WO2021238466A1 - 显示面板及透明显示装置 - Google Patents

显示面板及透明显示装置 Download PDF

Info

Publication number
WO2021238466A1
WO2021238466A1 PCT/CN2021/086786 CN2021086786W WO2021238466A1 WO 2021238466 A1 WO2021238466 A1 WO 2021238466A1 CN 2021086786 W CN2021086786 W CN 2021086786W WO 2021238466 A1 WO2021238466 A1 WO 2021238466A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
guide plate
light
light guide
liquid crystal
Prior art date
Application number
PCT/CN2021/086786
Other languages
English (en)
French (fr)
Inventor
贾南方
王龙
段立业
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/631,350 priority Critical patent/US20220283358A1/en
Publication of WO2021238466A1 publication Critical patent/WO2021238466A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/009Positioning aspects of the light source in the package
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • G02F1/133622Colour sequential illumination
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/56Substrates having a particular shape, e.g. non-rectangular
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel and a transparent display device.
  • the transparent display device is a display device that allows the user to simultaneously watch the display screen on the transparent display device and the scene or objects behind the transparent display device.
  • the transparent display device can realize the integration and interaction of the display screen on the display screen and the scene or objects behind the transparent display device, thereby bringing a brand-new, rich and expressive visual experience to the user.
  • a display panel in one aspect, includes a liquid crystal cell, a transparent light guide plate and a light source.
  • the light guide plate is attached to one side of the liquid crystal cell.
  • the light guide plate includes a first surface, a second surface, and a side surface.
  • the position of the first surface and the position of the second surface are opposite, and the side surface is located between the first surface and the second surface; the first surface is opposite The second surface is close to the liquid crystal cell.
  • the light source is arranged in at least a partial area of the side surface of the light guide plate. Wherein, the light guide plate is configured to totally reflect the light incident on the second surface among the light from the light source and exit from the first surface.
  • the display panel further includes an adhesive layer.
  • the adhesive layer is arranged between the light guide plate and the liquid crystal cell. Wherein, the first surface of the light guide plate is bonded to the liquid crystal cell through the adhesive layer.
  • the refractive index of the light guide plate is 1.4-1.6.
  • the refractive index of the adhesive layer is 1.33 ⁇ 1.52.
  • the orthographic projection of the light guide plate on the plane where the display panel is located is a quadrilateral; the light source is arranged on the longer side of the quadrilateral.
  • the length of the shorter side of the quadrilateral is less than or equal to 6 cm.
  • the orthographic projection of the light guide plate on the plane where the display panel is located has an arc-shaped edge; the light source is surrounded by a side surface of the light guide plate.
  • the thickness of the light guide plate is less than or equal to 4 mm.
  • the half-angle of light emission of the light source is 45°-75°.
  • the light source is a Lambertian light source.
  • the light source includes a first color light emitting device, a second color light emitting device, and a third color light emitting device.
  • the light source is configured to, in response to a pulse control signal, the first color light emitting device, the second color light emitting device, and the third color light emitting device sequentially and periodically emit light of corresponding colors.
  • the liquid crystal cell includes: an array substrate, a counter substrate, and a liquid crystal layer.
  • the counter substrate is disposed opposite to the array substrate; the counter substrate is away from the light guide plate relative to the array substrate.
  • the liquid crystal layer is disposed between the array substrate and the opposite substrate.
  • the liquid crystal layer includes liquid crystal molecules and polymer molecules.
  • the opposite substrate includes a light-shielding pattern disposed on the edge of the opposite substrate.
  • the outer edge of the orthographic projection of the light source on the plane where the opposite substrate is located extends beyond the outer edge of the shading pattern.
  • the array substrate includes a first alignment layer.
  • the opposite substrate includes a second alignment layer.
  • the display panel further includes a homogenizing film.
  • the uniform light film is located between the light source and the side surface of the light guide plate.
  • a transparent display device in another aspect, includes: the display panel as described in any of the foregoing embodiments.
  • Fig. 1 is a structural diagram of a display panel according to the related art
  • Fig. 2 is another structural diagram of a display panel according to the related art
  • FIG. 3 is a top view of a display panel according to some embodiments of the present disclosure.
  • FIG. 4 is a cross-sectional view of the display panel in FIG. 3 along the direction A-A';
  • FIG. 5 is another structural diagram of a display panel according to some embodiments of the present disclosure.
  • FIG. 6 is another structural diagram of a display panel according to some embodiments of the present disclosure.
  • FIG. 7 is another top view of a display panel according to some embodiments of the present disclosure.
  • Figure 8 is a structural diagram of a liquid crystal cell according to some embodiments of the present disclosure.
  • Fig. 9 is a cross-sectional view of the liquid crystal cell in Fig. 8 along the direction B-B';
  • FIG. 10 is another structural diagram of a display panel according to some embodiments of the present disclosure.
  • FIG. 11 is still another top view of a display panel according to some embodiments of the present disclosure.
  • FIG. 12 is another structural diagram of a display panel according to some embodiments of the present disclosure.
  • FIG. 13 is a structural diagram of a transparent display device according to some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • plural means two or more.
  • the expressions “coupled” and “connected” and their extensions may be used.
  • the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more components have direct physical or electrical contact.
  • the term “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed here are not necessarily limited to the content of this document.
  • the exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in the shape with respect to the drawings due to, for example, manufacturing technology and/or tolerances can be envisaged. Therefore, the exemplary embodiments should not be construed as being limited to the shapes of the regions shown herein, but include shape deviations due to, for example, manufacturing.
  • the etched area shown as a rectangle will generally have curved features. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the area of the device, and are not intended to limit the scope of the exemplary embodiments.
  • the transmittance to light is small (for example, less than 10%). Therefore, transparent display based on traditional liquid crystal display panels
  • the brightness of the device is low, and the utilization rate of light is low.
  • LED Light Emitting Diode
  • transparent display devices based on LED display panels have larger pixels, which are suitable for large-size transparent display devices, but are not conducive to achieving small sizes.
  • the transparent display For the transparent display device based on the Micro-LED display panel, the size of the Micro-LED is smaller, but the cost is higher.
  • the light transmittance is less than 68%, but the cost is relatively high, and the lifetime is difficult to guarantee.
  • the transparent display device based on the scattering display panel has a high transmittance (for example, up to 80% or more), and its manufacturing process is similar to that of a traditional liquid crystal display panel, so the cost is relatively low and the reliability and service life are relatively high. .
  • the display panel 100' shown in FIG. 1 includes a liquid crystal cell 10 and a light source 30'.
  • the light source 30 ′ is attached to the side surface of the liquid crystal cell 10 and enters light from the side surface of the liquid crystal cell 10.
  • the various film layers (such as metal wiring layers, etc.) in the liquid crystal cell 10 will scatter the light, and the light loss will be large, which causes the liquid crystal cell 10 to be in the display process Among them, the area closer to the light source 30' and the area farther from the light source 30' have poor display uniformity.
  • the brightness of the area farther from the light source 30' is less than 10% of the brightness of the area closer to the light source 30'. %, resulting in a decrease in display contrast, which is difficult to meet actual display requirements.
  • the light source 30' is arranged outside the liquid crystal cell 10, for example, on the side of the liquid crystal cell 10 away from the display surface, and the light emitted by the light source 30' is projected to the liquid crystal cell 10.
  • the size of the light source 30' is large, so that the size of the display panel 100' is also large, and it is difficult to apply to a small-sized display device.
  • An embodiment of the present disclosure provides a display panel 100.
