WO2021018139A1 - 透明显示装置和背光模组 - Google Patents

透明显示装置和背光模组 Download PDF

Info

Publication number
WO2021018139A1
WO2021018139A1 PCT/CN2020/105162 CN2020105162W WO2021018139A1 WO 2021018139 A1 WO2021018139 A1 WO 2021018139A1 CN 2020105162 W CN2020105162 W CN 2020105162W WO 2021018139 A1 WO2021018139 A1 WO 2021018139A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wedge
guide plate
light guide
display device
Prior art date
Application number
PCT/CN2020/105162
Other languages
English (en)
French (fr)
Inventor
贾南方
王龙
彭依丹
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/264,334 priority Critical patent/US20210223460A1/en
Publication of WO2021018139A1 publication Critical patent/WO2021018139A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13756Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal selectively assuming a light-scattering state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Definitions

  • the embodiment of the present disclosure relates to a transparent display device and a backlight module.
  • the transparent display device is a transparent display device that allows the user to simultaneously watch the display screen on the transparent display device and the scene or objects behind the transparent display device. Therefore, the transparent display device can realize the integration and interaction of the display screen on the transparent display device and the scene or objects behind the transparent display device, thereby bringing a brand-new, rich and expressive visual experience to the user.
  • Transparent display devices can be applied not only to ordinary electronic devices such as mobile phones, televisions, and computers, but also to products such as automobile windows, refrigerator doors, shop windows, vending machines, and building windows.
  • the embodiments of the present disclosure provide a transparent display device and a backlight module.
  • the transparent display device includes a backlight module and a diffuse display panel; the backlight module includes a first wedge-shaped light guide plate, the diffuse display panel includes a plurality of pixels, and the first wedge-shaped light guide plate includes a first light incident surface, a first light exit surface, and A first inclined surface arranged opposite to the first light-emitting surface, the angle between the first light-emitting surface and the first inclined surface is an acute angle, the diffuse display panel is located on the side of the first light-emitting surface of the backlight module, and each pixel is configured It can be switched between the transparent state and the scattered state.
  • the transparent display device can improve the uniformity of display brightness, contrast and display brightness while achieving transparent display.
  • the transparent display device includes: a backlight module, including a first wedge-shaped light guide plate; and a diffuse display panel, including a plurality of pixels, the first wedge-shaped light guide plate includes a first light incident surface, a first light output surface, and A first inclined surface disposed opposite to the first light-emitting surface, the included angle between the first light-emitting surface and the first inclined surface is an acute angle, and the scattering type display panel is located on the first wedge-shaped light guide plate.
  • each of the pixels is configured to be switchable between a transparent state and a scattering state.
  • the first light-emitting surface is a flat surface
  • the refractive index of the first wedge-shaped light guide plate is between 1.45-2.
  • the transparent display device further includes: a transparent layer located between the scattering display panel and the backlight module, the transparent layer and the first The light emitting surface and the scattering display panel are in direct contact, respectively, and the refractive index of the transparent layer is in the range of 1.30 to 1.50.
  • the thickness of the transparent layer ranges from 0.05 to 0.50 mm.
  • the backlight module further includes: a second wedge-shaped light guide plate including a second inclined surface, and the first wedge-shaped light guide plate and the second wedge-shaped light guide plate are mutually Are arranged at intervals, and the first inclined surface and the second inclined surface are arranged oppositely and substantially parallel.
  • the interval between the first wedge-shaped light guide plate and the second wedge-shaped light guide plate is an air gap.
  • the second wedge-shaped light guide plate further includes: a second light incident surface, the second light incident surface is disposed opposite to the second inclined surface, and the first The angle between the two light incident surfaces and the second inclined surface is an acute angle, and the second light incident surface is substantially parallel to the first light exit surface.
  • the transparent display device further includes: a light source disposed on the first light incident surface of the first wedge-shaped light guide plate and configured to enter light from the first The light is incident toward the first wedge-shaped light guide plate, and the thickness of the first wedge-shaped light guide plate gradually decreases from the side where the light source is provided to the opposite side thereof, and the light-emitting half-angle range of the light source is 30-65 degrees .
  • the first light incident surface is configured to receive light emitted by a light source
  • the first inclined surface is configured to cause the light emitted by the light source to be on the first A slope is totally reflected
  • the first light-emitting surface is configured to emit the light emitted by the light source.
  • the light source includes a field sequential light source.
  • the diffuse display panel further includes: an array substrate including a first base substrate and a plurality of pixel electrodes arranged on the first base substrate;
  • the counter substrate is arranged in a cell with the array substrate; and a liquid crystal layer is located between the array substrate and the counter substrate.
  • the liquid crystal layer includes polymer stabilized liquid crystal or polymer dispersed liquid crystal, and each pixel electrode is It is configured to drive the polymer stabilized liquid crystal or polymer dispersed liquid crystal to switch between a transparent state and a scattering state.
  • the counter substrate includes a second base substrate, and the refractive index of the second base substrate is between 1.45-2.
  • the cross-sectional shape of the first wedge-shaped light guide plate is a trapezoid, and the length of the long base of the trapezoid is in the range of 1-10 mm.
  • the length of the short base is in the range of 0.1-2 mm.
  • At least one embodiment of the present disclosure also provides a backlight module.
  • the backlight module includes: a first wedge-shaped light guide plate, including a first light incident surface, a first light emitting surface, and a first inclined surface disposed opposite to the first light emitting surface, the first light emitting surface and the first inclined surface The included angle is an acute angle; and the second wedge-shaped light guide plate includes a second inclined surface; the first wedge-shaped light guide plate and the second wedge-shaped light guide plate are spaced apart from each other, and the first inclined surface and the second inclined surface Relatively arranged and roughly parallel.
  • the interval between the first wedge-shaped light guide plate and the second wedge-shaped light guide plate is an air gap.
  • the second wedge-shaped light guide plate further includes: a second light incident surface and a second light exit surface, and the second light exit surface is disposed opposite to the second inclined surface, and The included angle between the second light incident surface and the second inclined surface is an acute angle, and the second light incident surface is substantially parallel to the first light exit surface.
  • the first light-emitting surface is a flat surface
  • the refractive index of the wedge-shaped light guide plate is between 1.45-2.
  • the first light-emitting surface is not provided with dots.
  • the cross-sectional shape of the first wedge-shaped light guide plate is a trapezoid
  • the long base of the trapezoid has a length in the range of 1-10 mm
  • the short base of the trapezoid The length of the side ranges from 0.1 to 2 mm.
  • the backlight module further includes: a light source, which is arranged on the first light incident surface of the first wedge-shaped light guide plate and is configured to extend from the first light incident surface to the first wedge-shaped light guide plate.
  • the light guide plate emits light
  • the first inclined surface is configured to cause the light emitted by the light source to be totally reflected on the first inclined surface
  • the first light exit surface is configured to emit the light emitted by the light source.
  • FIG. 1 is a schematic diagram of a transparent display device with light incident from the side;
  • FIG. 2 is a schematic diagram of a transparent display device adopting projection type light incident
  • FIG. 3 is a schematic diagram of a transparent display device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a diffuse display panel according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing the change of the near and far brightness of a light source with a light emitting half angle of 60 degrees according to the refractive index of the transparent layer according to an embodiment of the disclosure
  • FIG. 6 is a schematic diagram of the change in the near and far brightness of a light source with a light emitting half angle of 45 degrees according to the refractive index of the transparent layer of another transparent display device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a backlight module provided according to an embodiment of the present disclosure.
  • the transparent display device may include: (1) a transparent display device based on a conventional liquid crystal display panel; (2) a transparent display device based on a light emitting diode (LED) display panel; (3) a transparent display device based on an organic light emitting diode (OLED) display panel Display device; and (4) a transparent display device based on a scattering type display panel.
  • a transparent display device based on a conventional liquid crystal display panel (2) a transparent display device based on a light emitting diode (LED) display panel; (3) a transparent display device based on an organic light emitting diode (OLED) display panel Display device; and (4) a transparent display device based on a scattering type display panel.
  • LED light emitting diode
  • OLED organic light emitting diode
  • the inventor of the present application noticed that: because the traditional liquid crystal display panel includes a polarizer and other film layers, the light transmittance of the transparent display device based on the traditional liquid crystal display panel is less than 10%, making the traditional liquid crystal display
  • the transparent display device of the display panel has low brightness and low light utilization; due to the large size of the light-emitting diode, the transparent display device based on the light-emitting diode display panel has larger pixels, which is suitable for super-large transparent display devices;
  • the cost of transparent display devices based on organic light-emitting diode (OLED) display panels is high, and the lifetime is difficult to guarantee; and because the scattering type transparent display technology uses a field sequential light source with a fast response liquid crystal (such as polymer dispersed liquid crystal or polymer Material stable liquid crystal), without polarizers and color filters, so the transparent display device based on the scattering display panel has a higher transmittance (over 80%), and its manufacturing process is similar to that of a traditional liquid crystal display
  • FIG. 1 is a schematic diagram of a transparent display device with light incident from the side.
  • the light source 10 is arranged on the side of the liquid crystal cell 25 of the scattering display panel 20.
  • the light emitted by the light source 10 enters the liquid crystal cell 25 and is totally reflected on the interface between the liquid crystal cell 25 and the external environment.
  • the display pixels 30 in the scattering state are scattered, and the scattered light can be emitted from the liquid crystal cell for display.
  • FIG. 1 is a schematic diagram of a transparent display device with light incident from the side.
  • the light source 10 is arranged on the side of the liquid crystal cell 25 of the scattering display panel 20.
  • the light emitted by the light source 10 enters the liquid crystal cell 25 and is totally reflected on the interface between the liquid crystal cell 25 and the external environment.
  • the display pixels 30 in the scattering state are scattered, and the scattered light can be emitted from the liquid crystal cell for display.
  • FIG. 1 is a schematic diagram of a transparent display device with light incident from
  • FIG. 2 is a schematic diagram of a transparent display device adopting a projection type light input.
  • the projection type light source 50 is arranged on one side of the scattering type display panel 20, and is at a certain angle with the light emission direction of the projection type light source 50 and the scattering type display panel 20.
  • the light emitted by the projection type light source 50 is from the scattering type display panel 20.
  • One side of the display panel 20 is incident, and when the light emitted by the projection light source 50 encounters the display pixels 30 in a scattering state, it is scattered, and the scattered light can be emitted from the other side of the scattering display panel 20.
  • the transparent display device adopting the projection type light input can avoid the problem of poor display uniformity to a certain extent, the transparent display device adopting the projection type light input has a relatively large volume and cannot achieve miniaturization and integration.
  • the transparent display device includes a backlight module and a diffuse display panel; the backlight module includes a first wedge-shaped light guide plate, the diffuse display panel includes a plurality of pixels, and the first wedge-shaped light guide plate includes a first light incident surface, a first light exit surface, and The first inclined surface disposed opposite to the first light-emitting surface, the scattering display panel is located on the side where the first light-emitting surface of the backlight module is located, and each pixel is configured to be switchable between a transparent state and a scattering state.
  • the transparent display device can improve the uniformity of display brightness, contrast and display brightness while achieving transparent display.
