WO2021120452A1 - 太赫兹频段在片s参数的校准方法及终端设备 - Google Patents

太赫兹频段在片s参数的校准方法及终端设备 Download PDF

Info

Publication number
WO2021120452A1
WO2021120452A1 PCT/CN2020/083495 CN2020083495W WO2021120452A1 WO 2021120452 A1 WO2021120452 A1 WO 2021120452A1 CN 2020083495 W CN2020083495 W CN 2020083495W WO 2021120452 A1 WO2021120452 A1 WO 2021120452A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
mathematical model
calibration
parameters
model
Prior art date
Application number
PCT/CN2020/083495
Other languages
English (en)
French (fr)
Inventor
王一帮
吴爱华
梁法国
刘晨
栾鹏
霍晔
孙静
李彦丽
Original Assignee
中国电子科技集团公司第十三研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第十三研究所 filed Critical 中国电子科技集团公司第十三研究所
Priority to US17/123,823 priority Critical patent/US11385175B2/en
Publication of WO2021120452A1 publication Critical patent/WO2021120452A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • This application belongs to the technical field of semiconductor devices, and in particular relates to a method for calibrating on-chip S-parameters in the terahertz frequency band and terminal equipment.
  • the types of calibration components include SOLT (Short-Open-Load-Thru, short-open-load-through), TRL (Thru-Reflect-Line, through-reflect-line), LRRM (Line-Reflect-Reflect-Match, line -Reflection-reflection-matching), etc., each calibration piece corresponds to the corresponding calibration algorithm. Therefore, the main factors affecting the accuracy of calibration are calibration methods and calibration parts.
  • the embodiments of the application provide a method, system and terminal equipment for calibrating S parameters in the terahertz frequency band to solve the problem that the traditional error model cannot represent the amount of crosstalk error.
  • the traditional error model is used for calibration, and the tested S parameters are accurate. Low degree of problem.
  • the first aspect of the embodiments of the present application provides a method for calibrating on-chip S parameters in the terahertz frequency band, including:
  • the 8-item error model Based on the 8-item error model, obtain the first S parameter based on the first calibration part, and determine the first mathematical model according to the first S parameter, the first mathematical model including the parallel crosstalk term between the probes;
  • the Z parameter of the tested part is obtained, and the S parameter of the tested part is obtained according to the Z parameter of the tested part.
  • the second aspect of the embodiments of the present application provides a terminal device, including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program, the computer program is implemented as described in the first aspect.
  • the steps of the calibration method for the S-parameters in the Hertz band are described in the first aspect.
  • the third aspect of the embodiments of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program.
  • the computer program is executed by one or more processors, the terahertz frequency band as described in the first aspect is Steps of the calibration method of slice S-parameters.
  • the embodiment of the application first obtains 8 error models, and then obtains the first mathematical model, the second mathematical model, and the third mathematical model based on the 8-item error models.
  • the first mathematical model includes the parallel crosstalk term between the probes.
  • the second mathematical model contains the series crosstalk term between the probes, and the third mathematical model contains the Z parameter of the tested part; finally, the Z of the tested part is obtained according to the first mathematical model, the second mathematical model and the third mathematical model.
  • the S parameter of the tested device is obtained.
  • the embodiment of the present application adds two crosstalk corrections to the eight-item error model, which can realize the accurate test of the on-chip S parameter in the terahertz frequency band.
  • Figure 1 is a 110GHz on-chip test electromagnetic distribution simulation diagram
  • FIG. 2 is a schematic diagram of the implementation process of the method for calibrating the on-chip S parameters in the terahertz frequency band provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of a test reference surface based on a first calibration part provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of a first equivalent circuit model provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of still another first equivalent circuit model provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a test reference surface based on a second calibration element provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a second equivalent circuit model provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an equivalent circuit model of a device under test and a probe connected through a PAD provided by an embodiment of the present application;
  • FIG. 9 is a schematic diagram of another equivalent circuit model of a device under test and a probe connected through a PAD according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a third equivalent circuit model provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of yet another third equivalent circuit model provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of various calibration components provided by an embodiment of the present application.
  • FIG. 13 is a verification result of a 0.2 GHz ⁇ 110 GHz model provided by an embodiment of the present application.
  • FIG. 14 is a 140GHz ⁇ 220GHz model verification result provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of an on-chip S-parameter calibration device for terahertz frequency band provided by an embodiment of the present application;
  • FIG. 16 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 1 shows the electromagnetic distribution simulation diagram of 110GHz on-chip test, specifically the electromagnetic field distribution diagram of a through transmission line tested by two probes at 110GHz.
  • the microwave probe is in an open free space, and the left and right probes are in the air.
  • crosstalk signals Two new paths of energy coupling are created, collectively referred to as crosstalk signals.
  • the error caused by the crosstalk signal to the measurement result will become larger and larger as the frequency increases.
  • a calibration method for on-chip S-parameters in the terahertz frequency band is proposed.
  • the S parameter is the scattering parameter.
  • FIG. 2 is a schematic diagram of the implementation process of the method for calibrating the S parameters in the terahertz frequency band provided by an embodiment of the present application. For ease of description, only the parts related to the embodiment of the present application are shown.
  • the execution subject of the embodiment of the present application may be a terminal device.
  • the above-mentioned method for calibrating the S-parameters in the terahertz frequency band on-chip may include the following steps:
  • S201 Obtain an 8-item error model obtained after preliminary calibration of the system in the terahertz frequency band.
  • the Multiline TRL calibration method can be used to obtain the 8-item error model; it may also be calibrated at the system coaxial or waveguide port first, and then the probe S parameter is measured, and the 8-item error model is obtained by cascading calculation.
  • the system in the terahertz frequency band may be an on-chip S-parameter test system in the terahertz frequency band.
  • it can be an on-chip vector network analyzer in the terahertz band.
  • S202 Based on the 8-item error model, obtain a first S parameter based on the first calibration part, and determine a first mathematical model according to the first S parameter, where the first mathematical model includes a parallel crosstalk term between the probes.
  • the system in the terahertz frequency band is initially calibrated through the 8-item error model to obtain the system in the terahertz frequency band after the preliminary calibration. Then replace the DUT with the first calibration part, that is, place the first calibration part at the position of the DUT, use the terahertz band system after preliminary calibration to measure the S parameters of the first calibration part to obtain the first S parameters, and A first mathematical model including the parallel crosstalk term between the probes is established according to the first S parameter.
  • the first calibration part may be an Open-Open calibration part.
  • step S202 may include the following steps:
  • the first mathematical model is determined according to the first Y parameter and the first equivalent circuit model.
  • the first mathematical model is:
  • Y PAD is the PAD parallel parasitic parameter
  • Y P is the parallel crosstalk term between the probes.
  • the Y parameter is the admittance parameter.
  • the Y parameter and the S parameter can be converted to each other through the existing method, and the Y parameter and the S parameter are both 2*2 matrices.
  • FIG. 3 shows a schematic diagram of a test reference surface based on the first calibration part, that is, a schematic diagram of an ideal open circuit test reference surface.
  • the PAD is used to connect the part under test and the probe.
  • the first calibration part replaces the part under test. Therefore, the PAD in Fig. 3 is used to connect the first calibration part and the probe.
  • Fig. 4 shows a schematic diagram of the first equivalent circuit model corresponding to the first calibration part. See Fig. 4.
  • Y PAD and Y P are connected in parallel, which can be determined based on the first equivalent circuit model.
  • the first mathematical model is shown in equation (1).
  • Each parameter in the first mathematical model is a 2*2 matrix.
  • Y PAD is a ⁇ -type two-port network circuit, see Figure 5.
  • Y 1 , Y 2 and Y 3 are elements in the Y PAD matrix respectively.
