热元件将加热功率增大至预设的第三功率进行加热。
在其中一个实施例中,处理器执行计算机程序时还实现以下步骤:
周期性地调整所述发热元件的加热功率,以使所述发热元件的温度在所述第二温度范围内周期性地波动变化。
在其中一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
在第一阶段,控制所述发热元件以预设的第一功率加热至预设的第一温度范围,以使所述发热元件开始雾化气溶胶形成基质;
在第二阶段,控制发热元件的加热功率波动变化,以使所述发热元件的温度在预设的第二温度范围内波动变化。
在其中一个实施例中,计算机程序被处理器执行时还实现以下步骤:
在第三阶段,调整所述发热元件的加热功率,以使所述发热元件的温度保持在预设的 第三温度范围内;所述第三温度范围的最大温度差小于所述第二温度范围的最大温度差。
在其中一个实施例中,计算机程序被处理器执行时还实现以下步骤:
在第二阶段,所述发热元件相邻的两次波动变化得到的加热功率之差的绝对值大于预设的第一功率差。
在其中一个实施例中,计算机程序被处理器执行时还实现以下步骤:
在第三阶段,所述发热元件的加热功率波动变化,且所述发热元件相邻的两次波动变化得到的加热功率之差的绝对值大于预设的第二功率差;所述第二功率差小于所述第一功率差。
在其中一个实施例中,计算机程序被处理器执行时还实现以下步骤:
在持续以所述第一功率加热预设的第一时间后,控制所述发热元件将加热功率降低至预设的第二功率进行加热;
在持续以所述第二功率加热预设的第二时间后,控制所述发热元件将加热功率增大至预设的第三功率进行加热。
在其中一个实施例中,计算机程序被处理器执行时还实现以下步骤:
周期性地调整所述发热元件的加热功率,以使所述发热元件的温度在所述第二温度范围内周期性地波动变化。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中 的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种雾化加热控制方法,应用于气溶胶产生装置,所述气溶胶产生装置包括:加热器,其包括被配置用于加热气溶胶形成基质的至少一个发热元件;以及;
    用于向所述发热元件提供电力的电源;
    所述方法包括:
    控制向发热元件提供的电力,从而使得,
    在第一阶段,控制所述发热元件以预设的第一功率加热至预设的第一温度范围,以使所述发热元件开始雾化气溶胶形成基质;
    在第二阶段,控制发热元件的加热功率波动变化,以使所述发热元件的温度在预设的第二温度范围内波动变化。
  2. 根据权利要求1所述的雾化加热控制方法,还包括:
    在第三阶段,调整所述发热元件的加热功率,以使所述发热元件的温度保持在预设的第三温度范围内;所述第三温度范围的最大温度差小于所述第二温度范围的最大温度差。
  3. 根据权利要求2所述的雾化加热控制方法,其中,在第二阶段,所述发热元件相邻的两次波动变化得到的加热功率之差的绝对值大于预设的第一功率差。
  4. 根据权利要求3所述的雾化加热控制方法,其中,在第三阶段,所述发热元件的加热功率波动变化,且所述发热元件相邻的两次波动变化得到的加热功率之差的绝对值大于预设的第二功率差;所述第二功率差小于所述第一功率差。
  5. 根据权利要求1所述的雾化加热控制方法,其中,所述在第二阶段,调整发热元件的加热功率,以使所述发热元件的温度在预设的第二温度范围内波动变化的步骤包括:
    在持续以所述第一功率加热预设的第一时间后,控制所述发热元件将加热功率降低至预设的第二功率进行加热;
    在持续以所述第二功率加热预设的第二时间后,控制所述发热元件将加热功率增大至预设的第三功率进行加热。
  6. 根据权利要求1所述的雾化加热控制方法,其中,所述在第二阶段,调整发热元件的加热功率,以使所述发热元件的温度在预设的第二温度范围内波动变化的步骤包括:
    周期性地调整所述发热元件的加热功率,以使所述发热元件的温度在所述第二温度范围内周期性地波动变化。
  7. 根据权利要求1所述的雾化加热控制方法,其中,所述第一温度的下限温度大于所述气溶胶形式基质的雾化临界温度。
  8. 根据权利要求2所述的雾化加热控制方法,其中,在所述第三阶段中,所述发热元件的加热功率是恒定功率或波导变化的功率。
  9. 一种雾化加热控制装置,包括:
    第一加热控制模块,用于在第一阶段,控制发热元件以预设的第一功率加热至预设的第一温度范围,以使所述发热元件开始雾化气溶胶形成基质;
    第二加热控制模块,用于在第二阶段,控制发热元件的加热功率波动变化,以使所述发热元件的温度在预设的第二温度范围内波动变化。
  10. 一种气溶胶产生装置,包括:加热器,其包括被配置用于加热气溶胶形成基质的至少一个发热元件;应用如权利要求1至8任一项所述的雾化加热控制方法。
  11. 根据权利要求10所述的气溶胶产生装置,其中,所述发热元件为多孔陶瓷发热元件。
  12. 一种气溶胶产生装置,包括:
    加热器,其包括被配置用于加热气溶胶形成基质的至少一个发热元件;
    用于向所述发热元件提供电力的电源;以及
    控制器,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现权利要求1至8中任一项所述的方法的步骤。
  13. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至8中任一项所述的方法的步骤。
PCT/CN2021/107736 2020-08-13 2021-07-22 雾化加热控制方法、装置、气溶胶产生装置及存储介质 WO2022033286A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21855339.4A EP4190189A1 (en) 2020-08-13 2021-07-22 Atomization heating control method and device, aerosol generating device and storage medium
US18/164,687 US20230172281A1 (en) 2020-08-13 2023-02-06 Atomization heating control method and device, aerosol generating device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010812293.9 2020-08-13
CN202010812293.9A CN113170929B (zh) 2020-08-13 2020-08-13 雾化加热控制方法、装置、气溶胶产生装置及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/164,687 Continuation US20230172281A1 (en) 2020-08-13 2023-02-06 Atomization heating control method and device, aerosol generating device and storage medium