  • the display panel 100 includes a liquid crystal cell 10, a light guide plate 20, and a light source 30.
  • the light guide plate 20 is attached to one side of the liquid crystal cell 10.
  • the light guide plate 20 includes a first surface 21, a second surface 22 and a side surface 23.
  • the light source 30 is arranged on at least a part of the side surface 23 of the light guide plate 20.
  • the position of the first surface 21 is opposite to the position of the second surface 22, and the side surface 23 is located between the first surface 21 and the second surface 22 .
  • the first surface 21 is close to the liquid crystal cell 10 relative to the second surface 22.
  • first surface 21 of the light guide plate 20 is attached to the liquid crystal cell 10.
  • the light guide plate 20 is transparent.
  • the light guide plate 20 may be light guide glass.
  • the light guide plate 20 is configured to totally reflect the light incident on the second surface 22 among the light from the light source 30 and exit from the first surface 21.
  • the refractive index of the light guide plate 20 is 1.4-1.6.
  • the refractive index of the light guide plate 20 is 1.51314.
  • the second surface 22 of the light guide plate 20 is the interface between the light guide plate 20 and the air. Since the refractive index of the light guide plate 20 is greater than the refractive index of air, the light from the light source 30 incident on the second surface 22 is equivalent to going from the optically dense medium (that is, the light guide plate 20) to the lightly thinner medium (that is, Air) propagates, and total reflection occurs at the interface between the optically dense medium and the optically thin medium (ie, the second surface 22).
  • the light guide plate 20 is attached to one side of the liquid crystal cell 10, and the light source 30 is disposed on at least a part of the side surface 23 of the light guide plate 20, Among the light from the light source 30, the light incident on the second surface 22 of the light guide plate 20 is totally reflected and exits from the first surface 21 of the light guide plate 20. At the same time, the light incident on the second surface 22 and undergoing total reflection can propagate to an area far away from the light source 30. Therefore, compared to the display panel 100' in FIG.
  • the light in the display panel 100 of the present disclosure will not be affected by the liquid crystal during the propagation process from the area closer to the light source 30 to the area farther from the light source 30.
  • the film layer in the box 10 reduces the loss of light propagation, improves the brightness of the area far from the light source 30, improves the brightness uniformity, and improves the contrast.
  • the display panel 100 of the present disclosure has a smaller size, and when applied to a display device, the volume of the display device is reduced, and it is suitable for a small-size display device.
  • the display panel 100 further includes an adhesive layer 40.
  • the adhesive layer 40 is disposed between the light guide plate 20 and the liquid crystal cell 10.
  • the first surface 21 of the light guide plate 20 is bonded to the liquid crystal cell 10 through the adhesive layer 40.
  • the adhesive layer 40 is transparent, so that the light transmittance is high, and the light loss can be reduced.
  • the material of the adhesive layer 40 can be selected according to the actual situation.
  • the material of the adhesive layer 40 includes OCA (Optically Clear Adhesive), LOCA (Liquid Optical Clear Adhesive, liquid optical clear adhesive) or ultraviolet curing adhesive.
  • the refractive index of the adhesive layer 40 is 1.33 ⁇ 1.52.
  • the refractive index of the adhesive layer 40 is 1.50.
  • the refractive index of the adhesive layer 40 matches the refractive index of the light guide plate 20, so that the display panel 100 can have better brightness uniformity.
  • the orthographic projection of the light guide plate 20 on the plane where the display panel 100 is located is a quadrilateral. As shown in FIG. 3, the light source 30 is disposed on the longer side of the quadrilateral.
  • the length of the longer side L of the quadrilateral may be greater than or equal to 12 cm.
  • the side length of the quadrilateral is shorter than the length of the side W is less than or equal to 6 cm.
  • the display panel 100 due to the larger size of the display panel 100, for example, the length of the side W with the shorter side of the quadrangle gradually increasing, the brightness of the area farther from the light source 30 in the display panel 100 is lower than The brightness of the area close to the light source 30 is 50% of the brightness, which leads to the problem of poor brightness uniformity of the display panel 100, thereby ensuring the display effect of the display panel 100.
  • the display panel 100' in FIG. 1 adopting the related technology, the irradiance of the light in the area closer to the light source 30' and the irradiance of the light in the area farther from the light source 30' The ratio is about 17%.
  • the ratio of the irradiance of the light in the area closer to the light source 30 to the irradiance of the light in the area farther from the light source 30 is about 60%, and the display panel 100 The uniformity is improved, thereby improving the display effect.
  • the orthographic projection of the light guide plate 20 on the plane where the display panel 100 is located has an arc-shaped edge.
  • the light source 30 is surrounded on the side surface of the light guide plate 20.
  • the radius of the arc-shaped edge of the light guide plate 20 is about 25 mm, and the length of the edge of the light guide plate 20 that is linear in cross section is about 24 mm.
  • edge of the light guide plate 20 whose cross-section is straight can be bound with the circuit board.
  • the light source 30 of the embodiment of the present disclosure is not only arranged on the straight-line side surface in the orthographic projection of the light guide plate 20 on the plane where the display panel 100 is located, but also on the light guide plate 20
  • the arc-shaped side surface in the orthographic projection on the plane where the display panel 100 is located can improve the overall brightness and uniformity of the display panel 100.
  • the orthographic projection of the display panel 100' in FIG. 1 on the plane where it is located has an arc-shaped edge, and the light source 30' is arranged on the arc-shaped edge,
  • the brightness at the center position of 100' is approximately 26% of the brightness at a position closer to the light source 30'.
  • the brightness at the center of the display panel 100 in FIG. 7 is about 72% of the brightness at a position closer to the light source 30, thereby improving the brightness uniformity of the display panel 100.
  • the shape of the display area for normal display in the display panel 100 is approximately the same as the shape of the orthographic projection of the light guide plate 20 on the plane where the display panel 100 is located.
  • the area of the display area of the display panel 100 for normal display is smaller than the area of the orthographic projection of the light guide plate 20 on the plane where the display panel 100 is located.
  • the shape of the orthographic projection of the light guide plate 20 on the plane where the display panel 100 is located is approximately circular
  • the shape of the orthographic projection of the display panel 100 on the plane where the display panel 100 is located is also approximately circular.
  • the display panel 100 can be applied to display devices such as smart watches.
  • the orthographic projection of the light guide plate 20 on the plane where the display panel 100 is located is not limited to It can be quadrilateral or have arc-shaped edges, and can also be pentagonal, hexagonal, elliptical, etc.
  • the orthographic projection of the corresponding display panel 100 on the plane where the display panel 100 is located can also be pentagonal or hexagonal. Or oval shape, etc., the present disclosure is not limited here.
  • the thickness of the light guide plate 20 is less than or equal to 4 mm.
  • the thickness of the light guide plate 20 is 1 mm or 2 mm. In this way, the display panel 100 can be adapted to a small-size display device to meet the appearance requirements of the small-size display device.
  • the half-angle of light emission of the light source 30 is 45° ⁇ 75°.
  • the half-angle of light emission is 60°.
  • the light source 30 is a Lambertian light source.
  • the light source 30 includes an LED (Light Emitting Diode, light emitting diode).
  • the light source 30 is a surface light source.
  • the orthographic projection of the light guide plate 20 in Table 1 on the plane where the display panel 100 is located is quadrilateral.
  • the shape of the display area of the display panel 100 is also quadrangular.