  • Y P is a ⁇ -type two-port network circuit, see Figure 5, Y p1 , Y p2 and Y p3 are elements in the Y P matrix, respectively.
  • the system in the terahertz frequency band after preliminary calibration is first used to measure the first S parameter of the first calibration part
  • the first S parameter Including crosstalk and ideal open circuit; then adopt the existing method to convert the first S parameter to the first Y parameter
  • the first equivalent circuit model and the first Y parameter Determine that the first mathematical model is equation (1).
  • S203 Based on the 8-item error model, obtain a second S parameter based on the second calibration part, and determine a second mathematical model according to the second S parameter, the second mathematical model including a series crosstalk term between the probes.
  • the second calibration part to replace the tested part, that is, place the second calibration part at the position of the tested part, and measure the S parameter of the second calibration part with the system of the terahertz frequency band after preliminary calibration, and obtain the second S parameter according to
  • the second S-parameter establishes a second mathematical model including the series crosstalk term between the probes.
  • the second calibration element may be a short-short (Short-Short) calibration element.
  • step S203 may include the following steps:
  • the second mathematical model is determined according to the second Y parameter and the second equivalent circuit model.
  • the second mathematical model is:
  • Y PAD is the PAD parallel parasitic parameter
  • Y P is the parallel crosstalk term between the probes
  • Z S is the series crosstalk term between the probes
  • Z L is the series parasitic of the internal wiring of the PAD Parameters (short-circuit parasitic parameters).
  • the Z parameter is an impedance parameter.
  • the Z parameter, Y parameter and S parameter can be converted mutually through existing methods.
  • FIG. 6 shows a schematic diagram of a test reference surface based on the second calibration element, that is, a schematic diagram of an ideal short-circuit test reference surface.
  • the second calibration part replaces the tested part. Therefore, the PAD in Fig. 6 is used to connect the second calibration part and the probe.
  • Figure 7 shows a schematic diagram of the second equivalent circuit model corresponding to the second calibration part. See Figure 7.
  • Y PAD and Y P are connected in parallel, and at the same time connected in parallel with the part in the dashed box ,
  • the inside of the dashed box is marked as Z T
  • the corresponding Y parameter is (Z T ) -1 .
  • Z T is an intermediate parameter including series parasitic parameters and series crosstalk terms
  • Z T Z S +Z L
  • Z S and Z L are both T-type two-port network circuits
  • Z S1 , Z S2 and Z S3 are elements in the Z S matrix respectively
  • Z L1 , Z L2 and Z L3 are respectively elements in the Z L matrix.
  • the second mathematical model can be determined as shown in equation (2).
  • Each parameter in formula (2) is a 2*2 matrix.
  • the system in the terahertz frequency band after preliminary calibration is first used to measure the second S parameter of the second calibration part Second S parameter Including crosstalk and parasitic parameters; then using the existing method, the second S parameter Convert to the second Y parameter Finally, according to the second equivalent circuit model and the second Y parameter The second mathematical model is determined to be equation (2).
  • the terahertz frequency band system after preliminary calibration is used to measure the S parameters of the test piece to obtain the third S parameter, and a third mathematical model including the Z parameter of the test piece is established according to the third S parameter.
  • step S204 may include the following steps:
  • the third mathematical model is determined according to the third Y parameter and the third equivalent circuit model.
  • the third mathematical model is:
  • Z DUT is the Z parameter of the DUT.
  • Fig. 8 shows a schematic diagram of an equivalent circuit model of the DUT and the probe connected through the PAD, that is, a schematic diagram of the parasitic equivalent circuit model of the PAD.
  • Y PAD is a ⁇ -type two-port network circuit, see Figure 9, Y 1 , Y 2 and Y 3 are elements in the Y PAD matrix respectively.
  • FIG. 10 shows a schematic diagram of a third equivalent circuit model, which is an error model including PAD parasitics and crosstalk.
  • Y PAD and Y P are connected in parallel, and at the same time connected in parallel with the part in the dashed box.
  • the inside of the dashed box is marked as Z T + Z DUT , and the corresponding Y parameter is converted into ( Z T +Z DUT ) -1 , that is, (Z S +Z L +Z DUT ) -1 .
  • the third mathematical model can be determined as shown in equation (3).
  • Each parameter in the third mathematical model is a 2*2 matrix.
  • Y P is a ⁇ -type two-port network circuit, see Figure 11.
  • Y p1 , Y p2 and Y p3 are elements in the Y P matrix, respectively.
  • the system in the terahertz band after preliminary calibration is used to measure the third S parameter of the DUT Then using the existing method, the third S parameter Convert to the third Y parameter Finally, according to the third equivalent circuit model and the third Y parameter The third mathematical model is determined to be equation (3).
  • S205 Obtain the Z parameter of the tested part based on the first mathematical model, the second mathematical model and the third mathematical model, and obtain the S parameter of the tested part according to the Z parameter of the tested part.
  • Equation (3) and equation (1) are subtracted, and the following equation (5) can be obtained:
  • Z S + Z L can be obtained Z S + Z L + Z DUT by formula (5) can be obtained by the DUT Z of formula (6), i.e., the parameter Z to give the DUT.
  • the Z parameter of the test piece can be converted into the S parameter of the test piece, and the S parameter of the test piece is the calibrated S parameter of the test piece.
  • Z DUT Z S +Z L +Z DUT -(Z S +Z L ) (6)
  • the first calibration component is an open-circuit calibration component
  • the second calibration component is a short-short calibration component
  • an orthogonal autoregressive algorithm can be used to reduce random errors and improve test accuracy.
  • the embodiment of the present application adds two crosstalk corrections to the 8 error models, which can realize the accurate test of the on-chip S-parameters in the terahertz frequency band, improve the accuracy of the S-parameters, and eliminate the connection structure and the DUT at the same time.
  • the crosstalk error has reached a good index and satisfies the commercial on-chip S-parameter calibration work on the market.
  • a 3mm frequency band and 140GHz ⁇ 220GHz calibration kits and crosstalk verification kits were developed.
  • the schematic diagram of some calibration kits is shown in Figure 12.
  • Calibration kits are divided into Multiline TRL calibration kits and crosstalk calibration kits.
  • the Coplanar Waveguide (CPW) transmission line with a straight-through length of 400 ⁇ m is designed in the Multiline TRL calibration kit.
  • CPW Coplanar Waveguide
  • the remaining extra lengths are 100 ⁇ m, 300 ⁇ m, 500 ⁇ m, 2000 ⁇ m, 5000 ⁇ m, 7000 ⁇ m, 11000 ⁇ m, and the reflection standard is Short-Short Short-circuit); the two-port standard is Open-Open, Short-Short, and Resistor-Resistor (used in the definition of Multiline TRL calibration kits), and the single-port offset is through ( Thru) half of 200 ⁇ m.
  • the first step uses the Multiline TRL calibration method to calibrate the basic on-chip vector network analyzer to obtain 8 error models, and then the measurement results of the passive attenuator without crosstalk correction are obtained; the second step is to use the calibrated on-chip
  • the vector network analyzer measures two kinds of reflection calibration parts to obtain the ideal Open-Open and Short-Short.
  • the crosstalk corrected measurement results of the passive attenuator are obtained according to the measurement model. After the measurement is completed, it is necessary to perform electromagnetic field simulation on the passive attenuator to obtain its S parameters, and compare the measurement results before and after the crosstalk correction with the simulation results.
  • An on-chip vector network analyzer is used to measure the passive attenuator to obtain the S-parameters without crosstalk correction. According to formulas (4), (5), (6), the final S-parameters of the DUT are obtained, that is, the calibrated S-parameters. The measurement results are shown in Figure 13 and Figure 14.
  • 15dB represents the DUT
  • 15dB_no crosstalk correction (S11) is the measurement result of S11 without crosstalk correction, corresponding to curve 101 in the figure
  • 15dB_this paper(S11) The measurement result of S11 in the calibration method provided in this embodiment of the application corresponds to curve 103 in the figure
  • 15dB_NIST(S11) is the measurement result of S11 of NIST, which corresponds to curve 102 in the figure.
  • Multiline TRL(S21) is the measurement result of S21 without crosstalk correction, corresponding to curve 301 in the figure
  • NIST(S21) is the measurement result of S21 with NIST crosstalk correction, corresponding to curve 302 in the figure
  • This text_16term (S21) is the measurement result of S21 of the calibration method provided in the embodiment of the application, corresponding to the curve 303 in the figure. S21 is improved by more than 1.3dB, which is more in line with the trend of simulation values.
  • G6 represents the DUT.
  • “G6_No crosstalk correction (S11)” is the measurement result of S11 without crosstalk correction, corresponding to curve 112 in the figure; "G6_this paper(S11)”
  • the measurement result of S11 of the calibration method provided in this embodiment of the application corresponds to the curve 111 in the figure.