Publications (1)

Publication Number Publication Date
WO2022033286A1 true WO2022033286A1 (zh) 2022-02-17

Family

ID=76921471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107736 WO2022033286A1 (zh) 2020-08-13 2021-07-22 雾化加热控制方法、装置、气溶胶产生装置及存储介质

Country Status (4)

Country Link
US (1) US20230172281A1 (zh)
EP (1) EP4190189A1 (zh)
CN (1) CN113170929B (zh)
WO (1) WO2022033286A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990691A (zh) * 2022-07-07 2022-09-02 季华实验室 一种外延反应加热控制方法、系统、电子设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114128928A (zh) * 2021-11-10 2022-03-04 深圳麦时科技有限公司 一种加热组件、加热组件的控制方法以及电子雾化装置
CN116138503A (zh) * 2021-11-19 2023-05-23 深圳市合元科技有限公司 气雾生成装置及控制方法
CN114200980B (zh) * 2021-12-03 2022-10-18 北京温致科技有限公司 输出控制方法、系统、气溶胶控制方法及加热不燃烧装置
CN116763009A (zh) * 2022-03-11 2023-09-19 深圳市合元科技有限公司 电子雾化装置及电子雾化装置的控制方法
CN116998783A (zh) * 2022-04-29 2023-11-07 海南摩尔兄弟科技有限公司 电子雾化装置及其加热控制方法、计算机存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108851242A (zh) * 2018-07-18 2018-11-23 东莞市麦斯莫科电子科技有限公司 加热件温度控制方法、装置及电子吸烟系统
CN108991602A (zh) * 2018-04-13 2018-12-14 赫斯提亚深圳生物科技有限公司 一种气溶胶生成装置及其加热控制方法
CN110301679A (zh) * 2019-07-22 2019-10-08 安徽中烟工业有限责任公司 一种加热不燃烧烟草制品烟气持续释放的控制方法
CN110771960A (zh) * 2019-09-12 2020-02-11 深圳麦时科技有限公司 一种电子烟具及其加热方法、计算机存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI608805B (zh) * 2012-12-28 2017-12-21 菲利浦莫里斯製品股份有限公司 加熱型氣溶膠產生裝置及用於產生具有一致性質的氣溶膠之方法
CN104116138B (zh) * 2014-06-24 2017-10-10 深圳麦克韦尔股份有限公司 电子烟及其控制方法
GB2543329B (en) * 2015-10-15 2018-06-06 Jt Int Sa A method for operating an electronic vapour inhaler
CN105559147B (zh) * 2016-02-19 2019-08-13 深圳麦克韦尔股份有限公司 电子雾化装置
WO2018135887A1 (ko) * 2017-01-18 2018-07-26 주식회사 케이티앤지 미세 입자 발생 장치
US11850353B2 (en) * 2018-01-19 2023-12-26 Ventus Medical Limited Methods, inhalation device, and computer program
CN208550022U (zh) * 2018-05-31 2019-03-01 常州市派腾电子技术服务有限公司 雾化器及电子烟
CN110547511B (zh) * 2019-08-01 2022-10-11 深圳葭南科技有限公司 用于更好还原烟油口感的电子烟控制方法及电子烟
CN110731545B (zh) * 2019-10-18 2022-12-27 深圳麦克韦尔科技有限公司 雾化组件加热控制方法、装置、电子雾化装置及存储介质
CN110664017B (zh) * 2019-11-05 2022-08-16 深圳市新宜康科技股份有限公司 雾化器多发热体交替加热的方法及雾化器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108991602A (zh) * 2018-04-13 2018-12-14 赫斯提亚深圳生物科技有限公司 一种气溶胶生成装置及其加热控制方法
CN108851242A (zh) * 2018-07-18 2018-11-23 东莞市麦斯莫科电子科技有限公司 加热件温度控制方法、装置及电子吸烟系统
CN110301679A (zh) * 2019-07-22 2019-10-08 安徽中烟工业有限责任公司 一种加热不燃烧烟草制品烟气持续释放的控制方法
CN110771960A (zh) * 2019-09-12 2020-02-11 深圳麦时科技有限公司 一种电子烟具及其加热方法、计算机存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990691A (zh) * 2022-07-07 2022-09-02 季华实验室 一种外延反应加热控制方法、系统、电子设备及存储介质
CN114990691B (zh) * 2022-07-07 2023-07-04 季华实验室 一种外延反应加热控制方法、系统、电子设备及存储介质