  • the luminous flux of the high beam zone in Table 1 refers to the luminous flux of an area with a width of about 5 mm at the center of the display panel 100 along the extension direction of the shorter side W of the quadrilateral;
  • the luminous flux of the low beam zone refers to the The extending direction of the side W of the quadrangle with the shorter side length is the luminous flux in the area about 5 mm away from the light source 30.
  • the aforementioned uniformity is the ratio of the luminous flux of the high-beam area of the display panel 100 to the luminous flux of the low-beam area of the display panel 100.
  • the light source 30 uses light with a wavelength of 546.1 nm for simulation.
  • the refractive index of the light guide plate 20, the refractive index of the adhesive layer 40, and the thickness of the light guide plate 20 are all constant, the half-angle of light of the light source 30 is relatively large (for example, the half-angle of light is 75°).
  • the uniformity of the panel 100 is good.
  • the refractive index of the adhesive layer 40, the thickness of the light guide plate 20, and the emission half angle of the light source 30 are unchanged, the refractive index of the light guide plate 20 is relatively small, and the uniformity of the display panel 100 is good. Under the condition that the refractive index of the light guide plate 20, the thickness of the light guide plate 20, and the emission half-angle of the light source 30 are unchanged, the change of the refractive index of the adhesive layer 40 has little effect on the uniformity of the display panel 100.
  • the light source 30 includes a first color light emitting device, a second color light emitting device, and a third color light emitting device.
  • the light source 30 is configured to, in response to the pulse control signal, the first color light emitting device, the second color light emitting device, and the third color light emitting device sequentially and periodically emit light of corresponding colors.
  • the first color, the second color and the third color are three primary colors respectively.
  • the first color is red
  • the second color is green
  • the third color is blue.
  • the display panel 100 further includes a timing controller (Timing Controller, Tcon), the light source 30 can be coupled to the timing controller, and the timing controller is used to output pulse control signals to control the duty cycle of each light-emitting device in the light source 30 .
  • Tcon Timing Controller
  • the light source 30 may periodically emit the first color light, the second color light, and the third color light, so that the light from the light source 30 incident on the liquid crystal cell 10 through the light guide plate 20 is colored light. Therefore, during the display process, the liquid crystal cell 10 can emit colored light for color display. In this way, there is no need to provide a color film on the light emitting side of the liquid crystal cell 10, thereby saving cost.
  • the liquid crystal cell 10 includes an array substrate 110, a counter substrate 120 and a liquid crystal layer 130.
  • the counter substrate 120 is disposed opposite to the array substrate 110.
  • the counter substrate 120 is far away from the light guide plate 20 relative to the array substrate 110.
  • the liquid crystal layer 130 is disposed between the array substrate 110 and the counter substrate 120.
  • the thickness of the liquid crystal layer 130 is about 3 ⁇ m.
  • the refractive index of the liquid crystal layer 130 is about 1.50.
  • first surface 21 of the light guide plate 20 is attached to the side of the array substrate 110 away from the counter substrate 120.
  • the shape of the cross section of the array substrate 110 and the shape of the cross section of the counter substrate 120 may be the same as the shape of the orthographic projection of the light guide plate 20 on the plane where the display panel 100 is located.
  • the liquid crystal layer 130 includes liquid crystal molecules and polymer molecules.
  • the liquid crystal layer 130 may be a polymer stabilized liquid crystal (PSLC) or a polymer-dispersed liquid crystal (PDLC).
  • PSLC polymer stabilized liquid crystal
  • PDLC polymer-dispersed liquid crystal
  • the liquid crystal cell 10 has a display area (Active Area, AA) and a peripheral area S.
  • the peripheral area S is located on at least one side of the AA area.
  • a plurality of sub-pixels P are included in the AA area.
  • the plurality of sub-pixels P include at least a first-color sub-pixel, a second-color sub-pixel, and a third-color sub-pixel.
  • the array substrate 110 includes a first substrate 111 and a plurality of pixel electrodes 112 disposed on the first substrate 111 and located in the AA area.
  • the plurality of pixel electrodes 112 are close to the liquid crystal layer 130 relative to the first substrate 111.
  • One pixel electrode 112 is located in one sub-pixel P.
  • the counter substrate 120 includes a second substrate 121 and a common electrode 122 provided on the second substrate 121.
  • the common electrode 122 is close to the liquid crystal layer 130 relative to the second substrate 121.
  • the common electrode 122 covers the entire AA area.
  • the material of the first substrate 111 and the material of the second substrate 121 are the same as the material of the light guide plate 20, that is, the refractive index of the first substrate 111 and the refractive index of the second substrate 121 are the same as those of the light guide plate 20.
  • the refractive index is the same.
  • the thicknesses of the first substrate 111 and the second substrate 121 are both about 500 ⁇ m.
  • Both the material of the pixel electrode 112 and the material of the common electrode 122 can be ITO (Indium Tin Oxide), and the refractive index is about 1.9.
  • the thickness of the pixel electrode 112 and the thickness of the common electrode 122 are both about 0.07 ⁇ m.
  • the liquid crystal cell 10 when the liquid crystal cell 10 is not performing display, no electric field is formed between the pixel electrode 112 and the common electrode 122, and the refractive index of the liquid crystal molecules and the refractive index of the polymer molecules are the same. The light is totally reflected and propagated in the liquid crystal cell 10, and will not be emitted from the side of the counter substrate 120 away from the array substrate 110.
  • the display panel 100 is transparent, and each sub-pixel is in a transparent state.
  • the pixel electrode 112 and the common electrode 122 in the sub-pixel to be displayed each apply an electrical signal to form an electric field, and the refractive index of the liquid crystal molecules within the electric field changes to cause the incident
  • the light to the liquid crystal molecules is scattered, and the scattered light is emitted from the side of the counter substrate 120 away from the array substrate 110, so that the display panel 100 realizes display.
  • the sub-pixels to be displayed are in a scattered state, and the rest are not displayed.
  • the light source 30 includes a first color light emitting device, a second color light emitting device, and a third color light emitting device
  • the first color light emitting device emits the first color light
  • the display panel 100 The sub-pixels in the first color to be displayed in the display panel can be in a scattering state under electric drive, and other sub-pixels are in a transparent state
  • the second color light emitting device emits light of the second color
  • the sub-pixels in the display panel 100 to be displayed in the second color Pixels can be in a scattering state under electric drive, and other sub-pixels are in a transparent state
  • the third-color light emitting device emits light of the third color
  • the sub-pixels in the display panel 100 to be displayed in the third color can be scattered under the electric drive State, other sub-pixels are in a transparent state.
  • a thin film transistor is also provided in the sub-pixel P.
  • the TFT is coupled to the pixel electrode 112.
  • the TFT in the sub-pixel P is turned on to transmit electrical signals to the pixel electrode 112.
  • the array substrate 110 further includes a gate insulating layer (GI) located between the gate (G) of the TFT and the active layer (Act), and a gate insulating layer (GI) located far away from the active layer (Act).
  • GI gate insulating layer
  • ESL barrier layer
  • PVX passivation layer
  • the material of the gate insulating layer (GI), the material of the barrier layer (ESL), and the material of the passivation layer (PVX) all include silicon dioxide (SiO 2 ), silicon nitride (SiN x ), and silicon oxynitride (SiNO).
  • the refractive index of silicon dioxide is about 1.46
  • the refractive index of silicon nitride is about 2.0
  • the refractive index of silicon oxynitride is 1.46 to 2.0.
  • the total thickness of the gate insulating layer (GI), the thickness of the barrier layer (ESL), and the passivation layer (PVX) is about 0.7 ⁇ m.
