WO2022033238A1 - 透明显示装置及制备方法 - Google Patents

透明显示装置及制备方法 Download PDF

Info

Publication number
WO2022033238A1
WO2022033238A1 PCT/CN2021/104654 CN2021104654W WO2022033238A1 WO 2022033238 A1 WO2022033238 A1 WO 2022033238A1 CN 2021104654 W CN2021104654 W CN 2021104654W WO 2022033238 A1 WO2022033238 A1 WO 2022033238A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
liquid crystal
electrode
orthographic projection
Prior art date
Application number
PCT/CN2021/104654
Other languages
English (en)
French (fr)
Inventor
彭依丹
王龙
贾南方
王志良
郭怡彤
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/789,932 priority Critical patent/US20230044641A1/en
Publication of WO2022033238A1 publication Critical patent/WO2022033238A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13756Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal selectively assuming a light-scattering state
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • G02F1/133622Colour sequential illumination
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a transparent display device and a preparation method thereof.
  • a transparent display device is a display device that enables a user to view a display image on the transparent display device and a scene or an item behind the transparent display device at the same time.
  • the transparent display device can realize the integration and interaction of the display picture on the display screen and the scene or item behind the transparent display device, thereby bringing a brand-new, rich and expressive visual experience to the user.
  • a transparent display device in one aspect, includes a liquid crystal cell and a light source.
  • the light source is arranged opposite to the side surface of the liquid crystal cell.
  • the liquid crystal cell has a display area.
  • the liquid crystal cell includes a first substrate, a second substrate, a first electrode, a second electrode, a liquid crystal layer, a plurality of signal lines and a light shielding pattern.
  • the first electrode is disposed on the first substrate.
  • the second electrode is disposed on the first substrate or the second substrate.
  • the liquid crystal layer is sandwiched between the first substrate and the second substrate; the liquid crystal layer includes polymer molecules and liquid crystal molecules; the liquid crystal layer is configured to be between the first electrode and the second substrate; Under the control of the electric field provided by the second electrode, the light incident on the liquid crystal layer is totally reflected or scattered.
  • the plurality of signal lines are disposed on the first substrate and located in the display area, wherein at least one signal line has a bottom surface close to the first substrate and a bottom surface connected to the bottom surface and facing the light source.
  • the reflective side surface, the slope angle formed by the reflective side surface and the bottom surface is an acute angle.
  • the light-shielding pattern is disposed on the second substrate; the light-shielding pattern is located on the reflection path after the light emitted by the light source irradiates the light-reflecting side surface.
  • the orthographic projection of at least one of the plurality of signal lines on the first substrate is covered by the orthographic projection of the light shielding pattern on the first substrate.
  • an orthographic projection of the at least one signal line on the first substrate has a first edge and a second edge, and a corresponding portion of the light shielding pattern is on the first substrate
  • the projection has a third edge and a fourth edge.
  • a corresponding portion of the light shielding pattern is a portion of the light shielding pattern whose orthographic projection on the first substrate covers the at least one signal line.
  • the first edge and the second edge are located opposite to each other.
  • the third edge is located on a side away from the second edge outside the first edge, and the fourth edge is located on a side outside the second edge away from the first edge.
  • the sum of the distance between the third edge and the first edge and the distance between the fourth edge and the second edge is greater than or equal to 6 ⁇ m.
  • the distance between the third edge and the first edge is equal to the distance between the fourth edge and the second edge.
  • the ratio of the width of the bottom surface of the corresponding portion of the light shielding pattern on the side close to the second substrate to the width of the bottom surface of the at least one signal line is 1 ⁇ 2.5.
  • L is the distance between the bottom surface of the at least one signal line and the bottom surface of the corresponding part of the light-shielding pattern on the side close to the second substrate
  • is the reflective side surface and the bottom surface of the at least one signal line.
  • the slope angle; ⁇ is the included angle between the light incident on the reflective side surface of the at least one signal line and the bottom surface of the signal line.
  • the material of the plurality of signal lines includes metal.
  • the plurality of signal lines include gate lines and data lines.
  • the extension direction of the gate lines intersects with the extension direction of the data lines.
  • the display area includes a plurality of pixel areas; the first electrode is located in each pixel area.
  • the liquid crystal cell further includes a thin film transistor disposed on the first substrate and located in each pixel region. The thin film transistor is closer to the first substrate than the first electrode.
  • the thin film transistor includes a gate electrode, an active layer, a source electrode and a drain electrode. The gate electrode of the thin film transistor is coupled to the gate line, the source electrode of the thin film transistor is coupled to the data line, and the drain electrode of the thin film transistor is coupled to the first electrode.
  • the orthographic projection of the light shielding pattern on the first substrate also covers the thin film transistor.
  • the plurality of signal lines further include power lines.
  • the power lines and the data lines extend in the same direction and are arranged at intervals; the power lines and the data lines have the same material.
  • the liquid crystal cell further includes a first conductive pattern, a second conductive pattern and a third conductive pattern.
  • the first conductive pattern is disposed on the same layer as the first electrode.
  • the second conductive pattern is disposed on the same layer as the data line.
  • the third conductive pattern is disposed on the same layer as the gate line.
  • the first conductive pattern is coupled with the power line and the third conductive pattern.
  • the second conductive pattern is coupled to the drain of the thin film transistor.
  • the orthographic projection of the third conductive pattern on the first substrate overlaps the orthographic projection of the second conductive pattern on the first substrate.
  • the orthographic projection of the light shielding pattern on the first substrate covers the orthographic projection of the second conductive pattern on the first substrate and the third conductive pattern on the Orthographic projection on the first substrate.
  • the first conductive pattern and the gate line extend in the same direction.
  • the first conductive pattern includes an unshielded portion located between two adjacent first electrodes, and the unshielded portion is connected to the second conductive pattern and the first conductive pattern on the first substrate.
  • the orthographic projection does not overlap; the orthographic projection of the unshielded portion on the second substrate does not overlap with the orthographic projection of the shading pattern on the second substrate.
  • the second electrode is located on the second substrate, and the second electrode is close to the first substrate relative to the light shielding pattern.
  • the second electrode includes a second electrode body and a plurality of openings disposed on the second electrode body.
  • the plurality of openings include at least one of a first opening, a second opening, and a third opening.
  • the orthographic projection of the first opening on the first substrate coincides or substantially coincides with the orthographic projection of the thin film transistor on the first substrate.
  • the plurality of signal lines include gate lines and data lines
  • the orthographic projection of the second opening on the first substrate is different from the orthographic projection of the data lines on the first substrate. overlap.
  • the orthographic projection of the third opening on the first substrate overlaps the orthographic projection of the gate line on the first substrate.
  • the orthographic projection of at least one of the plurality of openings on the second substrate does not overlap with the orthographic projection of the light shielding pattern on the second substrate.
  • the liquid crystal cell further includes a plurality of spacers.
  • the plurality of spacers are disposed on the second substrate; the plurality of spacers are farther from the second substrate than the light shielding pattern.
  • the orthographic projection of a spacer on the first substrate overlaps the orthographic projection of the first conductive pattern on the first substrate .
  • the orthographic projection of the plurality of spacers on the second substrate does not overlap with the orthographic projection of the light shielding pattern on the second substrate.
  • the light source includes a first color light emitting device, a second color light emitting device, and a third color light emitting device.
  • the light source is configured such that the first color light emitting device, the second color light emitting device and the third color light emitting device sequentially and periodically emit light of corresponding colors in response to the pulse control signal.
  • a method for preparing a transparent display device includes: forming a plurality of signal lines on a first substrate and in a display area; forming a light-shielding pattern on a second substrate; forming a first electrode on the first substrate, and forming a first electrode on the first substrate; A second electrode is formed on a substrate or on the second substrate; a liquid crystal layer is formed between the first substrate and the second substrate to obtain a liquid crystal cell; and a side surface of the liquid crystal cell is arranged The position of the light source is opposite to obtain the transparent display device.
  • At least one signal line of the plurality of signal lines has a bottom surface close to the first substrate and a reflective side surface connected to the bottom surface and facing the light source; a slope formed by the reflective side surface and the bottom surface The angle is an acute angle; the shading pattern is located on the reflection path after the light emitted by the light source irradiates the reflective side surface.
  • the liquid crystal layer includes polymer molecules and liquid crystal molecules; the liquid crystal layer is configured to cause total reflection of light incident on the liquid crystal layer under the control of the electric field provided by the first electrode and the second electrode or scattering.
  • FIG. 1 is a structural diagram of a transparent display device according to the related art
  • FIG. 2 is a structural diagram of a transparent display device according to some embodiments of the present disclosure.
  • Fig. 3 is a cross-sectional view of the transparent display device in Fig. 2 along B-B' direction;
  • FIG. 4 is another structural diagram of a transparent display device according to some embodiments of the present disclosure.
  • FIG. 5 is another structural diagram of a transparent display device according to some embodiments of the present disclosure.
  • FIG. 6 is another structural diagram of a transparent display device according to some embodiments of the present disclosure.
  • FIG. 7 is another structural diagram of a transparent display device according to some embodiments of the present disclosure.
  • FIG. 8 is another structural diagram of a transparent display device according to some embodiments of the present disclosure.
  • FIG. 9 is another structural diagram of a transparent display device according to some embodiments of the present disclosure.
  • FIG. 10 is a structural diagram of a liquid crystal cell according to some embodiments of the present disclosure.
  • 11A is a top view of a first pattern layer according to some embodiments of the present disclosure.
  • 11B is a top view of a second pattern layer according to some embodiments of the present disclosure.
  • 11C is a top view of a third pattern layer according to some embodiments of the present disclosure.
  • Figure 11D is a cross-sectional view of the liquid crystal cell in Figure 10 along the C-C' direction;
  • FIG. 12A is another structural diagram of a liquid crystal cell according to some embodiments of the present disclosure.
  • FIG. 12B is a top view of a shading pattern according to some embodiments of the present disclosure.
  • FIG. 13 is another structural diagram of a liquid crystal cell according to some embodiments of the present disclosure.
  • Figure 14 is a cross-sectional view of the liquid crystal cell in Figure 13 along the D-D' direction;
  • Figure 15 is a cross-sectional view of the liquid crystal cell in Figure 13 along the E-E' direction;
  • 16 is a structural diagram of a second electrode according to some embodiments of the present disclosure.
  • FIG. 17 is another structural diagram of a liquid crystal cell according to some embodiments of the present disclosure.
  • FIG. 19 is another structural diagram of a transparent display device according to some embodiments of the present disclosure.
  • Figure 20 is a cross-sectional view of the transparent display device in Figure 19 along the G-G' direction;
  • 21 is another structural diagram of a transparent display device according to some embodiments of the present disclosure.
  • FIG. 22 is a structural diagram of a light source according to some embodiments of the present disclosure.
  • FIG. 23 is a flow chart of a preparation of a transparent display device according to some embodiments of the present disclosure.
  • FIG. 24 is a diagram of a manufacturing process of the second electrode according to some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes of the drawings due to, for example, manufacturing techniques and/or tolerances, are contemplated.
  • example embodiments should not be construed as limited to the shapes of the regions shown herein, but to include deviations in shapes due, for example, to manufacturing. For example, an etched area shown as a rectangle will typically have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • the transparent display device When the transparent display device is in a working state, it can display an image (also called an image or a picture), so that the viewer can see the image displayed by the transparent display device and the real scene on the side of the transparent display device away from the viewer (for example, a pendulum). Objects placed there, passers-by, etc.); when the transparent display device is in a non-working state, it is in a transparent or translucent state, like a piece of glass, the viewer can see the real scene on the other side through the transparent display device.
  • an image also called an image or a picture
  • the transparent display device 1 ′ includes a liquid crystal cell 10 ′ and a light source 20 ′.
  • the light source 20 ′ is located on the side of the liquid crystal cell 10 ′, and light enters from the side of the liquid crystal cell 10 ′.
  • some film layers (eg metal wiring layers, etc.) in the liquid crystal cell 10 ′ may reflect or scatter the light to generate stray light.
  • the stray light When the stray light is directed to the light-emitting surface of the liquid crystal cell 10' and exits from the liquid crystal cell 10', when the user watches the transparent display device 1', the stray light will enter the human eye, resulting in a decrease in display contrast. affect the viewing effect of users.
  • Embodiments of the present disclosure provide a transparent display device 1 , as shown in FIGS. 2 and 3 , the transparent display device 1 includes a liquid crystal cell 10 and a light source 20 .
  • the light source 20 is disposed opposite to the side surface of the liquid crystal cell 10 .
  • the thickness of the light source 20 is greater than or equal to the thickness of the liquid crystal cell 10 .
  • the liquid crystal cell 10 has a light emitting surface and a bottom surface, the light emitting surface and the bottom surface are opposite along the thickness direction of the liquid crystal cell 10 , and the side surface of the liquid crystal cell 10 is located between the light emitting surface and the bottom surface. In the direction perpendicular to the thickness of the liquid crystal cell 10 , the light source 20 is positioned opposite to the side surface of the liquid crystal cell 10 .
  • the liquid crystal cell 10 has a display area (Active Area, AA).
  • the liquid crystal cell 10 includes a first substrate 101 and a second substrate 201 .
  • the first substrate 101 and the second substrate 201 are disposed opposite to each other.
  • the liquid crystal cell 10 further includes a first electrode 130 and a second electrode 220 .
  • the first electrode 130 is a pixel electrode
  • the second electrode 220 is a common electrode.
  • the first electrode 130 and the second electrode 220 may both be located on the first substrate 101, and the first electrode 130 and the second electrode 220 may be located on the same layer or on different layers.
  • the array substrate of the bottom 101, the first electrodes 130 and the second electrodes 220 includes the opposite substrate of the second substrate 201; or, the first electrodes 130 are located on the first substrate 101, and the second electrodes 220 are located on the second substrate On 201 , at this time, an array substrate including the first substrate 101 and the first electrode 130 , and an opposite substrate including the second substrate 201 and the second electrode 220 can be obtained.
  • the first electrode 130 and the second electrode 220 are both transparent.
  • the materials of the first electrode 130 and the second electrode 220 may both be transparent conductive materials, such as ITO (indium tin oxide).
  • the liquid crystal cell 10 further includes a liquid crystal layer 300 .
  • the liquid crystal layer 300 is sandwiched between the first substrate 101 and the second substrate 201 . That is, the liquid crystal layer 300 is located between the oppositely disposed array substrate and the opposite substrate.
  • the liquid crystal layer 300 includes liquid crystal molecules 301 and polymer molecules 302 .
  • the liquid crystal layer 300 may adopt a polymer stabilized liquid crystal (Polymer Stabilized Liquid Crystal, PSLC), or a polymer-dispersed Liquid Crystal (PDLC).
  • PSLC Polymer Stabilized Liquid Crystal
  • PDLC polymer-dispersed Liquid Crystal
  • the liquid crystal layer 300 is configured to totally reflect or scatter the light incident on the liquid crystal layer 300 under the control of the electric field provided by the first electrode 130 and the second electrode 220 .
  • the liquid crystal cell 10 when the liquid crystal cell 10 is not displaying, an electric field is not formed between the first electrode 130 and the second electrode 220, and the refractive index of the liquid crystal molecules 301 is the same as the refractive index of the polymer molecules 302. At this time, The light from the light source 20 is totally reflected and propagated in the liquid crystal cell 10 , and will not be emitted from the side of the second substrate 201 away from the first substrate 101 , the transparent display device 1 is transparent, and the AA area is transparent. Exemplarily, when the AA region is in a transparent state, the transmittance of the transparent display device 1 may be above 65%.
  • the transparent display device 1 When the transparent display device 1 performs display, an electric signal is applied to the first electrode 130 and the second electrode 220 in the area to be displayed, respectively, and an electric field is formed, and the refractive index of the liquid crystal molecules 301 changes in the electric field range. , so that the light incident on the liquid crystal molecules is scattered, and the scattered light is emitted from the side of the second substrate 201 away from the first substrate 101 , so that the transparent display device 1 realizes display.
  • the area to be displayed is in a scattering state, and no electric field is formed between the first electrode 130 and the second electrode 220 in the remaining areas not to be displayed, so that the light incident in the area not to be displayed is totally reflected, At this time, all areas that are not displayed are in a transparent state.
  • FIG. 4 is only a schematic diagram, and does not show the specific structure of each film layer in the liquid crystal cell 10, nor the distribution of the liquid crystal molecules 301 and the polymer molecules 302 in the liquid crystal layer 300. In practical applications, it can be Design as needed.
  • the liquid crystal cell 10 further includes a plurality of signal lines 110 disposed on the first substrate 101 and located in the AA area.
  • at least one signal line 110 of the plurality of signal lines 110 has a bottom surface 110A and a light-reflecting side surface 110B.
  • the bottom surface 110A is the surface of the at least one signal line 110 close to the first substrate 101 .
  • the reflective side surface 110B is connected to the bottom surface 110A, and the reflective side surface 110B faces the light source 20 .
  • the slope angle ⁇ formed by the reflective side surface 110B and the bottom surface 110A is an acute angle.
  • the orthographic projection of the reflective side 110B on the plane where the light-emitting surface of the light source 20 is located has a certain area, that is, the shape of the orthographic projection is a figure with a certain area, not a line segment.
  • the liquid crystal cell 10 further includes a light shielding pattern 210 disposed on the second substrate 201 .
  • the shading pattern 210 is located on the reflection path after the light emitted by the light source 20 is irradiated on the reflective side surface 100B.
  • FIG. 3 only shows the first substrate 101 , the signal line 110 , the second substrate 201 and the shading pattern 210 , and does not show other film layer structures in the liquid crystal cell 10 .
  • the first substrate 101 and the second substrate 201 may include rigid substrates such as glass (or referred to as rigid substrates), or flexible substrates such as PI (Polyimide, polyimide), and may also include Films such as buffer layers placed on rigid or flexible substrates.
  • the light-shielding pattern 210 may be a black matrix (BM), and the material of the light-shielding pattern 210 may include resin.
  • the light transmittance of the light-shielding pattern 210 is relatively low, for example, the transmittance of the light-shielding pattern 210 with a length of 1 ⁇ m is 0.0001.
  • the light emitting surface of the light source 20 is close to the side of the liquid crystal cell 10 , and the light emitted by the light source 20 enters the liquid crystal cell 10 and propagates along the thickness direction perpendicular to the liquid crystal cell 10 .
  • the reflective side surface 110B is close to the light emitting surface of the light source 20, and the light emitted by the light source 20 will be irradiated on the reflective side surface 110B.
  • the light emitted by the light source 20 is reflected on the reflective side surface 110B of the signal line 110. Since the slope angle ⁇ formed by the reflective side surface 110B and the bottom surface 110A is an acute angle, the light reflected on the reflective side surface 110B will be directed toward the second Substrate 201 .
  • the shading pattern 210 since the shading pattern 210 is located on the reflection path after the light emitted by the light source 20 is irradiated on the reflective side surface 100B, the shading pattern 210 can block the light reflected on the reflective side surface 110B to avoid the reflection of the light.
  • the output from the liquid crystal cell 10 affects the display effect, thereby improving the contrast ratio of the transparent display device 1 and improving the user's viewing effect.
  • the reflective side surface 110B in at least one signal line 110 in the liquid crystal cell 10 faces the light source 20 , so that the light emitted by the light source 20 is irradiated on the reflective side surface 110B in the signal line 110 . Reflection occurs, and the slope angle ⁇ formed by the reflective side surface 110B and the bottom surface 110A is an acute angle, so that the light reflected on the reflective side surface 110B will be directed to the second substrate 201 .
  • the shading pattern 210 Since the shading pattern 210 is located on the reflection path after the light emitted by the light source 20 irradiates the reflective side surface 100B, the shading pattern 210 can block the light reflected on the reflective side surface 110B, so as to avoid the reflected light from being emitted from the liquid crystal cell 10 However, the display effect is affected, thereby improving the contrast ratio of the transparent display device 1 and improving the user's viewing effect.
  • some of the signal lines 110 of the plurality of signal lines 110 have a first extension direction F1 .
  • the normal direction (such as the Y direction in FIG. 2 ) of the side surface of the liquid crystal cell 10 where the first extending direction F1 is opposite to the light source 20 is perpendicular to each other (as shown in FIG. 5 ), or intersects and the included angle ⁇ is an acute angle (as shown in Figure 5).
  • the orthographic projection of the shading pattern 210 on the first substrate 101 covers the orthographic projection of the signal line 1101 having the first extending direction F1 on the first substrate 101 .
  • the signal line 110 with the first extension direction F1 (the signal line can be regarded as the first signal line) is along the width direction (that is, in the plane where the first substrate 101 is located, along the direction perpendicular to the first extension direction F1 ).
  • the light source 20 may include at least one light bar.
  • the transparent display device 1 may include at least one light source 20 , and one light source 20 is disposed opposite to one side surface of the liquid crystal cell 10 .
  • the transparent display device 1 includes a light source 20 , and the light source 20 is located on one side of the liquid crystal cell 10 .
  • the transparent display device 1 includes two light sources 20 , the two light sources 20 are respectively located on two sides of the liquid crystal cell 20 connected to each other, and the two light sources 20 are connected to each other to form an integral structure.