  • “G6_No crosstalk correction (S21)” is the measurement result of S21 without crosstalk correction, corresponding to the curve 312 in the figure;
  • “G6_this paper (S21)” is the S21 of the calibration method provided in the embodiment of the application
  • the measurement result corresponds to curve 311 in the figure. It can be seen that S21 has improved by more than 1.5dB, which is more consistent with the trend of simulation values.
  • FIG. 15 is a schematic block diagram of an on-chip S-parameter calibration device for a terahertz frequency band according to an embodiment of the present application. For ease of description, only parts related to the embodiment of the present application are shown.
  • the device 1200 for calibrating the S parameters in the terahertz band may include: an acquisition module 1201, a first mathematical model determination module 1202, a second mathematical model determination module 1203, a third mathematical model determination module 1204, and S Parameter determination module 1205.
  • the obtaining module 1201 is used to obtain 8 error models obtained after preliminary calibration of the system in the terahertz frequency band;
  • the first mathematical model determination module 1202 is used to obtain the first S parameter based on the first calibration part based on the 8-item error model, and determine the first mathematical model according to the first S parameter.
  • the first mathematical model includes the difference between the probes. Parallel crosstalk term;
  • the second mathematical model determination module 1203 is configured to obtain a second S parameter based on the second calibration part based on the 8-item error model, and determine the second mathematical model according to the second S parameter, and the second mathematical model includes the difference between the probes Series crosstalk term;
  • the third mathematical model determination module 1204 is used to obtain the third S parameter based on the tested part based on the 8-item error model, and determine the third mathematical model according to the third S parameter, the third mathematical model contains the Z parameter of the tested part ;
  • the S parameter determination module 1205 is used to obtain the Z parameter of the tested part based on the first mathematical model, the second mathematical model and the third mathematical model, and obtain the S parameter of the tested part according to the Z parameter of the tested part.
  • the first mathematical model determining module 1202 is specifically configured to:
  • the first mathematical model is determined according to the first Y parameter and the first equivalent circuit model.
  • the first mathematical model is:
  • Y PAD is the PAD parallel parasitic parameter
  • Y P is the parallel crosstalk term between the probes.
  • the second mathematical model determining module 1203 is specifically configured to:
  • the second mathematical model is determined according to the second Y parameter and the second equivalent circuit model.
  • the second mathematical model is:
  • Y PAD is the PAD parallel parasitic parameter
  • Y P is the parallel crosstalk term between the probes
  • Z S is the series crosstalk term between the probes
  • Z L is the series parasitic parameter of the PAD internal wiring.
  • the third mathematical model determining module 1204 is specifically configured to:
  • the third mathematical model is determined according to the third Y parameter and the third equivalent circuit model.
  • the third mathematical model is:
  • Z DUT is the Z parameter of the DUT.
  • the first calibration component is an open-circuit calibration component
  • the second calibration component is a short-short calibration component
  • FIG. 16 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 1300 of this embodiment includes: one or more processors 1301, a memory 1302, and a computer program 1303 that is stored in the memory 1302 and can run on the processor 1301.
  • the processor 1301 executes the computer program 1303, the steps in the above-mentioned embodiment of the method for calibrating the S parameters of each terahertz frequency band on the chip are implemented, for example, steps S201 to S205 shown in FIG. 2.
  • the processor 1301 executes the computer program 1303, the functions of the modules/units in the above-mentioned embodiment of the device for calibrating S-parameters in the terahertz band are realized, for example, the functions of the modules 1201 to 1205 shown in FIG. 15.
  • the computer program 1303 may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 1302 and executed by the processor 1301 to complete This application.
  • the one or more modules/units may be a series of computer program instruction segments capable of completing specific functions, and the instruction segments are used to describe the execution process of the computer program 1303 in the terminal device 1300.
  • the computer program 1303 may be divided into an acquisition module, a first mathematical model determination module, a second mathematical model determination module, a third mathematical model determination module, and an S parameter determination module.
  • the specific functions of each module are as follows:
  • the acquisition module is used to acquire the 8-item error model obtained after preliminary calibration of the system in the terahertz frequency band;
  • the first mathematical model determination module is used to obtain the first S parameter based on the first calibration part based on the 8-term error model, and determine the first mathematical model according to the first S parameter.
  • the first mathematical model includes the parallel connection between the probes Crosstalk term
  • the second mathematical model determination module is used to obtain the second S parameter based on the second calibration part based on the 8-term error model, and determine the second mathematical model according to the second S parameter, the second mathematical model includes the series connection between the probes Crosstalk term
  • the third mathematical model determination module is used to obtain the third S parameter based on the tested part based on the 8-item error model, and determine the third mathematical model based on the third S parameter, the third mathematical model includes the Z parameter of the tested part;
  • the S parameter determination module is used to obtain the Z parameter of the tested part based on the first mathematical model, the second mathematical model and the third mathematical model, and obtain the S parameter of the tested part according to the Z parameter of the tested part.
  • the terminal device 1300 may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server, and the terminal device 1300 may also be a DSP (digital signal processor, digital signal processor).
  • the terminal device 1300 includes but is not limited to a processor 1301 and a memory 1302.
  • FIG. 16 is only an example of the terminal device 1300, and does not constitute a limitation on the terminal device 1300. It may include more or less components than those shown in the figure, or combine certain components, or different components. Components, for example, the terminal device 1300 may also include an input device, an output device, a network access device, a bus, and so on.
  • the processor 1301 may be a central processing unit (Central Processing Unit, CPU), other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory 1302 may be an internal storage unit of the terminal device 1300, such as a hard disk or a memory of the terminal device 1300.
  • the memory 1302 may also be an external storage device of the terminal device 1300, such as a plug-in hard disk equipped on the terminal device 1300, a smart memory card (Smart Media Card, SMC), and a Secure Digital (SD) Card, Flash Card, etc.
  • the memory 1302 may also include both an internal storage unit of the terminal device 1300 and an external storage device.
  • the memory 1302 is used to store the computer program 1303 and other programs and data required by the terminal device 1300.
  • the memory 1302 can also be used to temporarily store data that has been output or will be output.
  • the disclosed device and method for calibrating the S-parameters in the terahertz band can be implemented in other ways.
  • the above-described embodiment of the device for calibrating S-parameters in the terahertz band is only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other divisions in actual implementation Way, for example, multiple units or components can be combined or integrated into another system, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated module/unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the present application implements all or part of the processes in the above-mentioned embodiments and methods, and can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium. When the program is executed by the processor, it can implement the steps of the foregoing method embodiments.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunications signal, and software distribution media, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signal telecommunications signal
  • software distribution media etc.
  • the content contained in the computer-readable medium can be appropriately added or deleted according to the requirements of the legislation and patent practice in the jurisdiction.
  • the computer-readable medium Does not include electrical carrier signals and telecommunication signals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一种太赫兹频段在片S参数的校准方法及终端设备,包括:获取对太赫兹频段的系统进行初步校准后得到的8项误差模型(S201);基于8项误差模型,获取基于第一校准件的第一S参数,并根据第一S参数确定第一数学模型,第一数学模型包含探针之间的并联串扰项(S202);获取基于第二校准件的第二S参数,并根据第二S参数确定第二数学模型,第二数学模型包含探针之间的串联串扰项(S203);获取基于被测件的第三S参数,并根据第三S参数确定第三数学模型(S204);基于第一数学模型、第二数学模型和第三数学模型求解得到被测件的Z参数,并根据被测件的Z参数得到被测件的S参数(S205)。本方法能实现太赫兹频段在片S参数的准确测试。