  • the opposite substrate 120 includes a light shielding pattern 124 disposed on the edge of the opposite substrate 120.
  • the light-shielding pattern 124 is a black matrix (BM).
  • the material of the light shielding pattern 124 may be a resin material.
  • the outer edge of the orthographic projection of the light source 30 on the plane where the opposite substrate 120 is located extends beyond the outer edge of the light shielding pattern 124.
  • the orthographic projection of the light shielding pattern 124 on the array substrate 110 is located outside the AA area.
  • the light shielding pattern 124 may surround the AA area.
  • the light-shielding pattern 124 can partially block the light in the area closer to the light source 30, which can avoid the brightness of the light from the light source 30 in the area closer to the light source 30 (ie, the edge area of the AA area). It is a problem that affects the brightness uniformity of the AA area as a whole.
  • the array substrate 110 includes a first alignment layer 113.
  • the opposite substrate 120 includes a second alignment layer 123.
  • the rubbing direction of the first alignment layer 113 and the rubbing direction of the second alignment layer 123 are perpendicular to each other.
  • the rubbing direction of the first alignment layer 113 and the rubbing direction of the second alignment layer 123 are opposite and parallel.
  • the material of the first alignment layer 113 and the material of the second alignment layer 123 are both PI (Polyimide, polyimide), and the refractive index is about 1.66.
  • the first alignment layer 113 and the second alignment layer 123 jointly align the liquid crystal molecules in the liquid crystal layer 130, so that the alignment direction of the liquid crystal molecules without the action of an electric field is perpendicular to the setting in the side surface 23 of the light guide plate 20.
  • the normal direction of the area where the light source 30 is located that is, is perpendicular to the light emitting direction of the light source 30. In this way, when the light incident on the liquid crystal molecules is scattered, the light output effect of the liquid crystal cell 10 can be improved.
  • the display panel 100 further includes a homogenizing film 50.
  • the uniform light film 50 is located between the light source 30 and the side surface of the light guide plate 20.
  • the homogenizing film 50 can make the light emitted from the light source 30 uniformly enter the light guide plate, thereby improving the uniformity of the light entering the liquid crystal cell 10.
  • the homogenizing film 50 can uniformly distribute the light rays parallel to the plane where the light guide plate 20 is located.
  • An embodiment of the present disclosure provides a transparent display device 200.
  • the transparent display device 200 includes the display panel 100 in any of the foregoing embodiments.
  • the transparent display device 200 further includes an outer frame 201.
  • the outer frame 201 is disposed on at least one side of the display panel 100.
  • the above-mentioned transparent display device 200 may be any device that displays images regardless of motion (for example, video) or fixed (for example, still images), and regardless of text or images. More specifically, it is expected that the described embodiments can be implemented in or associated with a variety of electronic devices, such as (but not limited to) mobile phones, wireless devices, and personal data assistants (PDAs).
  • PDAs personal data assistants
  • Handheld or portable computers GPS receivers/navigators, cameras, MP4 video players, camcorders, game consoles, watches, clocks, calculators, TV monitors, flat panel displays, computer monitors, car monitors (e.g., Odometer display, etc.), navigator, cockpit controller and/or display, camera view display (for example, the display of a rear-view camera in a vehicle), electronic photos, electronic billboards or signs, projectors, building structures, packaging And aesthetic structure (for example, a display of the image of a piece of jewelry), etc.