  • the normal direction of the light emitting surface of the light source 20 is substantially parallel to the normal direction of the side surface of the liquid crystal cell 10 disposed opposite to the light source 20, the propagation direction of the light emitted by the light source 20 is opposite to the light source 20.
  • the normal direction of the side surface of the liquid crystal cell 10 is substantially parallel, and the propagation direction of the light emitted by the light source 20 is perpendicular to or intersects with the first extending direction F1.
  • the orthographic projection of the shading pattern 210 on the first substrate 101 covers the orthographic projection of the signal line 110 having the first extension direction F1 on the first substrate 101, the light emitted by the light source 20 is irradiated to the After the reflective side surface 110B of the signal line 110 in the first extending direction F1, the light reflected on the reflective side surface 110B will be blocked by the shading pattern 210, and will not be emitted from the liquid crystal cell 10, so as to prevent the reflected light from affecting the user's viewing effect , thereby improving the display effect of the transparent display device 1 .
  • part of the signal lines 110 of the plurality of signal lines 110 has a second extension direction F2 (the part of the signal lines can be regarded as the second signal line).
  • the second extending direction F2 is parallel or substantially parallel to the normal direction (eg, the Y direction in FIG. 2 ) of the side surface of the liquid crystal cell 10 opposite to the light source 20 .
  • the normal direction of the light emitting surface of the light source 20 is substantially parallel to the normal direction of the side surface of the liquid crystal cell 10 disposed opposite to the light source 20, the propagation direction of the light emitted by the light source 20 is opposite to the light source 20.
  • the normal direction of the side surface of the liquid crystal cell 10 is parallel or substantially parallel, and the propagation direction of the light emitted by the light source 20 is parallel or substantially parallel to the second extending direction F2.
  • the orthographic projection of the light-shielding pattern 210 on the first substrate 101 covers the orthographic projection of the signal line 110 having the second extending direction F2 on the first substrate 101 .
  • the signal line 110 having the second extending direction F2 can reflect light, the light emitted by the light source 20 will be reflected when irradiated on the signal line 110 , and the reflected light will be directed to the second substrate 201 , and exits from the liquid crystal cell 10 .
  • the light shielding pattern 210 can shield the light reflected on the signal line 110 having the second extending direction F2, so as to avoid the problem of lowering the display contrast due to the reflected light exiting.
  • the orthographic projection of the light shielding pattern 210 on the first substrate 101 does not overlap with the orthographic projection of the signal line 110 having the second extending direction F2 on the first substrate 101 .
  • the propagation direction of the light emitted by the light source 20 is parallel or substantially parallel to the second extending direction F2
  • the area where the light emitted by the light source 20 irradiates the signal line 110 having the second extending direction F2 is small, and The signal line 110 with the second extension direction F2 has less or no reflected light.
  • the orthographic projection of the light shielding pattern 210 on the first substrate 101 does not cover the signal line with the second extension direction F2 110 , the influence of the shading pattern 210 with low transmittance on the aperture ratio and transmittance of the transparent display device 1 can be avoided, thereby increasing the aperture ratio of the transparent display device 1 and improving the transmittance and transparency of the transparent display device 1 .
  • the orthographic projection of the light shielding pattern 210 on the first substrate 101 covers the orthographic projection of the signal line 110 having the first extension direction F1 on the first substrate 101
  • the aperture ratio of the transparent display device 1 can be increased by 5.64%.
  • the orthographic projection of the shading pattern 210 on the first substrate 101 overlaps with one of the signal lines 110
  • the other signal line 110 is in the two
  • the position where the signal line 110 intersects will inevitably overlap with the orthographic projection of the light-shielding pattern 210 on the first substrate 101
  • the embodiment of the present disclosure approximately considers that another signal line 110 and the light-shielding pattern 210 are located in the first substrate 101 .
  • the orthographic projections on the substrate 101 do not overlap. For example, as shown in FIG.
  • the orthographic projection of the signal line 110 with the first extension direction F1 on the first substrate 101 is the orthographic projection of the signal line 110 with the second extension direction F2 on the first substrate 101
  • the orthographic projection of the light-shielding pattern 210 on the first substrate 101 covers the orthographic projection of the signal line 110 having the first extension direction F1 on the first substrate 101
  • the light-shielding pattern 210 is on the first substrate 101.
  • the orthographic projection on the first substrate 101 will inevitably cover the orthographic projection of the signal line 110 with the second extension direction F2 on the first substrate 101 and the signal line 110 with the first extension direction F1 in the first substrate 101.
  • the orthographic projection on the substrate 101 has overlapping parts. At this time, it is considered that the orthographic projection of the light-shielding pattern 210 on the first substrate 101 and the signal line 110 having the second extension direction F2 on the first substrate 101 Orthographic projections do not overlap.
  • the material of the plurality of signal lines 110 includes metal.
  • metal For example, aluminum (Al), molybdenum (Mo), copper (Cu), silver (Ag), or the like.
  • the metal tool can reflect light, and the light emitted by the light source 20 will be reflected on the signal line 110, and the reflected light can be blocked by the shading pattern 210 covering the signal line 110, so as to avoid the reflected light from the liquid crystal. Box 10 exits.
  • the orthographic projection of at least one signal line 110 of the plurality of signal lines 110 on the first substrate 101 is covered by the orthographic projection of the light shielding pattern 210 on the first substrate 101 .
  • the width W1 of the orthographic projection of the at least one signal line 110 on the first substrate 101 is less than or equal to the width W2 of the orthographic projection of the corresponding part of the light shielding pattern 210 on the first substrate 101, that is, W1 ⁇ W2.
  • the corresponding portion of the light shielding pattern 210 is the portion of the light shielding pattern 210 that covers at least one signal line 110 by orthographic projection on the first substrate 101 .
  • the shading area of the shading pattern 210 to the reflected light of the signal line 110 is greater than or equal to the area where the signal line 110 is located, so that the reflected light can be more comprehensively blocked, and the shading effect of the shading pattern 210 on the reflected light is improved. , thereby improving the display effect of the transparent display device 1 .
  • the orthographic projection of the at least one signal line 110 on the first substrate 101 has a first edge L1 and a second edge L2 .
  • the first edge L1 and the second edge In the width direction of the at least one signal line 110 (the Y direction in FIG. 8 , or, in the plane where the first substrate 101 is located, perpendicular to the extending direction of the at least one signal line 110 ), the first edge L1 and the second edge The L2 position is relative.
  • the orthographic projection of the corresponding portion in the light shielding pattern 210 on the first substrate 101 has a third edge L3 and a fourth edge L4.
  • the third edge L3 is located on the side of the first edge L1 away from the second edge L2, and the fourth edge L4 is located on the side of the second edge L2 away from the first edge L1.
  • the first edge L1 and the third edge L3 extend in the same direction (for example, the first edge L1 and the third edge L3 are parallel), and the second edge L2 and the fourth edge L4 extend in the same direction (for example, the second edge L2 and the fourth edge L4 parallel).
  • the width W1 of the orthographic projection of the at least one signal line 110 on the first substrate 101 is less than or equal to the width W2 of the orthographic projection of the corresponding part of the light shielding pattern 210 on the first substrate 101 , that is, W1 ⁇ w2.
  • the first edge L1 and the third edge L3 extend in the same direction
  • the second edge L2 and the fourth edge L4 extend in the same direction.
  • the sum of the distance between the third edge L3 and the first edge L1 (ie, the first distance Z1) and the distance between the fourth edge L4 and the second edge L2 (ie, the second distance Z2) is greater than or equal to 6 ⁇ m, that is, the first
  • the sum of the first spacing Z1 and the second spacing Z2 is greater than or equal to 6 ⁇ m, and (Z1+Z2) ⁇ 6 ⁇ m.
  • the sum of the first spacing Z1 and the second spacing Z2 is 6 ⁇ m ⁇ 12 ⁇ m, for example, the sum of the first spacing Z1 and the second spacing Z2 is 6.5 ⁇ m, 8 ⁇ m or 10 ⁇ m.
  • the width of the portion covering the signal line 110 in the orthographic projection of the light shielding pattern 210 on the first substrate 101 is greater than the width of the signal line 110 .
  • the opposite sides of the signal line 110 are covered by the light shielding pattern 210, so that the outer side of the first edge L1 of the signal line 110 and the second edge L2 of the signal line 110 are irradiated.
  • the reflected light on the outside can be blocked by the shading pattern 210, which increases the shielding range of the reflected light from the signal line 110 by the shading pattern 210, so that the reflected light can be more comprehensively blocked, which improves the shading pattern 210 to the reflected light.
  • the shading effect is improved, thereby improving the display effect of the transparent display device 1 .
  • the first spacing Z1 and the second spacing Z2 are both greater than 3 ⁇ m.
  • both the first center line M1 and the second center line M2 are the same as the extension direction of the signal line 110 (X direction in FIG. 8 ); in the plane where the first substrate 101 is located, along the extension direction perpendicular to the signal line 110 (Y direction in FIG.
  • the first center line M1 divides the signal line 110 into equal parts, so that the distance from the first edge L1 to the first center line M1 is equal to the distance from the second edge L2 to the The distance between the first center line M1 and the second center line M2 equally divide the portion of the shading pattern 210 that covers the signal line 110, so that the distance from the third edge L3 to the second center line M2 is equal to the distance from the fourth edge L4 to the second center line M2. distance.
  • the shielding regions on opposite sides of the signal line 110 by the light shielding pattern 210 are the same size.
  • the shading pattern 210 shields the reflected light to the same degree, which avoids the shading of the reflected light from the signal line 110 by the shading pattern 210
  • the non-uniformity results in a difference in contrast between opposite sides of the signal line 110 perpendicular to the extending direction thereof, which affects the display effect of the transparent display device 1 .
  • D 1.3d ⁇ 2d.
  • the reflected light is directed toward the second substrate 201, and can be approximately completely blocked by the light-shielding pattern 210, so that the reflected light will not be transmitted from the liquid crystal cell. 10
  • the shading effect of the shading pattern 210 on the reflected light is improved, and the display effect of the transparent display device 1 is improved.
  • FIG. 9 only shows the first substrate 101 , the signal line 110 , the second substrate 201 and the light shielding pattern 210 , and does not show other film layer structures in the liquid crystal cell 10 .
  • the width d of the bottom surface 110A of at least one signal line 110 and the orthographic projection of the corresponding portion of the light shielding pattern 210 on the first substrate 101 are close to the bottom surface of the second substrate 201 side
  • L is the distance between the bottom surface 110A of the at least one signal line 110 and the bottom surface 210A of the corresponding portion of the light shielding pattern 210 on the side close to the second substrate 201 .
  • is the slope angle formed by the reflective side surface 110B of the at least one signal line 110 and the bottom surface 110A.
  • is the angle between the light incident on the reflective side surface 110B of the at least one signal line 110 and the bottom surface 110A of the signal line 110 .
  • the width D of the bottom surface 210A of the corresponding portion of the light shielding pattern 210 on the side close to the second substrate 201 is greater than the width d of the bottom surface 110A of the signal line 110 .
  • the edge of the orthographic projection of the signal line 110 on the first substrate 101 is at the same position as the portion of the light shielding pattern 210 covering the signal line 110 .
  • the distance between the edges of the orthographic projection on the first substrate 101 is equal to the other side of the opposite sides of the signal line 110 .
  • the pitch of the edge of the orthographic projection of the portion of the light shielding pattern 210 on the first substrate 101 is equal to the other side of the opposite sides of the signal line 110 .
  • the slope angle ⁇ , the angle ⁇ between the light incident on the reflective side 110B of the signal line 110 and the bottom surface 110A of the signal line 110 , and the width d of the bottom surface 110A of the signal line 110, for the light shielding pattern 210 on the first substrate 101 The width D of the bottom surface 210A on the side of the orthographic projection covering the signal line 110 close to the second substrate 201 is adjusted to ensure that the light shielding pattern 210 can effectively shield the light reflected by the signal line 110 .
  • the width of the corresponding portion of the shading pattern 210 (the portion of the shading pattern 210 where the orthographic projection on the first substrate 101 covers the signal line 110 ) is close to the width of the bottom surface 210A on the side of the second substrate 201 , and The distance between the bottom surface 110A of the signal line 110 and the bottom surface 210A of the light shielding pattern 210 corresponding to the signal line 110 on the side close to the second substrate 201 , the slope angle formed by the reflective side 110B of the signal line 110 and the bottom surface 110A, the incident signal The angle between the reflective side surface 110B of the line 110 and the bottom surface 110A of the signal line 110 and the width of the bottom surface 110A of the signal line 110 are related to the slope angle of the shading pattern 210 (that is, the angle between the inclined side surface and the bottom surface of the shading pattern 210 ) It doesn't matter.
  • the thickness of the light shielding pattern 210 is 0.8 ⁇ m ⁇ 2 ⁇ m, for example, the thickness of the light shielding pattern 210 may be 1.1 ⁇ m, 1.5 ⁇ m or 1.8 ⁇ m. In this case, it can be avoided that the thickness of the light-shielding pattern 210 is too large and the thickness of the transparent display device 1 is too large, so that the transparent display device 1 can be made lighter and thinner.
  • the AA area includes a plurality of pixel areas P.
  • the liquid crystal cell 10 further includes a thin film transistor (Thin Film Transistor, TFT) disposed on the first substrate 101 and located in each pixel region P.
  • TFT Thin Film Transistor
  • the arrangement manner of the plurality of pixel regions P may be set according to the actual situation, which is not limited in the present disclosure.
  • the plurality of pixel areas P in FIG. 10 are arranged in an array form, wherein the pixel areas P arranged in a row along the X direction in FIG. 10 are called pixel areas in the same row, and the pixel areas P arranged in a row along the Y direction in FIG. 10 are called pixel areas in the same row. It is called the same column pixel area.
  • the orthographic projection of the light shielding pattern 210 on the first substrate 101 also covers the TFT.
  • the TFT includes a gate electrode G, an active layer ACT, a source electrode S and a drain electrode D.
  • the liquid crystal cell 10 further includes a gate insulating layer GI disposed between the gate electrode G and the active layer ACT.
  • the gate G is located on the side of the active layer ACT close to the first substrate 101, and the source S and the drain D are located on the side of the active layer ACT away from the first substrate 101.
  • the TFT It is a bottom gate TFT.
  • the material of the gate G, the source S and the drain D includes a metal.
  • the gate G, the source S and the drain D are all reflective.
  • the light emitted by the light source 20 is irradiated on the TFT, for example, on at least one of the gate G, the source S and the drain D, and will be reflected, and the reflected light will be directed to the second substrate 201 .
  • the orthographic projection of the light shielding pattern 210 on the first substrate 101 also covers the TFT, which can shield the light reflected by the TFT and directed toward the second substrate 201, so as to prevent the reflected light from exiting from the liquid crystal cell 10, It avoids affecting the viewing effect of the user, thereby improving the display effect of the transparent display device 1 .
  • the plurality of signal lines 110 include gate lines GL and data lines DL.
  • the extension direction of the gate lines GL eg, the X direction in FIG. 10
  • intersects with the extension direction of the data lines DL eg, the Y direction in FIG. 10 ).
  • the TFT is coupled to the gate line GL and the data line DL.
  • the gate line GL is located between two adjacent rows of pixel regions, and the TFTs in one row of pixel regions P are coupled to one gate line GL; the data line DL is located adjacent to Between the two columns of pixel regions, the TFTs in one column of pixel regions P are coupled to one data line DL.
  • the gate line GL and the gate electrode G of the TFT are made of the same material, and the two are arranged in the same layer, and can be formed simultaneously in the process (for example, formed by patterning the same film layer), thereby saving the process.
  • the gate line GL is coupled to the gate G of the TFT.
  • a portion of the gate line GL may serve as the gate G of the TFT.
  • the material of the data line DL is the same as that of the source electrode S and the drain electrode D of the TFT, and the two are arranged in the same layer, and can be formed simultaneously in the process, thereby saving the process.
  • the data line DL is coupled to the source electrode S of the TFT.
  • a part of the data lines DL may serve as the source electrodes S.
  • the orthographic projections of the gate lines GL and the data lines DL on the first substrate 101 are both covered by the orthographic projections of the light shielding patterns 210 on the first substrate 101 .
  • the light-shielding pattern 210 can shield the reflected light from the grid lines GL and the data lines DL to prevent the reflected light from exiting from the liquid crystal cell 10 .
  • the orthographic projection of one of the gate line GL and the data line DL on the first substrate 101 is covered by the orthographic projection of the light shielding pattern 210 on the first substrate 101 .
  • one of the gate lines GL and the data lines DL covered by the orthographic projection of the light shielding pattern 210 on the first substrate 101, the extension direction of the orthographic projection on the first substrate 101 and the light source 20 The normal directions of the side surfaces of the liquid crystal cells 10 disposed opposite to each other are perpendicular to each other, or intersect with each other and the included angle is an acute angle. In this way, the problem of affecting the transmittance of the transparent display device 1 due to the low transmittance of the light shielding pattern 210 to light can be avoided.
  • the The mask for forming the gate lines GL is patterned with a light-shielding film to be formed with a light-shielding pattern.
  • the orthographic projection of the data line DL on the first substrate 101 is covered by the orthographic projection of the light-shielding pattern 210 on the first substrate 101, in the process of forming the light-shielding pattern 210 in the process, a method for forming the data
  • the mask of the line DL is patterned with a light-shielding film to be formed with a light-shielding pattern.
  • the liquid crystal cell 10 further includes a barrier layer 120 disposed on the first substrate 101 .
  • the blocking layer 120 is located between the pattern layer where the active layer ACT is located and the pattern layer where the source electrode S and the drain electrode D are located.
  • the barrier layer 120 is provided with a first via hole 121 and a second via hole 122 .
  • the first via hole 121 and the second via hole 122 pass through the barrier layer 120 .
  • the source electrode S is coupled to the active layer ACT through the first via hole 121
  • the drain electrode D is coupled to the active layer ACT through the second via hole 122 .
  • the blocking layer 120 covers at least the channel region of the TFT.
  • the channel region of the TFT refers to a region where a conductive channel can be formed in the active layer ACT between the source electrode S and the drain electrode D of the TFT under the action of an applied voltage.
  • the blocking layer 120 plays a protective role on the active layer ACT, which can avoid the subsequent film layer preparation process, for example, the patterning process of the source S and the drain D.
  • the etching solution has an influence on the active layer ACT and improves the stability of the active layer ACT.
  • the plurality of signal lines 110 further includes a power line 111 .
  • the power line 111 is coupled to the second electrode 220 .
  • the power line 111 is configured to transmit a common electrical signal.
  • the extension direction of the power line 111 is the same as the extension direction of the data line DL, for example, both extend along the Y direction in FIG. 10 .
  • the power line 111 and the data line DL are made of the same material, and they are arranged in the same layer, and can be formed simultaneously in the process, thereby saving the process.
  • the power line 111 and the data line DL are arranged at intervals, and the power line 111 and the data line DL are insulated from each other to avoid affecting the respective signal transmissions of the power line 111 and the data line DL.
  • the power supply line 111 may be located between two adjacent columns of pixel regions.
  • the power supply line 111 and the data line DL are disposed between two adjacent columns of pixel regions, the power supply line 111 is farther from the TFT coupled to the data line DL than the data line DL.
  • the orthographic projection of the power line 111 on the first substrate 101 is covered by the orthographic projection of the shading pattern 210 on the first substrate 101, so that light reflected on the power line 111 can be prevented from exiting the liquid crystal cell 10. .
  • the first electrode 130 is located on the first substrate 101 and located in each pixel region P. As shown in FIG. That is, one pixel region P is provided with one first electrode 130 . Wherein, the TFT is closer to the first substrate 101 than the first electrode 130 . In the pixel region P, the drain D of the TFT is coupled to the first electrode 130 (ie, the pixel electrode).
  • the liquid crystal cell 10 further includes a passivation layer PVX disposed on the side of the source S and the drain D of the TFT away from the first substrate 101 .
  • the passivation layer PVX is located between the first electrode 130 and the source electrode S and the drain electrode D of the TFT.
  • the first electrode 130 may be coupled with the drain electrode D of the TFT through a via hole disposed on the passivation layer PVX.
  • the liquid crystal cell 10 further includes a first conductive pattern 141 , a second conductive pattern 142 and a third conductive pattern 143 .
  • the liquid crystal cell includes a first pattern layer.
  • the first pattern layer 11 includes a first conductive pattern 141 and a first electrode 130 .
  • the first conductive pattern 141 is transparent, the light emitted by the light source 20 will not be reflected on the first conductive pattern 141. Therefore, the orthographic projection of the light shielding pattern 210 on the first substrate 101 will not cover the first conductive pattern 141.
  • the orthographic projection of the pattern 141 on the first substrate 101 can improve the transparency and aperture ratio of the transparent display device 1 .
  • the first conductive patterns 141 are located between two adjacent rows of pixel regions, and the first conductive patterns 141 are also located between two adjacent first electrodes 130 . Moreover, between two adjacent rows of pixel regions, the first conductive pattern 141 is farther from the TFT coupled to the gate line GL than the gate line GL.
  • the first conductive pattern 141 is coupled to the power line 111 .
  • the first conductive pattern 141 and the power supply line 111 cross each other, and the first conductive pattern 141 and the power supply line 111 are coupled through a via hole penetrating the pattern layer therebetween.
  • the extending direction of the first conductive pattern 141 is the same as that of the gate line GL.
  • the orthographic projection of the first conductive patterns 141 on the first substrate 101 is strip-shaped. Between two adjacent rows of pixel regions, two adjacent first conductive patterns 141 may be coupled to form an integrated structure. In this way, the voltage drop of each of the first conductive patterns 141 can be reduced, thereby improving the uniformity of the potential of each of the first conductive patterns 141 .
  • the material of the second conductive pattern 142 is the same as that of the data line DL, the two are arranged in the same layer, and can be formed simultaneously in the process, thereby saving the process.
  • the liquid crystal cell includes a second pattern layer, which is closer to the first substrate than the first pattern layer.