Also Published As

Publication number Publication date
CN113170929A (zh) 2021-07-27
US20230172281A1 (en) 2023-06-08
EP4190189A1 (en) 2023-06-07
CN113170929B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
WO2022033286A1 (zh) 雾化加热控制方法、装置、气溶胶产生装置及存储介质
CN109043665B (zh) 一种控制气溶胶产生的方法及装置
WO2020038249A1 (zh) 一种电子烟功率控制方法及电子烟
CN110584204A (zh) 电子雾化装置的加热控制方法、控制装置及电子雾化装置
KR930011398B1 (ko) 마이크로웨이브, 대류 및 굽기의 조합에 의해 가열되는 오븐에 의한 조리방법
JP4801233B1 (ja) リチウムイオン電池用電極塗膜の乾燥方法
CN113519918A (zh) 气溶胶形成装置及其抽吸检测方法、计算机存储介质
CN111513365A (zh) 加热式气溶胶产生装置及方法
KR20150123809A (ko) 증발원 장치
CN110731545A (zh) 雾化组件加热控制方法、装置、电子雾化装置及存储介质
JP6892058B2 (ja) エアロゾル生成装置及びエアロゾル生成装置を掃除する方法
CN109998182A (zh) 一种电子烟的加热方法
CN113142684A (zh) 加热控制方法及电子雾化装置
CN113826955A (zh) 气溶胶产生装置控制方法、气溶胶产生装置及控制电路
KR20220050207A (ko) 비연소-가열식 장치 및 온도 제어 방법
WO2021208946A1 (zh) 加热不燃烧烟草器具及温度控制方法
CN114200980B (zh) 输出控制方法、系统、气溶胶控制方法及加热不燃烧装置
WO2021258314A1 (zh) 气溶胶产生装置控制方法、气溶胶产生装置及控制电路
CN114009849A (zh) 计算机程序产品、气溶胶生成设备及其加热控制方法
CN112841753B (zh) 发热体控温方法、温度控制装置及气溶胶生成装置
JP7307810B2 (ja) 燃料電池装置
CN117256940A (zh) 多发热体加热器
JP2010118302A (ja) 鉛蓄電池用極板の乾燥装置および鉛蓄電池用極板の製造方法
JP2006232944A (ja) 生ごみ炭化装置
JP3226576U (ja) 植物性シリカを用いた温熱治療器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021855339

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE