WO2022033124A1 - 在片校准件模型中参数确定的方法 - Google Patents

在片校准件模型中参数确定的方法 Download PDF

Info

Publication number
WO2022033124A1
WO2022033124A1 PCT/CN2021/096852 CN2021096852W WO2022033124A1 WO 2022033124 A1 WO2022033124 A1 WO 2022033124A1 CN 2021096852 W CN2021096852 W CN 2021096852W WO 2022033124 A1 WO2022033124 A1 WO 2022033124A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
circuit
crosstalk
load
model
Prior art date
Application number
PCT/CN2021/096852
Other languages
English (en)
French (fr)
Inventor
吴爱华
王一帮
梁法国
刘晨
霍晔
栾鹏
孙静
李彦丽
Original Assignee
中国电子科技集团公司第十三研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010819042.3A external-priority patent/CN112098791B/zh
Priority claimed from CN202010820390.2A external-priority patent/CN112098794B/zh
Priority claimed from CN202010820386.6A external-priority patent/CN112098793B/zh
Application filed by 中国电子科技集团公司第十三研究所 filed Critical 中国电子科技集团公司第十三研究所
Priority to US17/550,487 priority Critical patent/US11971451B2/en
Publication of WO2022033124A1 publication Critical patent/WO2022033124A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31903Tester hardware, i.e. output processing circuits tester configuration
    • G01R31/31908Tester set-up, e.g. configuring the tester to the device under test [DUT], down loading test patterns
    • G01R31/3191Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
    • G01R27/32Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response in circuits having distributed constants, e.g. having very long conductors or involving high frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318505Test of Modular systems, e.g. Wafers, MCM's
    • G01R31/318511Wafer Test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2822Testing of electronic circuits specially adapted for particular applications not provided for elsewhere of microwave or radiofrequency circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • the present application relates to the technical field of microwave characteristic measurement of wafer-level semiconductor devices, in particular to a method for parameter determination in a chip calibration model.
  • On-chip S-parameter test system is widely used in the microelectronics industry. Before use, the on-chip S-parameter test system needs to be vector calibrated with an on-chip calibration piece. The accuracy of the calibration depends on the accuracy of the definition of the on-chip calibration piece. Different types of calibration parts (such as open-circuit calibration parts, short-circuit calibration parts, load calibration parts and through-calibration parts) have different values of lumped parameters in the measurement model. Resistance, Inductance, Capacitance and DC Resistance. How to obtain the exact value of each lumped parameter in the measurement model is the key to define the calibration piece. However, the measurement model of traditional commercial on-chip calibration components has been widely used below the low frequency band, but as the frequency of on-chip testing increases, traditional measurement models are used to calibrate, calibrate and test the accuracy of on-chip test systems. reduce.
  • the embodiments of the present application provide a method for parameter determination in an on-chip calibration model, so as to solve the problem that the traditional measurement model is used to calibrate the on-chip test system in the prior art, and the calibration and test accuracy are reduced.
  • a first aspect of the embodiments of the present application provides a method for parameter determination in a chip calibration model, including:
  • the multi-line TRL calibration method is used to calibrate the on-chip S-parameter test system, and the S-parameters of different calibration parts are measured;
  • the parameters representing the crosstalk of different calibration parts in different on-chip calibration parts models are calculated.
  • the present application provides a method for parameter determination in an on-chip calibration model.
  • a multi-line TRL calibration method to calibrate an on-chip S-parameter testing system in the terahertz frequency band based on different on-chip calibration models, the measured results are different.
  • S-parameters of the calibration parts according to the S-parameters of the different calibration parts, calculate the admittances of different calibration parts; according to the on-chip calibration parts models corresponding to different calibration parts, determine the admittance formulas corresponding to different on-chip calibration parts models;
  • the admittance of the different calibration parts and the corresponding admittance formula are used to calculate the parameters representing the crosstalk of different calibration parts in different on-chip calibration parts models.
  • the different on-chip calibration component models provided in this embodiment solve the calibration and measurement errors caused by imperfect circuit models of standard components in the terahertz frequency band, and can improve the accuracy of on-chip S-parameter testing in the terahertz frequency band; Calculation of parameters in the chip calibration model.
  • FIG. 1 is a schematic diagram of a method for parameter determination in a chip calibration model provided by an embodiment of the present application
  • FIG. 2(1) is a schematic diagram of the original load calibration piece model provided by the embodiment of the present application.
  • FIG. 2(2) is a schematic diagram of a first load calibration model based on a terahertz frequency band provided by an embodiment of the present application;
  • 2(3) is a schematic diagram of a second load calibration model based on a terahertz frequency band provided by an embodiment of the present application;
  • 2(4) is a schematic diagram of a third load calibration model based on a terahertz frequency band provided by an embodiment of the present application;
  • FIG. 3(1) is a schematic diagram of the original open-circuit calibration part model provided by an embodiment of the present application.
  • 3(2) is a schematic diagram of a first open-circuit calibration model based on a terahertz frequency band provided by an embodiment of the present application;
  • 3(3) is a schematic diagram of a second open-circuit calibration model based on a terahertz frequency band provided by an embodiment of the present application;
  • 3(4) is a schematic diagram of a third open-circuit calibration model based on a terahertz frequency band provided by an embodiment of the present application;
  • FIG. 4(1) is a schematic diagram of the original short-circuit calibration part model provided by the embodiment of the present application.
  • 4(2) is a schematic diagram of a first short-circuit calibration component model based on a terahertz frequency band provided by an embodiment of the present application;
  • 4(3) is a schematic diagram of a second short-circuit calibration component model based on a terahertz frequency band provided by an embodiment of the present application;
  • 4(4) is a schematic diagram of a third short-circuit calibration component model based on a terahertz frequency band provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of an on-chip calibration part model provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a method for parameter determination in a chip calibration piece model provided by an embodiment of the present application. For convenience of description, only parts related to the embodiment of the present application are shown. As shown in Figure 1, the method may include the following steps:
  • Step 101 Determine different on-chip calibration models based on the terahertz frequency band.
  • the different on-chip calibration piece models are a circuit formed in parallel at both ends of the end face of the original calibration piece model and consisting of two components representing crosstalk of different on-chip calibration pieces in series.
  • the original load calibration part model, and FIG. 2(2) is the first load calibration part model based on the terahertz frequency band; wherein, the original load calibration part model includes the load calibration part inductance, The DC resistance of the load calibration part, one end of the inductance of the load calibration part is one end of the single port of the original load calibration part model, the other end of the inductance of the load calibration part is connected to one end of the DC resistance of the load calibration part, and the other end of the DC resistance of the load calibration part is the original The other end of the single port of the load calibrator model.
  • the first load calibration part model based on the terahertz frequency band is a series circuit composed of a resistor representing the crosstalk of the load calibration part and a capacitor representing the crosstalk of the load calibration part in parallel at both ends of the single port of the original load calibration part model.
  • the first load calibration part model includes a load calibration part inductance, a load calibration part DC resistance, a resistance representing the crosstalk of the load calibration part, and a capacitance representing the crosstalk of the load calibration part; wherein, one end of the load calibration part inductance is One end connected to the resistance characterizing the crosstalk of the load calibration piece constitutes one end of the single port of the first load calibration piece model, and the other end of the inductance of the load calibration piece is connected to one end of the DC resistance of the load calibration piece, the load calibration piece representing the load calibration piece
  • the other end of the crosstalk resistance is connected to one end of the capacitor representing the crosstalk of the load calibration element, and the other end of the capacitor representing the crosstalk of the load calibration element is connected to the other end of the DC resistance of the load calibration element to form the first load calibration element The other end of the model's single port.
  • the original open-circuit calibration part model, and FIG. 3(2) is the first open-circuit calibration part model based on the terahertz frequency band; wherein, the original open-circuit calibration part model includes the open-circuit calibration part capacitance, The two ends of the capacitor of the open-circuit calibration element are respectively the two ends of the single port of the original open-circuit calibration element model.
  • the first open-circuit calibration element model based on the terahertz frequency band is a series circuit composed of a resistor representing the crosstalk of the open-circuit calibration element and a capacitor representing the crosstalk of the open-circuit calibration element in parallel at both ends of the single port of the original open-circuit calibration element model.
  • the first open-circuit calibration element model includes an open-circuit calibration element capacitance, a resistance representing the crosstalk of the open-circuit calibration element, and a capacitance representing the open-circuit calibration element crosstalk; wherein, one end of the open-circuit calibration element capacitance is connected to the open-circuit calibration element.
  • One end of the resistor representing the crosstalk of the open circuit calibration device constitutes one end of the single port of the first open-circuit calibration device model, and the other end of the resistor representing the crosstalk of the open-circuit calibration device is connected to one end of the capacitor representing the crosstalk of the open-circuit calibration device.
  • the other end of the capacitor is connected to the other end of the open-circuit calibration piece capacitor to form the other end of the single port of the first open-circuit calibration piece model.
  • the original short-circuit calibration part model, and FIG. 4(2) is the first short-circuit calibration part model based on the terahertz frequency band; wherein, the original short-circuit calibration part model includes the short-circuit calibration part inductance, The two ends of the short-circuit calibration piece inductance are respectively the two ends of the single port of the original short-circuit calibration piece model.
  • the first short-circuit calibration element model based on the terahertz frequency band is a series circuit composed of a resistor representing the crosstalk of the short-circuit calibration element and a capacitor representing the crosstalk of the short-circuit calibration element in parallel at both ends of the single port of the original short-circuit calibration element model.
  • the first short-circuit calibration element model includes an inductance of the short-circuit calibration element, a resistance representing crosstalk of the short-circuit calibration element, and a capacitance representing the crosstalk of the short-circuit calibration element; wherein, one end of the short-circuit calibration element inductance is connected to the short-circuit calibration element crosstalk.
  • One end of the resistor constitutes one end of the single port of the first short-circuit calibration piece model, and the other end of the resistor characterizing the crosstalk of the short-circuit calibration piece is connected to one end of the capacitor characterizing the crosstalk of the short-circuit calibration piece, the capacitor characterizing the crosstalk of the short-circuit calibration piece
  • the other end of the short-circuit calibration piece is connected to the other end of the inductance of the short-circuit calibration piece to form the other end of the single port of the first short-circuit calibration piece model.
  • Step 102 based on the terahertz frequency band, use the multi-line TRL calibration method to calibrate the on-chip S-parameter testing system, and measure the S-parameters of different calibration parts.
  • Step 103 Calculate the admittance of different calibration parts according to the S parameters of the different calibration parts.
  • S 11 represents the S parameter of the single port of different calibration components
  • Y represents the admittance of different calibration components
  • Z open represents the impedance of the open-circuit calibration component
  • Z 0 represents the characteristic impedance of the system, generally its value is 50 ⁇ .
  • Step 104 Determine the admittance formula corresponding to the different on-chip calibration member models according to the on-chip calibration member models corresponding to the different calibration members.
  • admittance formulas corresponding to different on-chip calibration parts models may be determined according to equivalent circuits corresponding to different calibration parts.
  • the admittance formula corresponding to the first load calibration part model is:
  • Y load represents the admittance of the load calibration part
  • R l represents the DC resistance of the load calibration part
  • j represents the imaginary number
  • represents the angular frequency
  • L load represents the inductance of the load calibration part measured at the preset frequency, where the low frequency can refer to For frequencies below 40GHz
  • R s represents the resistance characterizing the crosstalk of the load calibrator
  • C s represents the capacitance characterizing the crosstalk of the load calibrator
  • Y 1 represents the series admittance of R l and L load
  • Y 2 represents the series connection of C s and R s Admittance.
  • the admittance formula corresponding to the first open-circuit calibration element model is:
  • Y open represents the admittance of the open-circuit calibration element
  • C open indicates the capacitance of the open-circuit calibration element measured at a preset frequency, wherein the preset frequency may refer to a frequency below 40 GHz
  • R s ' represents the resistance characterizing the crosstalk of the open-circuit calibration element
  • C s ' represents the capacitance characterizing the crosstalk of the open calibrator
  • Y 1 ' represents the admittance of C open
  • Y 2 ' represents the series admittance of C s ' and R s '.
  • C open can be calculated according to Figure 3(1). according to calculation, so that we can get in, Represents the open-circuit reflection coefficient of the reference end face in Figure 3(1), and Z open represents the input impedance of the open-circuit calibration piece in Figure 3(1).
  • the admittance formula corresponding to the first short-circuit calibration part model is:
  • Y short represents the admittance of the short-circuit calibration part
  • L short represents the inductance of the short-circuit calibration part measured at a preset frequency, where the preset frequency may refer to a frequency below 40 GHz
  • R s represents the resistance characterizing the crosstalk of the short-circuit calibration part
  • C s represents the capacitance characterizing the crosstalk of the short-circuit calibration piece
  • Y 1 represents the admittance of L short
  • Y 2 represents the series admittance of C s ” and R s ”.
  • Step 105 according to the admittances of the different calibration parts and the corresponding admittance formulas, calculate the parameters representing the crosstalk of different calibration parts in different on-chip calibration parts models.
  • this step may include substituting the admittances of the different calibration parts into the corresponding admittance formula for calculation, and obtaining the series conductance of the capacitances representing the crosstalk of the different on-chip calibration parts and the resistances representing the crosstalk of the different on-chip calibration parts.