  • the second pattern layer 12 includes second conductive patterns 142 and data lines DL.
  • the second conductive pattern 142 is coupled to the drain D of the TFT. Since the drain D of the TFT is coupled to the first electrode 130 , the second conductive pattern 142 is coupled to the first electrode 130 .
  • the orthographic projection of the second conductive pattern 142 on the first substrate 101 is located on the adjacent two first electrodes 130 on the first substrate. Between the orthographic projections on the bottom 101, the second conductive pattern 142 is farther from the TFT coupled to the gate line GL than the gate line GL. A part of the second conductive pattern 142 may extend into the TFT to serve as the drain electrode D. At this time, the second conductive pattern 142 and the drain electrode D are in an integrated structure.
  • the material of the third conductive pattern 143 is the same as that of the gate line GL, and the two are arranged in the same layer, and can be formed simultaneously in the process, thereby saving the process.
  • the liquid crystal cell includes a third pattern layer, and the third pattern layer is closer to the first substrate than the second pattern layer.
  • the third pattern layer 13 includes a third conductive pattern 143 and gate lines GL.
  • the third conductive pattern 143 is located between two adjacent rows of pixel regions, and the orthographic projection of the third conductive pattern 143 on the first substrate 101 is located in the opposite direction.
  • the third conductive pattern 143 is farther from the TFT to which it is coupled than the gate line GL.
  • the third conductive pattern 143 is coupled to the first conductive pattern 141 . Since the first conductive pattern 141 is coupled to the power line 111 , the third conductive pattern 143 is coupled to the power line 111 .
  • the orthographic projection of the third conductive pattern 143 on the first substrate 101 overlaps with the orthographic projection of the second conductive pattern 142 on the first substrate 101 .
  • the third conductive pattern 143 and the second conductive pattern 142 and a film layer therebetween may form a storage capacitor to store the voltage on the data line DL .
  • the orthographic projection of the second conductive pattern 142 on the first substrate 101 overlaps with the orthographic projection of the first conductive pattern 141 on the first substrate 101, so that the second conductive pattern 142 and the first conductive pattern 141
  • a storage capacitor is also formed with the film layer between the two to store the voltage on the data line DL.
  • the thickness of the film layer (eg, the passivation layer PVX) between the two is relatively large, that is, the second conductive pattern 142 is far away from the first conductive pattern 141 , therefore, the second conductive pattern 142 and the first conductive pattern 142 are separated from each other.
  • the capacitance of the storage capacitor formed by the pattern 141 is smaller than the capacitance of the storage capacitor formed by the third conductive pattern 143 and the second conductive pattern 142 .
  • the liquid crystal cell 10 further includes a fourth conductive pattern 144 , and the fourth conductive pattern 144 and the second conductive pattern 142 are provided in the same layer and made of the same material.
  • the second pattern layer 12 further includes a fourth conductive pattern 144 .
  • the fourth conductive pattern 144 is located between two adjacent rows of pixel regions, and is also located between two adjacent first electrodes 130 .
  • the fourth conductive pattern 144 is farther from the TFT to which it is coupled than the gate line GL.
  • the row direction in which the pixel regions P are arranged eg, the X direction in FIG.
  • the fourth conductive pattern 144 is farther from the data line DL than the second conductive pattern 142 .
  • the orthographic projection of the fourth conductive pattern 144 on the first substrate 101 does not overlap with the orthographic projection of the second conductive pattern 142 on the first substrate 101 , and overlaps with both the first conductive pattern 141 and the third conductive pattern 143 stack.
  • the first conductive pattern 141 and the fourth conductive pattern 144 are coupled through a via hole located in the pattern layer therebetween, and the fourth conductive pattern 144 and the third conductive pattern 143 are coupled through the pattern layer located therebetween.
  • the vias of the layers are coupled to couple the first conductive patterns 141 and the third conductive patterns 143 .
  • the orthographic projection of the light shielding pattern 210 on the first substrate 101 covers the orthographic projection of the second conductive pattern 142 on the first substrate 101 and the orthographic projection of the third conductive pattern 143 on the first substrate 101 Orthographic projection on substrate 101 .
  • the light shielding pattern 210 can shield the reflected light from the second conductive pattern 142 and the third conductive pattern 143 to prevent the reflected light from being emitted from the liquid crystal cell 10 . Since the first conductive pattern 141 is transparent, the light shielding pattern 210 does not need to shield it, so that the transmittance of the transparent display device 1 can be improved.
  • the first conductive pattern 141 extends in the same direction as the gate line GL. As shown in FIG. 13 and FIG. 15 , the first conductive pattern 141 includes an unshielded portion 1410 .
  • the unshielded portion 1410 is located between two adjacent first electrodes 130 , and the unshielded portion 1410 does not overlap with the orthographic projections of the second conductive pattern 142 and the third conductive pattern 143 on the first substrate 101 .
  • the orthographic projection of the unshielded portion 1410 on the second substrate 201 does not overlap with the orthographic projection of the light-shielding pattern 210 on the second substrate 201 . In this way, the aperture ratio and transmittance of the transparent display device 1 can be improved.
  • the top view of the light shielding pattern 210 is as follows: shown in Figure 12B.
  • the widths of the portions of the light shielding pattern 210 extending along the X direction (for example, the extension direction of the gate lines) (for example, the dimensions in the Y direction) are not completely equal, for example, a portion of the width is relatively large, and a portion of the width is relatively small.
  • the width of the portion of the light shielding pattern 210 covering the second conductive patterns 142 and the third conductive pattern 143 is relatively large, and the width of the portion of the light shielding pattern 210 that only covers the gate line GL is relatively small.
  • the orthographic projection of the light shielding pattern 210 on the first substrate 101 also covers the fourth conductive pattern 144 . In this way, the problem that light is reflected at the fourth conductive pattern 144 and emitted from the liquid crystal cell 10 can be avoided.
  • the second electrode 220 is located on the second substrate 201 .
  • the second electrode 220 is close to the first substrate 101 with respect to the light shielding pattern 210 .
  • the power line 111 may be coupled with the second electrode 220 through conductive glue coated on the second substrate 201 .
  • the conductive glue can be gold ball glue.
  • the thickness of the second electrode 220 is about
  • the transparent display device 1 further includes an external circuit bound to the liquid crystal cell 10 , the power line 111 is coupled to the external circuit, and the external circuit transmits a common electrical signal to the second electrode 220 through the power line 111 .
  • the orthographic projection of the second electrode 220 on the second substrate 201 covers the entire AA area.
  • the second electrode 220 may be formed by depositing the material to be formed into the second electrode 220 on the side of the light shielding pattern 210 close to the first substrate 101 on the second substrate 201, thereby simplifying the process. Production processes.
  • the second electrode 220 includes: a second electrode body 221 and a plurality of openings 222 disposed on the second electrode body 221 .
  • the plurality of openings 222 penetrate through the common electrode body 221 .
  • the material of the common electrode body 221 is a transparent conductive material, such as ITO.
  • the plurality of openings 222 include at least one of a first opening 2221 , a second opening 2222 and a third opening 2223 .
  • the orthographic projection of the first opening 2221 on the first substrate 101 coincides or approximately coincides with the orthographic projection of the TFT on the first substrate 101 .
  • the orthographic projection of the second opening 2222 on the first substrate 101 overlaps with the orthographic projection of the data line DL on the first substrate 101 .
  • the orthographic projection of the third opening 2223 on the first substrate 101 overlaps with the orthographic projection of the gate line GL on the first substrate 101 .
  • the orthographic projection of the second opening 2222 on the first substrate 101 overlaps with the orthographic projection of the power lines 111 on the first substrate 101 .
  • the specific arrangement and size of the first openings 2221 , the second openings 2222 and the third openings 2223 can be designed according to actual conditions, which are not limited in the embodiments of the present disclosure.
  • the orthographic projection of the second opening 2222 on the first substrate 101 is located between two adjacent pixel regions in a column of pixel regions.
  • the orthographic projections of the first openings 2221 on the first substrate 101 and the orthographic projections of the second openings 2222 on the first substrate 101 may alternate in sequence and be arranged at intervals.
  • the length of the second opening 2222 is approximately equal to half the length of the portion of the data line DL located between two adjacent gate lines GL.
  • the orthographic projections of the first openings 2221 on the first substrate 101 and the orthographic projections of the third openings 2223 on the first substrate 101 may be alternately arranged in sequence and spaced apart.
  • each signal line 110 whose orthographic projection on the first substrate 101 is covered by the orthographic projection of the light-shielding pattern 210 on the first substrate 101 further includes a power supply line 111
  • the second opening 2222 is in the first substrate 101.
  • the orthographic projection on the bottom 101 overlaps with the orthographic projection of the power line 111 on the first substrate 101 .
  • the orthographic projection of the second electrode 220 on the first substrate 101 and the conductive structures (eg, the signal lines 110) in the liquid crystal cell 10 can be reduced in the first
  • the orthographic projection on a substrate 101 has an overlapping area size, so as to avoid the orthographic projection of the second electrode 220 on the first substrate 101 and the conductive structures (such as TFT, data line DL and gate line) in the liquid crystal cell 10 due to the The orthographic projections of at least one of GL) on the first substrate 101 are overlapped, resulting in parasitic capacitance, which reduces the load of the transparent display device 1 .
  • the orthographic projection of at least one opening 222 of the plurality of openings 222 on the second substrate 201 does not overlap with the orthographic projection of the light shielding pattern 210 on the second substrate 201 .
  • the orthographic projection of the first opening 2221 on the second substrate 201 does not overlap with the orthographic projection of the shading pattern 210 on the second substrate 201
  • the light from the area where the first opening 2221 is located The transmission will not be blocked by the light shielding pattern 210 , thereby improving the transmittance of the transparent display device 1 .
  • the orthographic projection of the second opening 2222 on the second substrate 201 does not overlap with the orthographic projection of the shading pattern 210 on the second substrate 201
  • the light passing through the region where the second opening 2222 is located will not be transmitted by The light shielding pattern 210 shields, thereby improving the transmittance of the transparent display device 1 .
  • the orthographic projection of the third opening 2223 on the second substrate 201 does not overlap with the orthographic projection of the shading pattern 210 on the second substrate 201, the light passing through the region where the third opening 2223 is located will not be transmitted by The light shielding pattern 210 shields (as shown in FIG. 20 ), thereby improving the transmittance of the transparent display device 1 .
  • the at least one opening 222 can avoid the orthographic projection of the second electrode 220 on the first substrate 101 and the conductive structures (eg, at least one of the TFT, the data line DL, and the gate line GL) in the liquid crystal cell 10 being in the first
  • An electric field is formed at a position where the orthographic projections on a substrate 101 overlap, which causes an abnormality in the process of driving the liquid crystal layer 110 , so that the liquid crystal cell 10 abnormally emits light.
  • the liquid crystal cell 10 further includes a plurality of spacers (Post Spacers, PS) disposed on the second substrate 201 .
  • the plurality of spacers PS are farther from the second substrate 201 than the light shielding pattern 210 .
  • the height of the spacer PS is about 3.6 ⁇ m.
  • the orthographic projection of one spacer PS on the first substrate 101 overlaps with the orthographic projection of the first conductive pattern 141 on the first substrate 101 .
  • the spacer PS can play a supporting role for the liquid crystal cell 10 , and can improve the supporting performance of the transparent display device 1 during the process of the transparent display device 1 being squeezed.
  • the size of the spacer PS is relatively small, and the influence on the transmittance of the transparent display device 1 is relatively small and can be ignored.
  • the light source 20 includes a first color light emitting device 21 , a second color light emitting device 22 and a third color light emitting device 23 .
  • the light source 20 includes a circuit board 24 on which the first color light emitting device 21 , the second color light emitting device 22 and the third color light emitting device 23 are all disposed.
  • the light source 20 is configured to periodically emit light of the corresponding color sequentially and periodically in response to the pulse control signal.
  • the first color, the second color and the third color are three primary colors respectively.
  • the first color is red
  • the second color is green
  • the third color is blue.
  • each light-emitting device may adopt LED (Light Emitting Diode, light-emitting diode), Micro-LED, Mini-LED, or OLED (Organic Light Emitting Diode, organic light-emitting diode), and the like.
  • LED Light Emitting Diode, light-emitting diode
  • Micro-LED Micro-LED
  • Mini-LED Mini-LED
  • OLED Organic Light Emitting Diode, organic light-emitting diode
  • the light source 20 further includes a lighting control circuit, and the lighting control circuit is coupled to each light emitting device in the light source 20 .
  • the lighting control circuit is configured to output pulse control signals to control the duty cycle of each light emitting device in the light source 20 .
  • the light-emitting control circuit may be disposed on the circuit board 24 .
  • the transparent display device 1 includes a timing controller (Timing Controller, Tcon), the light source 20 can be coupled with the timing controller, and the timing controller is configured to output a pulse control signal to control the duty cycle of each light-emitting device in the light source 20.
  • Tcon Timing Controller
  • the light source 20 may periodically emit the first color light, the second color light and the third color light, so that the light incident from the light source 20 to the liquid crystal cell 10 is colored light. Therefore, during the display process, the liquid crystal cell 10 can emit color light to realize color display. In this way, there is no need to provide a color filter on the light-emitting side of the liquid crystal cell 10, thereby saving costs.
  • the pixel region P of the transparent display device 1 to display the first color may be. It is in a scattering state under electric driving, and other pixel regions P are in a transparent state; when the second color light emitting device 22 emits light of the second color, the pixel region P of the transparent display device 1 to display the second color can be driven under electric driving.
  • the other pixel regions P are in the transparent state; when the third color light emitting device 23 emits the third color light, the pixel region P in the transparent display device 1 to display the third color can be in the scattering state under electric driving, The other pixel regions P are in a transparent state.
  • the liquid crystal cell 10 further includes an overcoat (Over Coat, OC) disposed on the second substrate 201 and located on the side of the light shielding pattern 210 close to the first substrate 101 .
  • the surface of the protective layer OC on the side away from the second substrate 201 is flat.
  • the second electrode 220 is located on the second substrate 201, the second electrode 220 is located on the side of the protective layer OC away from the second substrate 201, so that the film layer of the second electrode 220 can be flat, which improves the uniformity of the second electrode 220 .
  • the liquid crystal cell 10 further includes a first alignment layer 150 and a second alignment layer 230 .
  • the first alignment layer 150 is located on the side of the first substrate 101 close to the liquid crystal layer 300
  • the second alignment layer 230 is located on the side of the second substrate 201 close to the liquid crystal layer 300 .
  • the first alignment layer 150 is closer to the liquid crystal layer 300 than the first electrode 130 and the second electrode 220; when the second electrode 220 is located on the second On the substrate 201 , the second alignment layer 230 is closer to the liquid crystal layer 300 than the second electrode 220 .
  • the materials of the first alignment layer 150 and the second alignment layer 230 are the same, for example, PI can be used.
  • the alignment direction of the first alignment layer 150 and the alignment direction of the second alignment layer 230 are antiparallel to each other.
  • the first alignment layer 150 and the second alignment layer 230 may be aligned by means of rubbing alignment or photo-alignment.
  • the alignment direction of the first alignment layer 150 is parallel to and opposite to the alignment direction of the second alignment layer 230 .
  • the above-described transparent display device 1 may be any device that displays images whether moving (eg, video) or stationary (eg, still images) and whether text or images. More specifically, it is contemplated that the embodiments may be implemented in or associated with a wide variety of electronic devices, such as, but not limited to, watches, clocks, calculators, television monitors, tablets Displays, computer monitors, automotive displays (eg, odometer displays, etc.), navigators, cockpit controls and/or displays, displays of camera views (eg, displays of rear-view cameras in vehicles), electronic photographs, electronic billboards Or signage, projectors, architectural structures, packaging and aesthetic structures (eg, a display for an image of a piece of jewelry), etc.
  • electronic devices such as, but not limited to, watches, clocks, calculators, television monitors, tablets Displays, computer monitors, automotive displays (eg, odometer displays, etc.), navigators, cockpit controls and/or displays, displays of camera views (eg, displays of rear-view cameras in vehicles), electronic photographs, electronic
  • the transparent display device 1 can be applied to vehicle display, window display, shopping mall advertising, museum display, refrigerator door, architectural media and other occasions.
  • the transparent display device 1 may be used for a car window.
  • part or all of the front windshield can be replaced with a transparent display device, or it can be attached to the front windshield to cover part or all of the front windshield.
  • Replacing the part of the front windshield with a transparent display device means that an opening can be provided on the front windshield, and then the transparent display device 1 can be embedded in the opening.
  • the transparent display device 1 not only functions as a front windshield, but also displays an image.
  • the transparent display device 1 is applied to the front window of the car, the information of the dashboard of the car, the navigation information of the map, etc. can be displayed on the front window of the car, so that the driver can see the road ahead while viewing the dashboard and the map. Provide drivers with a better driving experience.
  • the transparent display device 1 can be applied to a window display cabinet (also referred to as a display cabinet).
  • the window display cabinet includes a box body and a transparent display device 1 arranged on one side of the box body.
  • the box body has a certain accommodating space and can Used to place items to be displayed.
  • the side surface of the window display cabinet on which the transparent display device 1 is arranged can be called a display surface.
  • the display surface of the window display cabinet can display the parameters, price and application scenarios of the item to be displayed. information that enables viewers to gain a deeper understanding of the product.
  • At the same time, at least part of the inner surface of the box body can also be set to be white, so that a part of the light scattered to the accommodating space of the box body can be reflected on the object to be displayed by the inner surface of the box body, which can be displayed for the object to be displayed.
  • the article provides better ambient light; another part can be emitted from the display surface through the transparent display device 1 , so as to improve the brightness of the transparent display device 1 put into the transparent display device 1 .
  • an opening or groove may be provided on the refrigerator door, and the transparent display device 1 may be provided in the opening or groove.
  • at least one of a touch control structure and an audio player can be integrated into the transparent display device 1 , so that even if the user does not open the refrigerator door, the situation in the refrigerator can be observed, and the transparent display device 1
  • a human-computer interaction interface can be displayed, and the user can operate on the transparent display device through the human-computer interaction interface, and the transparent display device 1 senses the user's operation through the touch structure.
  • the temperature set by the user and the temperature adjustment image are displayed on the transparent display device 1, the user can adjust the set temperature by pressing the temperature adjustment image, and the control interface of the audio player can be displayed on the transparent display device 1, By operating on the control interface, the audio player can be opened to play audio, which expands the applicable scope of the transparent display device 1 .
  • Embodiments of the present disclosure provide a method for manufacturing a transparent display device, and the method for manufacturing the transparent display device 1 in any of the above-mentioned embodiments is provided.
  • the preparation method comprises the following steps:
  • a plurality of signal lines 110 are formed on the first substrate 101 and in the AA area.
  • a light shielding pattern 210 is formed on the second substrate 201 .
  • At least one signal line 110 of the plurality of signal lines 110 has a bottom surface 110A close to the first substrate 101 and a reflective side surface 110B connected to the bottom surface 110A and facing the light source 20 .
  • the slope angle ⁇ formed by the reflective side surface 110B and the bottom surface 110A is an acute angle.
  • the shading pattern 210 is located on the reflection path after the light emitted by the light source 20 is irradiated on the reflective side surface 110B.
  • the liquid crystal layer 300 includes liquid crystal molecules 301 and polymer molecules 302 .
  • the liquid crystal layer 300 is configured to totally reflect or scatter the light incident on the liquid crystal layer 300 under the control of the electric field provided by the first electrode 130 and the second electrode 220 .
  • the material to be formed with the light-shielding pattern 210 may be deposited on the second substrate 201 to form a light-shielding film, and the light-shielding film is patterned to form the light-shielding pattern 210 .
  • the order of forming the structures on the first substrate and forming the structures on the second substrate is not limited.
  • the structures can be formed on the second substrate first, and then the structures can be formed on the first substrate. form each structure.
  • the order of forming the plurality of signal lines, the first electrodes and the second electrodes on the first substrate can be adjusted according to the actual situation, which is not limited here.
  • a plurality of signal lines can be formed on the first substrate first. and the first electrode, and then the second electrode is formed, or, a plurality of signal lines and the second electrode may be formed first, and then the first electrode is formed.
  • forming the second electrode 220 on the second substrate 201 includes: as shown in FIG.
  • the material to be formed into the protective layer OC forms the protective layer OC.
  • a transparent conductive material is deposited on the side of the protective layer OC away from the second substrate 201 to form the second electrode 220 .
  • a spacer PS is formed on the side of the second electrode 220 away from the second substrate 201 .
  • the material to form the second alignment layer 230 is coated on the side of the spacer PS away from the second substrate 201 to form a second alignment film, and the second alignment film is subjected to rubbing alignment or photo-alignment to obtain the second alignment layer 230 .
  • the manufacturing method of the above-mentioned transparent display device has the same beneficial effects as the transparent display device 1 described in some of the above-mentioned embodiments, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种透明显示装置,包括液晶盒和与液晶盒的侧面相对设置的光源。液晶盒包括第一衬底、第二衬底、在第一衬底上的第一电极、在第一衬底或第二衬底上的第二电极、液晶层、多条信号线和遮光图案。夹设于第一衬底和第二衬底之间的液晶层包括聚合物分子和液晶分子,用于在第一电极和第二电极提供的电场的控制下,使入射至液晶层的光线发生全反射或散射。在第一衬底上且在显示区中的多条信号线中至少一条信号线具有靠近第一衬底的底面和与底面连接且朝向光源的反光侧面,反光侧面与底面形成的坡度角为锐角。遮光图案在第二衬底上且在光源发出的光线照射到反光侧面后的反射路径上。