  • the backlight module includes a first wedge-shaped light guide plate and a second wedge-shaped light guide plate; the first wedge-shaped light guide plate includes a first light incident surface, a first light exit surface, and a first inclined surface disposed opposite to the first light exit surface;
  • the light plate includes a second inclined surface; the first wedge-shaped light guide plate and the second wedge-shaped light guide plate are spaced apart from each other, and the first inclined surface and the second inclined surface are arranged oppositely and substantially parallel.
  • the backlight module can be used in a transparent display device, and while improving the uniformity, contrast and display brightness of the display brightness, it can avoid the shift and deformation of the scene and objects behind the transparent display device.
  • FIG. 3 is a schematic diagram of a transparent display device according to an embodiment of the present disclosure.
  • the transparent display device 300 includes a backlight module 100 and a diffuser display panel 200;
  • the backlight module 100 includes a first wedge-shaped light guide plate 110;
  • the diffuser display panel 200 includes a plurality of pixels 290;
  • the light plate 110 includes a first light incident surface 111, a first light output surface 112, and a first inclined surface 113 disposed opposite to the first light output surface 112.
  • the angle between the first light output surface 112 and the first inclined surface 113 is an acute angle;
  • the display panel 200 is located on the side where the first light emitting surface 112 of the first wedge-shaped light guide plate 110 is located, and each pixel 290 is configured to be switchable between a transparent state and a scattering state. It should be noted that no dot structure is provided on the first light-emitting surface 112, and no diffusion sheet is provided between the first light-emitting surface 112 and the scattering display panel 200. In addition, no dot structure is provided on the first inclined surface 113.
  • the first light incident surface 111 can receive the light emitted by the light source
  • the first inclined surface 113 can cause the light emitted by the light source to be totally reflected on the first inclined surface 113
  • the first light exit surface 112 can make The light emitted by the light source is emitted.
  • a light source can be arranged on the first light-incident surface, the light emitted by the light source can enter the first wedge-shaped light guide plate from the first light-incident surface, and a part of the light from the first light-incident surface directly
  • the first light exit surface emits, and the other part of the first wedge-shaped light guide plate is emitted from the first light-incident surface at the end of the first wedge-shaped light guide plate away from the first light-incident surface after the total reflection of the first inclined surface. Face shot. Therefore, the first wedge-shaped light guide plate can improve the uniformity of the light output of the backlight module without arranging the diffusion sheet and the light homogenizing plate.
  • the light emitted from the first light-emitting surface directly enters the scattering display panel.
  • the pixel When the pixel is in a transparent state, the light emitted from the first light-emitting surface directly passes through the pixel; when the pixel is in a scattered state, the light emitted from the first light-emitting surface
  • the scattered light can be emitted from the scattering display panel, so that images can be displayed on the side of the scattering display panel away from the first wedge-shaped light guide plate.
  • the transparent display device can improve the uniformity of display brightness, contrast, and display brightness while achieving transparent display.
  • the first light-emitting surface 112 is a flat surface, that is, no dot structure is provided on the first light-emitting surface 112; the refractive index of the first wedge-shaped light guide plate 110 is in the range of 1.45-2 between. In addition, no dot structure is provided on the first inclined surface 113.
  • the material of the first wedge-shaped light guide plate 110 may be a material with high light transmittance (for example, light transmittance greater than 90%), such as polymethylmethacrylate (PMMA), acrylic, polycarbonate, or glass.
  • PMMA polymethylmethacrylate
  • acrylic acrylic
  • polycarbonate or glass.
  • the material of the first wedge-shaped light guide plate 110 may be glass with a refractive index of 1.51314.
  • the transparent display device 300 further includes a transparent layer 310 located between the diffuse display panel 200 and the backlight module 100, the transparent layer 310 and the first light emitting surface 112 and the diffuse display panel 200 are in direct contact with each other, and the refractive index of the transparent layer 310 ranges from 1.30 to 1.50.
  • the refractive index of the transparent layer 310 matches the refractive index of the first wedge-shaped light guide plate 110, so that the brightness uniformity of the transparent display device can be further improved.
  • the refractive index of the transparent layer 310 ranges between 1.32-1.40.
  • the refractive index of the transparent layer 310 is between 1.32-1.40, it can be better matched with the first wedge-shaped light guide plate with a refractive index of 1.49-1.52, thereby achieving better brightness uniformity.
  • the material of the transparent layer 310 may be a transparent optical glue, such as a liquid transparent optical glue.
  • the thickness of the transparent layer 310 ranges from 0.05 to 0.50 mm; further, the thickness of the transparent layer 310 ranges from 0.08 to 0.12 mm.
  • the backlight module 100 further includes a second wedge-shaped light guide plate 120; the second wedge-shaped light guide plate 120 includes a second inclined surface 123, and the first wedge-shaped light guide plate 110 and the second wedge-shaped light guide plate 120 are mutually They are arranged at intervals, and the first inclined surface 113 and the second inclined surface 123 are arranged oppositely and substantially parallel.
  • substantially parallel includes the case where the first slope and the second slope are completely parallel, and also the case where the angle between the first slope and the second slope is less than 1°.
  • the second wedge-shaped light guide plate is provided, and the first inclined surface and the second inclined surface are arranged opposite and approximately parallel, the second wedge-shaped light guide plate is away from the scenes and objects on the side of the scattering display panel
  • the emitted or reflected light first passes through the second wedge-shaped light guide plate and the first wedge-shaped light guide plate, and then enters the diffuse display panel and exits from the diffuse display panel, so that the second wedge-shaped light guide plate can be far away from one of the diffuse display panels.
  • the scenes and objects on the side have only minimal or even no position deviation, thereby improving the display quality of the transparent display device.
  • the interval between the first wedge-shaped light guide plate 110 and the second wedge-shaped light guide plate 120 is an air gap 130.
  • the interval between the first wedge-shaped light guide plate and the second wedge-shaped light guide plate is also an interval formed by filling other materials, as long as the light incident from the first light incident surface can be It is sufficient that total reflection occurs on the first inclined surface.
  • the second wedge-shaped light guide plate 120 further includes a second light incident surface 121, and the second light incident surface 121 is disposed opposite to the second inclined surface 123, that is, the second light surface 121 and the second inclined surface 123 are two opposite surfaces of the second wedge-shaped light guide plate 120; the second light incident surface 121 is also a surface of the second wedge-shaped light guide plate 120 away from the scattering display panel 200.
  • the included angle between the second light incident surface 121 and the second inclined surface 123 is an acute angle, and the second light incident surface 121 is substantially parallel to the first light exit surface 112.
  • the first light emitting surface 112 and the second light incident surface 121 are approximately parallel; the first inclined surface 113 and the second inclined surface 123 are approximately parallel.
  • the first light-emitting surface 112 is substantially parallel to the scattering display panel 200. Therefore, the transparent display device provided in this example can further ensure that scenes and objects on the side of the second wedge-shaped light guide plate away from the scattering display panel have only a minimal position offset, or even no position offset, after passing through the transparent display device. Therefore, the display quality of the transparent display device is further improved.
  • the first included angle between the first inclined surface 113 and the first light-emitting surface 112 is substantially equal to the second included angle 220 between the second inclined surface 123 and the second light-incident surface 121.
  • the transparent display device 300 further includes a light source 320; the light source 320 is disposed on the first light incident surface 111 of the first wedge-shaped light guide plate 110 and is configured to move from the first light incident surface 111 to the The first wedge-shaped light guide plate 110 emits light, and the thickness of the first wedge-shaped light guide plate gradually decreases from the side where the light source 320 is provided to the opposite side thereof, and the light-emitting half-angle of the light source 320 ranges from 30 to 65 degrees.
  • the light-emitting half-angle of the light source 320 is in the range of 55-65 degrees, such as 60 degrees, that is to say, the light source 320 can use a normal light-emitting half-angle.
  • the light-emitting half-angle range of the light source 320 may be 40-50 degrees, for example, 45 degrees, so that the display effect can be further improved.
  • the light source 320 is arranged on the side of the first wedge-shaped light guide plate 110, so the backlight module 100 of the transparent display device 300 is an edge-type backlight module.
  • the light source 320 is disposed on the thicker side of the first wedge-shaped light guide plate 110.
  • the thickness of the first wedge-shaped light guide plate 110 gradually decreases.
  • the light source 320 may be a field sequential light source, that is, the light source may sequentially emit light of different colors.
  • the light source 320 can emit red light, green light, and blue light at a frequency of 180 Hz, that is, the light source 320 can be a field sequential light source with three colors of R, G, and B cyclically lit.
  • the light source 320 emits red light
  • the pixels that need to display red can be in a scattered state under electric drive, and other pixels are in a transparent state
  • the light source 320 emits green light the pixels that need to display green can be in a scattered state under electric drive.
  • Other pixels are in a transparent state; when the light source 320 emits blue light, the pixels that need to display blue can be in a scattering state under electric drive, and other pixels are in a transparent state; thus, the transparent display device can perform at a frame rate of 60hz Luminous display.
  • the cross-sectional shape of the first wedge-shaped light guide plate is trapezoidal, and the length of the long base of the trapezoid is in the range of 1-10 mm, that is, the first light incident surface 111 is perpendicular to the first
  • the dimension in the direction of the light-emitting surface 112 ranges from 1-10 mm; the length of the short base of the trapezoid is in the range of 0.1-2 mm, that is, the first top surface 114 of the first wedge-shaped light guide plate 110 opposite to the first light-emitting surface 112
  • the size range in the direction perpendicular to the first light-emitting surface 112 is 0.1-2 mm.
  • the length of the long base of the trapezoidal cross section of the first wedge-shaped light guide plate ranges from 1.6 to 5 mm, and the length of the trapezoidal cross section of the first wedge-shaped light guide plate
  • the length of the short base is in the range of 0.1-1 mm.
  • the height of the above-mentioned trapezoid is the same as or close to the width of the diffuser display panel, and is not less than the width of the display area of the diffuser display panel.
  • the cross-sectional shape of the first wedge-shaped light guide plate 110 is a trapezoid, and the length of the long base of the trapezoid is in the range of 2.8-3.2 mm, that is, the first light incident surface 111 is perpendicular to the
  • the dimension in the direction of a light-emitting surface 112 ranges from 2.8 to 3.2 mm; the length of the short base of the trapezoid is from 0.48-0.52 mm, that is, the first top of the first wedge-shaped light guide plate 110 opposite to the first light-emitting surface 112
  • the size range of the surface 114 in the direction perpendicular to the first light-emitting surface 112 is 0.48-0.52 mm; the height of the trapezoid is in the range of 110-130 mm, that is, the first light-emitting surface 112 is perpendicular to the first light-incident surface.
  • the size range in the direction of 111 is 110-130 mm.
  • the size of the first light-incident surface 111 in the direction perpendicular to the first light-emitting surface 112 is 3 mm; the size of the first light-emitting surface 112 in the direction perpendicular to the first light-incident surface 111 is 120 mm;
  • the wedge-shaped light guide plate 110 further includes a first top surface 114 opposite to the first light emitting surface 112, and the size of the first top surface 114 in a direction perpendicular to the first light emitting surface 112 is 0.5 mm.
  • FIG. 4 is a schematic diagram of a diffuse display panel provided according to an embodiment of the present disclosure.
  • the diffuse display panel 200 further includes an array substrate 210, a counter substrate 220, and a liquid crystal layer 230 between the array substrate 210 and the counter substrate 220; the counter substrate 220 and the array substrate 210 are arranged in a box;
  • the array substrate 210 includes a first base substrate 211 and a plurality of pixel electrodes 212 disposed on the first base substrate 211;
  • the liquid crystal layer 230 includes polymer stabilized liquid crystal or polymer dispersed liquid crystal, and each pixel electrode 212 can drive the polymer stabilized
  • the liquid crystal or polymer dispersed liquid crystal is switched between the transparent state and the scattering state.