Description

太赫兹频段在片S参数的校准方法及终端设备 技术领域
本申请属于半导体器件技术领域,尤其涉及一种太赫兹频段在片S参数的校准方法及终端设备。
背景技术
微电子行业中配备的大量“在片S参数测试系统”在使用前,需要使用在片校准件进行矢量校准。校准件的类型包括SOLT(Short-Open-Load-Thru,短路-开路-负载-直通)、TRL(Thru-Reflect-Line,直通-反射-线路)、LRRM(Line-Reflect-Reflect-Match,线路-反射-反射-匹配)等,每种校准件都对应着相应的校准算法。因此,影响校准准确度的因素主要有校准方法和校准件。
传统的校准方法采用12项误差模型或8项误差模型,他们在低频在片领域(50GHz以下)、同轴和波导领域具有很高的准确度。但随着在片测试频率的升高,一些在低频段可以忽略的系统误差不可忽略,如探针与探针之间的泄漏(串扰信号)变得越来越大,影响了测试的准确度。串扰信号对测量结果带来的误差,随着频率的增加会越来越大,然而传统的12项误差模型或者8项误差模型,显然已经不能表征上述串扰误差量,使用传统的误差模型进行校准,测试得到的S参数准确度较低。
技术问题
本申请实施例提供了一种太赫兹频段在片S参数的校准方法、系统及终端设备,以解决传统的误差模型无法表征串扰误差量,使用传统的误差模型进行校准,测试得到的S参数准确度较低的问题。
技术解决方案
本申请实施例的第一方面提供了一种太赫兹频段在片S参数的校准方法,包括:
获取对太赫兹频段的系统进行初步校准后得到的8项误差模型;
基于8项误差模型,获取基于第一校准件的第一S参数,并根据第一S参数确定第一数学模型,第一数学模型包含探针之间的并联串扰项;
基于8项误差模型,获取基于第二校准件的第二S参数,并根据第二S参数确定第二数学模型,第二数学模型包含探针之间的串联串扰项;
基于8项误差模型,获取基于被测件的第三S参数,并根据第三S参数确定第三数学模型,第三数学模型包含被测件的Z参数;
基于第一数学模型、第二数学模型和第三数学模型求解得到被测件的Z参数,并根据被 测件的Z参数得到被测件的S参数。
本申请实施例的第二方面提供了一种终端设备,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如第一方面所述太赫兹频段在片S参数的校准方法的步骤。
本申请实施例的第三方面提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被一个或多个处理器执行时实现如第一方面所述太赫兹频段在片S参数的校准方法的步骤。
有益效果
本申请实施例首先获取8项误差模型,然后基于8项误差模型,分别获取第一数学模型、第二数学模型和第三数学模型,其中,第一数学模型包含探针之间的并联串扰项,第二数学模型包含探针之间的串联串扰项,第三数学模型包含被测件的Z参数;最后根据第一数学模型、第二数学模型和第三数学模型求解得到被测件的Z参数,并根据被测件的Z参数得到被测件的S参数,本申请实施例对8项误差模型增加了两次串扰修正,能够实现太赫兹频段在片S参数的准确测试。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是110GHz在片测试电磁分布仿真图;
图2是本申请一实施例提供的太赫兹频段在片S参数的校准方法的实现流程示意图;
图3是本申请一实施例提供的基于第一校准件的测试参考面的示意图;
图4是本申请一实施例提供的第一等效电路模型的示意图;
图5是本申请一实施例提供的又一种第一等效电路模型的示意图;
图6是本申请一实施例提供的基于第二校准件的测试参考面的示意图;
图7是本申请一实施例提供的第二等效电路模型的示意图;
图8是本申请一实施例提供的被测件与探针通过PAD相连的等效电路模型的示意图;
图9是本申请一实施例提供的又一种被测件与探针通过PAD相连的等效电路模型的示意图;
图10是本申请一实施例提供的第三等效电路模型的示意图;
图11是本申请一实施例提供的又一种第三等效电路模型的示意图;
图12是本申请一实施例提供的各个校准件的示意图;
图13是本申请一实施例提供的0.2GHz~110GHz模型验证结果;
图14是本申请一实施例提供的140GHz~220GHz模型验证结果;
图15是本申请一实施例提供的太赫兹频段在片S参数的校准装置的结构示意图;
图16是本申请一实施例提供的终端设备的结构示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
图1示出了110GHz在片测试电磁分布仿真图,具体是在110GHz两个探针测试一个直通传输线的电磁场分布图,微波探针处于一个开放的自由空间内,左右探针分别在空气之间和衬底之间,产生了两个能量耦合新路径,统称为串扰信号。串扰信号对测量结果带来的误差,随着频率的增加会越来越大。为了准确测量S参数,提出一种太赫兹频段在片S参数的校准方法。其中,S参数即为散射参数。
图2是本申请一实施例提供的太赫兹频段在片S参数的校准方法的实现流程示意图,为了便于说明,仅示出了与本申请实施例相关的部分。本申请实施例的执行主体可以是终端设备。
如图2所示,上述太赫兹频段在片S参数的校准方法可以包括以下步骤:
S201:获取对太赫兹频段的系统进行初步校准后得到的8项误差模型。
具体地,可以采用Multiline TRL校准方法获取8项误差模型;也可先在系统同轴或波导口进行校准,再测量探针S参数,级联计算得到8项误差模型。
其中,太赫兹频段的系统可以为太赫兹频段的在片S参数测试系统。例如,可以为太赫兹频段的在片矢量网络分析仪。
S202:基于8项误差模型,获取基于第一校准件的第一S参数,并根据第一S参数确定第一数学模型,第一数学模型包含探针之间的并联串扰项。
在本申请实施例中,首先通过8项误差模型对太赫兹频段的系统进行初步校准,得到初步校准后的太赫兹频段的系统。然后用第一校准件取代被测件,即在被测件的位置放置第一校准件,采用初步校准后的太赫兹频段的系统测量第一校准件的S参数,得到第一S参数,并根据第一S参数建立包含探针之间的并联串扰项的第一数学模型。其中,第一校准件可以 是开路-开路(Open-Open)校准件。
在本申请的一个实施例中,上述步骤S202可以包括以下步骤:
基于第一校准件,生成第一校准件对应的第一等效电路模型;
根据8项误差模型,获取测量得到的第一校准件的第一S参数;
将第一S参数转换为第一Y参数;
根据第一Y参数和第一等效电路模型确定第一数学模型。
在本申请的一个实施例中,第一数学模型为:
Figure PCTCN2020083495-appb-000001
其中,
Figure PCTCN2020083495-appb-000002
为所述第一Y参数,Y PAD为PAD并联寄生参数,Y P为所述探针之间的并联串扰项。
其中,Y参数为导纳参数。Y参数和S参数之间可以通过现有方法互相转换,Y参数和S参数均为2*2的矩阵。
图3示出了基于第一校准件的测试参考面的示意图,即理想开路测试参考面的示意图。图中PAD用于连接被测件和探针,在图3中,第一校准件取代被测件,因此,图3中PAD用于连接第一校准件和探针。
图4示出了第一校准件对应的第一等效电路模型的示意图,参见图4,在第一等效电路模型中,Y PAD和Y P并联连接,基于第一等效电路模型可以确定第一数学模型如式(1)所示。在第一数学模型中的各个参数均为2*2矩阵。
其中,Y PAD为π型两端口网络电路,参见图5,
Figure PCTCN2020083495-appb-000003
Y 1、Y 2和Y 3分别为Y PAD矩阵中的元素。Y P为π型两端口网络电路,参见图5,
Figure PCTCN2020083495-appb-000004
Y p1、Y p2和Y p3分别为Y P矩阵中的元素。
在本申请实施例中,首先利用初步校准后的太赫兹频段的系统测量第一校准件的第一S参数
Figure PCTCN2020083495-appb-000005
第一S参数
Figure PCTCN2020083495-appb-000006