Description

透明显示装置及制备方法
本申请要求于2020年08月14日提交的、申请号为202010818592.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种透明显示装置及制备方法。
背景技术
随着显示技术的发展,透明显示装置逐渐加入显示市场。透明显示装置是一种使得用户可以同时观看到该透明显示装置上的显示画面和该透明显示装置背后的场景或物品的显示装置。透明显示装置可实现显示屏幕上的显示画面和透明显示装置背后的场景或物品的融合和互动,从而可给用户带来全新的、丰富的、表现力强的视觉体验。
发明内容
一方面,提供一种透明显示装置。所述透明显示装置包括液晶盒和光源。所述光源与所述液晶盒的侧面相对设置。所述液晶盒具有显示区。所述液晶盒包括第一衬底、第二衬底、第一电极、第二电极、液晶层、多条信号线和遮光图案。所述第一电极设置于所述第一衬底上。所述第二电极设置于所述第一衬底上或所述第二衬底上。所述液晶层夹设于所述第一衬底和所述第二衬底之间;所述液晶层包括聚合物分子和液晶分子;所述液晶层被配置为在所述第一电极和所述第二电极提供的电场的控制下,使入射至所述液晶层的光线发生全反射或者散射。所述多条信号线设置于所述第一衬底上且位于所述显示区中,其中至少一条信号线具有靠近所述第一衬底的底面和与所述底面连接且朝向所述光源的反光侧面,所述反光侧面与所述底面形成的坡度角为锐角。所述遮光图案设置于所述第二衬底上;所述遮光图案位于所述光源发出的光线照射到所述反光侧面后的反射路径上。
在一些实施例中,所述多条信号线中的至少一条信号线在所述第一衬底上的正投影被所述遮光图案在所述第一衬底上的正投影覆盖。
在一些实施例中,所述至少一条信号线在所述第一衬底上的正投影具有第一边沿和第二边沿,所述遮光图案中的对应部分在所述第一衬底上的正投影具有第三边沿和第四边沿。所述遮光图案中的对应部分为所述遮光图案中的在所述第一衬底上的正投影覆盖所述至少一条信号线的部分。在所述至少一条信号线的宽度方向上,所述第一边沿和所述第二边沿位置相对。所述第三边沿位于所述第一边沿外远离所述第二边沿的一侧,所述第四边沿位于所 述第二边沿外远离所述第一边沿的一侧。所述第三边沿和所述第一边沿的间距,与所述第四边沿和所述第二边沿的间距之和大于或等于6μm。
在一些实施例中,所述第三边沿和所述第一边沿的间距,等于所述第四边沿和所述第二边沿的间距。
在一些实施例中,所述遮光图案中的对应部分靠近所述第二衬底一侧的底面的宽度,与所述至少一条信号线的底面的宽度之比为1~2.5。
在一些实施例中,所述至少一条信号线的底面的宽度d,与所述遮光图案中的对应部分靠近所述第二衬底一侧的底面的宽度D之间的关系为D=2Ltan(2γ+α-90°)+d。其中,L为所述至少一条信号线的底面与所述遮光图案中的对应部分靠近所述第二衬底一侧的底面的间距;γ为所述至少一条信号线的反光侧面与底面形成的坡度角;α为入射至所述至少一条信号线的反光侧面的光线与所述信号线的底面的夹角。
在一些实施例中,0°≤α≤60°;45°≤γ≤80°。
在一些实施例中,所述多条信号线的材料包括金属。
在一些实施例中,所述多条信号线包括栅线和数据线。所述栅线的延伸方向与所述数据线的延伸方向相交叉。
在一些实施例中,所述显示区包括多个像素区;所述第一电极位于每个像素区内。所述液晶盒还包括设置于所述第一衬底上且位于每个像素区内的薄膜晶体管。所述薄膜晶体管相比于所述第一电极靠近所述第一衬底。所述薄膜晶体管包括栅极、有源层、源极和漏极。所述薄膜晶体管的栅极与所述栅线耦接,所述薄膜晶体管的源极和所述数据线耦接,所述薄膜晶体管的漏极与所述第一电极耦接。
在一些实施例中,所述遮光图案在所述第一衬底上的正投影还覆盖所述薄膜晶体管。
在一些实施例中,所述多条信号线还包括电源线。所述电源线与所述数据线延伸方向相同且间隔设置;所述电源线与所述数据线材料相同。
在一些实施例中,所述液晶盒还包括第一导电图案、第二导电图案和第三导电图案。所述第一导电图案与所述第一电极同层设置。所述第二导电图案与所述数据线同层设置。所述第三导电图案与所述栅线同层设置。所述第一导电图案与所述电源线和所述第三导电图案耦接。所述第二导电图案与所述薄膜晶体管的漏极耦接。所述第三导电图案在所述第一衬底上的正投影与所述第二导电图案在所述第一衬底上的正投影有交叠。
在一些实施例中,所述遮光图案在所述第一衬底上的正投影,覆盖所述 第二导电图案在所述第一衬底上的正投影和所述第三导电图案在所述第一衬底上的正投影。
在一些实施例中,所述第一导电图案与所述栅线延伸方向相同。所述第一导电图案包括位于相邻两个第一电极之间的未遮挡部分,所述未遮挡部分与所述第二导电图案和所述第一导电图案在所述第一衬底上的正投影无交叠;所述未遮挡部分在所述第二衬底上的正投影与所述遮光图案在所述第二衬底上的正投影无交叠。
在一些实施例中,所述第二电极位于所述第二衬底上,且所述第二电极相对于所述遮光图案靠近所述第一衬底。
在一些实施例中,所述第二电极包括第二电极主体和设置于所述第二电极主体上的多个开口。所述多个开口包括:第一开口、第二开口和第三开口中的至少一者。在所述液晶盒包括薄膜晶体管的情况下,所述第一开口在所述第一衬底上的正投影与所述薄膜晶体管在所述第一衬底上的正投影重合或者大致重合。在所述多条信号线包括栅线和数据线的情况下,所述第二开口在所述第一衬底上的正投影与所述数据线在所述第一衬底上的正投影有交叠。所述第三开口在所述第一衬底上的正投影与所述栅线在所述第一衬底上的正投影有交叠。
在一些实施例中,所述多个开口中的至少一个开口在所述第二衬底上的正投影与所述遮光图案在所述第二衬底上的正投影无交叠。
在一些实施例中,所述液晶盒还包括多个隔垫物。所述多个隔垫物设置于所述第二衬底上;所述多个隔垫物相比于所述遮光图案远离所述第二衬底。在所述液晶盒包括第一导电图案的情况下,一个隔垫物在所述第一衬底上的正投影与所述第一导电图案在所述第一衬底上的正投影有交叠。所述多个隔垫物在所述第二衬底上的正投影与所述遮光图案在所述第二衬底上的正投影无交叠。
在一些实施例中,所述光源包括第一颜色光发光器件、第二颜色光发光器件和第三颜色光发光器件。所述光源被配置为响应于脉冲控制信号,所述第一颜色光发光器件、所述第二颜色光发光器件和所述第三颜色光发光器件依次周期性发出相应颜色的光。
另一方面,提供一种透明显示装置的制备方法。所述制备方法包括:在第一衬底上且在显示区中形成多条信号线;在第二衬底上形成遮光图案;在所述第一衬底上形成第一电极,在所述第一衬底上或所述第二衬底上形成第二电极;在所述第一衬底和所述第二衬底之间形成液晶层,以得到液晶盒; 设置与所述液晶盒的侧面的位置相对的光源,以得到所述透明显示装置。其中,所述多条信号线中的至少一条信号线具有靠近所述第一衬底的底面和与所述底面连接且朝向所述光源的反光侧面;所述反光侧面与所述底面形成的坡度角为锐角;所述遮光图案位于所述光源发出的光线照射到所述反光侧面后的反射路径上。所述液晶层包括聚合物分子和液晶分子;所述液晶层被配置为在所述第一电极和所述第二电极提供的电场的控制下,使入射至所述液晶层的光线发生全反射或者散射。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据相关技术的透明显示装置的一种结构图;
图2为根据本公开的一些实施例的透明显示装置的一种结构图;
图3为图2中的透明显示装置沿B-B’方向的剖视图;
图4为根据本公开的一些实施例的透明显示装置的另一种结构图;
图5为根据本公开的一些实施例的透明显示装置的又一种结构图;
图6为根据本公开的一些实施例的透明显示装置的又一种结构图;
图7为根据本公开的一些实施例的透明显示装置的又一种结构图;
图8为根据本公开的一些实施例的透明显示装置的又一种结构图;
图9为根据本公开的一些实施例的透明显示装置的又一种结构图;
图10为根据本公开的一些实施例的液晶盒的一种结构图;
图11A为根据本公开的一些实施例的第一图案层的一种俯视图;
图11B为根据本公开的一些实施例的第二图案层的一种俯视图;
图11C为根据本公开的一些实施例的第三图案层的一种俯视图;
图11D为图10中的液晶盒沿C-C’方向的剖视图;
图12A为根据本公开的一些实施例的液晶盒的另一种结构图;
图12B为根据本公开的一些实施例的遮光图案的一种俯视图;
图13为根据本公开的一些实施例的液晶盒的又一种结构图;
图14为图13中的液晶盒沿D-D’方向的剖视图;
图15为图13中的液晶盒沿E-E’方向的剖视图;
图16为根据本公开的一些实施例的第二电极的一种结构图;
图17为根据本公开的一些实施例的液晶盒的又一种结构图;
图18为根据本公开的一些实施例的液晶盒的又一种结构图;
图19为根据本公开的一些实施例的透明显示装置的又一种结构图;
图20为图19中的透明显示装置沿G-G’方向的剖视图;
图21为根据本公开的一些实施例的透明显示装置的又一种结构图;
图22为根据本公开的一些实施例的光源的一种结构图;
图23为根据本公开的一些实施例的透明显示装置的一种制备流程图;
图24为根据本公开的一些实施例的第二电极的一种制备过程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,然而,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术 语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“大致”、“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
透明显示装置在工作状态时,能够显示影像(也可称为图像或画面),以使观看者可以看到透明显示装置显示的影像以及透明显示装置背离观看者一侧的真实场景(例如,摆放在那里的物体、经过的路人等);透明显示装置在非工作状态时,处于透明或者半透明状态,像一块玻璃一样,观看者可以透过透明显示装置看到另一侧的真实场景。
相关技术中,如图1所示,透明显示装置1'包括液晶盒10'和光源20'。在垂直于液晶盒10'的厚度方向上,光源20'位于液晶盒10'的侧面,从液晶盒10'的侧面入光。由于光源20'发出的光线在液晶盒10'内传播的过程中,液晶盒10'中的一些膜层(例如金属走线层等)会使光线发生反射或散射,生成杂散的光线。在杂散的光线射向液晶盒10'出光面,并从液晶盒10'出射的情况下,用户观看透明显示装置1'的过程中,杂散的光线会进入人眼,导致显示对比度下降,影响用户的观看效果。
本公开的实施例提供一种透明显示装置1,如图2和图3所示,透明显示 装置1包括液晶盒10和光源20。光源20与液晶盒10的侧面相对设置。示例性地,光源20的厚度大于或等于液晶盒10的厚度。
可以理解的是,液晶盒10具有出光面和底面,沿液晶盒10的厚度方向,出光面和底面位置相对,且液晶盒10的侧面位于出光面和底面之间。在垂直于液晶盒10的厚度方向上,光源20与液晶盒10的侧面位置相对。
如图2和图3所示,液晶盒10具有显示区(Active Area,AA)。液晶盒10包括第一衬底101和第二衬底201。其中,第一衬底101和第二衬底201相对设置。
如图4所示,液晶盒10还包括第一电极130和第二电极220。示例性地,第一电极130为像素电极,第二电极220为公共电极。其中,第一电极130和第二电极220可以均位于第一衬底101上,第一电极130和第二电极220可以位于同一层,也可以位于不同层,此时,可以得到包括第一衬底101、第一电极130和第二电极220的阵列基板,包括第二衬底201的对置基板;或者,第一电极130位于第一衬底101上,第二电极220位于第二衬底201上,此时,可以得到包括第一衬底101和第一电极130的阵列基板,包括第二衬底201和第二电极220的对置基板。
其中,第一电极130和第二电极220均呈透明。第一电极130和第二电极220的材料可以均采用透明导电材料,例如,ITO(氧化铟锡)。
如图4所示,液晶盒10还包括液晶层300。液晶层300夹设于第一衬底101和第二衬底201之间。也即,液晶层300位于相对设置的阵列基板和对置基板之间。液晶层300包括液晶分子301和聚合物分子302。示例性地,液晶层300可以采用聚合物稳定液晶(Polymer Stabilized Liquid Crystal,PSLC),或者聚合物分散液晶(Polymer-dispersed Liquid Crystal,PDLC)。液晶层300被配置为在第一电极130和第二电极220提供的电场的控制下,使入射至液晶层300的光线发生全反射或者散射。
可以理解的是,在液晶盒10不进行显示的情况下,第一电极130和第二电极220之间不形成电场,液晶分子301的折射率和聚合物分子302的折射率相同,此时,来自光源20的光线在液晶盒10内发生全反射并传播,不会从第二衬底201远离第一衬底101的一侧出射,透明显示装置1呈透明,AA区呈透明态。示例性地,在AA区呈透明态的情况下,透明显示装置1的透过率可以在65%以上。在透明显示装置1进行显示的情况下,要进行显示的区域内的第一电极130和第二电极220各自施加电信号,并形成电场,在该电场范围内的液晶分子301的折射率发生变化,使得入射至液晶分子上的光 线发生散射,散射光从第二衬底201远离第一衬底101的一侧出射,从而使透明显示装置1实现显示。此时,要进行显示的区域呈散射态,其余不进行显示的区域内的第一电极130和第二电极220之间不形成电场,使得入射至不进行显示的区域内的光线发生全反射,此时,不进行显示的区域均呈透明态。
需要说明的是,图4仅为示意图,未示出液晶盒10中各膜层的具体结构,也未示出液晶层300中的液晶分子301和聚合物分子302的分布方式,实际应用中可以根据需要进行设计。
其中,如图2和图3所示,液晶盒10还包括设置于第一衬底101上且位于AA区中的多条信号线110。如图3所示,多条信号线110中的至少一条信号线110具有底面110A和反光侧面110B。底面110A为至少一条信号线110中的靠近第一衬底101的表面。反光侧面110B与底面110A连接且反光侧面110B朝向光源20。反光侧面110B与底面110A形成的坡度角γ为锐角。
可以理解的是,反光侧面110B在光源20的出光面所在平面上的正投影具有一定的面积,即该正投影的形状是具有一定面积的图形,不是线段。
如图2和图3所示,液晶盒10还包括设置于第二衬底201上的遮光图案210。遮光图案210位于光源20发出的光线照射到反光侧面100B后的反射路径上。
需要说明的是,为了方便描述,图3仅示出了第一衬底101和信号线110与第二衬底201和遮光图案210,对液晶盒10中的其他膜层结构并未示出。
示例性地,第一衬底101和第二衬底201可以包括玻璃等刚性衬底(或称为硬质衬底),或者PI(Polyimide,聚酰亚胺)等柔性衬底,还可以包括设置在刚性衬底或柔性衬底上的缓冲层等薄膜。遮光图案210可以为黑矩阵(Black Matrix,BM),遮光图案210的材料可以包括树脂。遮光图案210对光的透过率较低,例如,长度为1μm遮光图案210对光的透过率为0.0001。
可以理解的是,光源20的出光面靠近液晶盒10的侧面,光源20发出的光进入液晶盒10内部,并沿垂直于液晶盒10的厚度方向传播。反光侧面110B靠近光源20的出光面,光源20出射的光会照射到反光侧面110B上。光源20发出的光照射在信号线110中的反光侧面110B后发生反射,由于反光侧面110B与底面110A形成的坡度角γ为锐角,因此,在反光侧面110B上反射后的光线会射向第二衬底201。在此情况下,由于遮光图案210位于光源20发出的光线照射到反光侧面100B后的反射路径上,因此,遮光图案210可以对在反光侧面110B上反射后的光线进行遮挡,避免了因反射光线从液晶 盒10出射而影响显示效果,从而提高了透明显示装置1的对比度,提升了用户观看效果。