  • the diffuse display panel provided in this example is a diffuse liquid crystal display panel. Therefore, the manufacturing process of the scattering type liquid crystal display panel is relatively mature and reliable, so that the manufacturing cost of the transparent display device is low, and the stability and service life are high.
  • the refractive index range of the second base substrate 221 is between 1.45-2.
  • the counter substrate 220 includes a second base substrate 221, and the refractive index of the second base substrate 221 is between 1.45-2. Therefore, when the pixel is in the transparent state, the light emitted from the first light-emitting surface directly passes through the pixel and can be totally reflected at the interface between the second base substrate and the external environment; therefore, the pixel in the transparent state does not perform light-emitting display . It should be noted that the pixels in the transparent state can pass through the first wedge-shaped light guide plate away from the scattered light emitted or reflected by the scene or objects on the display panel, thereby performing transparent display.
  • first base substrate 211 and the second base substrate 221 may be made of the same material and have the same refractive index.
  • the array substrate 210 further includes a first alignment layer 213 on the side of the pixel electrode 212 away from the first base substrate 211.
  • the first alignment layer 213 may be used for the liquid crystal in the liquid crystal layer 230.
  • the orientation of the molecule is not limited.
  • the array substrate further includes a circuit structure (not shown) for driving the pixel electrodes.
  • the circuit structure refer to the conventional design, which is not repeated in the embodiments of the present disclosure.
  • the counter substrate 220 further includes a common electrode 222 located on the second base substrate 221 close to the liquid crystal layer 230 and a second alignment layer located on the common electrode layer 222 away from the second base substrate 221 223.
  • the second alignment layer 223 is used to align the liquid crystal molecules in the liquid crystal layer 230 together with the first alignment layer 213.
  • the common electrode 222 can be used to form an electric field with the pixel electrode 212 to drive the liquid crystal in the liquid crystal layer 230; of course, embodiments of the present disclosure include but are not limited to the case where the common electrode is located on the counter substrate, and the common electrode can also be disposed on the array substrate .
  • the first base substrate and the second base substrate may be glass substrates, quartz substrates, etc.; the thickness of the first base substrate is in the range of 300-1000 microns; the thickness of the second base substrate is in the range of 300-1000 microns.
  • the pixel electrode and the common electrode may use a transparent oxide semiconductor material, such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the thickness of the pixel electrode is in the range of 0.02-0.1 microns
  • the thickness of the common electrode is in the range of 0.02-0.1 microns.
  • the first alignment layer and the second alignment layer can be made of polyimide material, the thickness of the first alignment layer is in the range of 0.05-0.12 microns, and the thickness of the second alignment layer is in the range of 0.05-0.12 microns.
  • An example of the present disclosure provides a transparent display device.
  • the first light-incident surface of the first wedge-shaped light guide plate adopted by the transparent display device has a dimension of 4 mm in a direction perpendicular to the first light-emitting surface;
  • the size in the direction perpendicular to the first light incident surface is 120 mm;
  • the size of the first top surface in the direction perpendicular to the first light exit surface is 1 mm.
  • the optical power in the 5mm range at the far light source in the display area of the transparent display device is 1814W
  • the optical power in the 5mm range in the middle of the display area of the transparent display device is 1766W
  • the light power in the 5mm range at the light source is 1615W.
  • the transparent display device can achieve a display effect of brightness> 180nit. It can be seen that the transparent display device provided by the embodiments of the present disclosure has higher display brightness uniformity and higher display brightness.
  • Fig. 5 is a schematic diagram of a transparent display device using a light source with a light emitting half-angle of 60 degrees according to the refractive index of the transparent layer for a transparent display device according to an embodiment of the present disclosure
  • Fig. 6 is another transparent display provided by an embodiment of the present disclosure
  • the display device adopts a schematic diagram of the change in the near and far brightness of a light source with a light emitting half angle of 45 degrees with the refractive index of the transparent layer.
  • the far light source in FIGS. 5 and 6 refers to the brightness of a position far from the light source in the display area of the transparent display device
  • the near light source in FIGS. 5 and 6 refers to the position close to the light source in the display area of the transparent display device. brightness.
  • the brightness of the display area of the transparent display device away from the light source and the position of the display area close to the light source when the refractive index of the transparent layer is between 1.37-1.38, the brightness of the display area of the transparent display device far from the light source is approximately equal to the brightness of the display area near the light source.
  • the transparent display device may be an electronic product with a display function, such as a mobile phone, a notebook computer, or a tablet computer.
  • the transparent display device can also be products such as car windows, refrigerator doors, shop windows, vending machines, and building windows.
  • FIG. 7 is a schematic diagram of a backlight module provided according to an embodiment of the present disclosure.
  • the backlight module 100 includes a first wedge-shaped light guide plate 110 and a second wedge-shaped light guide plate 120; the first wedge-shaped light guide plate 110 and the second wedge-shaped light guide plate 120 are spaced apart from each other; the first wedge-shaped light guide plate 110 includes The first light incident surface 111, the first light output surface 112, and the first inclined surface 113 disposed opposite to the first light output surface 112; the angle between the first light output surface 112 and the first inclined surface 113 is an acute angle; the second wedge-shaped light guide plate 120 includes a second inclined surface 123.
  • the first wedge-shaped light guide plate 110 and the second wedge-shaped light guide plate 120 are spaced apart from each other, and the first inclined surface 113 and the second inclined surface 123 are disposed oppositely and substantially parallel. It should be noted that the above-mentioned “substantially parallel” includes the case where the first slope and the second slope are completely parallel, and also the case where the angle between the first slope and the second slope is less than 1°.
  • the first light incident surface 111 can receive the light emitted by the light source, the first inclined surface 113 can make the light emitted by the light source be totally reflected on the first inclined surface 113, and the first light exit surface 112 can make The light emitted by the light source is emitted.
  • the backlight module provided by this embodiment can improve the uniformity of light intensity, so that the display uniformity and contrast of the transparent display device adopting the backlight module can be improved.
  • it can also be used for transparent display and can make the first
  • the scenes and objects on the side of the two wedge-shaped light guide plates far away from the display panel have only minimal or even no positional deviation after passing through the backlight module, which improves the use of the backlight module.
  • the display quality of the group's transparent display device can improve the uniformity of light intensity, so that the display uniformity and contrast of the transparent display device adopting the backlight module can be improved.
  • it can also be used for transparent display and can make the first
  • the scenes and objects on the side of the two wedge-shaped light guide plates far away from the display panel for example, the above-mentioned diffuse display panel
  • the interval between the first wedge-shaped light guide plate 110 and the second wedge-shaped light guide plate 120 is an air gap 130.
  • the interval between the first wedge-shaped light guide plate and the second wedge-shaped light guide plate is also an interval formed by filling other materials, as long as the light incident from the first light incident surface can be It is sufficient that total reflection occurs on the first inclined surface.
  • the second wedge-shaped light guide plate 120 further includes a second light incident surface 121, and the second light incident surface 121 is disposed opposite to the second inclined surface 123, that is, the second light surface 121 and the second inclined surface 123 are two opposite surfaces of the second wedge-shaped light guide plate 120; the second light incident surface 121 is also a surface of the second wedge-shaped light guide plate 120 away from the scattering display panel 200.
  • the included angle between the second light incident surface 121 and the second inclined surface 123 is an acute angle, and the second light incident surface 121 is substantially parallel to the first light exit surface 112.
  • the backlight module provided in this example can further ensure that the scenes and objects on the side of the second wedge-shaped light guide plate away from the first wedge-shaped light guide plate have only minimal positional deviation after passing through the backlight module, or even no positional deviation. Therefore, the display quality of the transparent display device using the backlight module is further improved.
  • the first included angle between the first inclined surface 113 and the first light-emitting surface 112 is substantially equal to the second included angle between the second inclined surface 123 and the second light-incident surface 121.
  • the cross-sectional shape of the first wedge-shaped light guide plate is a trapezoid, and the length of the long base of the trapezoid is in the range of 1-10 mm, that is, the first light incident surface 111 is perpendicular to the first
  • the dimension in the direction of the light-emitting surface 112 ranges from 1-10 mm; the length of the short base of the trapezoid is in the range of 0.1-2 mm, that is, the first top surface 114 of the first wedge-shaped light guide plate 110 opposite to the first light-emitting surface 112
  • the size range in the direction perpendicular to the first light-emitting surface 112 is 0.1-2 mm.
  • the length of the long base of the trapezoidal cross section of the first wedge-shaped light guide plate ranges from 1.6 to 5 mm, and the length of the trapezoidal cross section of the first wedge-shaped light guide plate
  • the length of the short base is in the range of 0.1-1 mm.
  • the cross-sectional shape of the first wedge-shaped light guide plate 110 is a trapezoid, and the length of the long base of the trapezoid is in the range of 2.8-3.2 mm, that is, the first light incident surface 111 is perpendicular to the
  • the dimension in the direction of a light-emitting surface 112 ranges from 2.8 to 3.2 mm; the length of the short base of the trapezoid is from 0.48-0.52 mm, that is, the first top of the first wedge-shaped light guide plate 110 opposite to the first light-emitting surface 112
  • the size range of the surface 114 in the direction perpendicular to the first light-emitting surface 112 is 0.48-0.52 mm; the height of the trapezoid is in the range of 110-130 mm, that is, the first light-emitting surface 112 is perpendicular to the first light-incident surface.
  • the size range in the direction of 111 is 110-130 mm.
  • the size of the first light-incident surface 111 in the direction perpendicular to the first light-emitting surface 112 is 3 mm; the size of the first light-emitting surface 112 in the direction perpendicular to the first light-incident surface 111 is 120 mm;
  • the wedge-shaped light guide plate 110 further includes a first top surface 114 opposite to the first light emitting surface 112, and the size of the first top surface 114 in a direction perpendicular to the first light emitting surface 112 is 0.5 mm.
  • the first light-emitting surface 112 is a flat surface, that is, no dot structure is provided on the first light-emitting surface 112; the refractive index of the first wedge-shaped light guide plate 110 is in the range of 1.45-2 between. In addition, no dot structure is provided on the first inclined surface 113.
  • the material of the first wedge-shaped light guide plate 110 may be a material with high light transmittance (for example, light transmittance greater than 90%), such as polymethylmethacrylate (PMMA), acrylic, polycarbonate, or glass.
  • PMMA polymethylmethacrylate
  • acrylic acrylic
  • polycarbonate or glass.
  • the material of the first wedge-shaped light guide plate 110 may be glass with a refractive index of 1.51314.
  • the second wedge-shaped light guide plate 120 may be made of the same material as the first wedge-shaped light guide plate 110 and have the same refractive index as that of the first wedge-shaped light guide plate 110.
  • the second wedge-shaped light guide plate 120 may have the same shape as the first wedge-shaped light guide plate 110.
  • the backlight module 100 further includes a light source 320; the light source 320 is arranged on the first light incident surface 111 of the first wedge-shaped light guide plate 110 and is configured to extend from the first light incident surface 111 to the The first wedge-shaped light guide plate 110 emits light.
  • the thickness of the first wedge-shaped light guide plate gradually decreases from the side where the light source 320 is provided to the opposite side.
  • the light-emitting half-angle range of the light source 320 is 55-65 degrees, for example, 60 degrees. That is to say, the light source 320 can use a usual half-angle of light emission.
  • the light-emitting half-angle range of the light source 320 may be 40-50 degrees, for example, 45 degrees, so that the display effect can be further improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种透明显示装置(300)和背光模组(100)。透明显示装置(300)包括背光模组(100)和散射式显示面板(200);背光模组(100)包括第一楔形导光板(110),散射式显示面板(200)包括多个像素(290),第一楔形导光板(110)包括第一入光面(111)、第一出光面(112)和与第一出光面(112)相对设置的第一斜面(113),第一出光面(112)和第一斜面(113)之间的夹角为锐角,散射式显示面板(200)位于背光模组(100)的第一出光面(112)所在的一侧,各像素(290)被配置为可在透明态和散射态之间切换。透明显示装置(300)可在实现透明显示的同时提高显示亮度的均一性、对比度和显示亮度。