包含了串扰与理想开路;然后采用现有方法,将第一S参数转换为第一Y参数
Figure PCTCN2020083495-appb-000007
最后根据第一等效电路模型和第一Y参数
Figure PCTCN2020083495-appb-000008
确定第一数学模型为式(1)。
S203:基于8项误差模型,获取基于第二校准件的第二S参数,并根据第二S参数确定第二数学模型,第二数学模型包含探针之间的串联串扰项。
采用第二校准件取代被测件,即在被测件的位置放置第二校准件,采用初步校准后的太赫兹频段的系统测量第二校准件的S参数,得到第二S参数,并根据第二S参数建立包含探 针之间的串联串扰项的第二数学模型。其中,第二校准件可以是短路-短路(Short-Short)校准件。
在本申请的一个实施例中,上述步骤S203可以包括以下步骤:
基于第二校准件,生成第二校准件对应的第二等效电路模型;
根据8项误差模型,获取测量得到的第二校准件的第二S参数;
将第二S参数转换为第二Y参数;
根据第二Y参数和第二等效电路模型确定第二数学模型。
在本申请的一个实施例中,第二数学模型为:
Figure PCTCN2020083495-appb-000009
其中,
Figure PCTCN2020083495-appb-000010
为第二Y参数,Y PAD为PAD并联寄生参数,Y P为探针之间的并联串扰项,Z S为所述探针之间的串联串扰项,Z L为PAD内连线的串联寄生参数(短路寄生参数)。
其中,Z参数为阻抗参数。Z参数、Y参数和S参数之间可以通过现有方法互相转换。
图6示出了基于第二校准件的测试参考面的示意图,即理想短路测试参考面的示意图。在图6中,第二校准件取代被测件,因此,图6中PAD用于连接第二校准件和探针。
图7示出了第二校准件对应的第二等效电路模型的示意图,参见图7,在第二等效电路模型中,Y PAD和Y P并联连接,同时与虚线框中的部分并联连接,虚线框内部记为Z T,转换为对应的Y参数为(Z T) -1。其中,Z T为包含串联寄生参数和串联串扰项的中间参数,Z T=Z S+Z L,Z S和Z L均为T型两端口网络电路,
Figure PCTCN2020083495-appb-000011
Figure PCTCN2020083495-appb-000012
Z S1、Z S2和Z S3分别为Z S矩阵中的元素,Z L1、Z L2和Z L3分别为Z L矩阵中的元素。
基于第二等效电路模型可以确定第二数学模型如式(2)所示。在式(2)中的各个参数均为2*2矩阵。
在本申请实施例中,首先利用初步校准后的太赫兹频段的系统测量第二校准件的第二S参数
Figure PCTCN2020083495-appb-000013
第二S参数
Figure PCTCN2020083495-appb-000014
包含了串扰与寄生参数;然后采用现有方法,将第二S参数
Figure PCTCN2020083495-appb-000015
转换为第二Y参数
Figure PCTCN2020083495-appb-000016
最后根据第二等效电路模型和第二Y参数
Figure PCTCN2020083495-appb-000017
确定第二数学模型为式(2)。
S204:基于8项误差模型,获取基于被测件的第三S参数,并根据第三S参数确定第三数学模型,第三数学模型包含被测件的Z参数。
采用初步校准后的太赫兹频段的系统测量被测件的S参数,得到第三S参数,并根据第三S参数建立包含被测件的Z参数的第三数学模型。
在本申请的一个实施例中,上述步骤S204可以包括以下步骤:
基于被测件,生成被测件对应的第三等效电路模型;
根据8项误差模型,获取测量得到的被测件的第三S参数;
将第三S参数转换为第三Y参数;
根据第三Y参数和第三等效电路模型确定第三数学模型。
在本申请的一个实施例中,第三数学模型为:
Figure PCTCN2020083495-appb-000018
其中,
Figure PCTCN2020083495-appb-000019
为第三Y参数,Y P为探针之间的并联串扰项,Y PAD为PAD并联寄生参数,Z S为探针之间的串联串扰项,Z L为PAD内连线的串联寄生参数,Z DUT为被测件的Z参数。
图8示出了被测件DUT与探针通过PAD相连的等效电路模型的示意图,即PAD寄生等效电路模型的示意图。其中,Y PAD为π型两端口网络电路,参见图9,
Figure PCTCN2020083495-appb-000020
Y 1、Y 2和Y 3分别为Y PAD矩阵中的元素。
图10示出了第三等效电路模型的示意图,第三等效电路模型为包含了PAD寄生和串扰的误差模型。参见图10,在第三等效电路模型中,Y PAD和Y P并联连接,同时与虚线框中的部分并联连接,虚线框内部记为Z T+Z DUT,转换为对应的Y参数为(Z T+Z DUT) -1,即(Z S+Z L+Z DUT) -1。基于第三等效电路模型可以确定第三数学模型如式(3)所示。在第三数学模型中的各个参数均为2*2矩阵。
其中,Y P为π型两端口网络电路,参见图11,
Figure PCTCN2020083495-appb-000021
Y p1、Y p2和Y p3分别为Y P矩阵中的元素。
通过对太赫兹频段测试的电磁场分布进行分析,见图1,探针与探针之间存在泄漏路径,同样的,探针与地之间也存在泄漏路径,基于此,建立第三等效电路模型。
在本申请实施例中,首先利用初步校准后的太赫兹频段的系统测量被测件的第三S参数
Figure PCTCN2020083495-appb-000022
然后采用现有方法,将第三S参数
Figure PCTCN2020083495-appb-000023
转换为第三Y参数
Figure PCTCN2020083495-appb-000024
最后根据第三等效电路模型和第三Y参数
Figure PCTCN2020083495-appb-000025
确定第三数学模型为式(3)。
S205:基于第一数学模型、第二数学模型和第三数学模型求解得到被测件的Z参数,并根据被测件的Z参数得到被测件的S参数。
具体地,式(2)与式(1)做相减操作,可以得到下式(4):
Figure PCTCN2020083495-appb-000026
式(3)与式(1)做相减操作,可以得到下式(5):
Figure PCTCN2020083495-appb-000027
通过式(4)可以得到Z S+Z L,通过式(5)可以得到Z S+Z L+Z DUT,通过式(6)可以得到Z DUT,即得到被测件的Z参数。通过现有方法,可以将被测件的Z参数转换为被测件的S参数,该被测件的S参数即为校准后的被测件的S参数。
Z DUT=Z S+Z L+Z DUT-(Z S+Z L)     (6)
在本申请的一个实施例中,第一校准件为开路-开路校准件,第二校准件为短路-短路校准件。
可选地,在上述求解过程中,可以采用正交自回归算法减小随机误差,提高测试精确度。
由上述描述可知,本申请实施例对8项误差模型增加了两次串扰修正,能够实现太赫兹频段在片S参数的准确测试,提高S参数的准确度,能同时消除被测件连接结构与串扰误差,达到了较好的指标,满足市场上商用的在片S参数校准工作。
具体地,通过常规的校准和测试Open-Open和Short-Short校准件,既可以解决太赫兹测试中被测件连接结构PAD去嵌入问题,又能消除微波探针之间的串扰(泄漏),实现有效测试端面延伸到管芯根部。通过建立被测件连接结构PAD和串扰与被测件之间的误差模型,给出求解方法。采用常规校准方法先进行一次校准,并测试得到被测件、Open-Open和Short-Short的数据,通过所建立的误差模型最终得到消除高频串扰的被测件根部的数据,最终可以提高在片S参数测试准确度。