因此,本公开的实施例提供的透明显示装置1,液晶盒10中的至少一条信号线110中的反光侧面110B朝向光源20,使得光源20发出的光照射在信号线110中的反光侧面110B后发生反射,并且,反光侧面110B与底面110A形成的坡度角γ为锐角,使得在反光侧面110B上反射后的光线会射向第二衬底201。由于遮光图案210位于光源20发出的光线照射到反光侧面100B后的反射路径上,因此,遮光图案210可以对在反光侧面110B上反射后的光线进行遮挡,避免了因反射光线从液晶盒10出射而影响显示效果,从而提高了透明显示装置1的对比度,提升了用户观看效果。
在一些实施例中,如图2和图5所示,多条信号线110中的部分信号线110具有第一延伸方向F1。其中,第一延伸方向F1与光源20相对设置的液晶盒10的侧面的法线方向(例如图2中的Y方向),相互垂直(如图5所示),或者相交且夹角δ为锐角(如图5所示)。遮光图案210在第一衬底101上的正投影,覆盖具有第一延伸方向F1的信号线1101在第一衬底101上的正投影。
可以理解的是,具有第一延伸方向F1的信号线110(该信号线可视为第一信号线)沿宽度方向(即在第一衬底101所在平面内沿垂直于第一延伸方向F1的方向)相对的两个侧面中的靠近光源20的一个侧面为反光侧面110B。
示例性地,光源20可以包括至少一条灯条。其中,透明显示装置1可以包括至少一个光源20,一个光源20与液晶盒10的一个侧面相对设置。例如,如图2所示,透明显示装置1包括一个光源20,光源20位于液晶盒10的一个侧面。如图6所示,透明显示装置1包括两个光源20,两个光源20分别位于液晶盒20相连接的两个侧面,且两个光源20相互连接呈一体结构。
可以理解的是,由于光源20的出光面的法线方向和与光源20相对设置的液晶盒10的侧面的法线方向大致平行,因此,光源20发出的光线的传播方向和与光源20相对设置的液晶盒10的侧面的法线方向大致平行,光源20发出的光线的传播方向和第一延伸方向F1垂直或者相交。此时,由于遮光图案210在第一衬底101上的正投影,覆盖具有第一延伸方向F1的信号线110在第一衬底101上的正投影,因此,光源20发出的光线照射到具有第一延伸方向F1的信号线110中的反光侧面110B后,在反光侧面110B上发生反射的光线会被遮光图案210遮挡,而不会从液晶盒10出射,避免反射的光线影响用户的观看效果,从而提高了透明显示装置1的显示效果。
在一些实施例中,如图2和图7所示,多条信号线110中的部分信号线110具有第二延伸方向F2(该部分信号线可视为第二信号线)。第二延伸方向F2与光源20相对设置的液晶盒10的侧面的法线方向(例如图2中的Y方向)平行或大致平行。
可以理解的是,由于光源20的出光面的法线方向和与光源20相对设置的液晶盒10的侧面的法线方向大致平行,因此,光源20发出的光线的传播方向和与光源20相对设置的液晶盒10的侧面的法线方向平行或大致平行,光源20发出的光线的传播方向和第二延伸方向F2平行或大致平行。
其中,遮光图案210在第一衬底101上的正投影,覆盖具有第二延伸方向F2的信号线110在第一衬底101上的正投影。在此情况下,由于具有第二延伸方向F2的信号线110可反光,因此,光源20发出的光线照射在该信号线110上会发生反射,且发生反射的光线会射向第二衬底201,并从液晶盒10出射。此时,遮光图案210可以对在具有第二延伸方向F2的信号线110上发生反射的光线进行遮挡,从而避免因反射的光线出射而降低显示对比度的问题。
或者,遮光图案210在第一衬底101上的正投影,与具有第二延伸方向F2的信号线110在第一衬底101上的正投影无交叠。在此情况下,由于光源20发出的光线的传播方向与第二延伸方向F2平行或者大致平行,因此,光源20发出的光照射在具有第二延伸方向F2的信号线110的面积较小,在具有第二延伸方向F2的信号线110上发生反射的光线较少或者无反射的光线,此时,遮光图案210在第一衬底101上的正投影未覆盖具有第二延伸方向F2的信号线110,可以避免透过率较低的遮光图案210对透明显示装置1的开口率和透过率的影响,从而提高透明显示装置1的开口率,提高透明显示装置1的透过率和透明度。
示例性地,遮光图案210在第一衬底101上的正投影覆盖具有第一延伸方向F1的信号线110在第一衬底101上的正投影的情况,相比于遮光图案210在第一衬底101上的正投影覆盖所有信号线110的情况,透明显示装置1的开口率可以提高5.64%。
需要说明的是,对于相互交叉的两条信号线110,在遮光图案210在第一衬底101上的正投影与其中一条信号线110有交叠的情况下,另一条信号线110在两条信号线110相交的位置处不可避免地会与遮光图案210在第一衬底101上的正投影有交叠,对此本公开的实施例近似认为另一条信号线110与遮光图案210在第一衬底101上的正投影无交叠。例如,如图2所示,具有第 一延伸方向F1的信号线110在第一衬底101上的正投影,与具有第二延伸方向F2的信号线110在第一衬底101上的正投影有交叠,此时,在遮光图案210在第一衬底101上的正投影覆盖具有第一延伸方向F1的信号线110在第一衬底101上的正投影的情况下,遮光图案210在第一衬底101上的正投影,不可避免地会覆盖具有第二延伸方向F2的信号线110在第一衬底101上的正投影中的与具有第一延伸方向F1的信号线110在第一衬底101上的正投影有交叠的部分,此时,认为遮光图案210在第一衬底101上的正投影与具有第二延伸方向F2的信号线110在第一衬底101上的正投影无交叠。
示例性地,多条信号线110的材料包括金属。例如,铝(Al)、钼(Mo)、铜(Cu)或者银(Ag)等。在此情况下,金属具可反射光线,光源20发出的光线照射在信号线110上均会发生反射,并且发生反射的光线可以被覆盖该信号线110的遮光图案210遮挡,避免反射光线从液晶盒10出射。
在一些实施例中,参考图8,多条信号线110中的至少一条信号线110在第一衬底101上的正投影被遮光图案210在第一衬底101上的正投影覆盖。示例性地,至少一条信号线110在第一衬底101上的正投影的宽度W1,小于或等于遮光图案210中的对应部分在第一衬底101上的正投影的宽度W2,即,W1≤W2。其中,遮光图案210中的对应部分为遮光图案210中的在第一衬底101上的正投影覆盖至少一条信号线110的部分。
可以理解的是,遮光图案210对信号线110的反射光线的遮挡区域大于或等于信号线110所在的区域,使得反射光线可以更全面地被遮挡,提高了遮光图案210对反射的光线的遮挡效果,从而提升了透明显示装置1的显示效果。
在一些实施例中,如图8所示,至少一条信号线110在第一衬底101上的正投影具有第一边沿L1和第二边沿L2。在至少一条信号线110的宽度方向(如图8中的Y方向,或者,在第一衬底101所在平面内垂直于至少一条信号线110的延伸方向)上,第一边沿L1和第二边沿L2位置相对。
遮光图案210中的对应部分在第一衬底101上的正投影具有第三边沿L3和第四边沿L4。第三边沿L3位于第一边沿L1外远离第二边沿L2的一侧,第四边沿L4位于第二边沿L2外远离第一边沿L1的一侧。例如,第一边沿L1与第三边沿L3延伸方向相同(例如第一边沿L1与第三边沿L3平行),第二边沿L2与第四边沿L4延伸方向相同(例如第二边沿L2与第四边沿L4平行)。此时,至少一条信号线110在第一衬底101上的正投影的宽度W1,小于或等于遮光图案210中的对应部分在第一衬底101上的正投影的宽度 W2,即,W1<W2。示例性地,第一边沿L1与第三边沿L3延伸方向相同,第二边沿L2与第四边沿L4延伸方向相同。
其中,第三边沿L3和第一边沿L1的间距(即第一间距Z1),与第四边沿L4和第二边沿L2的间距(即第二间距Z2)之和大于或等于6μm,即,第一间距Z1与第二间距Z2之和大于或等于6μm,(Z1+Z2)≥6μm。
示例性地,第一间距Z1与第二间距Z2之和为6μm~12μm,例如,第一间距Z1与第二间距Z2之和为6.5μm、8μm或者10μm。
可以理解的是,遮光图案210在第一衬底101上的正投影中的覆盖信号线110的部分的宽度大于信号线110的宽度。这样,在垂直于至少一条信号线110的延伸方向上,信号线110的相对两侧之外均被遮光图案210覆盖,使得在照射到信号线110第一边沿L1的外侧和第二边沿L2的外侧的反射光线均可以被遮光图案210遮挡,增大了遮光图案210对信号线110的反射光线的遮挡范围,使得反射的光线可以更全面地被遮挡,提高了遮光图案210对反射的光线的遮挡效果,从而提升了透明显示装置1的显示效果。
在一些实施例中,第三边沿L3和第一边沿L1的间距(即第一间距Z1)等于第四边沿L4和第二边沿L2的间距(即第二间距Z2),即,第一间距Z1等于第二间距Z2,Z1=Z2。其中,第一间距Z1和第二间距Z2均大于3μm。示例性地,Z1=Z2=3μm~6μm,例如3.5μm、4μm或者5μm。
可以理解的是,对于在第一衬底101上的正投影被遮光图案210在第一衬底101上的正投影覆盖的信号线110,信号线110的第一中线M1与遮光图案210中的覆盖该信号线110的部分的第二中线M2重合。其中,第一中线M1和第二中线M2均与该信号线110的延伸方向(如图8中的X方向)相同;在第一衬底101所在平面内,沿垂直于信号线110的延伸方向(如图8中的Y方向)上,即,沿信号线110的宽度方向,第一中线M1将信号线110等分,使得第一边沿L1到第一中线M1的距离等于第二边沿L2到第一中线M1的距离,第二中线M2将遮光图案210中的覆盖该信号线110的部分等分,使得第三边沿L3到第二中线M2的距离等于第四边沿L4到第二中线M2的距离。
在此情况下,在垂直于至少一条信号线110的延伸方向上,即在至少一条信号线110的宽度方向上,遮光图案210对信号线110的相对两侧的遮挡区域大小相同。这样,光线在信号线110上发生反射后,在垂直于信号线110延伸方向的相对两侧,遮光图案210对反射光线的遮挡程度相同,避免了遮光图案210对信号线110的反射光线的遮光不均匀而导致信号线110在垂直于其延伸方向的相对两侧的对比度存在差异,影响透明显示装置1的显示效 果。
在一些实施例中,参考图9,遮光图案210中的对应部分靠近第二衬底201一侧的底面210A的宽度D,与至少一条信号线110的底面100A的宽度d之比为1~2.5,即,D=d~2.5d。示例性地,D=1.3d~2d。
在此情况下,光源20发出的光线在至少一条信号线110上发生反射后,反射的光线射向第二衬底201,可以近似全部被遮光图案210遮挡,使得反射的光线不会从液晶盒10出射,提高了遮光图案210对反射的光线的遮挡效果,从而提升了透明显示装置1的显示效果。
需要说明的是,为了方便描述,图9仅示出了第一衬底101和信号线110与第二衬底201和遮光图案210,对液晶盒10中的其他膜层结构并未示出。
在一些实施例中,参考图9,至少一条信号线110的底面110A的宽度d,与遮光图案210中的对应部分在第一衬底101上的正投影靠近第二衬底201一侧的底面210A的宽度D之间的关系为D=2L×tan(2γ+α-90°)+d。
其中,L为至少一条信号线110的底面110A与遮光图案210中对应部分靠近第二衬底201一侧的底面210A的间距。γ为至少一条信号线110的反光侧面110B与底面110A形成的坡度角。α为入射至至少一条信号线110的反光侧面110B的光线与信号线110的底面110A的夹角。
其中,0°≤α≤60°,45°≤γ≤80°。
示例性地,遮光图案210中的对应部分靠近第二衬底201一侧的底面210A的宽度D大于信号线110的底面110A的宽度d。在信号线110的宽度方向上,在信号线110相对两侧中的一侧,信号线110在第一衬底101上的正投影的边沿与覆盖该信号线110的遮光图案210中的部分在第一衬底101上的正投影的边沿的间距,等于在信号线110相对两侧中的另一侧,信号线110在第一衬底101上的正投影的边沿与覆盖该信号线110的遮光图案210中的部分在第一衬底101上的正投影的边沿的间距。在此情况下,如图9所示,光源20发出的光源照射到反光侧面110B上的入射角θ=(90°-α-γ),反光侧面110B反射的光线与信号线110的厚度方向(即垂直于信号线110中的底面110A的方向)的夹角β=(90°-α-2θ),tanβ=(D-d)/(2L),可以得到D=2L×tan(2γ+α-90°)+d。
因此,在实际生产工艺中,可以根据信号线110的底面110A与遮光图案210中的对应部分靠近第二衬底201一侧的底面210A的间距L、信号线110的反光侧面110B与底面110A形成的坡度角γ、入射至信号线110的反光侧面110B的光线与信号线110的底面110A的夹角α和信号线110的底面110A的宽度d,对遮光图案210中的在第一衬底101上的正投影覆盖信号线110的 部分靠近第二衬底201一侧的底面210A的宽度D进行调整,以保证遮光图案210可以对信号线110反射的光线进行有效地遮挡。
需要说明的是,遮光图案210中的对应部分(遮光图案210中的在第一衬底101上的正投影覆盖信号线110的部分)靠近第二衬底201一侧的底面210A的宽度,与信号线110的底面110A与遮光图案210中与信号线110相应的部分靠近第二衬底201一侧的底面210A的间距、信号线110的反光侧面110B与底面110A形成的坡度角、入射至信号线110的反光侧面110B的光线与信号线110的底面110A的夹角、以及信号线110底面110A的宽度有关,与遮光图案210的坡度角(即遮光图案210的倾斜侧面和底面的夹角)无关。
示例性地,遮光图案210的厚度为0.8μm~2μm,例如,遮光图案210的厚度可以为1.1μm、1.5μm或1.8μm。在此情况下,可以避免遮光图案210厚度过大而导致透明显示装置1的厚度过大,可以便于透明显示装置1实现轻薄化。
在一些实施例中,如图10所示,AA区包括多个像素区P。液晶盒10还包括设置于第一衬底101上且位于每个像素区P内的薄膜晶体管(Thin Film Transistor,TFT)。
需要说明的是,多个像素区P的排布方式可以根据实际情况进行设定,本公开对此不作限定。例如,图10中的多个像素区P按阵列形式排布,其中,沿图10中的X方向排列成一排的像素区P称为同一行像素区,沿Y方向排列成一排的像素区P称为同一列像素区。
在一些实施例中,如图12、图13和图14所示,遮光图案210在第一衬底101上的正投影还覆盖TFT。
可以理解的是,如图14所示,TFT包括栅极G、有源层ACT、源极S和漏极D。液晶盒10还包括设置于栅极G和有源层ACT之间的栅绝缘层GI。例如,参考图14栅极G位于有源层ACT靠近第一衬底101的一侧,源极S和漏极D位于有源层ACT远离第一衬底101的一侧,此时,该TFT为底栅型TFT。示例性地,栅极G、源极S和漏极D的材料包括金属。栅极G、源极S和漏极D均可反光。
在此情况下,光源20发出的光线照射在TFT上,例如照射在栅极G、源极S和漏极D中的至少一者上,会发生反射,反射的光线射向第二衬底201。在此情况下,遮光图案210在第一衬底101上的正投影还覆盖TFT,可以对经由TFT反射并射向第二衬底201的光线进行遮挡,避免了反射光线从液晶盒10出射,避免影响用户的观看效果,从而提高了透明显示装置1的显示效 果。
在一些实施例中,如图10所示,多条信号线110包括栅线GL和数据线DL。栅线GL的延伸方向(例如图10中的X方向)与数据线DL的延伸方向(例如图10中的Y方向)相交叉。
TFT与栅线GL和数据线DL耦接。例如,在多个像素区P呈阵列排布的情况下,栅线GL位于相邻两行像素区之间,一行像素区P中的TFT与一条栅线GL耦接;数据线DL位于相邻两列像素区之间,一列像素区P中的TFT与一条数据线DL耦接。
其中,栅线GL与TFT的栅极G的材料相同,两者同层设置,在工艺上可以同步形成(例如由同一膜层构图形成),从而节省工序。栅线GL与TFT的栅极G耦接。示例性地,栅线GL中的一部分可以充当TFT的栅极G。数据线DL与TFT的源极S和漏极D的材料相同,两者同层设置,在工艺上可以同步形成,从而节省工序。数据线DL与TFT的源极S耦接。示例性地,数据线DL中的一部分可以充当源极S。