Description

透明显示装置和背光模组
本申请要求于2019年07月31日递交的中国专利申请201910701183.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种透明显示装置和背光模组。
背景技术
透明显示装置是一种使得用户可以同时观看到该透明显示装置上的显示画面和该透明显示装置背后的场景或物品的透明显示装置。从而,透明显示装置可实现透明显示装置上的显示画面和透明显示装置背后的场景或物品的融合和互动,从而可给用户带来全新的、丰富的、表现力强的视觉体验。
透明显示装置不仅可应用于手机、电视和电脑等通常的电子设备,还可应用于汽车车窗、冰箱门、商店橱窗、自动售货机和建筑物窗户等产品。
发明内容
本公开实施例提供一种透明显示装置和背光模组。该透明显示装置包括背光模组和散射式显示面板;背光模组包括第一楔形导光板,散射式显示面板包括多个像素,第一楔形导光板包括第一入光面、第一出光面和与第一出光面相对设置的第一斜面,第一出光面和第一斜面之间的夹角为锐角,散射式显示面板位于背光模组的第一出光面所在的一侧,各像素被配置为可在透明态和散射态之间切换。该透明显示装置可在实现透明显示的同时提高显示亮度的均一性、对比度和显示亮度。
本公开至少一个实施例提供一种透明显示装置。该透明显示装置包括:背光模组,包括第一楔形导光板;以及散射式显示面板,包括多个像素,所述第一楔形导光板包括第一入光面、第一出光面和与所述第一出光面相对设置的第一斜面,所述第一出光面和所述第一斜面之间的夹角为锐角,所述散射式显示面板位于所述第一楔形导光板的所述第一出光面所在的一侧,各所述像素被配置为可在透明态和散射态之间切换。
例如,在本公开一实施例提供的透明显示装置中,所述第一出光面为平坦 的表面,所述第一楔形导光板的折射率范围在1.45-2之间。
例如,在本公开一实施例提供的透明显示装置中,该透明显示装置还包括:透明层,位于所述散射式显示面板与所述背光模组之间,所述透明层与所述第一出光面和所述散射式显示面板分别直接接触,所述透明层的折射率范围在1.30-1.50之间。
例如,在本公开一实施例提供的透明显示装置中,所述透明层的厚度范围在0.05-0.50毫米。
例如,在本公开一实施例提供的透明显示装置中,所述背光模组还包括:第二楔形导光板,包括第二斜面,所述第一楔形导光板与所述第二楔形导光板相互间隔设置,所述第一斜面与所述第二斜面相对设置且大致平行。
例如,在本公开一实施例提供的透明显示装置中,所述第一楔形导光板与所述第二楔形导光板之间的间隔为空气间隔。
例如,在本公开一实施例提供的透明显示装置中,所述第二楔形导光板还包括:第二入光面,所述第二入光面与所述第二斜面相对设置,所述第二入光面和所述第二斜面之间的夹角为锐角,所述第二入光面与所述第一出光面大致平行。
例如,在本公开一实施例提供的透明显示装置中,该透明显示装置还包括:光源,设置在所述第一楔形导光板的第一入光面并被配置为从所述第一入光面向所述第一楔形导光板射入光线,从设置所述光源的一侧到其相对侧,所述第一楔形导光板的厚度逐渐减小,所述光源的发光半角范围在30-65度。
例如,在本公开一实施例提供的透明显示装置中,所述第一入光面被配置为接收光源发出的光,所述第一斜面被配置为使所述光源发出的光在所述第一斜面发生全反射,所述第一出光面被配置为使所述光源发出的光出射。
例如,在本公开一实施例提供的透明显示装置中,所述光源包括场序式光源。
例如,在本公开一实施例提供的透明显示装置中,所述散射式显示面板还包括:阵列基板,包括第一衬底基板以及设置在所述第一衬底基板上的多个像素电极;对置基板,与所述阵列基板对盒设置;以及液晶层,位于所述阵列基板和对置基板之间,所述液晶层包括聚合物稳定液晶或聚合物分散液晶,各所述像素电极被配置为驱动所述聚合物稳定液晶或聚合物分散液晶在透明态和散射态之间切换。
例如,在本公开一实施例提供的透明显示装置中,所述对置基板包括第二衬底基板,所述第二衬底基板的折射率范围在1.45-2之间。
例如,在本公开一实施例提供的透明显示装置中,所述第一楔形导光板的横截面的形状为梯形,所述梯形的长底边的长度范围为1-10毫米,所述梯形的短底边的长度范围为0.1-2毫米。
本公开至少一个实施例还提供一种背光模组。该背光模组包括:第一楔形导光板,包括第一入光面、第一出光面和与所述第一出光面相对设置的第一斜面,所述第一出光面和所述第一斜面之间的夹角为锐角;以及第二楔形导光板,包括第二斜面;所述第一楔形导光板与所述第二楔形导光板相互间隔设置,所述第一斜面与所述第二斜面相对设置且大致平行。
在本公开一实施例提供的背光模组中,所述第一楔形导光板与所述第二楔形导光板之间的间隔为空气间隔。
在本公开一实施例提供的背光模组中,所述第二楔形导光板还包括:第二入光面和第二出光面,所述第二出光面与所述第二斜面相对设置,且所述第二入光面和所述第二斜面之间的夹角为锐角,所述第二入光面与所述第一出光面大致平行。
在本公开一实施例提供的背光模组中,所述第一出光面为平坦的表面,所述楔形导光板的折射率范围在1.45-2之间。
在本公开一实施例提供的背光模组中,所述第一出光面不设置网点。
在本公开一实施例提供的背光模组中,所述第一楔形导光板的横截面的形状为梯形,所述梯形的长底边的长度范围为1-10毫米,所述梯形的短底边的长度范围为0.1-2毫米。
在本公开一实施例提供的背光模组中,还包括:光源,设置在所述第一楔形导光板的第一入光面并被配置为从所述第一入光面向所述第一楔形导光板射入光线,所述第一斜面被配置为使所述光源发出的光在所述第一斜面发生全反射,所述第一出光面被配置为使所述光源发出的光出射。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种采用侧面入光的透明显示装置的示意图;
图2为一种采用投影式入光的透明显示装置的示意图;
图3为根据本公开一实施例提供的一种透明显示装置的示意图;
图4为根据本公开一实施例提供的一种散射式显示面板的示意图;
图5为本公开一实施例提供的一种透明显示装置采用发光半角为60度的光源的远近亮度随透明层的折射率变化的示意图;
图6为本公开一实施例提供的另一种透明显示装置采用发光半角为45度的光源的远近亮度随透明层的折射率变化的示意图;以及
图7为根据本公开一实施例提供的一种背光模组的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
透明显示装置可包括:(1)基于传统的液晶显示面板的透明显示装置;(2)基于发光二极管(LED)显示面板的透明显示装置;(3)基于有机发光二极管(OLED)显示面板的透明显示装置;和(4)基于散射型显示面板的透明显示装置。在研究中,本申请的发明人注意到:由于传统的液晶显示面板包括偏光片等膜层,导致基于传统的液晶显示面板的透明显示装置的光透过率小于10%,使得基于传统的液晶显示面板的透明显示装置亮度较低、光的利用率较低;由于发光二极管的尺寸较大,因此基于发光二极管显示面板的透明显示装置的像素点较大,适用于超大尺寸的透明显示装置;另外,基于有机发光二极 管(OLED)显示面板的透明显示装置的成本较高,并且寿命难以保证;而由于散射型透明显示技术采用场序式光源搭配快速响应的液晶(例如聚合物分散液晶或聚合物稳定液晶),无需偏光片和彩色滤光片,因此基于散射型显示面板的透明显示装置的透过率较高(80%以上),并且其制作工艺和传统液晶显示面板类似,因而成本较低并且可靠性和使用寿命都相对较高。
这种基于散射型显示面板的透明显示装置的入光方式通常采用侧面入光和投影式入光。图1为一种采用侧面入光的透明显示装置的示意图。如图1所示,光源10设置在散射型显示面板20的液晶盒25的侧面,光源10发出的光进入液晶盒25内并在液晶盒25与外界环境的界面上发生全反射,而遇到处于散射态的显示像素30时发生散射,发生散射后的光可从液晶盒射出,从而进行显示。然而,如图1所示,随着与光源10的距离的增加,光的强度也逐渐减小,从而导致液晶盒25靠近光源10的一端的光强度大于液晶盒25远离光源10的一端的光强度。因此,采用侧面入光的透明显示装置存在显示均一性较差、对比度较差等问题;并且,透明显示装置的尺寸越大,透明显示装置的显示均一性就越差。图2为一种采用投影式入光的透明显示装置的示意图。如图2所示,投影式光源50设置在散射型显示面板20的一侧,并且与投影式光源50的出光方向与散射型显示面板20呈一定角度,投影式光源50发出的光从散射型显示面板20的一侧射入,当投影式光源50发出的光遇到处于散射态的显示像素30时发生散射,发生散射后的光可从散射型显示面板20的另一侧射出。然而,虽然采用投影式入光的透明显示装置可在一定程度上避免上述的显示均一性较差问题,但是采用投影式入光的透明显示装置的体积较大,无法实现小型化和集成化。