为了验证上述方法,研制了3mm频段和140GHz~220GHz校准件和串扰验证件,部分校准件示意图如图12所示。校准件分为Multiline TRL校准件和串扰校准件。Multiline TRL校准件中设计了直通长度为400μm的Coplanar Waveguide(共面波导,CPW)传输线,其余额外长度为100μm,300μm,500μm,2000μm,5000μm,7000μm,11000μm,反射标准为Short-Short(短路-短路);两端口标准为Open-Open(开路-开路),Short-Short(短路-短路),Resistor-Resistor(电阻-电阻)(用于Multiline TRL校准件定义),单端口偏移为直通(Thru)一半200μm。被测件为无源衰减器,左右两端口50欧姆串联,上下地板之间75欧姆并联,这种衰减器结构对串扰最为敏感。图12中,a=200μm,b=220μm。
第一步采用Multiline TRL校准方法进行基本在片矢量网络分析仪校准,获得8项误差模型,之后测量得到无源衰减器未经串扰修正过的测量结果;第二步,采用校准过的在片矢量网络分析仪测量2种反射校准件,获取理想的Open-Open,Short-Short。最后,根据测量模型得到无源衰减器串扰修正过的测量结果。测量完成后,需要对无源衰减器进行电磁场仿真来得到其S参数,比较下串扰修正前后测量结果与仿真结果。
采用在片矢量网络分析仪测量无源衰减器得到未经串扰修正的S参数,根据公式(4)、(5)、(6)得到最终被测件的S参数,即校准后的S参数。测量结果见图13和图14。
在图13中,在左侧图像中,15dB表示被测件,“15dB_未串扰修正(S11)”为未串扰修正的S11的测量结果,对应图中曲线101;“15dB_this paper(S11)”为本申请实施例提供的校准方法的S11的测量结果,对应图中曲线103;“15dB_NIST(S11)”为NIST的S11的测量结果,对应图中曲线102。在右侧图像中,“Multiline TRL(S21)”为未串扰修正的S21的测量结果,对应图中曲线301;“NIST(S21)”为NIST串扰修正的S21的测量结果,对应图中曲线302;“本文_16term(S21)”为本申请实施例提供的校准方法的S21的测量结果,对应图中曲线303。S21改善了1.3dB以上,与仿真值趋势更加吻合。
在图14中,G6表示被测件,在左侧图像中,“G6_未串扰修正(S11)”为未串扰修正的S11的测量结果,对应图中曲线112;“G6_this paper(S11)”为本申请实施例提供的校准方法的S11的测量结果,对应图中曲线111。在右侧图像中,“G6_未串扰修正(S21)”为未串扰修正的S21的测量结果,对应图中曲线312;“G6_this paper(S21)”为本申请实施例提供的校准方法的S21的测量结果,对应图中曲线311。可以看出S21改善了1.5dB以上,与仿真值趋势更加吻合。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图15是本申请一实施例提供的太赫兹频段在片S参数的校准装置的示意框图,为了便于说明,仅示出与本申请实施例相关的部分。
在本申请实施例中,太赫兹频段在片S参数的校准装置1200可以包括:获取模块1201、第一数学模型确定模块1202、第二数学模型确定模块1203、第三数学模型确定模块1204和S参数确定模块1205。
其中,获取模块1201,用于获取对太赫兹频段的系统进行初步校准后得到的8项误差模型;
第一数学模型确定模块1202,用于基于8项误差模型,获取基于第一校准件的第一S参数,并根据第一S参数确定第一数学模型,第一数学模型包含探针之间的并联串扰项;
第二数学模型确定模块1203,用于基于8项误差模型,获取基于第二校准件的第二S参数,并根据第二S参数确定第二数学模型,第二数学模型包含探针之间的串联串扰项;
第三数学模型确定模块1204,用于基于8项误差模型,获取基于被测件的第三S参数,并根据第三S参数确定第三数学模型,第三数学模型包含被测件的Z参数;
S参数确定模块1205,用于基于第一数学模型、第二数学模型和第三数学模型求解得到被测件的Z参数,并根据被测件的Z参数得到被测件的S参数。
可选地,第一数学模型确定模块1202具体用于:
基于第一校准件,生成第一校准件对应的第一等效电路模型;
根据8项误差模型,获取测量得到的第一校准件的第一S参数;
将第一S参数转换为第一Y参数;
根据第一Y参数和第一等效电路模型确定第一数学模型。
可选地,第一数学模型为:
Figure PCTCN2020083495-appb-000028
其中,
Figure PCTCN2020083495-appb-000029
为第一Y参数,Y PAD为PAD并联寄生参数,Y P为探针之间的并联串扰项。
可选地,第二数学模型确定模块1203具体用于:
基于第二校准件,生成第二校准件对应的第二等效电路模型;
根据8项误差模型,获取测量得到的第二校准件的第二S参数;
将第二S参数转换为第二Y参数;
根据第二Y参数和第二等效电路模型确定第二数学模型。
可选地,第二数学模型为:
Figure PCTCN2020083495-appb-000030
其中,
Figure PCTCN2020083495-appb-000031
为第二Y参数,Y PAD为PAD并联寄生参数,Y P为探针之间的并联串扰项,Z S为探针之间的串联串扰项,Z L为PAD内连线的串联寄生参数。
可选地,第三数学模型确定模块1204具体用于:
基于被测件,生成被测件对应的第三等效电路模型;
根据8项误差模型,获取测量得到的被测件的第三S参数;
将第三S参数转换为第三Y参数;
根据第三Y参数和第三等效电路模型确定第三数学模型。
可选地,第三数学模型为:
Figure PCTCN2020083495-appb-000032
其中,
Figure PCTCN2020083495-appb-000033
为第三Y参数,Y P为探针之间的并联串扰项,Y PAD为PAD并联寄生参数,Z S为探针之间的串联串扰项,Z L为PAD内连线的串联寄生参数,Z DUT为被测件的Z参数。
可选地,第一校准件为开路-开路校准件,第二校准件为短路-短路校准件。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述太赫兹频段在片S参数的校准装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述装置中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图16是本申请一实施例提供的终端设备的示意框图。如图16所示,该实施例的终端设备1300包括:一个或多个处理器1301、存储器1302以及存储在所述存储器1302中并可在所述处理器1301上运行的计算机程序1303。所述处理器1301执行所述计算机程序1303时实现上述各个太赫兹频段在片S参数的校准方法实施例中的步骤,例如图2所示的步骤S201至S205。或者,所述处理器1301执行所述计算机程序1303时实现上述太赫兹频段在片S参数的校准装置实施例中各模块/单元的功能,例如图15所示模块1201至1205的功能。
示例性地,所述计算机程序1303可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器1302中,并由所述处理器1301执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序1303在所述终端设备1300中的执行过程。例如,所述计算机程序1303可以被分割成获取模块、第一数学模型确定模块、第二数学模型确定模块、第三数学模型确定模块和S参数确定模块,各模块具体功能如下:
获取模块,用于获取对太赫兹频段的系统进行初步校准后得到的8项误差模型;
第一数学模型确定模块,用于基于8项误差模型,获取基于第一校准件的第一S参数,并根据第一S参数确定第一数学模型,第一数学模型包含探针之间的并联串扰项;
第二数学模型确定模块,用于基于8项误差模型,获取基于第二校准件的第二S参数,并根据第二S参数确定第二数学模型,第二数学模型包含探针之间的串联串扰项;
第三数学模型确定模块,用于基于8项误差模型,获取基于被测件的第三S参数,并根据第三S参数确定第三数学模型,第三数学模型包含被测件的Z参数;