如图13所示,栅线GL和数据线DL在第一衬底101上的正投影均被遮光图案210在第一衬底101上的正投影覆盖。可以理解的是,光源20发出的光线照射在栅线GL和数据线DL上发生反射,反射的光线射向第二衬底201。遮光图案210可以遮挡来自栅线GL和数据线DL的反射光线,避免反射光线从液晶盒10出射。
又示例性地,如图12A所示,栅线GL和数据线DL中的一者在第一衬底101上的正投影被遮光图案210在第一衬底101上的正投影覆盖。在此情况下,被遮光图案210在第一衬底101上的正投影覆盖的栅线GL和数据线DL中的一者,在第一衬底101上的正投影的延伸方向和与光源20相对设置的液晶盒10的侧面的法线方向相互垂直,或者相交且夹角为锐角。这样,可以避免因遮光图案210对光的透过率较低而影响透明显示装置1的透过率的问题。
示例性地,在栅线GL在第一衬底101上的正投影被遮光图案210在第一衬底101上的正投影覆盖的情况下,在工艺上形成遮光图案210的过程中,可以采用用于形成栅线GL的掩膜板,对待形成遮光图案的遮光薄膜进行图案化。在数据线DL在第一衬底101上的正投影被遮光图案210在第一衬底101上的正投影覆盖的情况下,在工艺上形成遮光图案210的过程中,可以采用用于形成数据线DL的掩膜板,对待形成遮光图案的遮光薄膜进行图案化。
在一些实施例中,如图14所示,液晶盒10还包括设置于第一衬底101上的阻挡层120。阻挡层120位于有源层ACT所在图案层与源极S和漏极D 所在图案层之间。
其中,阻挡层120上设置有第一过孔121和第二过孔122。第一过孔121和第二过孔122贯通阻挡层120。源极S通过第一过孔121与有源层ACT耦接,漏极D通过第二过孔122与有源层ACT耦接。
需要说明的是,阻挡层120至少覆盖TFT的沟道区。该TFT的沟道区指的是,在外加电压的作用下,TFT的源极S和漏极D之间的有源层ACT中能够形成导电沟道的区域。在此情况下,在工艺上,阻挡层120对有源层ACT起到保护作用,可以避免后续膜层的制备过程中,例如,对源极S和漏极D图案化过程中所采用的刻蚀液,对有源层ACT的影响,提高有源层ACT的稳定性。
在一些实施例中,如图10和图11B所示,多条信号线110还包括电源线111。可以理解的是,在第二电极220为公共电极的情况下,电源线111与第二电极220耦接。例如,电源线111被配置为传输公共电信号。
电源线111的延伸方向与数据线DL的延伸方向相同,例如均沿图10中的Y方向延伸。电源线111与数据线DL材料相同,两者同层设置,在工艺上可以同步形成,从而节省工序。电源线111与数据线DL间隔设置,电源线111与数据线DL相互绝缘,避免影响电源线111和数据线DL各自的信号传输。
示例性地,在多个像素区P呈阵列排布的情况下,电源线111可以位于相邻两列像素区之间。并且,在相邻两列像素区之间设置有电源线111和数据线DL的情况下,电源线111相比于数据线DL远离该数据线DL所耦接的TFT。
示例性地,电源线111在第一衬底101上的正投影被遮光图案210在第一衬底101上的正投影覆盖,从而可以避免在电源线111上发生反射的光线从液晶盒10出射。
在一些实施例中,如图10所示,第一电极130位于第一衬底101上,且位于每个像素区P内。即,一个像素区P内设置有一个第一电极130。其中,TFT相比于第一电极130靠近第一衬底101。在像素区P内,TFT的漏极D与第一电极130(即像素电极)耦接。
其中,如图14所示,液晶盒10还包括设置于TFT的源极S和漏极D远离第一衬底101一侧的钝化层PVX。并且,在第一电极130为像素电极的情况下,钝化层PVX位于第一电极130和TFT的源极S和漏极D之间。在此情况下,第一电极130可以通过设置于钝化层PVX上的过孔与TFT的漏极D 耦接。
在一些实施例中,如图10和图11A至图11D所示,液晶盒10还包括第一导电图案141、第二导电图案142和第三导电图案143。
其中,第一导电图案141与第一电极130材料相同,两者同层设置,在工艺上可以同步形成,从而节省工序。例如,液晶盒包括第一图案层,如图11A所示,第一图案层11包括第一导电图案141与第一电极130的。另外,由于第一导电图案141呈透明,光源20发出的光照射在第一导电图案141上不会发生反射,因此,遮光图案210在第一衬底101上的正投影不会覆盖第一导电图案141在第一衬底101上的正投影,可以提高透明显示装置1的透明度和开口率。
示例性地,第一导电图案141位于相邻两行像素区之间,第一导电图案141也位于相邻两个第一电极130之间。并且,在相邻两行像素区之间,第一导电图案141相比于栅线GL远离该栅线GL所耦接的TFT。
第一导电图案141与电源线111耦接。示例性地,第一导电图案141与电源线111相互交叉,并且,第一导电图案141与电源线111通过贯通位于两者之间的图案层的过孔耦接。
示例性地,第一导电图案141与栅线GL的延伸方向相同。第一导电图案141在第一衬底101上的正投影呈条状。在相邻两行像素区之间,相邻两个第一导电图案141可以耦接,构成一体化结构。这样,可以降低各第一导电图案141的压降,从而提高各第一导电图案141的电位的均一性。
第二导电图案142与数据线DL材料相同,两者同层设置,在工艺上可以同步形成,从而节省工序。例如,液晶盒包括第二图案层,第二图案层相比于第一图案层靠近第一衬底,如图11B所示,第二图案层12包括第二导电图案142与数据线DL。第二导电图案142与TFT的漏极D耦接。由于TFT的漏极D与第一电极130耦接,因此第二导电图案142与第一电极130耦接。
示例性地,沿像素区P排列的列方向(例如图10中的Y方向),第二导电图案142在第一衬底101上的正投影位于相邻两个第一电极130在第一衬底101上的正投影之间,第二导电图案142相比于栅线GL远离该栅线GL所耦接的TFT。第二导电图案142中的一部分可以延伸至TFT内充当漏极D,此时,第二导电图案142与漏极D呈一体化结构。
第三导电图案143与栅线GL材料相同,两者同层设置,在工艺上可以同步形成,从而节省工序。例如,液晶盒包括第三图案层,第三图案层相比于第二图案层靠近第一衬底,如图11C所示,第三图案层13包括第三导电图案 143与栅线GL。沿像素区P排列的列方向(例如图10中的Y方向),第三导电图案143位于相邻两行像素区之间,第三导电图案143在第一衬底101上的正投影位于相邻两个第一电极130在第一衬底101上的正投影之间。第三导电图案143相比于栅线GL远离其所耦接的TFT。第三导电图案143与第一导电图案141耦接,由于第一导电图案141与电源线111耦接,因此,第三导电图案143与电源线111耦接。
其中,第三导电图案143在第一衬底101上的正投影与第二导电图案142在第一衬底101上的正投影有交叠。在此情况下,第三导电图案143和第二导电图案142与位于两者之间的膜层(例如,栅绝缘层GI和阻挡层120)可以形成存储电容,以存储数据线DL上的电压。
另外,第二导电图案142在第一衬底101上的正投影与第一导电图案141在第一衬底101上的正投影有交叠,这样,第二导电图案142和第一导电图案141与位于二者之间的膜层也会形成存储电容,存储数据线DL上的电压。并且,由于位于二者之间的膜层(例如钝化层PVX)厚度较大,即,第二导电图案142与第一导电图案141相距较远,因此,第二导电图案142和第一导电图案141形成的存储电容的电容量,小于第三导电图案143和第二导电图案142所形成的存储电容的电容量。
示例性地,如图10和图11C所示,液晶盒10还包括第四导电图案144,第四导电图案144与第二导电图案142同层设置且材料相同。例如,第二图案层12还包括第四导电图案144。沿像素区P排列的列方向,第四导电图案144位于相邻两行像素区之间,也位于相邻两个第一电极130之间。第四导电图案144相比于栅线GL远离其所耦接的TFT。沿像素区P排列的行方向(例如图10中的X方向),第四导电图案144相比于第二导电图案142远离数据线DL。第四导电图案144在第一衬底101上的正投影与第二导电图案142在第一衬底101上的正投影无交叠,与第一导电图案141和第三导电图案143均有交叠。在此情况下,第一导电图案141与第四导电图案144通过贯穿位于两者之间图案层的过孔耦接,第四导电图案144与第三导电图案143通过贯穿位于两者之间图案层的过孔耦接,以使第一导电图案141与第三导电图案143耦接。
在一些实施例中,如图12A所示,遮光图案210在第一衬底101上的正投影覆盖第二导电图案142在第一衬底101上的正投影和第三导电图案143在第一衬底101上的正投影。在此情况下,遮光图案210可以遮挡第二导电图案142和第三导电图案143的反射光线,避免反射光线从液晶盒10出射。 由于第一导电图案141呈透明,遮光图案210无需对其进行遮挡,从而可以提高透明显示装置1的透过率。
示例性地,第一导电图案141与栅线GL延伸方向相同,如图13和图15所示,第一导电图案141包括未遮挡部分1410。未遮挡部分1410位于相邻两个第一电极130之间,且未遮挡部分1410与第二导电图案142和第三导电图案143在第一衬底101上的正投影无交叠。该未遮挡部分1410在第二衬底201上的正投影与遮光图案210在第二衬底201上的正投影无交叠。这样,可以提高透明显示装置1的开口率和透过率。
示例性地,在遮光图案210在第一衬底101上的正投影覆盖栅线GL、数据线DL、TFT、第二导电图案142和第三导电图案143的情况下,遮光图案210的俯视图如图12B所示。其中,遮光图案210中的沿X方向(例如栅线的延伸方向)延伸的部分的宽度(例如在Y方向上的尺寸)不完全相等,例如一部分的宽度相对较大,一部分的宽度相对较小。例如,遮光图案210中的覆盖第二导电图案142和第三导电图案143的部分的宽度相对较大,遮光图案210中的仅覆盖栅线GL的部分的宽度相对较小。
此外,在液晶盒10包括第四导电图案144的情况下,遮光图案210在第一衬底101上的正投影还覆盖第四导电图案144。这样,可以避免光线在第四导电图案144处反射而从液晶盒10出射的问题。
在一些实施例中,如图13、图14和图15所示,第二电极220位于第二衬底201上。第二电极220相对于遮光图案210靠近第一衬底101。
示例性地,电源线111可以通过涂覆在第二衬底201上的导电胶与第二电极220耦接。例如,该导电胶可以为金球胶。第二电极220的厚度约为
Figure PCTCN2021104654-appb-000001
需要说明的是,透明显示装置1还包括与液晶盒10绑定的外部电路,电源线111与外部电路耦接,该外部电路通过电源线111将公共电信号传输至第二电极220。
在一些实施例中,如图13所示,第二电极220在第二衬底201上的正投影覆盖整个AA区。示例性地,在工艺上,可以在第二衬底201上,且在遮光图案210靠近第一衬底101的一侧,沉积待形成第二电极220的材料,形成第二电极220,从而简化生产工序。
在另一些实施例中,如图16所示,第二电极220包括:第二电极主体221和设置于第二电极主体221上的多个开口222。
可以理解的是,在液晶盒10的厚度方向上,多个开口222贯通公共电极主体221。公共电极主体221的材料为透明导电材料,例如ITO。
如图17和图18所示,多个开口222包括第一开口2221、第二开口2222和第三开口2223中的至少一者。其中,第一开口2221在第一衬底101上的正投影与TFT在第一衬底101上的正投影重合或者大致重合。第二开口2222在第一衬底101上的正投影与数据线DL在第一衬底101上的正投影有交叠。第三开口2223在第一衬底101上的正投影与栅线GL在第一衬底101上的正投影有交叠。
示例性地,在多条信号线110包括电源线111的情况下,第二开口2222在第一衬底101上的正投影与电源线111在第一衬底101上的正投影有交叠。
需要说明的是,第一开口2221、第二开口2222和第三开口2223的具体排列方式和开口大小可以根据实际情况进行设计,本公开的实施例对此不作限定。例如,在多个像素区P呈阵列排布的情况下,第二开口2222在第一衬底101上的正投影位于一列像素区中的相邻两个像素区之间。在数据线DL的延伸方向上,第一开口2221在第一衬底101上的正投影与第二开口2222在第一衬底上101的正投影可以依次交替且间隔排列。示例性地,在数据线DL的延伸方向上,第二开口2222的长度大致等于数据线DL中位于相邻两条栅线GL之间的部分的长度的一半。在栅线GL的延伸方向上,第一开口2221在第一衬底101上的正投影与第三开口2223在第一衬底上101的正投影可以依次交替且间隔排列。
其中,在第一衬底101上的正投影被遮光图案210在第一衬底101上的正投影覆盖的各条信号线110还包括电源线111的情况下,第二开口2222在第一衬底101上的正投影与电源线111在第一衬底101上的正投影有交叠。
在此情况下,由于第二电极220所包含的各开口,可以降低第二电极220在第一衬底101上的正投影与液晶盒10中的导电结构(例如各条信号线110)在第一衬底101上的正投影有交叠的区域大小,从而避免因第二电极220在第一衬底101上的正投影与液晶盒10中的导电结构(例如TFT、数据线DL和栅线GL中的至少一者)在第一衬底101上的正投影有交叠,而产生寄生电容,降低了透明显示装置1的负载。
在一些实施例中,参考图19和图21,多个开口222中的至少一个开口222在第二衬底201上的正投影与遮光图案210在第二衬底201上的正投影无交叠。
可以理解的是,在第一开口2221在第二衬底201上的正投影与遮光图案210在第二衬底201上的正投影无交叠的情况下,光线从第一开口2221所在的区域透过不会被遮光图案210遮挡,从而提高了透明显示装置1的透过率。 在第二开口2222在第二衬底201上的正投影与遮光图案210在第二衬底201上的正投影无交叠的情况下,光线从第二开口2222所在的区域透过不会被遮光图案210遮挡,从而提高了透明显示装置1的透过率。在第三开口2223在第二衬底201上的正投影与遮光图案210在第二衬底201上的正投影无交叠的情况下,光线从第三开口2223所在的区域透过不会被遮光图案210遮挡(如图20所示),从而提高了透明显示装置1的透过率。
并且,至少一个开口222可以避免在第二电极220在第一衬底101上的正投影与液晶盒10中的导电结构(例如TFT、数据线DL和栅线GL中的至少一者)在第一衬底101上的正投影有交叠的位置处形成电场,而导致驱动液晶层110的过程出现异常,使得液晶盒10异常出光。
在一些实施例中,如图12、图13和图15所示,液晶盒10还包括设置于第二衬底201上的多个隔垫物(Post Spacer,PS)。多个隔垫物PS相比于遮光图案210远离第二衬底201。
示例性地,沿液晶盒10的厚度方向,隔垫物PS的高度约为3.6μm。
一个隔垫物PS在第一衬底101上的正投影与第一导电图案141在第一衬底101上的正投影有交叠。
可以理解的是,隔垫物PS可以对液晶盒10起到支撑作用,在透明显示装置1被挤压的过程中,可以提高透明显示装置1的支撑性能。
需要说明的是,隔垫物PS的尺寸相对较小,对透明显示装置1的透过率的影响相对较小,可以忽略。
在一些实施例中,如图22所示,光源20包括第一颜色光发光器件21、第二颜色光发光器件22和第三颜色光发光器件23。
示例性地,如图22所示,光源20包括电路板24,第一颜色光发光器件21、第二颜色光发光器件22和第三颜色光发光器件23均设置于电路板24上。
光源20被配置为响应于脉冲控制信号,第一颜色光发光器件21、第二颜色光发光器件22和第三颜色光发光器件23依次周期性发出相应颜色的光。
其中,第一颜色、第二颜色和第三颜色分别为三基色。例如,第一颜色为红色,第二颜色为绿色,第三颜色为蓝色。
示例性地,各发光器件可以采用LED(Light Emitting Diode,发光二极管)、Micro-LED、Mini-LED或OLED(Organic Light Emitting Diode,有机发光二极管)等。