  • the impedance corresponding to the nanometer is determined; the real part of the impedance is determined as the resistance representing the crosstalk of different on-chip calibration components; the imaginary part of the impedance is determined as the capacitance representing the crosstalk of different on-chip calibration components. That is, the parameters representing the crosstalk of different calibrators in the first load calibrator model include a resistance representing the crosstalk of the load calibrator and a capacitance representing the crosstalk of the load calibrator.
  • the calculated admittance of the load calibration piece can be Substituting it into the admittance formula corresponding to the first load calibration model can be obtained, so,
  • Z represents the impedance corresponding to the series admittance of the capacitance characterizing the crosstalk of the load calibrator and the resistance characterizing the crosstalk of the load calibrator.
  • the impedance corresponding to the series admittance of the capacitance characterizing the crosstalk of the open-circuit calibration part and the resistance characterizing the crosstalk of the open-circuit calibration part, and the series admittance corresponding to the capacitance characterizing the crosstalk of the short-circuit calibration part and the resistance characterizing the crosstalk of the short-circuit calibration part can be obtained. and further obtain the capacitance characterizing the crosstalk of the open-circuit calibration piece and the resistance characterizing the crosstalk of the open-circuit calibration piece, as well as the capacitance characterizing the crosstalk of the short-circuit calibration piece and the resistance characterizing the crosstalk of the short-circuit calibration piece.
  • the capacitance and resistance representing the crosstalk of the calibrator obtained by calculating any one of the first load calibrator model, the first open calibrator model, and the first short-circuit calibrator model in the above embodiment can also be applied to other models.
  • the capacitance and resistance representing the crosstalk of the calibrator obtained by calculating the first load calibrator model can also be applied to the first open-circuit calibrator model and the first short-circuit calibrator model; the characteristic calibration obtained by calculating the first open-circuit calibrator model
  • the capacitance and resistance of the crosstalk of the calibrator can also be applied to the first load calibrator model and the first short-circuit calibration model; the capacitance and resistance of the calibrator crosstalk obtained by calculating the first short-circuit calibration model can also be applied to the first load.
  • a calibrator model and a first open calibrator model When calibrating the calibrator, one calibration model can be used to obtain the corresponding capacitance and resistance representing the crosstalk of the calibrator, and then it can be applied to other models of the calibrator, without the need to calculate the corresponding capacitances of the other calibration models that characterize the crosstalk of the calibrator and resistors, which saves calibration time and increases the versatility of the on-chip calibration model.
  • the above-mentioned method for determining parameters in the on-chip calibration model is determined by determining different on-chip calibration models based on the terahertz frequency band, wherein the different on-chip calibration models are represented by two parallel characterizations at both ends of the end face of the original calibration model.
  • the different on-chip calibration component models provided in this embodiment solve the calibration and measurement errors caused by imperfect circuit models of standard components in the terahertz frequency band, and can improve the accuracy of on-chip S-parameter testing in the terahertz frequency band; Calculation of parameters in the chip calibration model.
  • Step 101 Determine different on-chip calibration models based on the terahertz frequency band, wherein the different on-chip calibration models are formed by connecting in parallel at both ends of the end face of the original calibration model and two components representing crosstalk of different on-chip calibrations in series. circuit.
  • the original load calibration part model, and Figure 2 (3) is the second load calibration part model based on the terahertz frequency band; wherein, the original load calibration part model includes the load calibration part inductance, The DC resistance of the load calibration part, one end of the inductance of the load calibration part is one end of the single port of the original load calibration part model, the other end of the inductance of the load calibration part is connected to one end of the DC resistance of the load calibration part, and the other end of the DC resistance of the load calibration part is the original The other end of the single port of the load calibrator model.
  • the second load calibration part model based on the terahertz frequency band is a series circuit composed of a resistor representing the crosstalk of the load calibration part and a capacitor representing the crosstalk of the load calibration part in parallel at both ends of the single port of the original load calibration part model.
  • the second load calibration part model includes a load calibration part inductance, a load calibration part DC resistance, a resistance representing the crosstalk of the load calibration part, and a capacitance representing the crosstalk of the load calibration part; wherein, one end of the load calibration part inductance One end connected to the resistance characterizing the crosstalk of the load calibration element constitutes one end of the single port of the second load calibration element model, and the other end of the inductance of the load calibration element is connected to one end of the DC resistance of the load calibration element, and the load calibration element is characterized by one end of the single port.
  • the other end of the crosstalk resistance is connected to one end of the capacitor representing the crosstalk of the load calibration element, and the other end of the capacitor representing the crosstalk of the load calibration element is connected to the other end of the DC resistance of the load calibration element to form the second load calibration element The other end of the model's single port.
  • the original open-circuit calibration part model, and Figure 3 (3) is the second open-circuit calibration part model based on the terahertz frequency band; wherein, the original open-circuit calibration part model includes the open-circuit calibration part capacitance, The two ends of the capacitor of the open-circuit calibration element are respectively the two ends of the single port of the original open-circuit calibration element model.
  • the second open-circuit calibration device model based on the terahertz frequency band is a series circuit composed of a resistor representing the crosstalk of the open-circuit calibration device and a capacitor representing the crosstalk of the open-circuit calibration device in parallel at both ends of the single port of the original open-circuit calibration device model.
  • the second open-circuit calibration element model includes an open-circuit calibration element capacitance, a resistance representing the crosstalk of the open-circuit calibration element, and a capacitance representing the open-circuit calibration element crosstalk; wherein, one end of the open-circuit calibration element capacitance is connected to the open-circuit calibration element.
  • One end of the resistor representing the crosstalk of the open circuit calibrator constitutes one end of the single port of the second open-circuit calibrator model, and the other end of the resistor representing the crosstalk of the open-circuit calibrator is connected to one end of the capacitor representing the crosstalk of the open-circuit calibrator.
  • the other end of the capacitor is connected to the other end of the open-circuit calibration piece capacitor to form the other end of the single port of the second open-circuit calibration piece model.
  • the original short-circuit calibration part model, and FIG. 4(3) is the second short-circuit calibration part model based on the terahertz frequency band; wherein, the original short-circuit calibration part model includes the short-circuit calibration part inductance, The two ends of the short-circuit calibration piece inductance are respectively the two ends of the single port of the original short-circuit calibration piece model.
  • the second short-circuit calibration piece model based on the terahertz frequency band is a series circuit composed of a resistor representing the crosstalk of the short-circuit calibration piece and a capacitor representing the crosstalk of the short-circuit calibration piece in parallel at both ends of the single port of the original short-circuit calibration piece model.
  • the second short-circuit calibration element model includes a short-circuit calibration element inductance, a resistance representing the crosstalk of the short-circuit calibration element, and a capacitance representing the crosstalk of the short-circuit calibration element; wherein, one end of the short-circuit calibration element inductance is connected to the short-circuit calibration element crosstalk.
  • One end of the resistor constitutes one end of the single port of the second short-circuit calibration piece model, and the other end of the resistor characterizing the crosstalk of the short-circuit calibration piece is connected to one end of the capacitor characterizing the crosstalk of the short-circuit calibration piece, the capacitor characterizing the crosstalk of the short-circuit calibration piece
  • the other end of the short-circuit calibration piece is connected to the other end of the inductance of the short-circuit calibration piece to form the other end of the single port of the second short-circuit calibration piece model.
  • Step 102 based on the terahertz frequency band, use the multi-line TRL calibration method to calibrate the on-chip S-parameter testing system, and measure the S-parameters of different calibration parts.
  • Step 103 Calculate the admittance of different calibration parts according to the S parameters of the different calibration parts.
  • S 11 represents the S parameter of the single port of different calibration components
  • Y represents the admittance of different calibration components
  • Z open represents the impedance of the open-circuit calibration component
  • Z 0 represents the characteristic impedance of the system, generally its value is 50 ⁇ .
  • Step 104 Determine the admittance formula corresponding to the different on-chip calibration member models according to the on-chip calibration member models corresponding to the different calibration members.
  • admittance formulas corresponding to different on-chip calibration parts models may be determined according to equivalent circuits corresponding to different calibration parts.
  • the admittance formula corresponding to the second load calibration part model is:
  • Y load ' represents the admittance of the load calibration part
  • R l represents the DC resistance of the load calibration part
  • j represents the imaginary number
  • represents the angular frequency
  • L load represents the inductance of the load calibration part measured at the preset frequency
  • the low frequency can be Refers to the frequency below 40GHz
  • R s represents the resistance characterizing the crosstalk of the load calibration part
  • C s represents the capacitance characterizing the crosstalk of the load calibration part
  • Y 1 represents the series admittance of R l and L load
  • Y 2 represents the C s and R s series admittance.
  • the admittance formula corresponding to the second open-circuit calibration element model is:
  • Y open ' represents the admittance of the open-circuit calibrator
  • C open represents the capacitance of the open-circuit calibrator measured at a preset frequency, wherein the preset frequency may refer to a frequency below 40 GHz
  • R s ' represents the crosstalk of the open-circuit calibrator.
  • the resistances, C s ' represent the capacitance characterizing the crosstalk of the open calibrator
  • Y 1 ' represents the admittance of C open
  • Y 2 ' represents the series admittance of C s ' and R s '.
  • C open can be calculated according to Figure 3(1). according to calculation, so that we can get in, Represents the open-circuit reflection coefficient of the reference end face in Figure 3(1), and Z open represents the input impedance of the open-circuit calibration piece in Figure 3(1).
  • the admittance formula corresponding to the second short-circuit calibration part model is:
  • Y short ' represents the admittance of the short-circuit calibration part
  • L short represents the inductance of the short-circuit calibration part measured at a preset frequency, where the preset frequency can refer to a frequency below 40 GHz
  • R s represents the crosstalk of the short-circuit calibration part.
  • Resistance C s ′′ represents the capacitance characterizing the crosstalk of the shorted calibration piece
  • Y 1 ′′ represents the admittance of L short
  • Y 2 ′′ represents the series admittance of C s ′′ and R s ′′.
  • Step 105 according to the admittances of the different calibration parts and the corresponding admittance formulas, calculate the parameters representing the crosstalk of different calibration parts in different on-chip calibration parts models.
  • this step may include substituting the admittances of the different calibration parts into the corresponding admittance formula for calculation, and obtaining the series conductance of the capacitances representing the crosstalk of the different on-chip calibration parts and the resistances representing the crosstalk of the different on-chip calibration parts.
  • the impedance corresponding to the nanometer is determined; the real part of the impedance is determined as the resistance representing the crosstalk of different on-chip calibration components; the imaginary part of the impedance is determined as the capacitance representing the crosstalk of different on-chip calibration components. That is, the parameters representing the crosstalk of different calibrators in the second load calibrator model include a resistance representing the crosstalk of the load calibrator and a capacitance representing the crosstalk of the load calibrator.
  • the calculated admittance of the load calibration piece can be Substituting it into the admittance formula corresponding to the second load calibration model can be obtained,
  • Y p represents the parallel admittance of the capacitance characterizing the crosstalk of the load calibrator and the resistance characterizing the crosstalk of the load calibrator.
  • the impedance corresponding to the series admittance of the capacitance characterizing the crosstalk of the open-circuit calibration part and the resistance characterizing the crosstalk of the open-circuit calibration part, and the series admittance corresponding to the capacitance characterizing the crosstalk of the short-circuit calibration part and the resistance characterizing the crosstalk of the short-circuit calibration part can be obtained. and further obtain the capacitance characterizing the crosstalk of the open-circuit calibration piece and the resistance characterizing the crosstalk of the open-circuit calibration piece, as well as the capacitance characterizing the crosstalk of the short-circuit calibration piece and the resistance characterizing the crosstalk of the short-circuit calibration piece.
  • the capacitance and resistance representing the crosstalk of the calibrator obtained by calculating any one of the second load calibrator model, the second open calibrator model and the second short-circuit calibrator model in the above embodiment can also be applied to other models.
  • the capacitance and resistance of the crosstalk of the calibration part obtained by calculating the second load calibration part model can also be applied to the second open-circuit calibration part model and the second short-circuit calibration part model; the characteristic calibration obtained by calculating the second open-circuit calibration part model
  • the capacitance and resistance of the crosstalk of the calibrator can also be applied to the second load calibrator model and the second short-circuit calibration model; the capacitance and resistance of the calibrator crosstalk obtained by calculating the second short-circuit calibration model can also be applied to the second load.
  • a calibrator model and a second open calibrator model When calibrating the calibrator, one calibration model can be used to obtain the corresponding capacitance and resistance representing the crosstalk of the calibrator, and then it can be applied to other models of the calibrator, without the need to calculate the corresponding capacitances of the other calibration models that characterize the crosstalk of the calibrator and resistors, which saves calibration time and increases the versatility of the on-chip calibration model.