S参数确定模块,用于基于第一数学模型、第二数学模型和第三数学模型求解得到被测件的Z参数,并根据被测件的Z参数得到被测件的S参数。
其它模块或者单元可参照图15所示的实施例中的描述,在此不再赘述。
所述终端设备1300可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备,所述终端设备1300还可以是DSP(digital signal processor,数字信号处理器)。所述终端设备1300包括但不仅限于处理器1301、存储器1302。本领域技术人员可以理解,图16仅仅是终端设备1300的一个示例,并不构成对终端设备1300的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端设备1300还可以包括输入 设备、输出设备、网络接入设备、总线等。
所述处理器1301可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器1302可以是所述终端设备1300的内部存储单元,例如终端设备1300的硬盘或内存。所述存储器1302也可以是所述终端设备1300的外部存储设备,例如所述终端设备1300上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器1302还可以既包括终端设备1300的内部存储单元也包括外部存储设备。所述存储器1302用于存储所述计算机程序1303以及所述终端设备1300所需的其他程序和数据。所述存储器1302还可以用于暂时地存储已经输出或者将要输出的数据。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的太赫兹频段在片S参数的校准装置和方法,可以通过其它的方式实现。例如,以上所描述的太赫兹频段在片S参数的校准装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个 单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种太赫兹频段在片S参数的校准方法,其特征在于,包括:
    获取对太赫兹频段的系统进行初步校准后得到的8项误差模型;
    基于所述8项误差模型,获取基于第一校准件的第一S参数,并根据所述第一S参数确定第一数学模型,所述第一数学模型包含探针之间的并联串扰项;
    基于所述8项误差模型,获取基于第二校准件的第二S参数,并根据所述第二S参数确定第二数学模型,所述第二数学模型包含探针之间的串联串扰项;
    基于所述8项误差模型,获取基于被测件的第三S参数,并根据所述第三S参数确定第三数学模型,所述第三数学模型包含所述被测件的Z参数;
    基于所述第一数学模型、所述第二数学模型和所述第三数学模型求解得到所述被测件的Z参数,并根据所述被测件的Z参数得到所述被测件的S参数。
  2. 根据权利要求1所述的太赫兹频段在片S参数的校准方法,其特征在于,所述基于所述8项误差模型,获取基于第一校准件的第一S参数,并根据所述第一S参数确定第一数学模型,包括:
    基于所述第一校准件,生成所述第一校准件对应的第一等效电路模型;
    根据所述8项误差模型,获取测量得到的所述第一校准件的第一S参数;
    将所述第一S参数转换为第一Y参数;
    根据所述第一Y参数和所述第一等效电路模型确定所述第一数学模型。
  3. 根据权利要求2所述的太赫兹频段在片S参数的校准方法,其特征在于,所述第一数学模型为:
    Figure PCTCN2020083495-appb-100001
    其中,
    Figure PCTCN2020083495-appb-100002
    为所述第一Y参数,Y PAD为PAD并联寄生参数,Y P为所述探针之间的并联串扰项。
  4. 根据权利要求1所述的太赫兹频段在片S参数的校准方法,其特征在于,所述基于所述8项误差模型,获取基于第二校准件的第二S参数,并根据所述第二S参数确定第二数学模型,包括:
    基于所述第二校准件,生成所述第二校准件对应的第二等效电路模型;
    根据所述8项误差模型,获取测量得到的所述第二校准件的第二S参数;
    将所述第二S参数转换为第二Y参数;
    根据所述第二Y参数和所述第二等效电路模型确定所述第二数学模型。
  5. 根据权利要求4所述的太赫兹频段在片S参数的校准方法,其特征在于,所述第二数学模型为:
    Figure PCTCN2020083495-appb-100003
    其中,
    Figure PCTCN2020083495-appb-100004
    为所述第二Y参数,Y PAD为PAD并联寄生参数,Y P为所述探针之间的并联串扰项,Z S为所述探针之间的串联串扰项,Z L为PAD内连线的串联寄生参数。
  6. 根据权利要求1所述的太赫兹频段在片S参数的校准方法,其特征在于,所述基于所述8项误差模型,获取基于被测件的第三S参数,并根据所述第三S参数确定第三数学模型,包括:
    基于所述被测件,生成所述被测件对应的第三等效电路模型;
    根据所述8项误差模型,获取测量得到的所述被测件的第三S参数;
    将所述第三S参数转换为第三Y参数;
    根据所述第三Y参数和所述第三等效电路模型确定所述第三数学模型。
  7. 根据权利要求6所述的太赫兹频段在片S参数的校准方法,其特征在于,所述第三数学模型为:
    Figure PCTCN2020083495-appb-100005
    其中,
    Figure PCTCN2020083495-appb-100006
    为所述第三Y参数,Y P为所述探针之间的并联串扰项,Y PAD为PAD并联寄生参数,Z S为所述探针之间的串联串扰项,Z L为PAD内连线的串联寄生参数,Z DUT为所述被测件的Z参数。
  8. 根据权利要求1至7任一项所述的太赫兹频段在片S参数的校准方法,其特征在于,所述第一校准件为开路-开路校准件,所述第二校准件为短路-短路校准件。
  9. 一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至8任一项所述太赫兹频段在片S参数的校准方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被一个或多个处理器执行时实现如权利要求1至8任一项所述太赫兹频段在片S参数的校准方法的步骤。
PCT/CN2020/083495 2019-12-17 2020-04-07 太赫兹频段在片s参数的校准方法及终端设备 WO2021120452A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/123,823 US11385175B2 (en) 2019-12-17 2020-12-16 Calibration method and terminal equipment of terahertz frequency band on-wafer S parameter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911302541.9A CN111142057B (zh) 2019-12-17 2019-12-17 太赫兹频段在片s参数的校准方法及终端设备
CN201911302541.9 2019-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/123,823 Continuation US11385175B2 (en) 2019-12-17 2020-12-16 Calibration method and terminal equipment of terahertz frequency band on-wafer S parameter