  • the transparent display device 200 has the same technical effect as the display panel 100 in any of the foregoing embodiments, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Dispersion Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种显示面板(100),包括:液晶盒(10)、透明的导光板(20)和光源(30)。沿液晶盒(10)的厚度方向,导光板(20)贴合于液晶盒(10)的一侧。导光板(20)包括第一表面(21)、第二表面(22)和侧面(23)。沿导光板(20)的厚度方向,第一表面(21)的位置和第二表面(22)的位置相对,侧面(23)位于第一表面(21)与第二表面(22)之间,第一表面(21)相对于第二表面(22)靠近液晶盒(10),光源(30)设置于导光板(20)的侧面(23)中的至少部分区域,导光板(20)被配置为使来自光源(30)的光线中入射至第二表面(22)上的光线发生全反射,并从第一表面(21)出射。

Description

显示面板及透明显示装置
本申请要求于2020年05月27日提交的、申请号为202010464378.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板及透明显示装置。
背景技术
透明显示装置是一种使得用户可以同时观看到该透明显示装置上的显示画面和该透明显示装置背后的场景或物品的显示装置。透明显示装置可实现显示屏幕上的显示画面和透明显示装置背后的场景或物品的融合和互动,从而可给用户带来全新的、丰富的、表现力强的视觉体验。
发明内容
一方面,提供一种显示面板。所述显示面板包括液晶盒、透明的导光板和光源。沿所述液晶盒的厚度方向,所述导光板贴合于所述液晶盒的一侧。所述导光板包括第一表面、第二表面和侧面。沿所述导光板的厚度方向,所述第一表面的位置和所述第二表面的位置相对,所述侧面位于所述第一表面与所述第二表面之间;所述第一表面相对于所述第二表面靠近所述液晶盒。所述光源设置于所述导光板的侧面中的至少部分区域。其中,所述导光板被配置为,使来自所述光源的光线中的入射至所述第二表面上的光线发生全反射,并从所述第一表面出射。
在一些实施例中,所述显示面板还包括粘合层。所述粘合层设置于所述导光板和所述液晶盒之间。其中,所述导光板的第一表面通过所述粘合层与所述液晶盒贴合。
在一些实施例中,所述导光板的折射率为1.4~1.6。
在一些实施例中,在所述显示面板包括粘合层的情况下,所述粘合层的折射率为1.33~1.52。
在一些实施例中,所述导光板在所述显示面板所在平面上的正投影呈四边形;所述光源设置于所述四边形的边长较长的一侧。
在一些实施例中,所述四边形的边长较短一边的长度小于或等于6cm。
在一些实施例中,所述导光板在所述显示面板所在平面上的正投影具有圆弧状边缘;所述光源围设于所述导光板的侧面。
在一些实施例中,所述导光板的厚度小于或等于4mm。
在一些实施例中,所述光源的发光半角为45°~75°。
在一些实施例中,所述光源为朗伯体光源。
在一些实施例中,所述光源包括第一颜色光发光器件、第二颜色光发光器件和第三颜色光发光器件。所述光源被配置为,响应于脉冲控制信号,所述第一颜色光发光器件、所述第二颜色光发光器件和所述第三颜色光发光器件依次周期性发出相应颜色的光。
在一些实施例中,所述液晶盒包括:阵列基板、对置基板和液晶层。沿所述液晶盒的厚度方向,所述对置基板与所述阵列基板相对设置;所述对置基板相对于所述阵列基板远离所述导光板。所述液晶层设置于所述阵列基板和所述对置基板之间。
在一些实施例中,所述液晶层包括液晶分子和聚合物分子。
在一些实施例中,所述对置基板包括设置于所述对置基板的边缘的遮光图案。所述光源在所述对置基板所在平面上的正投影的外边缘,超出所述遮光图案的外边缘。
在一些实施例中,所述阵列基板包括第一配向层。所述对置基板包括第二配向层。所述导光板在所述显示面板所在平面上的正投影中的光源所在的侧边呈直线的情况下,所述第一配向层的摩擦方向和所述第二配向层的摩擦方向,垂直于所述导光板的侧面中的设有所述光源的区域的法线方向。
在一些实施例中,所述显示面板还包括匀光膜。所述匀光膜位于所述光源与所述导光板的侧面之间。
另一方面,提供一种透明显示装置。所述透明显示装置包括:如上述任一实施例所述的显示面板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据相关技术的显示面板的一种结构图;
图2为根据相关技术的显示面板的另一种结构图;
图3为根据本公开的一些实施例的显示面板的一种俯视图;
图4为图3中的显示面板沿A-A’方向的剖视图;
图5为根据本公开的一些实施例的显示面板的另一种结构图;
图6为根据本公开的一些实施例的显示面板的又一种结构图;
图7为根据本公开的一些实施例的显示面板的另一种俯视图;
图8为根据本公开的一些实施例的液晶盒的一种结构图;
图9为图8中的液晶盒沿B-B’方向的剖视图;
图10为根据本公开的一些实施例的显示面板的又一种结构图;
图11为根据本公开的一些实施例的显示面板的又一种俯视图;
图12为根据本公开的一些实施例的显示面板的又一种结构图;
图13为根据本公开的一些实施例的透明显示装置的一种结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施 例并不必然限制于本文内容。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
对于传统的液晶显示面板,由于其包括例如偏光片和彩色滤光片等膜层结构,使得对光的透过率较小(例如小于10%),因此,基于传统的液晶显示面板的透明显示装置亮度较低,对光的利用率较低。对于发光二极管(Light Emitting Diode,LED)显示面板,由于LED的尺寸较大,使得基于LED显示面板的透明显示装置的像素点较大,适用于大尺寸的透明显示装置,而不利于实现小尺寸的透明显示。对于基于Micro-LED显示面板的透明显示装置,Micro-LED的尺寸较小,但成本较高。对于基于有机发光二极管(Organic Light Emitting Diode,OLED)显示面板的透明显示装置,光的透过率小于68%,但成本较高,并且寿命难以保证。
基于散射型显示面板的透明显示装置的透过率较高(例如最高可达80%以上),其制作工艺和传统的液晶显示面板类似,因而成本较低并且可靠性和使用寿命都相对较高。
然而,如图1所示的显示面板100',包括液晶盒10和光源30'。在垂直于液晶盒10的厚度方向上,光源30'贴合于液晶盒10的侧面,从液晶盒10的侧面入光。光源30'发出的光线在液晶盒10内传播的过程中,液晶盒10中的各膜层(例如金属走线层等)会使光线发生散射,光损耗较大,导致液晶盒 10在显示过程中,距光源30'较近的区域和距光源30'较远的区域的显示均一性较差,例如距光源30'较远的区域的亮度小于距光源30'较近的区域的亮度的10%,导致显示对比度下降,很难满足实际显示需求。
而且,如图2所示的显示面板100',光源30'设置于液晶盒10的外部,例如设置于液晶盒10中的远离显示面的一侧,光源30'发出的光投影至液晶盒10中的远离显示面的一侧,以给液晶盒10提供显示所需的光。在此情况下,光源30'的尺寸较大,使得显示面板100'的尺寸也较大,很难应用于小尺寸显示装置。
本公开的实施例提供一种显示面板100,如图3和图4所示,显示面板100包括液晶盒10、导光板20和光源30。
沿液晶盒10的厚度方向(如沿图4所示的竖直方向Y),导光板20贴合于液晶盒10的一侧。
导光板20包括第一表面21、第二表面22和侧面23。
光源30设置于导光板20的侧面23中的至少部分区域。
沿导光板20的厚度方向(如沿图4所示的竖直方向Y),第一表面21的位置和第二表面22的位置相对,侧面23位于第一表面21和第二表面22之间。并且,第一表面21相对于第二表面22靠近液晶盒10。
可以理解的是,导光板20的第一表面21贴合于液晶盒10。
示例性地,导光板20呈透明。导光板20可以为导光玻璃。
导光板20被配置为使来自光源30的光线中的入射至第二表面22上的光线发生全反射,并从第一表面21出射。
在一些实施例中,导光板20的折射率为1.4~1.6。例如,导光板20的折射率为1.51314。
可以理解的是,导光板20的第二表面22为导光板20与空气的交界面。由于导光板20的折射率大于空气的折射率,因此,来自光源30的光线中的入射至第二表面22上的光线,相当于由光密介质(即导光板20)向光疏介质(即空气)传播,在光密介质和光疏介质的交界面(即第二表面22)发生全反射。
在此情况下,如图5所示,由光源30发出的光线进入导光板20内部后,一部分光线穿过导光板20进入液晶盒10,另一部分光线入射至导光板20的第二表面22,并在第二表面22上发生全反射,之后射向第一表面31,从第一表面21出射。由光源30发出的光线进入导光板20内部后,入射至第一表面21的光线,从第一表面21出射。这样,来自光源30的光线进入导光板20, 从导光板20的第一表面21出射,进入液晶盒10,以向液晶盒10提供显示所需的光。