  • the above-mentioned method for determining parameters in the on-chip calibration model is determined by determining different on-chip calibration models based on the terahertz frequency band, wherein the different on-chip calibration models are represented by two parallel characterizations at both ends of the end face of the original calibration model.
  • the different on-chip calibration component models provided in this embodiment solve the calibration and measurement errors caused by imperfect circuit models of standard components in the terahertz frequency band, and can improve the accuracy of on-chip S-parameter testing in the terahertz frequency band; Calculation of parameters in the chip calibration model.
  • Step 101 Determine different on-chip calibration models based on the terahertz frequency band.
  • the different on-chip calibration model is a circuit composed of a resistor representing the crosstalk of the on-chip calibration and the components in the original calibration model in series, and one end of the capacitor representing the crosstalk of the on-chip calibration is connected to the crosstalk of the on-chip calibration. Between the resistance and one end of the circuit formed by the components in the original calibration model, the other end of the capacitance characterizing the crosstalk of the on-chip calibration is connected to the other end of the circuit formed by the components in the original calibration model.
  • the dashed line in FIG. 5 shows an optional connection relationship in which the resistance of the on-chip calibration element crosstalk is R, that is, it can be at the position of R or at the position indicated by the dashed line resistance.
  • the original load calibration part model, and Figure 2 (4) is the third load calibration part model based on the terahertz frequency band; wherein, the original load calibration part model includes the load calibration part inductance, The DC resistance of the load calibration part, one end of the inductance of the load calibration part is one end of the single port of the original load calibration part model, the other end of the inductance of the load calibration part is connected to one end of the DC resistance of the load calibration part, and the other end of the DC resistance of the load calibration part is the original The other end of the single port of the load calibrator model.
  • the third load calibration part model includes a resistance characterizing the crosstalk of the load calibration part and a capacitance characterizing the crosstalk of the load calibration part; as shown in Figure 2 (4).
  • one end of the resistor characterizing the crosstalk of the load calibration element is connected to one end of the capacitor characterizing the crosstalk of the load calibration element and one end of the inductance of the load calibration element, and the other end of the resistor characterizing the crosstalk of the load calibration element is connected
  • the other end of the load calibration piece inductance is connected to the other end of the load calibration piece DC resistance
  • the other end of the load calibration piece DC resistance is connected to the characterizing load calibration piece the other end of the crosstalk capacitor to form the other end of the single port of the third load calibration piece model
  • one end of the capacitor representing the crosstalk of the load calibration element is connected to one end of the load calibration element inductance, one end of the single port of the third load calibration element model is used, and the other end of the load calibration element inductance is connected to the load calibration element
  • the other end of the DC resistance, the other end of the DC resistance of the load calibration part is respectively connected to the other end of the capacitor representing the crosstalk of the load calibration part and one end of the resistor representing the crosstalk of the load calibration part, the crosstalk of the load calibration part being represented
  • the other end of the resistor acts as the other end of the single port of the third load calibration piece model.
  • the original open-circuit calibration component model, and FIG. 3(4) is the third open-circuit calibration component model based on the terahertz frequency band; wherein, the original open-circuit calibration component model includes the open-circuit calibration component capacitance, The two ends of the capacitor of the open-circuit calibration element are respectively the two ends of the single port of the original open-circuit calibration element model.
  • the third open-circuit calibration part model includes a resistance representing the crosstalk of the open-circuit calibration part and a capacitance representing the crosstalk of the open-circuit calibration part; as shown in Figure 3 (4).
  • one end of the resistor characterizing the crosstalk of the open-circuit calibration element is used as one end of the single port of the third open-circuit calibration element model, and the other end of the resistor characterizing the crosstalk of the open-circuit calibration element is connected to one end of the capacitance of the open-circuit calibration element and the One end of the capacitor representing the crosstalk of the open-circuit calibration element, the other end of the capacitor of the open-circuit calibration element and the other end of the capacitor representing the crosstalk of the open-circuit calibration element are connected as the other end of the single port of the third open-circuit calibration element model ;
  • one end of the open-circuit calibration element capacitor and one end of the capacitor representing the crosstalk of the open-circuit calibration element are connected and used as one end of the single port of the third open-circuit calibration element model, and the other end of the open-circuit calibration element capacitor is connected to the open-circuit calibration element.
  • the other end of the capacitor for the crosstalk of the calibrator is connected to one end of the resistor representing the crosstalk of the calibrator, and the other end of the resistor representing the crosstalk of the calibrator serves as the other end of the single port of the third model of the calibrator.
  • the original short-circuit calibration part model, and FIG. 4(4) is the third short-circuit calibration part model based on the terahertz frequency band; wherein, the original short-circuit calibration part model includes the short-circuit calibration part inductance, The two ends of the short-circuit calibration piece inductance are respectively the two ends of the single port of the original short-circuit calibration piece model.
  • the third short-circuit calibration part model includes a resistance characterizing the crosstalk of the short-circuit calibration part and a capacitance characterizing the crosstalk of the short-circuit calibration part; as shown in Figure 4 (4).
  • one end of the resistor characterizing the crosstalk of the short-circuit calibration piece is used as one end of the single port of the third short-circuit calibration piece model, and the other end of the resistor characterizing the crosstalk of the short-circuit calibration piece is connected to one end of the short-circuit calibration piece inductance and One end of the capacitor characterizing the crosstalk of the short-circuit calibration element, the other end of the inductance of the short-circuit calibration element and the other end of the capacitor characterizing the crosstalk of the short-circuit calibration element are connected as the other end of the single port of the third short-circuit calibration element model ;
  • one end of the short-circuit calibration element inductance and one end of the capacitor representing the crosstalk of the short-circuit calibration element are connected as one end of the single port of the third short-circuit calibration element model, and the other end of the short-circuit calibration element inductance is short-circuited with the short-circuit calibration element.
  • the other end of the capacitance of the calibration element crosstalk is connected to one end of the resistor representing the crosstalk of the short-circuit calibration element, and the other end of the resistor representing the crosstalk of the short-circuit calibration element is used as the other end of the single port of the third short-circuit calibration element model.
  • Step 102 based on the terahertz frequency band, use the multi-line TRL calibration method to calibrate the on-chip S-parameter testing system, and measure the S-parameters of different calibration parts.
  • Fig. 2(4), Fig. 3(4) and Fig. 4(4) use the multi-line TRL calibration method with the highest calibration accuracy to measure the measurement in the terahertz frequency band.
  • the system is calibrated, and the S-parameters of the load calibration piece are obtained by measurement.
  • Step 103 Calculate the admittance of different calibration parts according to the S parameters of the different calibration parts.
  • S 11 represents the S parameter of the single port of different calibration components
  • Y represents the admittance of different calibration components
  • Z open represents the impedance of the open-circuit calibration component
  • Z 0 represents the characteristic impedance of the system, generally its value is 50 ⁇ .
  • Step 104 Determine the admittance formula corresponding to the different on-chip calibration member models according to the on-chip calibration member models corresponding to the different calibration members.
  • admittance formulas corresponding to different on-chip calibration parts models may be determined according to equivalent circuits corresponding to different calibration parts.
  • the admittance formula corresponding to the third load calibration piece model is:
  • Y load represents the admittance of the load calibration part
  • R l represents the DC resistance of the load calibration part
  • j represents the imaginary number
  • represents the angular frequency
  • L load represents the inductance of the load calibration part measured at the preset frequency
  • the low frequency can be Refers to the frequency below 40GHz
  • R s represents the resistance characterizing the crosstalk of the load calibration part
  • C s represents the capacitance characterizing the crosstalk of the load calibration part
  • Y 1 represents the series admittance of R l and L load
  • Y 2 represents the C s and R s series admittance.
  • the admittance formula corresponding to the third open-circuit calibration element model is:
  • Y open represents the admittance of the open-circuit calibrator
  • C open represents the capacitance of the open-circuit calibrator measured at a preset frequency, wherein the preset frequency may refer to a frequency below 40 GHz
  • R s ' represents the crosstalk of the open-circuit calibrator.
  • the resistances, C s ' represent the capacitance characterizing the crosstalk of the open calibrator
  • Y 1 ' represents the admittance of C open
  • Y 2 ' represents the series admittance of C s ' and R s '.
  • C open can be calculated according to Figure 3(1). according to calculation, so that we can get in, Represents the open-circuit reflection coefficient of the reference end face in Figure 3(1), and Z open represents the input impedance of the open-circuit calibration piece in Figure 3(1).
  • the admittance formula corresponding to the third short-circuit calibration part model is:
  • Y short represents the admittance of the short-circuit calibration part
  • L short represents the inductance of the short-circuit calibration part measured at a preset frequency, where the preset frequency can refer to a frequency below 40 GHz
  • R s represents the crosstalk of the short-circuit calibration part.
  • C s ′′ represents the capacitance characterizing the crosstalk of the shorted calibration piece
  • Y 1 ′′ represents the admittance of L short
  • Y 2 ′′ represents the series admittance of C s ′′ and R s ′′.
  • Step 105 according to the admittances of the different calibration parts and the corresponding admittance formulas, calculate the parameters representing the crosstalk of different calibration parts in different on-chip calibration parts models.
  • this step may include substituting the admittances of the different calibration parts into the corresponding admittance formula for calculation, and obtaining the series conductance of the capacitances representing the crosstalk of the different on-chip calibration parts and the resistances representing the crosstalk of the different on-chip calibration parts.
  • the impedance corresponding to the nanometer is determined; the real part of the impedance is determined as the resistance representing the crosstalk of different on-chip calibration components; the imaginary part of the impedance is determined as the capacitance representing the crosstalk of different on-chip calibration components.
  • the parameters representing the crosstalk of different calibrators in the third load calibrator model include resistances that characterize the crosstalk of the load calibrators and capacitances that characterize the crosstalk of the load calibrators.
  • the calculated admittance of the load calibration piece can be Substitute it into the admittance formula corresponding to the third load calibration part model for calculation to obtain an impedance corresponding to the admittance.
  • This impedance is a complex number, the real part of the complex number is R s , and the imaginary part of the complex number is C s .
  • the impedance corresponding to the series admittance of the capacitance characterizing the crosstalk of the open-circuit calibration part and the resistance characterizing the crosstalk of the open-circuit calibration part, and the series admittance corresponding to the capacitance characterizing the crosstalk of the short-circuit calibration part and the resistance characterizing the crosstalk of the short-circuit calibration part can be obtained. and further obtain the capacitance characterizing the crosstalk of the open-circuit calibration piece and the resistance characterizing the crosstalk of the open-circuit calibration piece, as well as the capacitance characterizing the crosstalk of the short-circuit calibration piece and the resistance characterizing the crosstalk of the short-circuit calibration piece.
  • the capacitances and resistances representing the crosstalk of the calibration parts obtained by calculating any one of the third load calibration part model, the third open-circuit calibration part model, and the third and third short-circuit calibration part models in the above embodiments can also be applied to other models.
  • the capacitance and resistance that characterize the crosstalk of the calibrator obtained by calculating the third load calibrator model can also be applied to the third open calibrator model and the third short-circuit calibrator model;
  • the capacitance and resistance that characterize the crosstalk of the calibration part can also be applied to the third load calibration part model and the third short-circuit calibration part model;
  • the capacitance and resistance that characterize the crosstalk of the calibration part obtained by calculating the third short-circuit calibration part model can also be applied to the third A three-load calibrator model and a third open-circuit calibrator model.
  • one calibration model can be used to obtain the corresponding capacitance and resistance representing the crosstalk of the calibrator, and then it can be applied to other models of the calibrator, without the need to calculate the corresponding capacitances of the other calibration models that characterize the crosstalk of the calibrator and resistors, which saves calibration time and increases the versatility of the on-chip calibration model.
  • the above-mentioned method for determining parameters in the on-chip calibration model is based on different on-chip calibration models, in the terahertz frequency band, using a multi-line TRL calibration method to calibrate the on-chip S-parameter test system, and measure the S-parameters of different calibration parts. ; Calculate the admittance of different calibration parts according to the S parameters of the different calibration parts; According to the on-chip calibration part models corresponding to different calibration parts, determine the admittance formula corresponding to different on-chip calibration parts models; According to the different calibration parts The admittance of , and the corresponding admittance formula, calculate the parameters that characterize the crosstalk of different calibrators in different on-chip calibrator models.
  • the different on-chip calibration component models provided in this embodiment solve the calibration and measurement errors caused by imperfect circuit models of standard components in the terahertz frequency band, and can improve the accuracy of on-chip S-parameter testing in the terahertz frequency band; Calculation of parameters in the chip calibration model.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种在片校准件模型中参数确定的方法,适用于晶原级半导体器件微波特性测量技术领域,包括:确定基于太赫兹频段的不同在片校准件模型(101);基于太赫兹频段,采用多线TRL校准方法对在片S参数测试系统进行校准,测量得到不同校准件的S参数(102);根据不同校准件的S参数,计算不同校准件的导纳(103);根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式(104);根据不同校准件的导纳以及对应的导纳公式,计算不同在片校准件模型中表征不同校准件串扰的参数(105)。提供的不同在片校准件模型解决了在太赫兹频段标准件电路模型不完善带来的校准及测量误差,可以提高太赫兹频段在片S参数测试准确度;另外给出了不同在片校准件模型中参数的计算方法。