本公开至少一个实施例提供一种透明显示装置。该透明显示装置包括背光模组和散射式显示面板;背光模组包括第一楔形导光板,散射式显示面板包括多个像素,第一楔形导光板包括第一入光面、第一出光面和与第一出光面相对设置的第一斜面,散射式显示面板位于背光模组的第一出光面所在的一侧,各像素被配置为可在透明态和散射态之间切换。该透明显示装置可在实现透明显示的同时提高显示亮度的均一性、对比度和显示亮度。
本公开至少一个实施例提供一种背光模组。该背光模组包括第一楔形导光板和第二楔形导光板;第一楔形导光板包括第一入光面、第一出光面和与第一出光面相对设置的第一斜面;第二楔形导光板包括第二斜面;第一楔形导光板 与第二楔形导光板相互间隔设置,第一斜面与第二斜面相对设置且大致平行。该背光模组可用于透明显示装置,并可在提高显示亮度的均一性、对比度和显示亮度的同时,避免透明显示装置背后的场景和物体的偏移和变形。
下面结合附图对本公开实施例提供的透明显示装置和背光模组进行详细的说明。
图3为根据本公开一实施例提供的一种透明显示装置的示意图。如图3所示,该透明显示装置300包括背光模组100和散射式显示面板200;背光模组100包括第一楔形导光板110;散射式显示面板200包括多个像素290;第一楔形导光板110包括第一入光面111、第一出光面112和与第一出光面112相对设置的第一斜面113,第一出光面112和第一斜面113之间的夹角为锐角;散射式显示面板200位于第一楔形导光板110的第一出光面112所在的一侧,各像素290被配置为可在透明态和散射态之间切换。需要说明的是,第一出光面112上不设置网点结构,第一出光面112与散射式显示面板200之间不设置散射片。另外,第一斜面113上也不设置网点结构。
在一些示例中,如图3所示,第一入光面111可接收光源发出的光,第一斜面113可使光源发出的光在第一斜面113发生全反射,第一出光面112可使光源发出的光出射。
在本实施例提供的透明显示装置中,第一入光面可设置光源,光源发出的光可从第一入光面进入第一楔形导光板,从第一入光面的光的一部分直接从第一出光面出射,另一部分经过第一斜面的全反射而射向第一楔形导光板远离第一入光面的一端并在第一楔形导光板远离第一入光面的一端的第一出光面出射。因此,第一楔形导光板可在不设置散射片和匀光板的前提下提高背光模组的出光的均一性。从第一出光面射出的光线直接进入散射式显示面板,当像素处于透明态时,从第一出光面射出的光直接穿过像素;当像素处于散射态时,从第一出光面射出的光在像素发生散射,散射的光可从散射式显示面板射出,从而可在散射式显示面板远离第一楔形导光板的一侧显示画面。同时,第一楔形导光板远离散射式显示面板的一侧的场景和物品发出的或者反射的光可从第一楔形导光板的第一斜面射入第一楔形导光板和散射式显示面板,并从散射式显示面板射出,从而可实现在散射式显示面板远离第一楔形导光板的一侧进行透明显示。由此,该透明显示装置可在实现透明显示的同时提高显示亮度的均一性、对比度和显示亮度。
在一些示例中,如图3所示,第一出光面112为平坦的表面,也就是说第一出光面112上不设置网点结构;第一楔形导光板110的折射率范围在1.45-2之间。另外,第一斜面113上也不设置网点结构。
例如,第一楔形导光板110的材料可选择高透光率(例如,透光率大于90%)的材料,例如,聚甲基丙烯酸甲酯(PMMA)、亚克力、聚碳酸酯或玻璃。
例如,第一楔形导光板110的材料可选择折射率为1.51314的玻璃。
在一些示例中,如图3所示,该透明显示装置300还包括透明层310,位于散射式显示面板200与背光模组100之间,透明层310与第一出光面112和散射式显示面板200分别直接接触,透明层310的折射率范围在1.30-1.50之间。此时,透明层310的折射率与第一楔形导光板110的折射率相匹配,从而可进一步提高透明显示装置的亮度的均一性。
在一些示例中,如图3所示,透明层310的折射率范围在1.32-1.40之间。当透明层310的折射率范围在1.32-1.40之间时,可更好地与折射率为1.49-1.52之间的第一楔形导光板匹配,从而可实现较好的亮度均一性。
在一些示例中,透明层310的材料可为透明光学胶,例如液态透明光学胶。
在一些示例中,透明层310的厚度范围在0.05-0.50毫米;进一步地,透明层310的厚度范围在0.08-0.12毫米。
在一些示例中,如图3所示,背光模组100还包括第二楔形导光板120;第二楔形导光板120包括第二斜面123,第一楔形导光板110与第二楔形导光板120相互间隔设置,第一斜面113与第二斜面123相对设置且大致平行。需要说明的是,上述的“大致平行”包括第一斜面和第二斜面完全平行的情况,还包括第一斜面和第二斜面的夹角小于1°的情况。
在本示例提供的透明显示装置中,由于设置了第二楔形导光板,并且第一斜面与第二斜面相对设置且大致平行,第二楔形导光板远离散射式显示面板的一侧的场景和物品发出的或者反射的光先经过第二楔形导光板和第一楔形导光板之后再射入散射式显示面板并从散射式显示面板射出,从而可使得第二楔形导光板远离散射式显示面板的一侧的场景和物品经过该透明显示装置后只有极小的位置偏移,甚至没有位置偏移,从而提高该透明显示装置的显示品质。
在一些示例中,如图3所示,第一楔形导光板110与第二楔形导光板120之间的间隔为空气间隔130。当然,本公开实施例包括但不限于此,第一楔形导光板与第二楔形导光板之间的间隔也为其他材料填充而形成的间隔,只要可 使得从第一入光面入射的光可在第一斜面发生全反射即可。
在一些示例中,如图3所示,第二楔形导光板120还包括第二入光面121,第二入光面121与第二斜面123相对设置,即第二光面121和第二斜面123为第二楔形导光板120的两个相对的表面;第二入光面121也为第二楔形导光板120远离散射式显示面板200的表面。第二入光面121和第二斜面123之间的夹角为锐角,第二入光面121与第一出光面112大致平行。例如,第一出光面112与第二入光面121大致平行;第一斜面113与第二斜面123大致平行。又例如,第一出光面112与散射式显示面板200大致平行。由此,该示例提供的透明显示装置可进一步保证第二楔形导光板远离散射式显示面板的一侧的场景和物品经过该透明显示装置后只有极小的位置偏移,甚至没有位置偏移,从而进一步提高该透明显示装置的显示品质。
例如,第一斜面113和第一出光面112之间的第一夹角和第二斜面123和第二入光面121之间的第二夹角220大致相等。
在一些示例中,如图3所示,该透明显示装置300还包括光源320;光源320设置在第一楔形导光板110的第一入光面111并被配置为从第一入光面111向第一楔形导光板110射入光线,从设置光源320的一侧到其相对侧,第一楔形导光板的厚度逐渐减小,光源320的发光半角范围在30-65度。例如,光源320的发光半角范围在55-65度,例如60度,也就是说光源320可采用通常的发光半角。另外,在一些示例中,光源320的发光半角范围可为40-50度,例如,45度,从而可进一步提高显示效果。
例如,从图3可以看到,光源320设置在第一楔形导光板110的侧面,所以,透明显示装置300的背光模组100为侧入式背光模组。另外,光源320设置在第一楔形导光板110的厚度较厚的一侧。例如,从设置光源320的一侧到其相对侧,第一楔形导光板110的厚度逐渐减小。在一些示例中,光源320可为场序式光源,即光源可依次发出不同颜色的光。例如,光源320可以180hz的频率发出红光、绿光和蓝光,即光源320可为R、G、B三色循环点亮的场序式光源。当光源320发出红光时,需要显示红色的像素可在电驱动下呈散射态,其他像素则处于透明态;当光源320发出绿光时,需要显示绿色的像素可在电驱动下呈散射态,其他像素则处于透明态;当光源320发出蓝光时,需要显示蓝色的像素可在电驱动下呈散射态,其他像素则处于透明态;由此,该透明显示装置可以60hz的帧率进行发光显示。
在一些示例中,如图3所示,第一楔形导光板的横截面的形状为梯形,梯形的长底边的长度范围在1-10毫米,即第一入光面111在垂直于第一出光面112的方向上的尺寸范围在1-10毫米;梯形的短底边的长度范围在0.1-2毫米,即第一楔形导光板110中与第一出光面112相对的第一顶面114在垂直于第一出光面112的方向上的尺寸范围在0.1-2毫米。又例如,当该透明显示装置为8英寸左右的透明显示装置时,第一楔形导光板的梯形横截面的长底边的长度范围在1.6-5毫米,第一楔形导光板的梯形横截面的短底边的长度范围在0.1-1毫米。需要说明的是,上述梯形的高的长度与散射式显示面板的宽度相同或接近,且不小于散射式显示面板中显示区的宽度。