因此,本公开的实施例提供的显示面板100,沿液晶盒10的厚度方向,导光板20贴合于液晶盒10的一侧,光源30设置于导光板20的侧面23中的至少部分区域,来自光源30的光线中的入射至导光板20的第二表面22上的光线发生全反射,并从导光板20的第一表面21出射。同时,入射至第二表面22且发生全反射的光线可以向距光源30较远的区域传播。因此,相比于图1中的显示面板100',本公开的显示面板100中的光线,在由距光源30较近的区域向距光源30较远的区域的传播过程中,不会受到液晶盒10内的膜层影响,降低了光线传播的损耗,提高了距光源30较远的区域的亮度,改善了亮度均一性,提高了对比度。并且,相比于图2中的显示面板100',本公开的显示面板100的尺寸较小,在应用于显示装置时,减小了显示装置的体积,适用于小尺寸显示装置。
在一些实施例中,如图6所示,显示面板100还包括粘合层40。
粘合层40设置于导光板20和液晶盒10之间。
其中,导光板20的第一表面21通过粘合层40与液晶盒10贴合。
可以理解的是,由导光板20的第一表面21出射的光,会经过粘合层40发生折射后,进入液晶盒10。
粘合层40呈透明,使得光的透光率较高,可以降低光损失。
需要说明的是,在保证从导光板20入射至液晶盒10的光的亮度的情况下,可以根据实际情况,对粘合层40的材料进行选择。示例性地,粘合层40的材料包括OCA(Optically Clear Adhesive,光学透明胶)、LOCA(Liquid Optical Clear Adhesive,液态光学透明胶)或者紫外固化胶。
在一些实施例中,粘合层40的折射率为1.33~1.52。例如,粘合层40的折射率为1.50。
在此情况下,粘合层40的折射率与导光板20的折射率相匹配,可以使显示面板100具有较好的亮度均一性。
在一些实施例中,导光板20在显示面板100所在平面上的正投影呈四边形,如图3所示,光源30设置于四边形的边长较长的一侧。
示例性地,四边形的边长较长的一边L的长度可以大于或等于12cm。
在一些实施例中,如图3所示,四边形的边长较短一边W的长度小于或等于6cm。
在此情况下,可以避免因显示面板100的尺寸较大,例如四边形的边长 较短的一边W的长度逐渐增大,使得显示面板100中的距光源30较远的区域的亮度,低于距光源30较近的区域的亮度的50%,导致显示面板100的亮度的均匀性较差的问题,从而保证显示面板100的显示效果。
示例性地,经过仿真测试,采用相关技术的图1中的显示面板100',距光源30'较近的区域的光的辐照度和距光源30'较远的区域的光的辐照度之比约为17%。采用本公开的图3中的显示面板100,距光源30较近的区域的光的辐照度和距光源30较远的区域的光的辐照度之比约为60%,显示面板100的均一性有提升,从而提高了显示效果。
在一些实施例中,导光板20在显示面板100所在平面上的正投影具有圆弧状边缘。
如图7所示,光源30围设于导光板20的侧面。
示例性地,参考图7,导光板20的截面呈圆弧状的边缘的半径约为25mm,导光板20的截面呈直线的边缘的长度约为24mm。
需要说明的是,在导光板20的截面呈直线的边缘处,可以与电路板绑定。
在此情况下,相比于光源30设置于导光板20在显示面板100所在平面上的正投影中的呈直线的侧面,或者,相比于光源30设置于导光板20在显示面板100所在平面上的正投影中的呈圆弧状的侧面,本公开的实施例的光源30既设置于导光板20在显示面板100所在平面上的正投影中的呈直线的侧面,又设置于导光板20在显示面板100所在平面上的正投影中的呈圆弧状的侧面,可以提高显示面板100的整体亮度和均一性。
示例性地,经过仿真测试,在图1中的显示面板100'在其所在平面上的正投影具有呈圆弧状的边缘,且光源30'设置于圆弧状的边缘的情况下,显示面板100'的中心位置处的亮度约为距光源30'较近位置处的亮度的26%。而图7中的显示面板100的中心位置处的亮度,约为距光源30较近位置处的亮度的72%,从而提高了显示面板100的亮度均一性。
需要说明的是,显示面板100中的进行正常显示的显示区域的形状与导光板20在显示面板100所在平面上的正投影的形状近似相同。并且,显示面板100中的进行正常显示的显示区域的面积,小于导光板20在显示面板100所在平面上的正投影的面积。
示例性地,在导光板20在显示面板100所在平面上的正投影形状近似呈圆形的情况下,显示面板100在显示面板100所在平面上的正投影形成也近似呈圆形,这种形状的显示面板100可以应用于智能手表等显示装置。
需要说明的是,领域内的技术人员可以根据实际情况,对导光板20在显 示面板100所在平面上的正投影的形状进行设计,例如,导光板20在显示面板100所在平面上的正投影除了可以呈四边形或者具有圆弧状边缘,还可以呈五边形、六边形或者椭圆形等,相应的显示面板100的显示面板100所在平面上的正投影也可以呈五边形、六边形或者椭圆形等,本公开在此不作限定。
在一些实施例中,导光板20的厚度小于或等于4mm。例如,导光板20的厚度为1mm或者2mm。这样,可以使显示面板100适用于小尺寸显示装置,以符合小尺寸显示装置的外观要求。
在一些实施例中,光源30的发光半角为45°~75°。例如,发光半角为60°。
在一些实施例中,光源30为朗伯体光源。示例性地,光源30包括LED(Light Emitting Diode,发光二极管)。
其中,光源30为面光源。
表1、显示面板100的仿真结果
Figure PCTCN2021086786-appb-000001
需要说明的是,表1中的导光板20在显示面板100所在平面上的正投影呈四边形。此时,显示面板100的显示区的形状也呈四边形。表1中的远光区光通量指的是,沿四边形的边长较短的一边W的延伸方向,显示面板100的中心处宽度约为5mm的区域的光通量;近光区光通量指的是,沿四边形的边长较短的一边W的延伸方向,与光源30相距约为5mm的区域的光通量。此时,上述的均一性为显示面板100的远光区光通量与显示面板100的近光区光通量的比值。另外,光源30采用546.1nm波长的光进行仿真。
可以看出,在导光板20的折射率、粘合层40的折射率和导光板20的厚 度均不变的情况下,光源30的发光半角相对较大(例如发光半角为75°),显示面板100的均一性较好。在粘合层40的折射率、导光板20的厚度和光源30的发光半角均不变的情况下,导光板20的折射率相对较小,显示面板100的均一性较好。在导光板20的折射率、导光板20的厚度和光源30的发光半角不变的情况下,粘合层40的折射率的改变对显示面板100的均一性影响较小。
在一些实施例中,光源30包括第一颜色光发光器件、第二颜色光发光器件和第三颜色光发光器件。
光源30被配置为,响应于脉冲控制信号,第一颜色光发光器件、第二颜色光发光器件和第三颜色光发光器件依次周期性发出相应颜色的光。
其中,第一颜色、第二颜色和第三颜色分别为三基色。例如,第一颜色为红色,第二颜色为绿色,第三颜色为蓝色。
需要说明的是,显示面板100还包括时序控制器(Timing Controller,Tcon),光源30可以与时序控制器耦接,时序控制器用于输出脉冲控制信号,以控制光源30中各发光器件的工作周期。
在此情况下,光源30可以周期性地发出第一颜色光、第二颜色光和第三颜色光,使得光源30经过导光板20入射至液晶盒10的光为彩色光。因此,在显示过程中,液晶盒10可以出射彩色光,进行彩色显示。这样,无需在液晶盒10的出光侧设置彩膜,从而节约成本。
需要说明的是,领域内技术人员可以根据实际显示情况,对脉冲控制信号的占空比进行调节,以控制第一颜色光发光器件、第二颜色光发光器件和第三颜色光发光器件各自的发光周期。
在一些实施例中,如图4所示,液晶盒10包括阵列基板110、对置基板120和液晶层130。
沿液晶盒10的厚度方向,对置基板120与阵列基板110相对设置。对置基板120相对于阵列基板110远离导光板20。
液晶层130设置于阵列基板110和对置基板120之间。
示例性地,液晶层130的厚度约为3μm。液晶层130的折射率约为1.50。
可以理解的是,导光板20的第一表面21贴合于阵列基板110远离对置基板120的一侧。
示例性地,沿垂直于液晶盒10的厚度方向,阵列基板110的截面的形状和对置基板120的截面的形状,可以与导光板20在显示面板100所在平面上的正投影的形状相同。
在一些实施例中,液晶层130包括液晶分子和聚合物分子。
示例性地,液晶层130可以采用聚合物稳定液晶(Polymer Stabilized Liquid Crystal,PSLC),或者聚合物分散液晶(Polymer-dispersed Liquid Crystal,PDLC)。
在一些实施例中,如图8所示,液晶盒10具有显示区(Active Area,AA)和周边区S。示例性地,周边区S位于AA区的至少一侧。
AA区中包括多个亚像素P。多个亚像素P至少包括第一颜色亚像素、第二颜色亚像素和第三颜色亚像素。
阵列基板110包括第一衬底111和设置于第一衬底111上且位于AA区的多个像素电极112。
多个像素电极112相对于第一衬底111靠近液晶层130。一个像素电极112位于一个亚像素P内。
对置基板120包括第二衬底121和设置于第二衬底121上的公共电极122。公共电极122相对于第二衬底121靠近液晶层130。
其中,公共电极122覆盖整个AA区。
示例性地,第一衬底111的材料和第二衬底121的材料与导光板20的材料相同,即,第一衬底111的折射率和第二衬底121的折射率与导光板20的折射率相同。
示例性地,第一衬底111和第二衬底121的厚度均约为500μm。像素电极112的材料和公共电极122的材料均可以采用ITO(氧化铟锡),折射率约为1.9。像素电极112的厚度和公共电极122的厚度均约为0.07μm。