Description

在片校准件模型中参数确定的方法
本申请要求于2020年08月14日提交中国专利局、申请号为2020108203902、发明名称为“在片校准件模型中参数确定的方法及终端设备”的中国专利申请的优先权,以及要求于2020年08月14日提交中国专利局、申请号为2020108203866、发明名称为“单端口在片校准件模型确定的方法及终端设备”的中国专利申请的优先权,以及要求于2020年08月14日提交中国专利局、申请号为2020108190423、发明名称为“在片校准件模型及在片校准件模型中参数确定的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及晶原级半导体器件微波特性测量技术领域,特别是涉及一种在片校准件模型中参数确定的方法。
背景技术
“在片S参数测试系统”广泛应用于微电子行业。在使用前,需要用在片校准件对在片S参数测试系统进行矢量校准,校准的准确与否依赖于在片校准件定义的准确程度。不同类型的校准件(例如开路校准件、短路校准件、负载校准件以及直通校准件)测量模型中的集总参数的值不同,集总参数一般包括偏置线的延时、特征阻抗、串联电阻、电感、电容和直流电阻。如何获得测量模型中各集总参数的准确量值是定义校准件的关键。然而,目前传统商用在片校准组件的测量模型在低频段以下得到了广泛应用,但随着在片测试频率的升高,采用传统的测量模型对在片测试系统进行校准,校准和测试准确度降低。
技术问题
本申请实施例提供了一种在片校准件模型中参数确定的方法,以解决现有技术中采用传统的测量模型对在片测试系统进行校准,校准和测试准确度降低的问题。
技术解决方案
为解决上述技术问题,本申请实施例的第一方面提供了一种在片校准件模型中参数确定的方法,包括:
确定基于太赫兹频段的不同在片校准件模型;
基于太赫兹频段,采用多线TRL校准方法对在片S参数测试系统进行校准,测量得到不同校准件的S参数;
根据所述不同校准件的S参数,计算不同校准件的导纳;
根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式;
根据所述不同校准件的导纳以及对应的导纳公式,计算不同在片校准件模型中表征不同 校准件串扰的参数。
有益效果
本申请提供了一种在片校准件模型中参数确定的方法,通过基于不同在片校准件模型,在太赫兹频段,采用多线TRL校准方法对在片S参数测试系统进行校准,测量得到不同校准件的S参数;根据所述不同校准件的S参数,计算不同校准件的导纳;根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式;根据所述不同校准件的导纳以及对应的导纳公式,计算不同在片校准件模型中表征不同校准件串扰的参数。本实施例提供的不同在片校准件模型解决了在太赫兹频段标准件电路模型不完善带来的校准及测量误差,可以提高太赫兹频段在片S参数测试准确度;另外给出了不同在片校准件模型中参数的计算方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的在片校准件模型中参数确定的方法的示意图;
图2(1)是本申请实施例提供的原负载校准件模型的示意图;
图2(2)是本申请实施例提供的基于太赫兹频段的第一负载校准件模型的示意图;
图2(3)是本申请实施例提供的基于太赫兹频段的第二负载校准件模型的示意图;
图2(4)是本申请实施例提供的基于太赫兹频段的第三负载校准件模型的示意图;
图3(1)是本申请实施例提供原开路校准件模型的示意图;
图3(2)是本申请实施例提供的基于太赫兹频段的第一开路校准件模型的示意图;
图3(3)是本申请实施例提供的基于太赫兹频段的第二开路校准件模型的示意图;
图3(4)是本申请实施例提供的基于太赫兹频段的第三开路校准件模型的示意图;
图4(1)是本申请实施例提供的原短路校准件模型的示意图;
图4(2)是本申请实施例提供的基于太赫兹频段的第一短路校准件模型的示意图;
图4(3)是本申请实施例提供的基于太赫兹频段的第二短路校准件模型的示意图;
图4(4)是本申请实施例提供的基于太赫兹频段的第三短路校准件模型的示意图;
图5是本申请实施例提供的在片校准件模型的示意图。
本申请的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
图1是本申请一实施例提供的在片校准件模型中参数确定的方法的示意图,为了便于说明,仅示出了与本申请实施例相关的部分。如图1所示,该方法可以包括以下步骤:
步骤101,确定基于太赫兹频段的不同在片校准件模型。
其中,所述不同在片校准件模型为在原校准件模型端面的两端并联由两个表征不同在片校准件串扰的元件串联构成的电路。
可选的,如图2(1)所示原负载校准件模型,图2(2)为基于太赫兹频段的第一负载校准件模型;其中,原负载校准件模型中包括负载校准件电感、负载校准件直流电阻,负载校准件电感的一端为原负载校准件模型单端口的一端,负载校准件电感的另一端和负载校准件直流电阻的一端连接,负载校准件直流电阻的另一端为原负载校准件模型单端口的另一端。
基于太赫兹频段的第一负载校准件模型为在原负载校准件模型的单端口的两端并联表征负载校准件串扰的电阻和表征负载校准件串扰的电容构成的串联电路。可选的,所述第一负载校准件模型包括负载校准件电感、负载校准件直流电阻、表征负载校准件串扰的电阻和表征负载校准件串扰的电容;其中,所述负载校准件电感的一端连接所述表征负载校准件串扰的电阻的一端构成第一负载校准件模型单端口的一端,所述负载校准件电感的另一端连接所述负载校准件直流电阻的一端,所述表征负载校准件串扰的电阻的另一端连接所述表征负载校准件串扰的电容的一端,所述表征负载校准件串扰的电容的另一端连接所述负载校准件直流电阻的另一端构成所述第一负载校准件模型单端口的另一端。
可选的,如图3(1)所示原开路校准件模型,图3(2)为基于太赫兹频段的第一开路校准件模型;其中,原开路校准件模型中包括开路校准件电容,开路校准件电容的两端分别为原开路校准件模型单端口的两端。
基于太赫兹频段的第一开路校准件模型为在原开路校准件模型的单端口的两端并联表征开路校准件串扰的电阻和表征开路校准件串扰的电容构成的串联电路。可选的,所述第一开路校准件模型包括开路校准件电容、表征开路校准件串扰的电阻和表征开路校准件串扰的电容;其中,所述开路校准件电容的一端连接所述表征开路校准件串扰的电阻的一端构成第一开路校准件模型单端口的一端,所述表征开路校准件串扰的电阻的另一端连接所述表征开路校准件串扰的电容的一端,所述表征开路校准件串扰的电容的另一端连接所述开路校准件 电容的另一端构成所述第一开路校准件模型单端口的另一端。
可选的,如图4(1)所示原短路校准件模型,图4(2)为基于太赫兹频段的第一短路校准件模型;其中,原短路校准件模型中包括短路校准件电感,短路校准件电感的两端分别为原短路校准件模型单端口的两端。
基于太赫兹频段的第一短路校准件模型为在原短路校准件模型的单端口的两端并联表征短路校准件串扰的电阻和表征短路校准件串扰的电容构成的串联电路。可选的,第一短路校准件模型包括短路校准件电感、表征短路校准件串扰的电阻和表征短路校准件串扰的电容;其中,所述短路校准件电感的一端连接所述表征短路校准件串扰的电阻的一端构成第一短路校准件模型单端口的一端,所述表征短路校准件串扰的电阻的另一端连接所述表征短路校准件串扰的电容的一端,所述表征短路校准件串扰的电容的另一端连接所述短路校准件电感的另一端构成所述第一短路校准件模型单端口的另一端。
步骤102,基于太赫兹频段,采用多线TRL校准方法对在片S参数测试系统进行校准,测量得到不同校准件的S参数。
可选的,根据图2(2)、图3(2)以及图4(2)所示的不同校准件的等效电路,在太赫兹频段用校准准确度最高的多线TRL校准方法对测量系统进行校准,测量得到负载校准件的S参数。
步骤103,根据所述不同校准件的S参数,计算不同校准件的导纳。
可选的,根据
Figure PCTCN2021096852-appb-000001
计算不同校准件的导纳;
其中,S 11表示不同校准件的单端口的S参数,Y表示不同校准件的导纳,Z open表示开路校准件的阻抗,Z 0表示系统特征阻抗,一般其值为50Ω。
步骤104,根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式。
可选的,本步骤可以根据不同的校准件对应的等效电路,确定不同在片校准件模型对应的导纳公式。
可选的,如图2(2)所示,当所述校准件为负载校准件时,在片校准模型为第一负载校准件模型时,第一负载校准件模型对应的导纳公式为:
Figure PCTCN2021096852-appb-000002
其中,Y load表示负载校准件的导纳,R l表示负载校准件直流电阻,j表示虚数,ω表示角频率,L load表示在预设频率下测量得到负载校准件电感,其中,低频可以指40GHz以下的频率,R s表示表征负载校准件串扰的电阻,C s表示表征负载校准件串扰的电容,Y 1表示R l和L load的串联导纳,Y 2表示C s和R s的串联导纳。
可选的,根据图2(1)可以得到L load。根据
Figure PCTCN2021096852-appb-000003
计算,可得
Figure PCTCN2021096852-appb-000004
其中,ω=2πf,
Figure PCTCN2021096852-appb-000005
表示图2(1)中的端面的负载反射系数,Z load表示负载校准件的输入阻抗,R表示负载校准件的直流电阻。
可选的,如图3(2)所示,当所述校准件为开路校准件时,在片校准模型为第一开路校准件模型时,第一开路校准件模型对应的导纳公式为:
Figure PCTCN2021096852-appb-000006
其中,Y open表示开路校准件的导纳,C open表示在预设频率下测量得到开路校准件电容,其中,预设频率可以指40GHz以下的频率,R s'表示表征开路校准件串扰的电阻,C s'表示表征开路校准件串扰的电容,Y 1'表示C open的导纳,Y 2'表示C s'和R s'的串联导纳。
可选的,根据图3(1)可以计算得到C open。根据
Figure PCTCN2021096852-appb-000007
计算,从而可以 得到
Figure PCTCN2021096852-appb-000008
其中,
Figure PCTCN2021096852-appb-000009
表示图3(1)中参端面的开路反射系数,Z open表示图3(1)中开路校准件的输入阻抗。
可选的,如图4(2)所示,当所述校准件为短路校准件时,在片校准模型为第一短路校准件模型时,第一短路校准件模型对应的导纳公式为:
Figure PCTCN2021096852-appb-000010
其中,Y short表示短路校准件的导纳,L short表示在预设频率下测量得到短路校准件电感,其中,预设频率可以指40GHz以下的频率,R s”表示表征短路校准件串扰的电阻,C s”表示表征短路校准件串扰的电容,Y 1”表示L short的导纳,Y 2”表示C s”和R s”的串联导纳。
可选的,根据图4(1)可以计算得到L short。根据
Figure PCTCN2021096852-appb-000011
计算,可得
Figure PCTCN2021096852-appb-000012
其中,ω=2πf,
Figure PCTCN2021096852-appb-000013
表示图4(1)中参端面的短路反射系数,Z short表示图4(1)中短路校准件的输入阻抗。
步骤105,根据所述不同校准件的导纳以及对应的导纳公式,计算不同在片校准件模型中表征不同校准件串扰的参数。
可选的,本步骤可以包括将所述不同校准件的导纳代入对应的导纳公式中进行计算,得到表征不同在片校准件串扰的电容和表征不同在片校准件串扰的电阻的串联导纳对应的阻抗;确定所述阻抗的实部为表征不同在片校准件串扰的电阻;确定所述阻抗的虚部为表征不同在片校准件串扰的电容。也就是说,第一负载校准件模型中表征不同校准件串扰的参数包括表征负载校准件串扰的电阻和表征负载校准件串扰的电容。
例如,当校准件为负载校准件时,计算的负载校准件的导纳可以为
Figure PCTCN2021096852-appb-000014
将 其代入第一负载校准件模型对应的导纳公式可得,
Figure PCTCN2021096852-appb-000015
这样,
Figure PCTCN2021096852-appb-000016
的实部为R s,采用
Figure PCTCN2021096852-appb-000017
即R s=real(Z),
Figure PCTCN2021096852-appb-000018
这里,Z表示表征负载校准件串扰的电容和表征负载校准件串扰的电阻的串联导纳对应的阻抗。
同理,可以得出表征开路校准件串扰的电容和表征开路校准件串扰的电阻的串联导纳对应的阻抗,以及表征短路校准件串扰的电容和表征短路校准件串扰的电阻的串联导纳对应的阻抗,并进一步得到表征开路校准件串扰的电容和表征开路校准件串扰的电阻,以及表征短路校准件串扰的电容和表征短路校准件串扰的电阻。