Publications (1)

Publication Number Publication Date
WO2021120452A1 true WO2021120452A1 (zh) 2021-06-24

Family

ID=70518610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083495 WO2021120452A1 (zh) 2019-12-17 2020-04-07 太赫兹频段在片s参数的校准方法及终端设备

Country Status (2)

Country Link
CN (1) CN111142057B (zh)
WO (1) WO2021120452A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257814A (zh) * 2020-03-05 2020-06-09 西北工业大学 矢量网络分析仪的直通-短路-短路校准方法
CN112098792B (zh) * 2020-08-14 2023-02-28 中国电子科技集团公司第十三研究所 两端口在片校准件模型和参数确定的方法
CN112098791B (zh) * 2020-08-14 2023-03-21 中国电子科技集团公司第十三研究所 在片校准件模型及在片校准件模型中参数确定的方法
CN112098794B (zh) * 2020-08-14 2023-02-28 中国电子科技集团公司第十三研究所 在片校准件模型中参数确定的方法及终端设备
CN112098795B (zh) * 2020-08-14 2023-05-05 中国电子科技集团公司第十三研究所 两端口在片校准件模型及参数确定的方法
CN112098793B (zh) * 2020-08-14 2023-02-28 中国电子科技集团公司第十三研究所 单端口在片校准件模型确定的方法及终端设备
WO2022033124A1 (zh) * 2020-08-14 2022-02-17 中国电子科技集团公司第十三研究所 在片校准件模型中参数确定的方法
WO2022033125A1 (zh) * 2020-08-14 2022-02-17 中国电子科技集团公司第十三研究所 两端口在片校准件模型和参数确定的方法
CN113777547B (zh) * 2021-07-29 2024-02-23 中国电子科技集团公司第十三研究所 在片s参数测量系统校准判断方法、装置及终端
CN113849958A (zh) * 2021-08-16 2021-12-28 中国电子科技集团公司第十三研究所 在片s参数测量系统串扰误差修正方法及电子设备
CN114970424B (zh) * 2022-04-08 2024-03-29 浙江大学 一种提取片上校准件寄生参数的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040100276A1 (en) * 2002-11-25 2004-05-27 Myron Fanton Method and apparatus for calibration of a vector network analyzer
CN103399286A (zh) * 2013-07-16 2013-11-20 中国电子科技集团公司第四十一研究所 一种多特性阻抗网络的测量校准方法
CN103983931A (zh) * 2014-05-06 2014-08-13 中国电子科技集团公司第十三研究所 矢量网络分析仪s参数测量不确定度的确定方法
CN108664717A (zh) * 2018-04-27 2018-10-16 上海集成电路研发中心有限公司 一种毫米波器件在片测试结构的去嵌方法
CN109444721A (zh) * 2018-12-19 2019-03-08 中国电子科技集团公司第十三研究所 检测s参数的方法及终端设备
CN110286345A (zh) * 2019-05-22 2019-09-27 中国电子科技集团公司第十三研究所 一种矢量网络分析仪在片s参数的校准方法、系统及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI519806B (zh) * 2014-10-31 2016-02-01 致茂電子股份有限公司 校正板及其時序校正方法
CN109444717B (zh) * 2018-11-27 2020-08-18 中国电子科技集团公司第十三研究所 新型在片s参数误差校准方法和装置
CN110333472B (zh) * 2019-07-25 2021-02-23 北京无线电计量测试研究所 一种三位置模型太赫兹探针瞬态特性校准方法和系统
CN110441723B (zh) * 2019-08-29 2021-08-31 北京无线电计量测试研究所 一种太赫兹探针瞬态响应校准方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040100276A1 (en) * 2002-11-25 2004-05-27 Myron Fanton Method and apparatus for calibration of a vector network analyzer
CN103399286A (zh) * 2013-07-16 2013-11-20 中国电子科技集团公司第四十一研究所 一种多特性阻抗网络的测量校准方法
CN103983931A (zh) * 2014-05-06 2014-08-13 中国电子科技集团公司第十三研究所 矢量网络分析仪s参数测量不确定度的确定方法
CN108664717A (zh) * 2018-04-27 2018-10-16 上海集成电路研发中心有限公司 一种毫米波器件在片测试结构的去嵌方法
CN109444721A (zh) * 2018-12-19 2019-03-08 中国电子科技集团公司第十三研究所 检测s参数的方法及终端设备
CN110286345A (zh) * 2019-05-22 2019-09-27 中国电子科技集团公司第十三研究所 一种矢量网络分析仪在片s参数的校准方法、系统及设备

Also Published As

Publication number Publication date
CN111142057B (zh) 2020-11-24
CN111142057A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2021120452A1 (zh) 太赫兹频段在片s参数的校准方法及终端设备
US11340286B2 (en) On-wafer S-parameter calibration method
WO2020232810A1 (zh) 一种矢量网络分析仪在片s参数的校准方法、系统及设备
CN109444721B (zh) 检测s参数的方法及终端设备
CN112098791B (zh) 在片校准件模型及在片校准件模型中参数确定的方法
CN104515907B (zh) 一种散射参数测试系统及其实现方法
CN106383327A (zh) 一种微波器件标准样片的校准方法
WO2023019935A1 (zh) 在片s参数测量系统串扰误差修正方法及电子设备
US8423868B2 (en) Method for correcting high-frequency characteristic error of electronic component
US20110298476A1 (en) Application of open and/or short structures to bisect de-embedding
CN111983538B (zh) 在片s参数测量系统校准方法及装置
US20130317767A1 (en) Measurement error correction method and electronic component characteristic measurement apparatus
CN111579869B (zh) 互易二端口网络s参数测量方法、装置及终端设备
US11385175B2 (en) Calibration method and terminal equipment of terahertz frequency band on-wafer S parameter
CN111983539A (zh) 在片s参数测量系统校准方法
US7643957B2 (en) Bisect de-embedding for network analyzer measurement
CN112098793B (zh) 单端口在片校准件模型确定的方法及终端设备
TWI463147B (zh) Calibration method of radio frequency scattering parameters with two correctors
CN114137389B (zh) 微波探针s参数相位的确定方法、装置、终端及存储介质
JP7153309B2 (ja) ベクトルネットワークアナライザを用いた反射係数の測定方法
CN112098794B (zh) 在片校准件模型中参数确定的方法及终端设备
US20230051442A1 (en) Method for Calibrating Crosstalk Errors in System for Measuring on-Wafer S Parameters and Electronic Device
TWI463146B (zh) Radiofrequency Scattering Parameter Measurement and Correction Method
CN113821763B (zh) 在片s参数测量系统校准方法及电子设备
CN111025213B (zh) 在片负载牵引输出功率的测量方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902602

Country of ref document: EP

Kind code of ref document: A1