在此情况下,在液晶盒10不进行显示的情况下,像素电极112和公共电极122之间不形成电场,液晶分子的折射率和聚合物分子的折射率相同,此时,来自光源30的光线在液晶盒10内发生全反射并传播,不会从对置基板120远离阵列基板110的一侧出射,显示面板100呈透明,各亚像素呈透明态。在显示面板100进行显示的情况下,要进行显示的亚像素内的像素电极112和公共电极122各自施加电信号,并形成电场,在该电场范围内的液晶分子的折射率发生变化,使得入射至液晶分子上的光线发生散射,散射光从对置基板120远离阵列基板110的一侧出射,从而使显示面板100实现显示,此时,要进行显示的亚像素呈散射态,其余不进行显示的亚像素内的像素电极112和公共电极122之间不形成电场,使得入射至不进行显示的亚像素所在区域内的光线发生全反射,其余不进行显示的亚像素均呈透明态。
可以理解的是,在光源30包括第一颜色光发光器件、第二颜色光发光器件和第三颜色光发光器件的情况下,当第一颜色光发光器件发出第一颜色光 时,显示面板100中所要显示第一颜色的亚像素可在电驱动下呈散射态,其他亚像素处于透明态;当第二颜色光发光器件发出第二颜色光时,显示面板100中所要显示第二颜色的亚像素可在电驱动下呈散射态,其他亚像素处于透明态;当第三颜色光发光器件发出第三颜色光时,显示面板100中所要显示第三颜色的亚像素可在电驱动下呈散射态,其他亚像素处于透明态。
此外,如图8所示,亚像素P内还设置有薄膜晶体管(Thin Film Transistor,TFT)。TFT与像素电极112耦接。在亚像素P进行显示时,亚像素P内的TFT在开启,以向像素电极112传输电信号。
在此基础上,如图9所示,阵列基板110还包括位于TFT的栅极(G)和有源层(Act)之间的栅绝缘层(GI)、位于有源层(Act)远离第一衬底111一侧的阻挡层(ESL)以及位于TFT和像素电极112之间的钝化层(PVX)。
示例性地,栅绝缘层(GI)的材料、阻挡层(ESL)的材料和钝化层(PVX)的材料均包括二氧化硅(SiO 2)、氮化硅(SiN x)和氮氧化硅(SiNO)。其中,二氧化硅的折射率约为1.46,氮化硅的折射率约2.0,氮氧化硅的折射率为1.46~2.0。此外,栅绝缘层(GI)的厚度、阻挡层(ESL)的厚度和钝化层(PVX)的总厚度约为0.7μm。
在一些实施例中,如图10所示,对置基板120包括设置于对置基板120边缘的遮光图案124。
可以理解的是,遮光图案124即为黑矩阵(Black Matrix,BM)。示例性地,遮光图案124的材料可以采用树脂材料。
光源30在对置基板120所在平面上的正投影的外边缘,超出遮光图案124的外边缘。
可以理解的是,遮光图案124在阵列基板110上的正投影位于AA区的外侧。例如,如图11所示,遮光图案124可以围绕AA区。
在此情况下,遮光图案124可以对距光源30较近的区域的光进行部分遮挡,可以避免因光源30在距光源30较近的区域(即,AA区的边缘区域)的光线的亮度较大,而影响AA区整体的亮度均一性的问题。
在一些实施例中,如图10所示,阵列基板110包括第一配向层113。对置基板120包括第二配向层123。
其中,在垂直于导光板20的厚度方向上,导光板20的截面中的光源30所在的侧面呈直线的情况下,第一配向层113的摩擦方向和第二配向层123的摩擦方向,垂直于导光板20的侧面23中的设有光源30的区域的法线方向。
其中,第一配向层113的摩擦方向和第二配向层123的摩擦方向反向平 行。
示例性地,第一配向层113的材料和第二配向层123的材料均为PI(Polyimide,聚酰亚胺),折射率约为1.66。
在此情况下,第一配向层113和第二配向层123共同对液晶层130中的液晶分子配向,使得液晶分子在无电场作用下的配向方向为垂直于导光板20的侧面23中的设有光源30的区域的法线方向,即,与光源30的光线出射方向垂直。这样,在入射至液晶分子上的光线发生散射的情况下,可以提高液晶盒10的出光效果。
在一些实施例中,如图12所示,显示面板100还包括匀光膜50。匀光膜50位于光源30和导光板20的侧面之间。
在此情况下,匀光膜50可以使得光源30出射的光线能够均匀地进入导光板,从而提高进入液晶盒10的光线均一性。
需要说明的是,领域内技术人员可以根据实际显示需要,对匀光膜50进行选择。例如,匀光膜50可以使得在平行于导光板20所在平面的光线均匀分布。
本公开的实施例提供一种透明显示装置200,如图13所示,透明显示装置200包括上述任一实施例中的显示面板100。
如图13所示,透明显示装置200还包括外框201。
示例性地,外框201设置于显示面板100的至少一侧。
可以理解的是,上述的透明显示装置200可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是的图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
需要说明的是,透明显示装置200具有与上述任一实施例中的显示面板100相同的技术效果,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内, 想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种显示面板,包括:
    液晶盒;
    透明的导光板;沿所述液晶盒的厚度方向,所述导光板贴合于所述液晶盒的一侧;所述导光板包括第一表面、第二表面和侧面;沿所述导光板的厚度方向,所述第一表面的位置和所述第二表面的位置相对,所述侧面位于所述第一表面与所述第二表面之间;所述第一表面相对于所述第二表面靠近所述液晶盒;
    光源;所述光源设置于所述导光板的侧面中的至少部分区域;
    其中,所述导光板被配置为,使来自所述光源的光线中的入射至所述第二表面上的光线发生全反射,并从所述第一表面出射。
  2. 根据权利要求1所述的显示面板,还包括:
    设置于所述导光板和所述液晶盒之间的粘合层;
    其中,所述导光板的第一表面通过所述粘合层与所述液晶盒贴合。
  3. 根据权利要求1或2所述的显示面板,其中,所述导光板的折射率为1.4~1.6。
  4. 根据权利要求3所述的显示面板,其中,在所述显示面板包括粘合层的情况下,所述粘合层的折射率为1.33~1.52。
  5. 根据权利要求1~4中任一项所述的显示面板,其中,所述导光板在所述显示面板所在平面上的正投影呈四边形;
    所述光源设置于所述四边形的边长较长的一侧。
  6. 根据权利要求5所述的显示面板,其中,所述四边形的边长较短一边的长度小于或等于6cm。
  7. 根据权利要求1~4中任一项所述的显示面板,其中,所述导光板在所述显示面板所在平面上的正投影具有圆弧状边缘;
    所述光源围设于所述导光板的侧面。
  8. 根据权利要求1~7中任一项所述的显示面板,其中,所述导光板的厚度小于或等于4mm。
  9. 根据权利要求1~8中任一项所述的显示面板,其中,所述光源的发光半角为45°~75°。
  10. 根据权利要求1~9中任一项所述的显示面板,其中,所述光源为朗伯体光源。
  11. 根据权利要求1~10中任一项所述的显示面板,其中,所述光源包括 第一颜色光发光器件、第二颜色光发光器件和第三颜色光发光器件;
    所述光源被配置为,响应于脉冲控制信号,所述第一颜色光发光器件、所述第二颜色光发光器件和所述第三颜色光发光器件依次周期性发出相应颜色的光。
  12. 根据权利要求1~11中任一项所述的显示面板,其中,所述液晶盒包括:
    阵列基板;
    对置基板;沿所述液晶盒的厚度方向,所述对置基板与所述阵列基板相对设置;所述对置基板相对于所述阵列基板远离所述导光板;
    设置于所述阵列基板和所述对置基板之间的液晶层。
  13. 根据权利要求12所述的显示面板,其中,所述液晶层包括液晶分子和聚合物分子。
  14. 根据权利要求12或13所述的显示面板,其中,所述对置基板包括设置于所述对置基板的边缘的遮光图案;
    所述光源在所述对置基板所在平面上的正投影的外边缘,超出所述遮光图案的外边缘。
  15. 根据权利要求12~14中任一项所述的显示面板,其中,
    所述阵列基板包括第一配向层;
    所述对置基板包括第二配向层;
    在垂直于所述导光板的厚度方向上,所述导光板的截面中的光源所在的侧边呈直线的情况下,所述第一配向层的摩擦方向和所述第二配向层的摩擦方向,垂直于所述导光板的侧面中的设有所述光源的区域的法线方向。
  16. 根据权利要求1~15中任一项所述的显示面板,还包括:
    匀光膜;所述匀光膜位于所述光源与所述导光板的侧面之间。
  17. 一种透明显示装置,包括如权利要求1~16中任一项所述的显示面板。
PCT/CN2021/086786 2020-05-27 2021-04-13 显示面板及透明显示装置 WO2021238466A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/631,350 US20220283358A1 (en) 2020-05-27 2021-04-13 Display panel and transparent display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010464378.2A CN111487710A (zh) 2020-05-27 2020-05-27 显示面板及透明显示装置
CN202010464378.2 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021238466A1 true WO2021238466A1 (zh) 2021-12-02

Family