在一些示例中,如图3所示,第一楔形导光板110的横截面的形状为梯形,梯形的长底边的长度范围为2.8-3.2毫米,即第一入光面111在垂直于第一出光面112的方向上的尺寸范围为2.8-3.2毫米;梯形的短底边的长度范围为0.48-0.52毫米,即,第一楔形导光板110中与第一出光面112相对的第一顶面114在垂直于第一出光面112的方向上的尺寸范围为0.48-0.52毫米;所述梯形的高的长度范围在110-130毫米,即第一出光面112在垂直于第一入光面111的方向上的尺寸范围为110-130毫米。
例如,第一入光面111在垂直于第一出光面112的方向上的尺寸为3毫米;第一出光面112在垂直于第一入光面111的方向上的尺寸为120毫米;第一楔形导光板110还包括与第一出光面112相对的第一顶面114,第一顶面114在垂直于第一出光面112的方向上的尺寸为0.5毫米。
图4为根据本公开一实施例提供的一种散射式显示面板的示意图。如图4所示,散射式显示面板200还包括阵列基板210、对置基板220、和阵列基板210和对置基板220之间的液晶层230;对置基板220与阵列基板210对盒设置;阵列基板210包括第一衬底基板211以及设置在第一衬底基板211上的多个像素电极212;液晶层230包括聚合物稳定液晶或聚合物分散液晶,各像素电极212可驱动聚合物稳定液晶或聚合物分散液晶在透明态和散射态之间切换。本示例提供的散射式显示面板为散射式液晶显示面板。因此,该散射式液晶显示面板的制作工艺较为成熟,可靠,从而使得该透明显示装置的制作成本较低,稳定性和使用寿命较高。
例如,第二衬底基板221的折射率范围在1.45-2之间。
在一些示例中,如图4所示,对置基板220包括第二衬底基板221,第二 衬底基板221的折射率范围在1.45-2之间。由此,当像素处于透明态时,从第一出光面射出的光直接穿过像素并可在第二衬底基板与外界环境的界面可发生全反射;因此处于透明态的像素不进行发光显示。需要说明的是,处于透明态的像素可通过第一楔形导光板远离散射显示面板的一侧的场景或物品发出的或反射的光,从而进行透明显示。
例如,第一衬底基板211和第二衬底基板221可采用相同的材料制作,并具有相同的折射率。
在一些示例中,如图4所示,阵列基板210还包括位于像素电极212远离第一衬底基板211的一侧的第一取向层213,第一取向层213可用于液晶层230中的液晶分子的配向。例如,阵列基板还包括用于驱动像素电极的电路结构(未示出),该电路结构可参见常规设计,本公开实施例在此不再赘述。
在一些示例中,如图4所示,对置基板220还包括位于第二衬底基板221靠近液晶层230的公共电极222和位于公共电极层222远离第二衬底基板221的第二取向层223。第二取向层223用于与第一取向层213共同对液晶层230中的液晶分子进行配向。公共电极222可用于与像素电极212形成电场以驱动液晶层230中的液晶;当然,本公开实施例包括但不限于公共电极位于对置基板上这种情况,公共电极还可设置在阵列基板上。
例如,第一衬底基板和第二衬底基板可采用玻璃基板、石英基板等;第一衬底基板的厚度范围在300-1000微米;第二衬底基板的厚度范围在300-1000微米。
例如,像素电极和公共电极可采用透明氧化物半导体材料,例如氧化铟锡(ITO)。当像素电极和公共电极采用氧化铟锡制作时,像素电极的厚度范围在0.02-0.1微米,公共电极的厚度范围在0.02-0.1微米。
例如,第一取向层和第二取向层可采用聚酰亚胺材料制作,第一取向层的厚度范围在0.05-0.12微米,第二取向层的厚度范围在0.05-0.12微米。
本公开一示例提供的一种透明显示装置,该透明显示装置采用的第一楔形导光板的第一入光面在垂直于第一出光面的方向上的尺寸为4毫米;第一出光面在垂直于第一入光面的方向上的尺寸为120毫米;第一顶面在垂直于第一出光面的方向上的尺寸为1毫米。此时,沿光线传播方向均一性可用于分析该透明显示装置的亮度的均一性。根据仿真结果,该透明显示装置的显示区域远光源处的5mm范围的光功率为1814W,该透明显示装置的显示区域的中间区域 5mm范围的光功率为1766W,该透明显示装置的显示区域的近光源处5mm范围的光功率为1615W。据此可粗略估计该透明显示装置的显示亮度的均一性为1615/1814=89%。此均一性明显高于采用侧入式入光的透明显示装置的显示亮度的均一性。另外,根据采用粗加工楔形PMMA(聚甲基丙烯酸甲酯)作为第一楔形导光板得到的验证结果(CA210仪器测试),该透明显示装置可实现亮度>180nit的显示效果。可见,本公开实施例提供的透明显示装置具有较高的显示亮度的均一性和较高的显示亮度。
图5为本公开一实施例提供的一种透明显示装置采用发光半角为60度的光源的远近亮度随透明层的折射率变化的示意图;图6为本公开一实施例提供的另一种透明显示装置采用发光半角为45度的光源的远近亮度随透明层的折射率变化的示意图。图5和图6所示的透明显示装置采用的第一楔形导光板的第一入光面在垂直于第一出光面的方向上的尺寸为3毫米;第一出光面在垂直于第一入光面的方向上的尺寸为120毫米;第一顶面在垂直于第一出光面的方向上的尺寸为0.5毫米。需要说明的是,图5和图6中远光源是指透明显示装置的显示区域中远离光源的位置的亮度,图5和图6中近光源是指透明显示装置的显示区域中靠近光源的位置的亮度。
如图5所示,当光源的发光半角为60度时,透明层的折射率在1.32-1.35的范围之内时,透明显示装置的显示区域远离光源的位置的亮度与显示区域靠近光源的位置的亮度的差异较小;当透明层的折射率在1.33时,透明显示装置的显示区域远离光源的位置的亮度与显示区域靠近光源的位置的亮度相等。
如图6所示,当光源的发光半角为45度时,透明层的折射率在1.36-1.38的范围之内时,透明显示装置的显示区域远离光源的位置的亮度与显示区域靠近光源的位置的亮度的差异较小;当透明层的折射率在1.37-1.38之间时,透明显示装置的显示区域远离光源的位置的亮度与显示区域靠近光源的位置的亮度大致相等。
在一些示例中,该透明显示装置可为手机、笔记本电脑、平板电脑等具有显示功能的电子产品。另外,该透明显示装置还可为汽车车窗、冰箱门、商店橱窗、自动售货机和建筑物窗户等产品。
图7为根据本公开一实施例提供的一种背光模组的示意图。如图7所示,该背光模组100包括第一楔形导光板110和第二楔形导光板120;第一楔形导光板110和第二楔形导光板120相互间隔设置;第一楔形导光板110包括第一 入光面111、第一出光面112和与第一出光面112相对设置的第一斜面113;第一出光面112和第一斜面113之间的夹角为锐角;第二楔形导光板120包括第二斜面123,第一楔形导光板110与第二楔形导光板120相互间隔设置,第一斜面113与第二斜面123相对设置且大致平行。需要说明的是,上述的“大致平行”包括第一斜面和第二斜面完全平行的情况,还包括第一斜面和第二斜面的夹角小于1°的情况。
在一些示例中,如图7所示,第一入光面111可接收光源发出的光,第一斜面113可使光源发出的光在第一斜面113发生全反射,第一出光面112可使光源发出的光出射。
本实施例提供的背光模组一方面可提高出光强度的均一性,使得采用该背光模组的透明显示装置的显示均一性和对比度得到提高,另一方面还可用于透明显示,并可使得第二楔形导光板远离显示面板(例如,上述的散射式显示面板)的一侧的场景和物品经过该背光模组后只有极小的位置偏移,甚至没有位置偏移,从而提高采用该背光模组的透明显示装置的显示品质。
在一些示例中,如图7所示,第一楔形导光板110与第二楔形导光板120之间的间隔为空气间隔130。当然,本公开实施例包括但不限于此,第一楔形导光板与第二楔形导光板之间的间隔也为其他材料填充而形成的间隔,只要可使得从第一入光面入射的光可在第一斜面发生全反射即可。
在一些示例中,如图7所示,第二楔形导光板120还包括第二入光面121,第二入光面121与第二斜面123相对设置,即第二光面121和第二斜面123为第二楔形导光板120的两个相对的表面;第二入光面121也为第二楔形导光板120远离散射式显示面板200的表面。第二入光面121和第二斜面123之间的夹角为锐角,第二入光面121与第一出光面112大致平行。由此,该示例提供的背光模组可进一步保证第二楔形导光板远离第一楔形导光板的一侧的场景和物品经过该背光模组后只有极小的位置偏移,甚至没有位置偏移,从而进一步提高采用该背光模组的透明显示装置的显示品质。