示例性地,光源20还包括发光控制电路,发光控制电路与光源20中的各发光器件耦接。发光控制电路被配置为输出脉冲控制信号,以控制光源20 中的各发光器件的工作周期。其中,发光控制电路可以设置于电路板24上。或者,透明显示装置1包括时序控制器(Timing Controller,Tcon),光源20可以与时序控制器耦接,时序控制器被配置为输出脉冲控制信号,以控制光源20中各发光器件的工作周期。
在此情况下,光源20可以周期性地发出第一颜色光、第二颜色光和第三颜色光,使得光源20入射至液晶盒10的光为彩色光。因此,在显示过程中,液晶盒10可以出射彩色光,以实现彩色显示。这样,在液晶盒10的出光侧无需设置彩膜,从而节约成本。
可以理解的是,在液晶层300包括液晶分子和聚合物分子的情况下,当第一颜色光发光器件21发出第一颜色光时,透明显示装置1中所要显示第一颜色的像素区P可在电驱动下呈散射态,其他像素区P处于透明态;当第二颜色光发光器件22发出第二颜色光时,透明显示装置1中所要显示第二颜色的像素区P可在电驱动下呈散射态,其他像素区P处于透明态;当第三颜色光发光器件23发出第三颜色光时,透明显示装置1中所要显示第三颜色的像素区P可在电驱动下呈散射态,其他像素区P处于透明态。
需要说明的是,领域内技术人员可以根据实际显示情况,对脉冲控制信号的占空比进行调节,以控制第一颜色光发光器件21、第二颜色光发光器件22和第三颜色光发光器件23各自的发光周期。
在一些实施例中,如图14所示,液晶盒10还包括设置于第二衬底201上、且位于遮光图案210靠近第一衬底101一侧的保护层(Over Coat,OC)。保护层OC中的远离第二衬底201一侧的表面平坦。在此情况下,在第二电极220位于第二衬底201上的情况下,第二电极220位于保护层OC远离第二衬底201的一侧,这样,可以使得第二电极220的膜层平坦,提高了第二电极220的均匀性。
如图14所示,液晶盒10还包括第一配向层150和第二配向层230。其中,第一配向层150位于第一衬底101靠近液晶层300的一侧,第二配向层230位于第二衬底201靠近液晶层300的一侧。示例性地,在第二电极220位于第一衬底101上的情况下,第一配向层150相比于第一电极130和第二电极220靠近液晶层300;在第二电极220位于第二衬底201上的情况下,第二配向层230相比于第二电极220靠近液晶层300。
示例性地,第一配向层150和第二配向层230材料相同,例如可以采用PI。其中,第一配向层150的配向方向和第二配向层230的配向方向相互反向平行。示例性地,在工艺上可以采用摩擦配向或者光配向的方式,对第一配 向层150和第二配向层230进行配向。例如,第一配向层150的配向方向与第二配向层230的配向方向平行且方向相反。
此外,上述的透明显示装置1可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是的图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
示例性地,透明显示装置1可以应用于车载显示、橱窗展示、商场广告宣传、博物馆陈列、冰箱门、建筑媒体等场合。
例如,透明显示装置1可以将用于汽车车窗。例如可以将前挡风玻璃的部分或者全部替换为透明的显示装置,也可以贴附于前挡风玻璃上,覆盖前挡风玻璃的部分或者全部。将前挡风玻璃的部分替换为透明的显示装置指的是可以在前挡风玻璃上设置开口,再将透明显示装置1嵌入在开口中。这样,透明显示装置1既起到前挡风玻璃的作用,又能显示图像。当透明显示装置1应用于汽车前窗时,可以将汽车的仪表盘的信息、地图的导航信息等显示在汽车前窗上,使驾驶者在查看仪表盘和地图的同时能够看到前方道路,为驾驶者提供更好的驾驶体验。
例如,透明显示装置1可以应用于橱窗展示柜(也可以称为展示柜)中,橱窗展示柜包括箱体以及设置在箱体一侧的透明显示装置1,箱体具有一定的容纳空间,可以用于放置待展示物品。该橱窗展示柜中设置有透明显示装置1的一侧表面可以称为展示面,以待展示物品为笔记本电脑进行示例,橱窗展示柜的展示面可以显示待展示物品的参数、价格以及应用场景等信息,使观看者能够更深入地了解产品。同时,也可将箱体的至少部分内侧表面设置成白色,这样一来,散射至箱体的容纳空间的光线中的一部分可以被箱体的内侧表面反射至待展示物品上,能够为待展示物品提供更好的环境光线;还有一部分可以透过透明显示装置1从展示面射出,从而提高透明放入透明显示装置1的亮度。
例如,可以在冰箱门上设置一开口或凹槽,将透明显示装置1设置在开口或凹槽中。此外,可以将触控结构和音频播放器等中的至少一个集成在透明显示装置1中,这样一来,即便用户不打开冰箱门也可以观察到冰箱内的 情况,并且,透明显示装置1上可以显示人机交互界面,用户可以通过人机交互界面在透明显示装置上进行操作,透明显示装置1通过触控结构感应到用户的操作。例如,将用户设定的温度和调温图像显示在透明显示装置1上,用户可以通过按压调温图像调整设定的温度,另外可以将音频播放器的控制界面显示在透明显示装置1上,通过在该控制界面上操作可以打开音频播放器以播放音频,扩展了透明显示装置1的适用范围。
本公开的实施例提供一种透明显示装置的制备方法,该制备方法可以用于形成上述任一实施例中的透明显示装置1。如图23所示,制备方法包括如下步骤:
S10、参考图13至图15,在第一衬底101且在AA区中形成多条信号线110。
S20、参考图13至图15,在第二衬底201上形成遮光图案210。
S30、在第一衬底101上形成第一电极130,在第一衬底101上或第二衬底201上形成第二电极220。
S40、在第一衬底101和第二衬底201之间形成液晶层300,以得到液晶盒10。
S50、参考图13至图15,设置与液晶盒10的侧面的位置相对的光源20,以得到透明显示装置1。
其中,参考图2和图3,多条信号线110中的至少一条信号线110具有靠近第一衬底101的底面110A和与底面110A连接且朝向光源20的反光侧面110B。反光侧面110B与底面110A形成的坡度角γ为锐角。遮光图案210位于光源20发出的光线照射到反光侧面110B后的反射路径上。液晶层300包括液晶分子301和聚合物分子302。液晶层300被配置为在第一电极130和第二电极220提供的电场的控制下,使入射至液晶层300的光线发生全反射或者散射。
示例性地,可以在第二衬底201上沉积待形成遮光图案210的材料,形成遮光薄膜,对遮光薄膜进行图案化,以形成遮光图案210。
需要说明的是,在第一衬底上形成各结构和在第二衬底上形成各结构的顺序不作限定,例如,可以先在第二衬底上形成各结构,后在第一衬底上形成各结构。并且,在第一衬底上形成多条信号线、第一电极和第二电极的顺序可以根据实际情况进行调整,在此不作限定,例如,在第一衬底上可以先形成多条信号线和第一电极,之后再形成第二电极,或者,也可以先形成多条信号线和第二电极,之后再形成第一电极。
示例性地,参考图15,在第二衬底201上形成第二电极220包括:如图24所示,在第二衬底201上且遮光图案210远离第二衬底201的一侧,沉积待形成保护层OC的材料,形成保护层OC。在保护层OC远离第二衬底201的一侧沉积透明导电材料,形成第二电极220。在第二电极220远离第二衬底201的一侧形成隔垫物PS。在隔垫物PS远离第二衬底201的一侧涂覆待形成第二配向层230的材料,形成第二配向薄膜,对第二配向薄膜进行摩擦配向或者光配向,得到第二配向层230。
需要说明的是,上述透明显示装置的制备方法与上述一些实施例所述的透明显示装置1的有益效果相同,此处不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种透明显示装置,包括液晶盒和光源,所述液晶盒具有显示区,所述光源与所述液晶盒的侧面相对设置;
    所述液晶盒包括:
    第一衬底;
    第一电极,设置于所述第一衬底上;
    第二衬底;
    第二电极,设置于所述第一衬底上或所述第二衬底上;
    液晶层,夹设于所述第一衬底和所述第二衬底之间;所述液晶层包括聚合物分子和液晶分子;所述液晶层被配置为在所述第一电极和所述第二电极提供的电场的控制下,使入射至所述液晶层的光线发生全反射或者散射;
    多条信号线,设置于所述第一衬底上且位于所述显示区中,其中至少一条信号线具有靠近所述第一衬底的底面和与所述底面连接且朝向所述光源的反光侧面,所述反光侧面与所述底面形成的坡度角为锐角;
    遮光图案,设置于所述第二衬底上;所述遮光图案位于所述光源发出的光线照射到所述反光侧面后的反射路径上。
  2. 根据权利要求1所述的透明显示装置,其中,所述多条信号线中的至少一条信号线在所述第一衬底上的正投影被所述遮光图案在所述第一衬底上的正投影覆盖。
  3. 根据权利要求1或2所述的透明显示装置,其中,所述至少一条信号线在所述第一衬底上的正投影具有第一边沿和第二边沿,
    所述遮光图案中的对应部分在所述第一衬底上的正投影具有第三边沿和第四边沿;所述遮光图案中的对应部分为所述遮光图案中的在所述第一衬底上的正投影覆盖所述至少一条信号线的部分;
    在所述至少一条信号线的宽度方向上,所述第一边沿和所述第二边沿位置相对;所述第三边沿位于所述第一边沿外远离所述第二边沿的一侧,所述第四边沿位于所述第二边沿外远离所述第一边沿的一侧;
    所述第三边沿和所述第一边沿的间距,与所述第四边沿和所述第二边沿的间距之和大于或等于6μm。
  4. 根据权利要求3所述的透明显示装置,其中,所述第三边沿和所述第一边沿的间距,等于所述第四边沿和所述第二边沿的间距。
  5. 根据权利要求3或4所述的透明显示装置,其中,所述遮光图案中的对应部分靠近所述第二衬底一侧的底面的宽度,与所述至少一条信号线的底 面的宽度之比为1~2.5。
  6. 根据权利要求3~5中任一项所述的透明显示装置,其中,所述至少一条信号线的底面的宽度d,与所述遮光图案中的对应部分靠近所述第二衬底一侧的底面的宽度D之间的关系为D=2Ltan(2γ+α-90°)+d;
    其中,L为所述至少一条信号线的底面与所述遮光图案中的对应部分靠近所述第二衬底一侧的底面的间距;γ为所述至少一条信号线的反光侧面与底面形成的坡度角;α为入射至所述至少一条信号线的反光侧面的光线与所述信号线的底面的夹角。
  7. 根据权利要求6所述的透明显示装置,其中,0°≤α≤60°;45°≤γ≤80°。
  8. 根据权利要求1~7中任一项所述的透明显示装置,其中,所述多条信号线的材料包括金属。
  9. 根据权利要求1~8中任一项所述的透明显示装置,其中,所述多条信号线包括栅线和数据线;
    所述栅线的延伸方向与所述数据线的延伸方向相交叉。
  10. 根据权利要求9所述的透明显示装置,其中,所述显示区包括多个像素区;所述第一电极位于每个像素区内;
    所述液晶盒还包括:
    设置于所述第一衬底上且位于每个像素区内的薄膜晶体管;所述薄膜晶体管相比于所述第一电极靠近所述第一衬底;所述薄膜晶体管包括栅极、有源层、源极和漏极;
    所述薄膜晶体管的栅极与所述栅线耦接,所述薄膜晶体管的源极和所述数据线耦接,所述薄膜晶体管的漏极与所述第一电极耦接。
  11. 根据权利要求10所述的透明显示装置,其中,所述遮光图案在所述第一衬底上的正投影还覆盖所述薄膜晶体管。
  12. 根据权利要求10或11所述的透明显示装置,其中,所述多条信号线还包括:电源线;
    所述电源线与所述数据线延伸方向相同且间隔设置;所述电源线与所述数据线材料相同。
  13. 根据权利要求12所述的透明显示装置,其中,所述液晶盒还包括:
    第一导电图案,与所述第一电极同层设置;
    第二导电图案,与所述数据线同层设置;
    第三导电图案,与所述栅线同层设置;
    所述第一导电图案与所述电源线和所述第三导电图案耦接;
    所述第二导电图案与所述薄膜晶体管的漏极耦接;
    所述第三导电图案在所述第一衬底上的正投影与所述第二导电图案在所述第一衬底上的正投影有交叠。
  14. 根据权利要求13所述的透明显示装置,其中,所述遮光图案在所述第一衬底上的正投影,覆盖所述第二导电图案在所述第一衬底上的正投影和所述第三导电图案在所述第一衬底上的正投影。
  15. 根据权利要求13或14所述的透明显示装置,其中,
    所述第一导电图案与所述栅线延伸方向相同;
    所述第一导电图案包括位于相邻两个第一电极之间的未遮挡部分,所述未遮挡部分与所述第二导电图案和所述第一导电图案在所述第一衬底上的正投影无交叠;所述未遮挡部分在所述第二衬底上的正投影与所述遮光图案在所述第二衬底上的正投影无交叠。
  16. 根据权利要求1~15中任一项所述的透明显示装置,其中,所述第二电极位于所述第二衬底上,且所述第二电极相对于所述遮光图案靠近所述第一衬底。
  17. 根据权利要求16所述的透明显示装置,其中,所述第二电极包括:
    第二电极主体;
    设置于所述第二电极主体上的多个开口;所述多个开口包括:第一开口、第二开口和第三开口中的至少一者;
    在所述液晶盒包括薄膜晶体管的情况下,所述第一开口在所述第一衬底上的正投影与所述薄膜晶体管在所述第一衬底上的正投影重合或者大致重合;
    在所述多条信号线包括栅线和数据线的情况下,所述第二开口在所述第一衬底上的正投影与所述数据线在所述第一衬底上的正投影有交叠;
    所述第三开口在所述第一衬底上的正投影与所述栅线在所述第一衬底上的正投影有交叠。
  18. 根据权利要求17所述的透明显示装置,其中,所述多个开口中的至少一个开口在所述第二衬底上的正投影与所述遮光图案在所述第二衬底上的正投影无交叠。
  19. 根据权利要求1~18中任一项所述的透明显示装置,所述液晶盒还包括:
    多个隔垫物,设置于所述第二衬底上;所述多个隔垫物相比于所述遮光 图案远离所述第二衬底;
    在所述液晶盒包括第一导电图案的情况下,一个隔垫物在所述第一衬底上的正投影与所述第一导电图案在所述第一衬底上的正投影有交叠;
    所述多个隔垫物在所述第二衬底上的正投影与所述遮光图案在所述第二衬底上的正投影无交叠。
  20. 根据权利要求1~19中任一项所述的透明显示装置,其中,所述光源包括第一颜色光发光器件、第二颜色光发光器件和第三颜色光发光器件;
    所述光源被配置为,响应于脉冲控制信号,所述第一颜色光发光器件、所述第二颜色光发光器件和所述第三颜色光发光器件依次周期性发出相应颜色的光。
  21. 一种透明显示装置的制备方法,包括:
    在第一衬底上且在显示区中形成多条信号线;
    在第二衬底上形成遮光图案;
    在所述第一衬底上形成第一电极,在所述第一衬底上或所述第二衬底上形成第二电极;
    在所述第一衬底和所述第二衬底之间形成液晶层,以得到液晶盒;
    设置与所述液晶盒的侧面的位置相对的光源,以得到所述透明显示装置;
    其中,所述多条信号线中的至少一条信号线具有靠近所述第一衬底的底面和与所述底面连接且朝向所述光源的反光侧面;所述反光侧面与所述底面形成的坡度角为锐角;所述遮光图案位于所述光源发出的光线照射到所述反光侧面后的反射路径上;所述液晶层包括聚合物分子和液晶分子;所述液晶层被配置为在所述第一电极和所述第二电极提供的电场的控制下,使入射至所述液晶层的光线发生全反射或者散射。
PCT/CN2021/104654 2020-08-14 2021-07-06 透明显示装置及制备方法 WO2022033238A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/789,932 US20230044641A1 (en) 2020-08-14 2021-07-06 Transparent display apparatus and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010818592.3A CN114077083A (zh) 2020-08-14 2020-08-14 透明显示装置及制备方法
CN202010818592.3 2020-08-14