需要说明的是,上述实施例中计算第一负载校准件模型、第一开路校准件模型以及第一短路校准件模型任一模型得到的表征校准件串扰的电容和电阻也可以应用于其它的模型,例如,计算第一负载校准件模型得到的表征校准件串扰的电容和电阻,也可以应用于第一开路校准件模型以及第一短路校准件模型;计算第一开路校准件模型得到的表征校准件串扰的电容和电阻,也可以应用于第一负载校准件模型以及第一短路校准件模型;计算第一短路校准件模型得到的表征校准件串扰的电容和电阻,也可以应用于第一负载校准件模型以及第一开路校准件模型。在进行校准件的校准时,可以采用一种校准模型得到对应的表征校准件串扰的电容和电阻,然后可以运用于其它校准件模型,而不必再计算其它校准模型对应的表征校准件串扰的电容和电阻,从而可以节省校准时间,提高在片校准件模型的通用性。
上述在片校准件模型中参数确定的方法,通过确定基于太赫兹频段的不同在片校准件模型,其中,所述不同在片校准件模型为在原校准件模型端面的两端并联由两个表征不同在片校准件串扰的元件串联构成的电路;基于太赫兹频段,采用多线TRL校准方法对在片S参数测试系统进行校准,测量得到不同校准件的S参数;根据所述不同校准件的S参数,计算不同校准件的导纳;根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式;根据所述不同校准件的导纳以及对应的导纳公式,计算不同在片校准件模型中表征不同校准件串扰的参数。本实施例提供的不同在片校准件模型解决了在太赫兹频段标准件电路模型不完善带来的校准及测量误差,可以提高太赫兹频段在片S参数测试准确度;另外给出了不同在片校准件模型中参数的计算方法。
下面我们继续以图1进行描述另一种在片校准件模型中参数确定的方法,具体参见以下步骤。
步骤101,确定基于太赫兹频段的不同在片校准件模型,其中,所述不同在片校准件模型为在原校准件模型端面的两端并联由两个表征不同在片校准件串扰的元件串联构成的电路。
可选的,如图2(1)所示原负载校准件模型,图2(3)为基于太赫兹频段的第二负载校准件模型;其中,原负载校准件模型中包括负载校准件电感、负载校准件直流电阻,负载校准件电感的一端为原负载校准件模型单端口的一端,负载校准件电感的另一端和负载校准件直流电阻的一端连接,负载校准件直流电阻的另一端为原负载校准件模型单端口的另一端。
基于太赫兹频段的第二负载校准件模型为在原负载校准件模型的单端口的两端并联表征负载校准件串扰的电阻和表征负载校准件串扰的电容构成的串联电路。可选的,所述第二负载校准件模型包括负载校准件电感、负载校准件直流电阻、表征负载校准件串扰的电阻和表征负载校准件串扰的电容;其中,所述负载校准件电感的一端连接所述表征负载校准件串扰的电阻的一端构成第二负载校准件模型单端口的一端,所述负载校准件电感的另一端连接所述负载校准件直流电阻的一端,所述表征负载校准件串扰的电阻的另一端连接所述表征负载校准件串扰的电容的一端,所述表征负载校准件串扰的电容的另一端连接所述负载校准件直流电阻的另一端构成所述第二负载校准件模型单端口的另一端。
可选的,如图3(1)所示原开路校准件模型,图3(3)为基于太赫兹频段的第二开路校准件模型;其中,原开路校准件模型中包括开路校准件电容,开路校准件电容的两端分别为原开路校准件模型单端口的两端。
基于太赫兹频段的第二开路校准件模型为在原开路校准件模型的单端口的两端并联表征开路校准件串扰的电阻和表征开路校准件串扰的电容构成的串联电路。可选的,所述第二开路校准件模型包括开路校准件电容、表征开路校准件串扰的电阻和表征开路校准件串扰的电容;其中,所述开路校准件电容的一端连接所述表征开路校准件串扰的电阻的一端构成第二开路校准件模型单端口的一端,所述表征开路校准件串扰的电阻的另一端连接所述表征开路校准件串扰的电容的一端,所述表征开路校准件串扰的电容的另一端连接所述开路校准件电容的另一端构成所述第二开路校准件模型单端口的另一端。
可选的,如图4(1)所示原短路校准件模型,图4(3)为基于太赫兹频段的第二短路校准件模型;其中,原短路校准件模型中包括短路校准件电感,短路校准件电感的两端分别为原短路校准件模型单端口的两端。
基于太赫兹频段的第二短路校准件模型为在原短路校准件模型的单端口的两端并联表 征短路校准件串扰的电阻和表征短路校准件串扰的电容构成的串联电路。可选的,第二短路校准件模型包括短路校准件电感、表征短路校准件串扰的电阻和表征短路校准件串扰的电容;其中,所述短路校准件电感的一端连接所述表征短路校准件串扰的电阻的一端构成第二短路校准件模型单端口的一端,所述表征短路校准件串扰的电阻的另一端连接所述表征短路校准件串扰的电容的一端,所述表征短路校准件串扰的电容的另一端连接所述短路校准件电感的另一端构成所述第二短路校准件模型单端口的另一端。
步骤102,基于太赫兹频段,采用多线TRL校准方法对在片S参数测试系统进行校准,测量得到不同校准件的S参数。
可选的,根据图2(3)、图3(3)以及图4(3)所示的不同校准件的等效电路,在太赫兹频段用校准准确度最高的多线TRL校准方法对测量系统进行校准,测量得到负载校准件的S参数。
步骤103,根据所述不同校准件的S参数,计算不同校准件的导纳。
可选的,根据
Figure PCTCN2021096852-appb-000019
计算不同校准件的导纳;
其中,S 11表示不同校准件的单端口的S参数,Y表示不同校准件的导纳,Z open表示开路校准件的阻抗,Z 0表示系统特征阻抗,一般其值为50Ω。
步骤104,根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式。
可选的,本步骤可以根据不同的校准件对应的等效电路,确定不同在片校准件模型对应的导纳公式。
可选的,如图2(3)所示,当所述校准件为负载校准件时,在片校准模型为第二负载校准件模型时,第二负载校准件模型对应的导纳公式为:
Figure PCTCN2021096852-appb-000020
其中,Y load'表示负载校准件的导纳,R l表示负载校准件直流电阻,j表示虚数,ω表示角频率,L load表示在预设频率下测量得到负载校准件电感,其中,低频可以指40GHz以下的频率,R s表示表征负载校准件串扰的电阻,C s表示表征负载校准件串扰的电容,Y 1表示R l和L load的串联导纳,Y 2表示C s和R s的串联导纳。
可选的,根据图2(1)可以得到L load。根据
Figure PCTCN2021096852-appb-000021
计算,可得
Figure PCTCN2021096852-appb-000022
其中,ω=2πf,
Figure PCTCN2021096852-appb-000023
表示图2(1)中的端面的负载反射系数,Z load表示负载校准件的输入阻抗,R表示负载校准件的直流电阻。
可选的,如图3(3)所示,当所述校准件为开路校准件时,在片校准模型为第二开路校准件模型时,第二开路校准件模型对应的导纳公式为:
Figure PCTCN2021096852-appb-000024
其中,Y open'表示开路校准件的导纳,C open表示在预设频率下测量得到开路校准件电容,其中,预设频率可以指40GHz以下的频率,R s'表示表征开路校准件串扰的电阻,C s'表示表征开路校准件串扰的电容,Y 1'表示C open的导纳,Y 2'表示C s'和R s'的串联导纳。
可选的,根据图3(1)可以计算得到C open。根据
Figure PCTCN2021096852-appb-000025
计算,从而可以得到
Figure PCTCN2021096852-appb-000026
其中,
Figure PCTCN2021096852-appb-000027
表示图3(1)中参端面的开路反射系数,Z open表示图3(1)中开路校准件的输入阻抗。
可选的,如图4(3)所示,当所述校准件为短路校准件时,在片校准模型为第二短路校准件模型时,第二短路校准件模型对应的导纳公式为:
Figure PCTCN2021096852-appb-000028
其中,Y short'表示短路校准件的导纳,L short表示在预设频率下测量得到短路校准件电感,其中,预设频率可以指40GHz以下的频率,R s”表示表征短路校准件串扰的电阻,C s”表示表征短路校准件串扰的电容,Y 1”表示L short的导纳,Y 2”表示C s”和R s”的串联导纳。
可选的,根据图4(1)可以计算得到L load。根据
Figure PCTCN2021096852-appb-000029
计算,可得
Figure PCTCN2021096852-appb-000030
其中,ω=2πf,
Figure PCTCN2021096852-appb-000031
表示图4(1)中参端面的短路反射系数,Z short表示图4(1)中短路校准件的输入阻抗。
步骤105,根据所述不同校准件的导纳以及对应的导纳公式,计算不同在片校准件模型中表征不同校准件串扰的参数。
可选的,本步骤可以包括将所述不同校准件的导纳代入对应的导纳公式中进行计算,得到表征不同在片校准件串扰的电容和表征不同在片校准件串扰的电阻的串联导纳对应的阻抗;确定所述阻抗的实部为表征不同在片校准件串扰的电阻;确定所述阻抗的虚部为表征不同在片校准件串扰的电容。也就是说,第二负载校准件模型中表征不同校准件串扰的参数包括表征负载校准件串扰的电阻和表征负载校准件串扰的电容。
例如,当校准件为负载校准件时,计算的负载校准件的导纳可以为
Figure PCTCN2021096852-appb-000032
将其代入第二负载校准件模型对应的导纳公式可得,
Figure PCTCN2021096852-appb-000033
这样,采用
Figure PCTCN2021096852-appb-000034
Figure PCTCN2021096852-appb-000035
这里,Y p表示表征负载校准件串扰的电容和表征负载校准件串扰的电阻的并联导纳。
同理,可以得出表征开路校准件串扰的电容和表征开路校准件串扰的电阻的串联导纳对 应的阻抗,以及表征短路校准件串扰的电容和表征短路校准件串扰的电阻的串联导纳对应的阻抗,并进一步得到表征开路校准件串扰的电容和表征开路校准件串扰的电阻,以及表征短路校准件串扰的电容和表征短路校准件串扰的电阻。
需要说明的是,上述实施例中计算第二负载校准件模型、第二开路校准件模型以及第二短路校准件模型任一模型得到的表征校准件串扰的电容和电阻也可以应用于其它的模型,例如,计算第二负载校准件模型得到的表征校准件串扰的电容和电阻,也可以应用于第二开路校准件模型以及第二短路校准件模型;计算第二开路校准件模型得到的表征校准件串扰的电容和电阻,也可以应用于第二负载校准件模型以及第二短路校准件模型;计算第二短路校准件模型得到的表征校准件串扰的电容和电阻,也可以应用于第二负载校准件模型以及第二开路校准件模型。在进行校准件的校准时,可以采用一种校准模型得到对应的表征校准件串扰的电容和电阻,然后可以运用于其它校准件模型,而不必再计算其它校准模型对应的表征校准件串扰的电容和电阻,从而可以节省校准时间,提高在片校准件模型的通用性。
上述在片校准件模型中参数确定的方法,通过确定基于太赫兹频段的不同在片校准件模型,其中,所述不同在片校准件模型为在原校准件模型端面的两端并联由两个表征不同在片校准件串扰的元件串联构成的电路;基于太赫兹频段,采用多线TRL校准方法对在片S参数测试系统进行校准,测量得到不同校准件的S参数;根据所述不同校准件的S参数,计算不同校准件的导纳;根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式;根据所述不同校准件的导纳以及对应的导纳公式,计算不同在片校准件模型中表征不同校准件串扰的参数。本实施例提供的不同在片校准件模型解决了在太赫兹频段标准件电路模型不完善带来的校准及测量误差,可以提高太赫兹频段在片S参数测试准确度;另外给出了不同在片校准件模型中参数的计算方法。
下面继续依据图1描述另一种在片校准件模型中参数确定的方法,如下所示。
步骤101,确定基于太赫兹频段的不同在片校准件模型。
所述不同在片校准件模型为表征在片校准件串扰的电阻与原校准件模型中的元件构成的电路串联,表征在片校准件串扰的电容的一端连接在所述表征在片校准件串扰的电阻与原校准件模型中的元件构成的电路的一端之间,所述表征在片校准件串扰的电容的另一端连接在原校准件模型中的元件构成的电路的另一端。
图5中虚线表示的表征在片校准件串扰的电阻为R的可选连接关系,即其可以在R的位置,也可以在虚线电阻表示的位置。
由于在太赫兹频段,探针之间的耦合出现了新的误差项,传统的开路校准件、短路校准件和负载校准件不能有效表征串扰误差,太赫兹频段在片S参数测试准确度不高,因此在传 统在片校准件模型基础上,对开路标准件、短路标准件、负载标准件的单端口增加串扰元件建立新的测量模型,从而提高太赫兹频段在片S参数测试准确度。
可选的,如图2(1)所示原负载校准件模型,图2(4)为基于太赫兹频段的第三负载校准件模型;其中,原负载校准件模型中包括负载校准件电感、负载校准件直流电阻,负载校准件电感的一端为原负载校准件模型单端口的一端,负载校准件电感的另一端和负载校准件直流电阻的一端连接,负载校准件直流电阻的另一端为原负载校准件模型单端口的另一端。