例如,第一斜面113和第一出光面112之间的第一夹角和第二斜面123和第二入光面121之间的第二夹角大致相等。
在一些示例中,如图7所示,第一楔形导光板的横截面的形状为梯形,梯形的长底边的长度范围在1-10毫米,即第一入光面111在垂直于第一出光面112的方向上的尺寸范围在1-10毫米;梯形的短底边的长度范围在0.1-2毫 米,即第一楔形导光板110中与第一出光面112相对的第一顶面114在垂直于第一出光面112的方向上的尺寸范围在0.1-2毫米。又例如,当该透明显示装置为8英寸左右的透明显示装置时,第一楔形导光板的梯形横截面的长底边的长度范围在1.6-5毫米,第一楔形导光板的梯形横截面的短底边的长度范围在0.1-1毫米。
在一些示例中,如图7所示,第一楔形导光板110的横截面的形状为梯形,梯形的长底边的长度范围为2.8-3.2毫米,即第一入光面111在垂直于第一出光面112的方向上的尺寸范围为2.8-3.2毫米;梯形的短底边的长度范围为0.48-0.52毫米,即,第一楔形导光板110中与第一出光面112相对的第一顶面114在垂直于第一出光面112的方向上的尺寸范围为0.48-0.52毫米;所述梯形的高的长度范围在110-130毫米,即第一出光面112在垂直于第一入光面111的方向上的尺寸范围为110-130毫米。
例如,第一入光面111在垂直于第一出光面112的方向上的尺寸为3毫米;第一出光面112在垂直于第一入光面111的方向上的尺寸为120毫米;第一楔形导光板110还包括与第一出光面112相对的第一顶面114,第一顶面114在垂直于第一出光面112的方向上的尺寸为0.5毫米。
在一些示例中,如图7所示,第一出光面112为平坦的表面,也就是说第一出光面112上不设置网点结构;第一楔形导光板110的折射率范围在1.45-2之间。另外,第一斜面113上也不设置网点结构。
例如,第一楔形导光板110的材料可选择高透光率(例如,透光率大于90%)的材料,例如,聚甲基丙烯酸甲酯(PMMA)、亚克力、聚碳酸酯、或玻璃。
例如,第一楔形导光板110的材料可选择折射率为1.51314的玻璃。
在一些示例中,第二楔形导光板120可采用与第一楔形导光板110相同的材料制作,并具有与第一楔形导光板110的折射率相同的折射率。
在一些示例中,第二楔形导光板120可与第一楔形导光板110的形状相同。
在一些示例中,如图7所示,该背光模组100还包括光源320;光源320设置在第一楔形导光板110的第一入光面111并被配置为从第一入光面111向第一楔形导光板110射入光线,从设置光源320的一侧到其相对侧,第一楔形导光板的厚度逐渐减小,光源320的发光半角范围在55-65度,例如60度,也就是说光源320可采用通常的发光半角。另外,在一些示例中,光源320的发光半角范围可为40-50度,例如,45度,从而可进一步提高显示效果。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种透明显示装置,包括:
    背光模组,包括第一楔形导光板;以及
    散射式显示面板,包括多个像素,
    其中,所述第一楔形导光板包括第一入光面、第一出光面和与所述第一出光面相对设置的第一斜面,所述第一出光面和所述第一斜面之间的夹角为锐角,所述散射式显示面板位于所述第一楔形导光板的所述第一出光面所在的一侧,各所述像素被配置为可在透明态和散射态之间切换。
  2. 根据权利要求1所述的透明显示装置,其中,所述第一出光面为平坦的表面,所述第一楔形导光板的折射率范围在1.45-2之间。
  3. 根据权利要求1或2所述的透明显示装置,还包括:
    透明层,位于所述散射式显示面板与所述背光模组之间,
    其中,所述透明层与所述第一出光面和所述散射式显示面板分别直接接触,所述透明层的折射率范围在1.30-1.50之间。
  4. 根据权利要求3所述的透明显示装置,其中,所述透明层的厚度范围在0.05-0.50毫米。
  5. 根据权利要求1-4中任一项所述的透明显示装置,其中,所述背光模组还包括:
    第二楔形导光板,包括第二斜面,
    其中,所述第一楔形导光板与所述第二楔形导光板相互间隔设置,所述第一斜面与所述第二斜面相对设置且大致平行。
  6. 根据权利要求5所述的透明显示装置,其中,所述第一楔形导光板与所述第二楔形导光板之间的间隔为空气间隔。
  7. 根据权利要求5所述的透明显示装置,其中,所述第二楔形导光板还包括:第二入光面,所述第二入光面与所述第二斜面相对设置,所述第二入光面和所述第二斜面之间的夹角为锐角,所述第二入光面与所述第一出光面大致平行。
  8. 根据权利要求1-7中任一项所述的透明显示装置,还包括:
    光源,设置在所述第一楔形导光板的第一入光面并被配置为从所述第一入光面向所述第一楔形导光板射入光线,从设置所述光源的一侧到其相对侧,所 述第一楔形导光板的厚度逐渐减小,
    其中,所述光源的发光半角范围在30-65度。
  9. 根据权利要求8所述的透明显示装置,其中,所述第一入光面被配置为接收光源发出的光,所述第一斜面被配置为使所述光源发出的光在所述第一斜面发生全反射,所述第一出光面被配置为使所述光源发出的光出射。
  10. 根据权利要求8所述的透明显示装置,其中,所述光源包括场序式光源。
  11. 根据权利要求1-10中任一项所述的透明显示装置,其中,所述散射式显示面板还包括:
    阵列基板,包括第一衬底基板以及设置在所述第一衬底基板上的多个像素电极;
    对置基板,与所述阵列基板对盒设置;以及
    液晶层,位于所述阵列基板和对置基板之间,
    其中,所述液晶层包括聚合物稳定液晶或聚合物分散液晶,各所述像素电极被配置为驱动所述聚合物稳定液晶或聚合物分散液晶在透明态和散射态之间切换。
  12. 根据权利要求11所述的透明显示装置,其中,所述对置基板包括第二衬底基板,所述第二衬底基板的折射率范围在1.45-2之间。
  13. 根据权利要求1-12中任一项所述的透明显示装置,其中,所述第一楔形导光板的横截面的形状为梯形,所述梯形的长底边的长度范围为1-10毫米,所述梯形的短底边的长度范围为0.1-2毫米。
  14. 一种背光模组,包括:
    第一楔形导光板,包括第一入光面、第一出光面和与所述第一出光面相对设置的第一斜面,所述第一出光面和所述第一斜面之间的夹角为锐角;以及
    第二楔形导光板,包括第二斜面;
    其中,所述第一楔形导光板与所述第二楔形导光板相互间隔设置,所述第一斜面与所述第二斜面相对设置且大致平行。
  15. 根据权利要求14所述的背光模组,其中,所述第一楔形导光板与所述第二楔形导光板之间的间隔为空气间隔。
  16. 根据权利要求14所述的背光模组,其中,所述第二楔形导光板还包括:第二入光面,所述第二入光面与所述第二斜面相对设置,且所述第二入光 面和所述第二斜面之间的夹角为锐角,所述第二入光面与所述第一出光面大致平行。
  17. 根据权利要求14-16中任一项所述的背光模组,其中,所述第一出光面为平坦的表面,所述楔形导光板的折射率范围在1.45-2之间。
  18. 根据权利要求17所述的背光模组,其中,所述第一出光面不设置网点。
  19. 根据权利要求14-18中任一项所述的背光模组,其中,所述第一楔形导光板的横截面的形状为梯形,所述梯形的长底边的长度范围为1-10毫米,所述梯形的短底边的长度范围为0.1-2毫米。
  20. 根据权利要求14-19中任一项所述的背光模组,还包括:光源,设置在所述第一楔形导光板的第一入光面被配置为从所述第一入光面向所述第一楔形导光板射入光线,所述第一斜面被配置为使所述光源发出的光在所述第一斜面发生全反射,所述第一出光面被配置为使所述光源发出的光出射。
PCT/CN2020/105162 2019-07-31 2020-07-28 透明显示装置和背光模组 WO2021018139A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/264,334 US20210223460A1 (en) 2019-07-31 2020-07-28 Transparent display device and backlight module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910701183.2 2019-07-31
CN201910701183.2A CN112305811A (zh) 2019-07-31 2019-07-31 透明显示装置和背光模组