ID=71813437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086786 WO2021238466A1 (zh) 2020-05-27 2021-04-13 显示面板及透明显示装置

Country Status (3)

Country Link
US (1) US20220283358A1 (zh)
CN (1) CN111487710A (zh)
WO (1) WO2021238466A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487710A (zh) * 2020-05-27 2020-08-04 京东方科技集团股份有限公司 显示面板及透明显示装置
CN111951690A (zh) * 2020-08-19 2020-11-17 京东方科技集团股份有限公司 显示模组及制备方法、显示装置
WO2022067517A1 (zh) * 2020-09-29 2022-04-07 京东方科技集团股份有限公司 透明显示面板、电子装置以及透明显示面板的制作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120009841A (ko) * 2010-07-21 2012-02-02 엘지디스플레이 주식회사 보안 모드 선택형 투명 액정표시장치
US20120154711A1 (en) * 2010-12-20 2012-06-21 Jongsin Park Transparent liquid crystal display device
CN102879925A (zh) * 2011-07-11 2013-01-16 乐金显示有限公司 液晶显示装置模块
CN203519976U (zh) * 2013-10-17 2014-04-02 华映视讯(吴江)有限公司 透明显示器
CN105487161A (zh) * 2014-10-07 2016-04-13 三星电子株式会社 透明显示装置
CN210038403U (zh) * 2019-07-31 2020-02-07 京东方科技集团股份有限公司 透明显示装置和背光模组
CN110928046A (zh) * 2019-12-06 2020-03-27 合肥泰沃达智能装备有限公司 一种透明显示装置
CN210429131U (zh) * 2019-07-26 2020-04-28 北京京东方光电科技有限公司 透明显示模组及显示装置
CN111487710A (zh) * 2020-05-27 2020-08-04 京东方科技集团股份有限公司 显示面板及透明显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101621820B1 (ko) * 2014-12-29 2016-05-17 삼성전자 주식회사 광원, 광원을 포함하는 백라이트 유닛 및 액정 표시 장치
TW201727275A (zh) * 2015-11-05 2017-08-01 康寧公司 具有菲涅耳光學系統的發光單元以及使用該發光單元的發光裝置及顯示系統
CN105652488B (zh) * 2016-01-14 2017-10-10 京东方科技集团股份有限公司 一种可书写液晶显示装置及其制作方法、驱动方法
US20190108798A1 (en) * 2016-03-23 2019-04-11 Sharp Kabushiki Kaisha Color image display device and color image display method
CN105974672B (zh) * 2016-07-27 2019-03-12 京东方科技集团股份有限公司 一种显示装置
CN107918233B (zh) * 2016-10-24 2023-12-01 京东方科技集团股份有限公司 一种显示装置
KR102600982B1 (ko) * 2016-10-28 2023-11-13 삼성전자주식회사 디스플레이 장치
CN107422532A (zh) * 2017-08-16 2017-12-01 京东方科技集团股份有限公司 一种透明显示面板、其制作方法及显示系统
CN112213883A (zh) * 2019-07-10 2021-01-12 群创光电股份有限公司 电子装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120009841A (ko) * 2010-07-21 2012-02-02 엘지디스플레이 주식회사 보안 모드 선택형 투명 액정표시장치
US20120154711A1 (en) * 2010-12-20 2012-06-21 Jongsin Park Transparent liquid crystal display device
CN102879925A (zh) * 2011-07-11 2013-01-16 乐金显示有限公司 液晶显示装置模块
CN203519976U (zh) * 2013-10-17 2014-04-02 华映视讯(吴江)有限公司 透明显示器
CN105487161A (zh) * 2014-10-07 2016-04-13 三星电子株式会社 透明显示装置
CN210429131U (zh) * 2019-07-26 2020-04-28 北京京东方光电科技有限公司 透明显示模组及显示装置
CN210038403U (zh) * 2019-07-31 2020-02-07 京东方科技集团股份有限公司 透明显示装置和背光模组
CN110928046A (zh) * 2019-12-06 2020-03-27 合肥泰沃达智能装备有限公司 一种透明显示装置
CN111487710A (zh) * 2020-05-27 2020-08-04 京东方科技集团股份有限公司 显示面板及透明显示装置

Also Published As

Publication number Publication date
US20220283358A1 (en) 2022-09-08
CN111487710A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
WO2021238466A1 (zh) 显示面板及透明显示装置
WO2021008574A1 (zh) 显示面板、显示装置及其驱动方法
US9213196B2 (en) Display and electronic unit
CN107765480B (zh) 显示装置
WO2018176524A1 (zh) 透反射式液晶显示器
WO2019134433A1 (zh) 导光板组件、背光模组、显示装置
US9470925B2 (en) Liquid crystal display device
US9897843B2 (en) Optical film for enlarging viewing angle and TFT-LCD device including the same
JPWO2008155878A1 (ja) 液晶表示装置
US20160282667A1 (en) Color liquid crystal display module structure and backlight module thereof
KR102222297B1 (ko) 균일한 휘도가 가능한 반사판 및 이를 구비한 액정표시소자
TW201915982A (zh) 拼接顯示裝置
WO2015190208A1 (ja) 配光調整シートおよび表示装置
US9541787B2 (en) Light control film including light control layer with reflection surface and display device including same
US10969634B2 (en) Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device
US9904094B2 (en) Liquid crystal display
JP2014178454A (ja) 液晶表示装置及び電子機器
US20030048398A1 (en) Liquid crystal display device and electronic apparatus
WO2021018139A1 (zh) 透明显示装置和背光模组
WO2022033238A1 (zh) 透明显示装置及制备方法
JP2006140078A (ja) 照明装置、電気光学装置及び電子機器
KR102328614B1 (ko) 표시 장치 및 그것의 제조 방법
US8742416B2 (en) Display panel, method of manufacturing display panel, display device, and electronic apparatus
TWI409543B (zh) 液晶顯示裝置及其組裝方法
KR101475235B1 (ko) 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814090

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21814090

Country of ref document: EP

Kind code of ref document: A1