可选的,所述在片校准件模型为第三负载校准件模型时,所述第三负载校准件模型包括表征负载校准件串扰的电阻和表征负载校准件串扰的电容;如图2(4)所示,所述表征负载校准件串扰的电阻的一端分别连接所述表征负载校准件串扰的电容的一端以及所述负载校准件电感的一端,所述表征负载校准件串扰的电阻的另一端作为第三负载校准件模型单端口的一端,所述负载校准件电感的另一端连接所述负载校准件直流电阻的另一端,所述负载校准件直流电阻的另一端连接所述表征负载校准件串扰的电容的另一端,以构成所述第三负载校准件模型单端口的另一端;
或者,所述表征负载校准件串扰的电容的一端连接所述负载校准件电感的一端,以第三负载校准件模型单端口的一端,所述负载校准件电感的另一端连接所述负载校准件直流电阻的另一端,所述负载校准件直流电阻的另一端分别连接所述表征负载校准件串扰的电容的另一端和所述表征负载校准件串扰的电阻的一端,所述表征负载校准件串扰的电阻的另一端作为所述第三负载校准件模型单端口的另一端。
可选的,如图3(1)所示原开路校准件模型,图3(4)为基于太赫兹频段的第三开路校准件模型;其中,原开路校准件模型中包括开路校准件电容,开路校准件电容的两端分别为原开路校准件模型单端口的两端。
可选的,所述在片校准件模型为第三开路校准件模型时,所述第三开路校准件模型包括表征开路校准件串扰的电阻和表征开路校准件串扰的电容;如图3(4)所示,所述表征开路校准件串扰的电阻的一端作为第三开路校准件模型单端口的一端,所述表征开路校准件串扰的电阻的另一端分别连接所述开路校准件电容的一端和所述表征开路校准件串扰的电容的一端,所述开路校准件电容的另一端和所述表征开路校准件串扰的电容的另一端连接后作为所述第三开路校准件模型单端口的另一端;
或者,所述开路校准件电容的一端和所述表征开路校准件串扰的电容的一端连接后作为第三开路校准件模型单端口的一端,所述开路校准件电容的另一端和所述表征开路校准件串扰的电容的另一端连接后连接所述表征开路校准件串扰的电阻的一端,所述表征开路校准件串扰的电阻的另一端作为所述第三开路校准件模型单端口的另一端。
可选的,如图4(1)所示原短路校准件模型,图4(4)为基于太赫兹频段的第三短路校准件模型;其中,原短路校准件模型中包括短路校准件电感,短路校准件电感的两端分别为原短路校准件模型单端口的两端。
可选的,所述在片校准件模型为第三短路校准件模型时,所述第三短路校准件模型包括表征短路校准件串扰的电阻和表征短路校准件串扰的电容;如图4(4)所示,所述表征短路校准件串扰的电阻的一端作为第三短路校准件模型单端口的一端,所述表征短路校准件串扰的电阻的另一端分别连接所述短路校准件电感的一端和所述表征短路校准件串扰的电容的一端,所述短路校准件电感的另一端和所述表征短路校准件串扰的电容的另一端连接后作为所述第三短路校准件模型单端口的另一端;
或者,所述短路校准件电感的一端和所述表征短路校准件串扰的电容的一端连接后作为第三短路校准件模型单端口的一端,所述短路校准件电感的另一端和所述表征短路校准件串扰的电容的另一端连接后连接所述表征短路校准件串扰的电阻的一端,所述表征短路校准件串扰的电阻的另一端作为所述第三短路校准件模型单端口的另一端。
步骤102,基于太赫兹频段,采用多线TRL校准方法对在片S参数测试系统进行校准,测量得到不同校准件的S参数。
可选的,根据图2(4)、图3(4)以及图4(4)所示的不同校准件的等效电路,在太赫兹频段用校准准确度最高的多线TRL校准方法对测量系统进行校准,测量得到负载校准件的S参数。
步骤103,根据所述不同校准件的S参数,计算不同校准件的导纳。
可选的,根据
Figure PCTCN2021096852-appb-000036
计算不同校准件的导纳;
其中,S 11表示不同校准件的单端口的S参数,Y表示不同校准件的导纳,Z open表示开路校准件的阻抗,Z 0表示系统特征阻抗,一般其值为50Ω。
步骤104,根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式。
可选的,本步骤可以根据不同的校准件对应的等效电路,确定不同在片校准件模型对应的导纳公式。
可选的,如图2(4)所示,当所述校准件为负载校准件时,在片校准模型为第三负载校 准件模型时,第三负载校准件模型对应的导纳公式为:
Figure PCTCN2021096852-appb-000037
其中,Y load”表示负载校准件的导纳,R l表示负载校准件直流电阻,j表示虚数,ω表示角频率,L load表示在预设频率下测量得到负载校准件电感,其中,低频可以指40GHz以下的频率,R s表示表征负载校准件串扰的电阻,C s表示表征负载校准件串扰的电容,Y 1表示R l和L load的串联导纳,Y 2表示C s和R s的串联导纳。
可选的,根据图2(1)可以得到L load。根据
Figure PCTCN2021096852-appb-000038
计算,可得
Figure PCTCN2021096852-appb-000039
其中,ω=2πf,
Figure PCTCN2021096852-appb-000040
表示图2(1)中的端面的负载反射系数,Z load表示负载校准件的输入阻抗,R表示负载校准件的直流电阻。
可选的,如图3(4)所示,当所述校准件为开路校准件时,在片校准模型为第三开路校准件模型时,第三开路校准件模型对应的导纳公式为:
Figure PCTCN2021096852-appb-000041
其中,Y open”表示开路校准件的导纳,C open表示在预设频率下测量得到开路校准件电容,其中,预设频率可以指40GHz以下的频率,R s'表示表征开路校准件串扰的电阻,C s'表示表征开路校准件串扰的电容,Y 1'表示C open的导纳,Y 2'表示C s'和R s'的串联导纳。
可选的,根据图3(1)可以计算得到C open。根据
Figure PCTCN2021096852-appb-000042
计算,从而可以得到
Figure PCTCN2021096852-appb-000043
其中,
Figure PCTCN2021096852-appb-000044
表示图3(1)中参端面的开路反射系数,Z open表示图3(1)中开路校准件的输入阻抗。
可选的,如图4(4)所示,当所述校准件为短路校准件时,在片校准模型为第三短路校准件模型时,第三短路校准件模型对应的导纳公式为:
Figure PCTCN2021096852-appb-000045
其中,Y short”表示短路校准件的导纳,L short表示在预设频率下测量得到短路校准件电感,其中,预设频率可以指40GHz以下的频率,R s”表示表征短路校准件串扰的电阻,C s”表示表征短路校准件串扰的电容,Y 1”表示L short的导纳,Y 2”表示C s”和R s”的串联导纳。
可选的,根据图4(1)可以计算得到L short。根据
Figure PCTCN2021096852-appb-000046
计算,可得
Figure PCTCN2021096852-appb-000047
其中,ω=2πf,
Figure PCTCN2021096852-appb-000048
表示图4(1)中参端面的短路反射系数,Z short表示图4(1)中短路校准件的输入阻抗。
步骤105,根据所述不同校准件的导纳以及对应的导纳公式,计算不同在片校准件模型中表征不同校准件串扰的参数。
可选的,本步骤可以包括将所述不同校准件的导纳代入对应的导纳公式中进行计算,得到表征不同在片校准件串扰的电容和表征不同在片校准件串扰的电阻的串联导纳对应的阻抗;确定所述阻抗的实部为表征不同在片校准件串扰的电阻;确定所述阻抗的虚部为表征不同在片校准件串扰的电容。也就是说,第三负载校准件模型中表征不同校准件串扰的参数包 括表征负载校准件串扰的电阻和表征负载校准件串扰的电容。
例如,当校准件为负载校准件时,计算的负载校准件的导纳可以为
Figure PCTCN2021096852-appb-000049
将其代入第三负载校准件模型对应的导纳公式进行计算得到一个导纳对应的阻抗,此阻抗为复数,复数的实部为R s,复数的虚部为C s
同理,可以得出表征开路校准件串扰的电容和表征开路校准件串扰的电阻的串联导纳对应的阻抗,以及表征短路校准件串扰的电容和表征短路校准件串扰的电阻的串联导纳对应的阻抗,并进一步得到表征开路校准件串扰的电容和表征开路校准件串扰的电阻,以及表征短路校准件串扰的电容和表征短路校准件串扰的电阻。
需要说明的是,上述实施例中计算第三负载校准件模型、第三开路校准件模型以及第三第三短路校准件模型任一模型得到的表征校准件串扰的电容和电阻也可以应用于其它的模型,例如,计算第三负载校准件模型得到的表征校准件串扰的电容和电阻,也可以应用于第三开路校准件模型以及第三短路校准件模型;计算第三开路校准件模型得到的表征校准件串扰的电容和电阻,也可以应用于第三负载校准件模型以及第三短路校准件模型;计算第三短路校准件模型得到的表征校准件串扰的电容和电阻,也可以应用于第三负载校准件模型以及第三开路校准件模型。在进行校准件的校准时,可以采用一种校准模型得到对应的表征校准件串扰的电容和电阻,然后可以运用于其它校准件模型,而不必再计算其它校准模型对应的表征校准件串扰的电容和电阻,从而可以节省校准时间,提高在片校准件模型的通用性。
上述在片校准件模型中参数确定的方法,通过基于不同在片校准件模型,在太赫兹频段,采用多线TRL校准方法对在片S参数测试系统进行校准,测量得到不同校准件的S参数;根据所述不同校准件的S参数,计算不同校准件的导纳;根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式;根据所述不同校准件的导纳以及对应的导纳公式,计算不同在片校准件模型中表征不同校准件串扰的参数。本实施例提供的不同在片校准件模型解决了在太赫兹频段标准件电路模型不完善带来的校准及测量误差,可以提高太赫兹频段在片S参数测试准确度;另外给出了不同在片校准件模型中参数的计算方法。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种在片校准件模型中参数确定的方法,其特征在于,包括:
    确定基于太赫兹频段的不同在片校准件模型;
    基于太赫兹频段,采用多线TRL校准方法对在片S参数测试系统进行校准,测量得到不同校准件的S参数;
    根据所述不同校准件的S参数,计算不同校准件的导纳;
    根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式;
    根据所述不同校准件的导纳以及对应的导纳公式,计算不同在片校准件模型中表征不同校准件串扰的参数。
  2. 如权利要求1所述的在片校准件模型中参数确定的方法,其特征在于,当所述不同在片校准件模型为在原校准件模型中端面的两端并联由两个表征不同在片校准件串扰的元件串联构成的电路时;所述不同在片校准件模型包括:第一负载校准件模型、第一开路校准件模型以及第一短路校准件模型;
    所述第一负载校准件模型包括负载校准件电感、负载校准件直流电阻、表征负载校准件串扰的电阻和表征负载校准件串扰的电容;其中,所述负载校准件电感的一端连接所述表征负载校准件串扰的电阻的一端构成第一负载校准件模型单端口的一端,所述负载校准件电感的另一端连接所述负载校准件直流电阻的一端,所述表征负载校准件串扰的电阻的另一端连接所述表征负载校准件串扰的电容的一端,所述表征负载校准件串扰的电容的另一端连接所述负载校准件直流电阻的另一端构成所述第一负载校准件模型单端口的另一端;
    所述第一开路校准件模型包括开路校准件电容、表征开路校准件串扰的电阻和表征开路校准件串扰的电容;其中,所述开路校准件电容的一端连接所述表征开路校准件串扰的电阻的一端构成第一开路校准件模型单端口的一端,所述表征开路校准件串扰的电阻的另一端连接所述表征开路校准件串扰的电容的一端,所述表征开路校准件串扰的电容的另一端连接所述开路校准件电容的另一端构成所述第一开路校准件模型单端口的另一端;
    所述第一短路校准件模型包括短路校准件电感、表征短路校准件串扰的电阻和表征短路校准件串扰的电容;其中,所述短路校准件电感的一端连接所述表征短路校准件串扰的电阻的一端构成第一短路校准件模型单端口的一端,所述表征短路校准件串扰的电阻的另一端连接所述表征短路校准件串扰的电容的一端,所述表征短路校准件串扰的电容的另一端连接所述短路校准件电感的另一端构成所述第一短路校准件模型单端口的另一端。
  3. 如权利要求2所述的在片校准件模型中参数确定的方法,其特征在于,所述根据所 述不同校准件的S参数,计算不同校准件的导纳,包括:
    根据
    Figure PCTCN2021096852-appb-100001
    计算不同校准件的导纳;
    其中,S 11表示不同校准件的单端口的S参数,Y表示不同校准件的导纳,Z open表示开路校准件的阻抗,Z 0表示系统特征阻抗。
  4. 如权利要求2所述的在片校准件模型中参数确定的方法,其特征在于,所述根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式,包括:
    当所述校准件为负载校准件时,在片校准模型为第一负载校准件模型时,第一负载校准件模型对应的导纳公式为:
    Figure PCTCN2021096852-appb-100002
    其中,Y load表示负载校准件的导纳,R l表示负载校准件直流电阻,j表示虚数,ω表示角频率,L load表示在预设频率下测量得到负载校准件电感,R s表示表征负载校准件串扰的电阻,C s表示表征负载校准件串扰的电容,Y 1表示R l和L load的串联导纳,Y 2表示C s和R s的串联导纳。
  5. 如权利要求2所述的在片校准件模型中参数确定的方法,其特征在于,所述根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式,包括:
    当所述校准件为开路校准件时,在片校准模型为第一开路校准件模型时,第一开路校准件模型对应的导纳公式为:
    Figure PCTCN2021096852-appb-100003
    其中,Y open表示开路校准件的导纳,C open表示在预设频率下测量得到开路校准件电容,R s'表示表征开路校准件串扰的电阻,C s'表示表征开路校准件串扰的电容,Y 1'表示C open的导纳,Y 2'表示C s'和R s'的串联导纳。
  6. 如权利要求2所述的在片校准件模型中参数确定的方法,其特征在于,所述根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式,包括:
    当所述校准件为短路校准件时,在片校准模型为第一短路校准件模型时,第一短路校准件模型对应的导纳公式为:
    Figure PCTCN2021096852-appb-100004
    其中,Y short表示短路校准件的导纳,L short表示在预设频率下测量得到短路校准件电感,R s”表示表征短路校准件串扰的电阻,C s”表示表征短路校准件串扰的电容,Y 1”表示L short的导纳,Y 2”表示C s”和R s”的串联导纳。
  7. 如权利要求1所述的在片校准件模型中参数确定的方法,其特征在于,所述根据所述不同校准件的导纳以及对应的导纳公式,计算不同在片校准件模型中表征不同校准件串扰的参数,包括:
    将所述不同校准件的导纳代入对应的导纳公式中进行计算,得到表征不同在片校准件串扰的电容和表征不同在片校准件串扰的电阻的串联导纳对应的阻抗或并联导纳对应的阻抗;
    确定所述阻抗的实部为表征不同在片校准件串扰的电阻;确定所述阻抗的虚部为表征不同在片校准件串扰的电容。
  8. 如权利要求1所述的在片校准件模型中参数确定的方法,其特征在于,当所述不同在片校准件模型为在原校准件模型中端面的两端分别并联两个表征不同在片校准件串扰的元件时,所述不同在片校准件模型包括:第二负载校准件模型、第二开路校准件模型以及第二短路校准件模型;
    所述第二负载校准件模型包括负载校准件电感、负载校准件直流电阻、表征负载校准件串扰的电阻和表征负载校准件串扰的电容;其中,所述负载校准件电感的一端分别连接所 述表征负载校准件串扰的电阻的一端和所述表征负载校准件串扰的电容的一端,以构成第二负载校准件模型单端口的一端,所述负载校准件电感的另一端连接所述负载校准件直流电阻的一端,所述负载校准件直流电阻的另一端分别连接所述表征负载校准件串扰的电阻的另一端和所述表征负载校准件串扰的电容的另一端,以构成所述第二负载校准件模型单端口的另一端;
    所述第二开路校准件模型包括开路校准件电容、表征开路校准件串扰的电阻和表征开路校准件串扰的电容;其中,所述开路校准件电容的一端分别连接所述表征开路校准件串扰的电阻的一端和所述表征开路校准件串扰的电容的一端,以构成第二开路校准件模型单端口的一端,所述开路校准件电容的另一端分别连接所述表征开路校准件串扰的电阻的另一端和所述表征开路校准件串扰的电容的另一端,以构成所述第二开路校准件模型单端口的另一端;
    所述第二短路校准件模型包括短路校准件电感、表征短路校准件串扰的电阻和表征短路校准件串扰的电容;其中,所述短路校准件电感的一端分别连接所述表征短路校准件串扰的电阻的一端和所述表征短路校准件串扰的电容的一端,以构成第二短路校准件模型单端口的一端,所述短路校准件电感的另一端分别连接所述表征短路校准件串扰的电阻的另一端和所述表征短路校准件串扰的电容的另一端,以构成所述第二短路校准件模型单端口的另一端。
  9. 如权利要求8所述的单端口在片校准件模型确定的方法,其特征在于,所述根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式,包括:
    当所述校准件为负载校准件时,在片校准模型为第二负载校准件模型时,第二负载校准件模型对应的导纳公式为:
    Figure PCTCN2021096852-appb-100005
    其中,Y load'表示负载校准件的导纳,R l表示负载校准件直流电阻,j表示虚数,ω表示角频率,L load表示在预设频率下测量得到负载校准件电感,R s表示表征负载校准件串扰的电阻,C s表示表征负载校准件串扰的电容,Y 1表示R l和L load的串联导纳,Y 2表示C s的串联导纳,Y 3表示R s的串联导纳。
  10. 如权利要求8所述的单端口在片校准件模型确定的方法,其特征在于,所述根据不 同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式,包括:
    当所述校准件为开路校准件时,在片校准模型为第二开路校准件模型时,第二开路校准件模型对应的导纳公式为:
    Figure PCTCN2021096852-appb-100006
    其中,Y open'表示开路校准件的导纳,C open表示在预设频率下测量得到开路校准件电容,R s'表示表征开路校准件串扰的电阻,C s'表示表征开路校准件串扰的电容,Y 1'表示C open的导纳,Y 2'表示C s'的串联导纳,Y 3'表示R s'的串联导纳。
  11. 如权利要求8所述的单端口在片校准件模型确定的方法,其特征在于,所述根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式,包括:
    当所述校准件为短路校准件时,在片校准模型为第二短路校准件模型时,第二短路校准件模型对应的导纳公式为:
    Figure PCTCN2021096852-appb-100007
    其中,Y short'表示短路校准件的导纳,L short表示在预设频率下测量得到短路校准件电感,R s”表示表征短路校准件串扰的电阻,C s”表示表征短路校准件串扰的电容,Y 1”表示L short的导纳,Y 2”表示C s”的串联导纳,Y 3”表示R s”的串联导纳。
  12. 如权利要求1所述的单端口在片校准件模型确定的方法,其特征在于,所述不同在片校准件模型为表征在片校准件串扰的电阻与原校准件模型中的元件构成的电路串联,表征在片校准件串扰的电容的一端连接在所述表征在片校准件串扰的电阻与原校准件模型中的元件构成的电路的一端之间,所述表征在片校准件串扰的电容的另一端连接在原校准件模型中的元件构成的电路的另一端。
  13. 如权利要求12所述的单端口在片校准件模型确定的方法,其特征在于,所述原校 准件模型为原负载校准件模型、原开路校准件模型和原短路校准件模型,所述原负载校准件模型包括负载校准件电感、负载校准件直流电阻,所述原开路校准件模型包括开路校准件电容,所述原短路校准件模型包括短路校准件电感;
    所述在片校准件模型为第三负载校准件模型时,所述第三负载校准件模型包括表征负载校准件串扰的电阻和表征负载校准件串扰的电容;
    所述表征负载校准件串扰的电阻的一端分别连接所述表征负载校准件串扰的电容的一端以及所述负载校准件电感的一端,所述表征负载校准件串扰的电阻的另一端作为第三负载校准件模型单端口的一端,所述负载校准件电感的另一端连接所述负载校准件直流电阻的另一端,所述负载校准件直流电阻的另一端连接所述表征负载校准件串扰的电容的另一端,以构成所述第三负载校准件模型单端口的另一端;
    或者,所述表征负载校准件串扰的电容的一端连接所述负载校准件电感的一端,以第三负载校准件模型单端口的一端,所述负载校准件电感的另一端连接所述负载校准件直流电阻的另一端,所述负载校准件直流电阻的另一端分别连接所述表征负载校准件串扰的电容的另一端和所述表征负载校准件串扰的电阻的一端,所述表征负载校准件串扰的电阻的另一端作为所述第三负载校准件模型单端口的另一端;
    所述在片校准件模型为第三开路校准件模型时,所述第三开路校准件模型包括表征开路校准件串扰的电阻和表征开路校准件串扰的电容;
    所述表征开路校准件串扰的电阻的一端作为第三开路校准件模型单端口的一端,所述表征开路校准件串扰的电阻的另一端分别连接所述开路校准件电容的一端和所述表征开路校准件串扰的电容的一端,所述开路校准件电容的另一端和所述表征开路校准件串扰的电容的另一端连接后作为所述第三开路校准件模型单端口的另一端;
    或者,所述开路校准件电容的一端和所述表征开路校准件串扰的电容的一端连接后作为第三开路校准件模型单端口的一端,所述开路校准件电容的另一端和所述表征开路校准件串扰的电容的另一端连接后连接所述表征开路校准件串扰的电阻的一端,所述表征开路校准件串扰的电阻的另一端作为所述第三开路校准件模型单端口的另一端;
    所述在片校准件模型为第三短路校准件模型时,所述第三短路校准件模型包括表征短路校准件串扰的电阻和表征短路校准件串扰的电容;
    所述表征短路校准件串扰的电阻的一端作为第三短路校准件模型单端口的一端,所述表征短路校准件串扰的电阻的另一端分别连接所述短路校准件电感的一端和所述表征短路校准件串扰的电容的一端,所述短路校准件电感的另一端和所述表征短路校准件串扰的电容的另一端连接后作为所述第三短路校准件模型单端口的另一端;
    或者,所述短路校准件电感的一端和所述表征短路校准件串扰的电容的一端连接后作为第三短路校准件模型单端口的一端,所述短路校准件电感的另一端和所述表征短路校准件串扰的电容的另一端连接后连接所述表征短路校准件串扰的电阻的一端,所述表征短路校准件串扰的电阻的另一端作为所述第三短路校准件模型单端口的另一端;
  14. 如权利要求13所述的单端口在片校准件模型确定的方法,其特征在于,所述根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式,包括:
    当所述校准件为负载校准件时,在片校准模型为第三负载校准件模型时,第三负载校准件模型对应的导纳公式为:
    Figure PCTCN2021096852-appb-100008
    其中,Y load”表示负载校准件的导纳,R l表示负载校准件直流电阻,j表示虚数,ω表示角频率,L load表示在预设频率下测量得到负载校准件电感,R s表示表征负载校准件串扰的电阻,C s表示表征负载校准件串扰的电容,Y 1表示R l和L load的串联导纳,Y 2表示C s的串联导纳。
  15. 如权利要求13所述的在片校准件模型中参数确定的方法,其特征在于,所述根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式,包括:
    当所述校准件为开路校准件时,在片校准模型为第三开路校准件模型时,第三开路校准件模型对应的导纳公式为:
    Figure PCTCN2021096852-appb-100009
    其中,Y open”表示开路校准件的导纳,C open表示在预设频率下测量得到开路校准件电容,R s'表示表征开路校准件串扰的电阻,C s'表示表征开路校准件串扰的电容,Y 1'表示C open的导纳,Y 2'表示C s'的串联导纳。
  16. 如权利要求13所述的在片校准件模型中参数确定的方法,其特征在于,所述根据不同校准件对应的在片校准件模型,确定不同在片校准件模型对应的导纳公式,包括:
    当所述校准件为短路校准件时,在片校准模型为第四短路校准件模型时,第四短路校准件模型对应的导纳公式为:
    Figure PCTCN2021096852-appb-100010
    其中,Y short”表示短路校准件的导纳,L short表示在预设频率下测量得到短路校准件电感,R s”表示表征短路校准件串扰的电阻,C s”表示表征短路校准件串扰的电容,Y 1”表示L short的导纳,Y 2”表示C s”的串联导纳。
PCT/CN2021/096852 2020-08-14 2021-05-28 在片校准件模型中参数确定的方法 WO2022033124A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/550,487 US11971451B2 (en) 2020-08-14 2021-12-14 Method for determining parameters in on-wafer calibration piece model