Publications (1)

Publication Number Publication Date
WO2021018139A1 true WO2021018139A1 (zh) 2021-02-04

Family

ID=74230197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105162 WO2021018139A1 (zh) 2019-07-31 2020-07-28 透明显示装置和背光模组

Country Status (3)

Country Link
US (1) US20210223460A1 (zh)
CN (1) CN112305811A (zh)
WO (1) WO2021018139A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11469060B1 (en) * 2021-04-30 2022-10-11 Logitech Europe S.A. Light guide for a keyboard

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098377A (ja) * 1998-09-18 2000-04-07 Mitsubishi Electric Corp 液晶表示装置
US20040095740A1 (en) * 2002-11-19 2004-05-20 Toppoly Optoelectronics Corp. Plane lighting structure for dual displays
WO2005124228A1 (ja) * 2004-06-22 2005-12-29 Scalar Corporation 導光板、導光板の製造方法、バックライト、液晶表示装置
CN101681034A (zh) * 2008-04-03 2010-03-24 松下电器产业株式会社 信息显示装置
CN102023411A (zh) * 2009-09-16 2011-04-20 乐金显示有限公司 透明显示设备
CN203519976U (zh) * 2013-10-17 2014-04-02 华映视讯(吴江)有限公司 透明显示器
WO2014097976A1 (ja) * 2012-12-21 2014-06-26 シャープ株式会社 液晶表示装置
CN104180241A (zh) * 2013-05-22 2014-12-03 扬升照明股份有限公司 背光模块
CN106019708A (zh) * 2016-07-15 2016-10-12 京东方科技集团股份有限公司 背光模组以及包括这样的背光模组的透明显示装置
CN205749976U (zh) * 2016-06-28 2016-11-30 中华映管股份有限公司 透明显示器
CN107085259A (zh) * 2017-06-06 2017-08-22 乐视控股(北京)有限公司 背光模组、显示模组、显示装置和电子设备
CN206532523U (zh) * 2017-03-02 2017-09-29 京东方科技集团股份有限公司 一种触控显示装置
CN107505773A (zh) * 2017-09-26 2017-12-22 京东方科技集团股份有限公司 背光模组及显示装置
CN107633822A (zh) * 2017-10-27 2018-01-26 上海天马微电子有限公司 一种显示装置和显示装置的驱动方法
CN109164576A (zh) * 2018-09-19 2019-01-08 小卖科技有限公司 一种增强现实的透明显示复合板
CN210038403U (zh) * 2019-07-31 2020-02-07 京东方科技集团股份有限公司 透明显示装置和背光模组

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819393B1 (en) * 1998-07-28 2004-11-16 Nippon Telegraph And Telephone Corporation Optical device and display apparatus using light diffraction and light guide
JPWO2007086456A1 (ja) * 2006-01-27 2009-06-18 株式会社エンプラス 面光源装置及び表示装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098377A (ja) * 1998-09-18 2000-04-07 Mitsubishi Electric Corp 液晶表示装置
US20040095740A1 (en) * 2002-11-19 2004-05-20 Toppoly Optoelectronics Corp. Plane lighting structure for dual displays
WO2005124228A1 (ja) * 2004-06-22 2005-12-29 Scalar Corporation 導光板、導光板の製造方法、バックライト、液晶表示装置
CN101681034A (zh) * 2008-04-03 2010-03-24 松下电器产业株式会社 信息显示装置
CN102023411A (zh) * 2009-09-16 2011-04-20 乐金显示有限公司 透明显示设备
WO2014097976A1 (ja) * 2012-12-21 2014-06-26 シャープ株式会社 液晶表示装置
CN104180241A (zh) * 2013-05-22 2014-12-03 扬升照明股份有限公司 背光模块
CN203519976U (zh) * 2013-10-17 2014-04-02 华映视讯(吴江)有限公司 透明显示器
CN205749976U (zh) * 2016-06-28 2016-11-30 中华映管股份有限公司 透明显示器
CN106019708A (zh) * 2016-07-15 2016-10-12 京东方科技集团股份有限公司 背光模组以及包括这样的背光模组的透明显示装置
CN206532523U (zh) * 2017-03-02 2017-09-29 京东方科技集团股份有限公司 一种触控显示装置
CN107085259A (zh) * 2017-06-06 2017-08-22 乐视控股(北京)有限公司 背光模组、显示模组、显示装置和电子设备
CN107505773A (zh) * 2017-09-26 2017-12-22 京东方科技集团股份有限公司 背光模组及显示装置
CN107633822A (zh) * 2017-10-27 2018-01-26 上海天马微电子有限公司 一种显示装置和显示装置的驱动方法
CN109164576A (zh) * 2018-09-19 2019-01-08 小卖科技有限公司 一种增强现实的透明显示复合板
CN210038403U (zh) * 2019-07-31 2020-02-07 京东方科技集团股份有限公司 透明显示装置和背光模组

Also Published As

Publication number Publication date
US20210223460A1 (en) 2021-07-22
CN112305811A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN210038403U (zh) 透明显示装置和背光模组
JP6244001B2 (ja) 液晶表示装置
US10816863B2 (en) Reflective LCD panel including transparent pixel electrode and color filter layer stacked together
WO2016026181A1 (zh) 彩色液晶显示模组结构及其背光模组
WO2020238768A1 (zh) 显示面板、显示装置及其控制方法
WO2021238466A1 (zh) 显示面板及透明显示装置
CN108008475A (zh) 扩散板与直下式背光模组
US8625056B2 (en) Liquid crystal display
WO2021018139A1 (zh) 透明显示装置和背光模组
JP2007317479A (ja) 照明装置、電気光学装置及び電子機器
US11294217B2 (en) Transparent display panel and electronic equipment
WO2018066513A1 (ja) 表示装置
KR20140006252A (ko) 에어 제로 갭 본딩을 이용한 패널 일체형 lcd 모듈
US20140354919A1 (en) Light guide plate having rounded polygon pattern and liquid crystal display device having thereof
KR101375019B1 (ko) 백색 발광장치, 이를 구비한 백라이트 유닛 및액정표시장치
WO2016104310A1 (ja) 液晶表示装置
WO2016134562A1 (zh) 液晶显示器及背光模组
KR20120075115A (ko) 도광판, 이를 구비한 백라이트 유닛 및 이들을 포함하는 액정표시장치
KR101694118B1 (ko) 확산 시트와 이를 포함하는 액정 표시장치의 백라이트 유닛
US20220146880A1 (en) Transparent display device, method of manufacturing the same and backlight module
US8462295B2 (en) Display device
CN215770449U (zh) 柜台玻璃投影显示装置
KR101695629B1 (ko) 확산 시트와 이를 포함하는 액정 표시장치의 백라이트 유닛
TWI409543B (zh) 液晶顯示裝置及其組裝方法
KR20070066538A (ko) 듀얼 디스플레이 장치를 갖는 휴대 단말기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847924

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20847924

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20847924

Country of ref document: EP

Kind code of ref document: A1