Publications (1)

Publication Number Publication Date
WO2022033238A1 true WO2022033238A1 (zh) 2022-02-17

Family

ID=80246950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104654 WO2022033238A1 (zh) 2020-08-14 2021-07-06 透明显示装置及制备方法

Country Status (3)

Country Link
US (1) US20230044641A1 (zh)
CN (1) CN114077083A (zh)
WO (1) WO2022033238A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103163701A (zh) * 2011-12-16 2013-06-19 上海中航光电子有限公司 网状公共电极结构液晶显示器件及其制造方法
CN105954913A (zh) * 2016-06-24 2016-09-21 京东方科技集团股份有限公司 一种液晶显示器及显示装置
CN106647049A (zh) * 2017-03-24 2017-05-10 京东方科技集团股份有限公司 一种液晶显示面板及液晶显示装置
US20190079323A1 (en) * 2017-09-12 2019-03-14 Japan Display Inc. Display device
CN110928043A (zh) * 2019-11-26 2020-03-27 深圳市华星光电半导体显示技术有限公司 透明显示面板和电子设备
CN111290185A (zh) * 2020-03-31 2020-06-16 成都中电熊猫显示科技有限公司 阵列基板及其制作方法、显示面板
CN212255944U (zh) * 2020-08-14 2020-12-29 京东方科技集团股份有限公司 透明显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100516764B1 (ko) * 2000-12-22 2005-09-22 가부시키가이샤 휴네트 액정 구동 장치 및 계조 표시 방법
JP4196906B2 (ja) * 2004-09-02 2008-12-17 セイコーエプソン株式会社 液晶表示装置及び電子機器
JP5452944B2 (ja) * 2009-02-04 2014-03-26 株式会社ジャパンディスプレイ 液晶表示装置
TWI397757B (zh) * 2009-12-22 2013-06-01 Au Optronics Corp 聚合物穩定配向液晶顯示面板及液晶顯示面板
US8981374B2 (en) * 2013-01-30 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20170048635A (ko) * 2015-10-26 2017-05-10 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103163701A (zh) * 2011-12-16 2013-06-19 上海中航光电子有限公司 网状公共电极结构液晶显示器件及其制造方法
CN105954913A (zh) * 2016-06-24 2016-09-21 京东方科技集团股份有限公司 一种液晶显示器及显示装置
CN106647049A (zh) * 2017-03-24 2017-05-10 京东方科技集团股份有限公司 一种液晶显示面板及液晶显示装置
US20190079323A1 (en) * 2017-09-12 2019-03-14 Japan Display Inc. Display device
CN110928043A (zh) * 2019-11-26 2020-03-27 深圳市华星光电半导体显示技术有限公司 透明显示面板和电子设备
CN111290185A (zh) * 2020-03-31 2020-06-16 成都中电熊猫显示科技有限公司 阵列基板及其制作方法、显示面板
CN212255944U (zh) * 2020-08-14 2020-12-29 京东方科技集团股份有限公司 透明显示装置

Also Published As

Publication number Publication date
US20230044641A1 (en) 2023-02-09
CN114077083A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
JP6812474B2 (ja) 液晶表示装置
US11054705B2 (en) Liquid crystal display device
KR102179011B1 (ko) 표시 장치
KR101398330B1 (ko) 반투과형 액정 표시장치 및 그 제조 방법
CN212255944U (zh) 透明显示装置
KR100760938B1 (ko) 반사형 액정 표시 장치
JP2003295165A (ja) 液晶表示装置および電子機器
US20080218670A1 (en) Liquid crystal device and electronic apparatus
CN104950537A (zh) 显示装置的阵列基板
WO2021238466A1 (zh) 显示面板及透明显示装置
US11960168B2 (en) Electronic device
US8884292B2 (en) Transflective TFT-LCD and method for manufacturing the same
US9207507B2 (en) Pixel structure having common electrode and pixel electrode partly overlapping each other to form storage capacitor
JP2004333645A (ja) 液晶表示装置、及び電子機器
US8451413B2 (en) Array substrate for FFS type LCD panel and method for manufacturing the same
WO2022033238A1 (zh) 透明显示装置及制备方法
KR20180077940A (ko) 보더리스타입 표시장치
JP2004205902A (ja) 液晶表示装置および電子機器
JP2015161926A (ja) 液晶表示装置及び電子装置
WO2023178666A1 (zh) 调光面板、叠屏面板、和制造调光面板的方法
WO2022082448A1 (zh) 显示面板及其制造方法、显示装置
TWI386716B (zh) 液晶顯示面板及其應用
JP2007171442A (ja) 液晶表示素子及び液晶表示装置
KR20170038299A (ko) 반사 제어 필름과 이를 포함하는 디스플레이 장치
KR101475235B1 (ko) 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855291

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21855291

Country of ref document: EP

Kind code of ref document: A1