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010819042.3A CN112098791B (zh) 2020-08-14 2020-08-14 在片校准件模型及在片校准件模型中参数确定的方法
CN202010819042.3 2020-08-14
CN202010820390.2 2020-08-14
CN202010820390.2A CN112098794B (zh) 2020-08-14 2020-08-14 在片校准件模型中参数确定的方法及终端设备
CN202010820386.6A CN112098793B (zh) 2020-08-14 2020-08-14 单端口在片校准件模型确定的方法及终端设备
CN202010820386.6 2020-08-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/550,487 Continuation US11971451B2 (en) 2020-08-14 2021-12-14 Method for determining parameters in on-wafer calibration piece model

Publications (1)

Publication Number Publication Date
WO2022033124A1 true WO2022033124A1 (zh) 2022-02-17

Family

ID=80246916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096852 WO2022033124A1 (zh) 2020-08-14 2021-05-28 在片校准件模型中参数确定的方法

Country Status (2)

Country Link
US (1) US11971451B2 (zh)
WO (1) WO2022033124A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858160A (en) * 1988-03-18 1989-08-15 Cascade Microtech, Inc. System for setting reference reactance for vector corrected measurements
US20040160228A1 (en) * 2003-02-18 2004-08-19 Tiberiu Jamneala Network analyzer calibration employing reciprocity of a device
CN106405462A (zh) * 2016-08-30 2017-02-15 中国电子科技集团公司第十三研究所 在片散射参数的溯源及不确定度评估方法
CN108614231A (zh) * 2018-05-29 2018-10-02 中国电子科技集团公司第四十研究所 一种基于电子校准件的快速校准方法
CN108845280A (zh) * 2018-05-29 2018-11-20 中国电子科技集团公司第四十研究所 一种电子校准件端口的自动检测方法
CN109444717A (zh) * 2018-11-27 2019-03-08 中国电子科技集团公司第十三研究所 新型在片s参数误差校准方法和装置
CN110286345A (zh) * 2019-05-22 2019-09-27 中国电子科技集团公司第十三研究所 一种矢量网络分析仪在片s参数的校准方法、系统及设备
CN111142057A (zh) * 2019-12-17 2020-05-12 中国电子科技集团公司第十三研究所 太赫兹频段在片s参数的校准方法及终端设备
CN112098793A (zh) * 2020-08-14 2020-12-18 中国电子科技集团公司第十三研究所 单端口在片校准件模型确定的方法及终端设备
CN112098794A (zh) * 2020-08-14 2020-12-18 中国电子科技集团公司第十三研究所 在片校准件模型中参数确定的方法及终端设备
CN112098791A (zh) * 2020-08-14 2020-12-18 中国电子科技集团公司第十三研究所 在片校准件模型及在片校准件模型中参数确定的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7908107B2 (en) * 2005-06-11 2011-03-15 Cascade Microtech, Inc. Line-reflect-reflect match calibration
US7764072B2 (en) * 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
US8290736B2 (en) * 2010-02-23 2012-10-16 Freescale Semiconductor, Inc. Calibration standards and methods of their fabrication and use
US20120109566A1 (en) * 2010-11-02 2012-05-03 Ate Systems, Inc. Method and apparatus for calibrating a test system for measuring a device under test
US9287614B2 (en) * 2011-08-31 2016-03-15 The Regents Of The University Of Michigan Micromachined millimeter-wave frequency scanning array
US8798953B2 (en) * 2011-09-01 2014-08-05 Yuan Ze University Calibration method for radio frequency scattering parameter measurement applying three calibrators and measurement structure thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858160A (en) * 1988-03-18 1989-08-15 Cascade Microtech, Inc. System for setting reference reactance for vector corrected measurements
US20040160228A1 (en) * 2003-02-18 2004-08-19 Tiberiu Jamneala Network analyzer calibration employing reciprocity of a device
CN106405462A (zh) * 2016-08-30 2017-02-15 中国电子科技集团公司第十三研究所 在片散射参数的溯源及不确定度评估方法
CN108614231A (zh) * 2018-05-29 2018-10-02 中国电子科技集团公司第四十研究所 一种基于电子校准件的快速校准方法
CN108845280A (zh) * 2018-05-29 2018-11-20 中国电子科技集团公司第四十研究所 一种电子校准件端口的自动检测方法
CN109444717A (zh) * 2018-11-27 2019-03-08 中国电子科技集团公司第十三研究所 新型在片s参数误差校准方法和装置
CN110286345A (zh) * 2019-05-22 2019-09-27 中国电子科技集团公司第十三研究所 一种矢量网络分析仪在片s参数的校准方法、系统及设备
CN111142057A (zh) * 2019-12-17 2020-05-12 中国电子科技集团公司第十三研究所 太赫兹频段在片s参数的校准方法及终端设备
CN112098793A (zh) * 2020-08-14 2020-12-18 中国电子科技集团公司第十三研究所 单端口在片校准件模型确定的方法及终端设备
CN112098794A (zh) * 2020-08-14 2020-12-18 中国电子科技集团公司第十三研究所 在片校准件模型中参数确定的方法及终端设备
CN112098791A (zh) * 2020-08-14 2020-12-18 中国电子科技集团公司第十三研究所 在片校准件模型及在片校准件模型中参数确定的方法

Also Published As

Publication number Publication date
US11971451B2 (en) 2024-04-30
US20220099736A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
CN109444721B (zh) 检测s参数的方法及终端设备
US7157918B2 (en) Method and system for calibrating a measurement device path and for measuring a device under test in the calibrated measurement device path
US6960920B2 (en) Method for correcting measurement error and electronic component characteristic measurement apparatus
WO2021120452A1 (zh) 太赫兹频段在片s参数的校准方法及终端设备
CN112098791B (zh) 在片校准件模型及在片校准件模型中参数确定的方法
CN111983539B (zh) 在片s参数测量系统校准方法
JP4650487B2 (ja) 伝送路材料の誘電率測定方法およびこの誘電率測定方法を用いた電子部品の電気特性測定方法
JP5483133B2 (ja) 電子部品の高周波特性誤差補正方法
US7643957B2 (en) Bisect de-embedding for network analyzer measurement
CN112098795B (zh) 两端口在片校准件模型及参数确定的方法
CN112098792B (zh) 两端口在片校准件模型和参数确定的方法
CN112098793B (zh) 单端口在片校准件模型确定的方法及终端设备
WO2022033124A1 (zh) 在片校准件模型中参数确定的方法
TWI463147B (zh) Calibration method of radio frequency scattering parameters with two correctors
JP7153309B2 (ja) ベクトルネットワークアナライザを用いた反射係数の測定方法
Dahlberg et al. A method to determine LRRM calibration standards in measurement configurations affected by leakage
CN112098794B (zh) 在片校准件模型中参数确定的方法及终端设备
WO2022033125A1 (zh) 两端口在片校准件模型和参数确定的方法
TWI463146B (zh) Radiofrequency Scattering Parameter Measurement and Correction Method
CN111781479A (zh) 一种在片校准件模型建立方法
JP4743208B2 (ja) 電子部品の電気特性測定方法
JP3017367B2 (ja) マルチポート回路のsパラメータ測定方法
JP3912427B2 (ja) 電子部品の高周波電気特性測定方法および装置、高周波電気特性測定装置の校正方法
TWI426289B (zh) Radio frequency scattering parameter correction method with three correctors
Singh et al. Comparison of Vector Network Analyser (VNA) calibration techniques at microwave frequencies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855180

Country of ref document: EP

Kind code of ref document: A1